

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 03, 2024

Multi-Objective and Multi-Constrained Non-Additive Shortest Path Problems

Reinhardt, Line Blander; Pisinger, David

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Reinhardt, L. B., & Pisinger, D. (2009). Multi-Objective and Multi-Constrained Non-Additive Shortest Path
Problems. DTU Management. DTU Management 2009 No. 16
http://www.man.dtu.dk/upload/institutter/ipl/publ/publikationer%202009/rapport%2016.pdf

https://orbit.dtu.dk/en/publications/efd38f72-5cfc-4b14-a453-4f7937744755
http://www.man.dtu.dk/upload/institutter/ipl/publ/publikationer%202009/rapport%2016.pdf

Line Blander Reinhardt
David Pisinger
December 2009

Report 16.2009

DTU Management Engineering

Multi-Objective and Multi-
Constrained Non-Additive
Shortest Path Problems

Multi-Objective and Multi-Constrained Non-Additive

Shortest Path Problems

Line Blander Reinhardt and David Pisinger∗

December 8, 2009

Abstract

Shortest path problems appear as subproblems in numerous optimization problems. In
most papers concerning multiple objective shortest path problems, additivity of the objective
is a de-facto assumption, but in many real-life situations objectives and criteria, can be
non-additive. The purpose of this paper is to give a general framework for dominance tests
for problems involving a number of non-additive criteria. These dominance tests can help
eliminate paths in a dynamic programming framework when using multiple objectives. Results
on real-life multi-objective problems containing non-additive criteria are reported. We show
that in many cases the framework can be used to efficiently reduce the number of generated
paths.

Keywords: Multi objective programming, Shortest path problem, Non-additive objective, Dynamic pro-

gramming

1 Introduction

The shortest path problem can be formulated on a directed graph G = (V, E) where V is a finite set
of vertices and E is a finite set of edges. The problem is to find a shortest path between a source
s ∈ V and a destination t ∈ V . In the multi-objective shortest path problem there are r criteria.
An edge eij ∈ E from vertex i ∈ V to vertex j ∈ V has associated values ck

ij , k ∈ {1, ..., r}
for each criterion k = 1, . . . , r. In order to have a well-defined problem it is assumed that there
are no negative cycles for the criteria being minimized, or positive cycles for the criteria being
maximized.

The general additive multi-objective shortest path problem with positive costs cij on the edges,
and an additive objective function for each criterion, can be described by the following integer
model (Martins [18]):

minimize : z =

∑

(i,j)∈V

c1
ijeij , . . . ,

∑

(i,j)∈V

cr
ijeij

 (1)

s.t.
∑

j∈V

esj −
∑

j∈V

ejs = 1 (2)

∑

j∈V

etj −
∑

j∈V

ejt = −1 (3)

∑

j∈V

eij −
∑

j∈V

eji = 0 ∀i ∈ V \ {s, t} (4)

eij ∈ {0, 1} ∀(i, j) ∈ E (5)

∗DTU Management, Technical University of Denmark, Produktionstorvet 424, DK-2800 Kgs.Lyngby,

{lbre,pisinger}@man.dtu.dk

1

Constraint (2) states that there must be exactly one edge leaving s that is not part of a cycle.
Constraint (3) states that there must be exactly one edge entering t that is not on a cycle.
Constraint (4) is the ordinary flow conservation constraint. The solution z is an r vector which
contains the values of the r objective functions for the path.

In real-life problems the objective functions may be non-additive and they may be functions
of several criteria. In general the objective function has the following form:

minimize : z =
(

C1(P), . . . , Cr(P)
)

(6)

where P is a path {s, . . . , t} and C1, . . . , Cr are cost functions which for a given path P return a
real number. We call this the value vector. A solution to the above problem is a set of all Pareto
optimal paths. A path P is Pareto optimal if there is no other path P ′ between the same two
vertices which is better or equal on all entries of the value vector and where at least one entry is
better. The solution set where there is exactly one path for each Pareto optimal value vector is
called the minimal complete set of Pareto optimal solutions.

Shortest path problems are among the most well-studied problems [1], however, results con-
cerning multi-criteria problems are rare. This may be due to the fact that the monotonicity
assumption of dynamic programming seldom holds for these problems. In [4] Carraway et al.
describe monotonicity as the property of objectives preserving preferences for partial solutions
in the dynamic programming recursion. This is not to be confused with non-decreasing or non-
increasing functions. In shortest path problems the monotonicity criterion means that if P is
a shortest path then the subpaths of P must also be shortest paths. For real life multi-criteria
problems monotonicity only holds for special cases.

One of the reasons for the recent interest in multi-objective optimization is that optimization
is being applied in public services and business applications. Therefore research in multi-objective
shortest paths and attempts to circumvent the monotonicity assumption is of immediate interest.

Hansen [10] presented solution methods to monotone bicriteria and biobjective path problems
using a label setting algorithm. Martins [18] generalized the label setting algorithm to an ar-
bitrary number of objectives, however, monotonicity was still assumed. Brumbaugh-Smith and
Shier [3] presented a label correcting algorithm to the multi-objective problem under the mono-
tonicity assumption. As Ehrgott and Gandibleux mention [8], these problems were not extensively
researched before the nineties. Several recent papers discuss approximation algorithms such as the
FPTAS outlined by Tsaggouris and Zaroliagis [25]. For the exact solution methods Tsaggouris
and Zaroliagis studied nonadditive paths with a single objective [24]. The objective is the sum
of several criteria weighted by linear or non-linear coefficients. An early paper by Lengauer and
Theune [17] mentions the problem of non-monotone cost structures with two criteria and shows
that by changing the domination criteria the problems can be solved by using a standard shortest
path algorithm such as Dijkstra’s. Another paper considering a non-additive weighted objective
is Carraway et al. [4] where the distance is minimized, and the probability of successfully reach-
ing the destination is maximized. We will later show that both the probability and the distance
criteria are monotone even though the sum of the two is not. It is shown in Carraway et al. [4]
that it can be difficult to determine whether a multicriteria objective function is monotone. To
circumvent the problem of not satisfying the monotonicity assumption Carraway et al. [4] intro-
duced the concept of generalized dynamic programming, and presented a framework for solving
multi-criteria shortest path problems. The framework, however, leaves it to the concrete appli-
cation to define a local preference relation, that can be used to remove dominated states in the
dynamic programming recursion. In this paper we present a number of such preference relations
for the listed criteria functions. Moreover we give a general framework for how to define a local
preference relation for non-additive objectives with certain general properties.

The contribution of this paper is to present a number of different criteria functions motivated
by real-life applications and to develop an algorithm which finds all Pareto optimal solutions
for a multi-objective shortest path problem. We present a general framework for dominance
tests with all the presented criteria functions f and report computational experiments on a real-
life instance with multiple criteria (addition, maximization, multiplication). Finding all Pareto-
optimal solutions to a multi-objective shortest path problem has several similarities with the

2

solution of multi-constrained shortest-path problems [6, 9, 13, 14, 15, 21, 26]. The techniques
developed in this paper can therefore be applied to several variants of multi-constrained shortest-
path problems with non-additive constraints.

The paper differs from previous work as follows: Müller-Hannemann and Schnee [19] solve the
nonadditive price problem by generally relaxing the Pareto optimality. The algorithm by Carraway
et al. [4] only determines the minimal complete set of the Pareto optimal paths, and therefore
does not find all Pareto optimal paths. Carraway uses a function u which maps all criteria to a
real number and thereby only has one objective function. His framework does not specify how the
dominance function should be implemented, but leaves it open to the concrete application. Irnich
and Villeneuve [15] presented an algorithm for finding all Pareto-optimal solutions to a resource
constrained shortest path problem with k-cycle eliminations. The considered (constrained and
unconstrained) resources are all additive.

In the following Section 6.1, we present a number of multi-objective shortest path problems
encountered in practice. Next, in Section 3, we formally define the set of Pareto optimal solutions
and the corresponding dominance criterion. In Section 4, we present the fundamental dynamic
programming algorithm used to solve the multi-objective shortest path problem for various cost
functions. Section 5 provides a number of dominance rules for various cost functions that can
be used to prune labels in a dynamic programming algorithm. Various monotone as well as non-
monotone cost functions are considered. In Section 6, we return to the problems considered
in Section 6.1 and discuss how the framework developed can be used to determine all Pareto-
optimal solutions. Finally, Section 7 reports on computational experiments on real-life data from
a shipping company. The paper concludes in Section 8.

2 The Multi-Objective Shortest Path Problems

Multi-criteria shortest path problems are well-studied for additive objective functions. However,
in several real-life settings one cannot assume that the objective function is additive, neither can
one assume that it is monotonously increasing. Let w : E → R be an additive weight function
on the edge weight and let f be a function from real numbers to real numbers, f : R → R. The
objective functions we will consider often contain the function f ◦ w. The following list describes
a number of objective functions which might be encountered in real life multi-criteria and multi-
objective problems. Note that all of the objectives listed are non-additive:

A Probability of reaching destination. Carraway et al. [4] consider the objective of maximizing
the probability of successfully reaching the destination. Each edge has an associated cost
(length) and a probability for successful traversal. Assuming that probabilities are indepen-
dent across edges, the probability of successfully reaching the destination is the product of
the probabilities of the edges traversed. In Section 6.1, we will show how the product of
probabilities can be converted to a function of the form f ◦ w.

B Combined distance and probability function. Carraway et al.[4] consider an objective that
is a combination of the distance d and the probability p. The objective is described as
−d + λp, λ ∈ R+, where the aim is to maximize the objective and thereby minimize the
length of the journey and maximize the probability. However, if the two criteria contradict
each other the value of λ will affect how the two criteria are weighted. Referring to the
objective of real life problem A, it is easy to see that this objective function will be of the
form −w1 + f ◦ w2 where w1, w2 : E → R are additive.

C Maximum of commissions. Blander Reinhardt [2] describes a real life multi-objective cargo
transportation problem in which each vertex corresponds to a hub port. Each time a vertex
is visited (i.e. the cargo is reloaded) an agent is paid a commission. An agent may be
responsible for several hubs, but will only be paid one commission. The commission paid
will correspond to the largest commission the agent is entitled to on the path. The cost
of a path is then the price of the edges plus the commission paid to agents. However,

3

only paying the agents the largest commission on the path complicates the objective. The
objective function for the price objective is then w +

∑

a∈Agents maxa{ca
e |e ∈ EP }, where

EP is the set of edges visited on the path P and ca
e is the commission paid to agent a on

edge e.

D Number of zones visited. Public transport in e.g. Copenhagen operates on a zone system
[11]. Each zone covers a number of vertices (stations) and edges, and if a ticket is issued
to a given zone, then it gives unlimited access to all vertices and edges in the zone. In
other words our cost function implies that a cost is paid only the first time a zone is visited.
A holder of a monthly card may buy access to any zone needed, hence the objective is to
minimize the number of different zones on the path. Since a price is only paid the first
time an edge in the given zone is visited, the objective function can be represented as
∑

zh∈Zones max{0, we|e ∈ EZh
∧ e ∈ P}, where EZh

is the edges in the zone Zh and P is the
path travelled. The value we is 1 for all e.

E Maximum zone distance from origin. The cost of a single-trip ticket in public transport
may depend on the maximum zone distance from the origin s, as in Copenhagen [11]. Here
the vertices and the edges again belong to a zone. A one-zone ticket gives access to the
zone containing s. A two-zone ticket gives access to all zones adjacent to the first zone. A
three-zone ticket furthermore gives access to all zones adjacent to the previous zones. This
means that if the non-starting zones visited on a trip all are neighboring to the starting zone
s then a two zone ticket is needed even though more than two different zones maybe visited.
The objective is to minimize the maximum zone distance between the zone of the edges on
the path and the origin s to the destination t. In this case the objective function is as in D.
However the zones are defined differently (see Section 6.5).

F Zone distance and time. In several public transportation ticket fare systems, travelers buy
access to some zones in a given time period, hence it may be relevant to take both distance
and time into consideration. A 1-zone ticket can be traversed within a time limit t1, a 2-zone
ticket can be traversed within a time limit t2 ≥ t1, etc. The objective is to minimize travel
cost. In this case the cost function takes a time and a number of zones and returns a cost.
Here the objective function obj takes the maximum of a time function t and a zone function
z, obj = max{t, z}, where the zone function is as described in E and the time function t is
of the form f ◦ w.

G Modulo k penalties. Jepsen et al. [16] consider a shortest path problem where an additional
penalty cost is paid for each of the k times nodes from a given set S have been visited. The
objective is the cost of the edges plus a penalty depending on the number of times nodes
from the set S have been visited. Here, the complicating factor is the penalty. This shortest
path problem stems from the addition of Subset-Row inequalities [16] in a branch-and-price
algorithm for the Vehicle Routing Problem. The objective function is w1 + f ◦ w2, as in B,
where f is the penalty function.

In the following sections we describe a general framework for solving multi-criteria shortest path
problems. Then, in Section 5 we develop general schemes for non-additive functions of the form
f ◦ w. In Section 6, we return to the above problems and discuss how they can be solved using
the schemes developed in Section 5.

3 Pareto Optimal Paths and Value Vectors

A path from s to t is denoted Pst = {s, . . . , t}. A sub-path Pij of Pst = {s, . . . , i, . . . , j . . . , t} is
the path {i, . . . , j}.

The optimal solution to the multi-objective shortest path problem (1) is a set of all Pareto
optimal paths. A path is Pareto optimal if the value vector of that path is not dominated by the
value vector of another path between the same two vertices. Let x = (x1, ..., xr) and y = (y1, ..., yr)

4

be two real valued r vectors. For a minimization problem, x dominates y, if xk ≤ yk for all
k ∈ {1, . . . , r} and xk < yk for at least one k ∈ {1, . . . , r}.

The set of Pareto optimal paths from a source s to a destination t is the set of paths from s to
t with non-dominated value vectors. It should be noted that there can be several Pareto optimal
paths with the same value vector.

If the problem has more than one objective then there can be an exponential number of Pareto
optimal paths where each has a unique value vector. In Hansen [10] a graph is presented where
there is an exponential number of paths from x1 to xn which are all Pareto optimal and have
unique value vectors. However, as observed by Müller-Hannemann and Weihe [20], the number of
Pareto optimal paths in real-life problems is usually quite small. This observation is also confirmed
in the real-life problems we have studied.

In some problems only the set of minimal complete Pareto optimal paths are sought. The
minimal complete set of Pareto optimal paths was defined in [10] for bicriteria problems. The
minimal complete Pareto optimal paths are, as defined in Section 1, the set containing exactly
one path per Pareto optimal value vector. Note that the minimal complete set of Pareto optimal
paths also can contain exponentially many paths [10]. When a shortest path problem contains
only two objective functions the minimal complete set of Pareto optimal paths can be found using
an integer programming method called the Ranking method. At each iteration of the ranking
method a Pareto optimal value vector and a path satisfying the value vector is found (see [8] for
further details). However, we have no knowledge of a constructive way of finding the minimal
complete set of Pareto optimal paths for problems with more than two objective functions.

It should be mentioned that in quite a few real life problems it would be desirable to find not
only the minimal complete set of Pareto optimal paths but all the Pareto optimal paths. This is
in particular true in cases where there is a decision maker who selects the most desirable solution.
It is reasonable to assume that there are factors unknown to the program that depend entirely on
the specific decision maker. Therefore, two different paths with the same objective values might
be viewed differently by the decision maker.

4 Dynamic Programming

We will use dynamic programming to find the set of pareto optimal paths. Dynamic programming
relies on the principle of optimality. For multi-objective problems where one or more objectives
does not satisfy the monotonicity property, one must use the weak principle of optimality as defined
by Carraway et al. [4]

Principle of optimality An optimal path must be composed of optimal subpaths.

Weak principle of optimality An optimal path must be composed of subpaths that can be
part of an optimal path.

Irnich and Villeneuve [15] defined a similar weak principle of optimality for multi-constrained
shortest path problems based on the concept of extensions E(P) of a given subpath P .

There are two general dynamic programming algorithms for additive multi-objective shortest
path problems based on Dijkstra’s algorithm for the single objective shortest path problem [5].
These algorithms are the Label-Setting algorithm [18] and the Label-Correcting algorithm [22]. The
Label-Setting algorithm does not allow negative edge costs. The Label-Correcting algorithm does
allow negative edge costs but no negative cycles. We will apply the Label-Correcting algorithm in
the sequel.

In the pseudocode for this algorithm let C1(P) . . . Cr(P) be the cost function of a path P and
let Merge be a function, which, given two sets of labels, returns only the undominated labels of the
union of the two sets. The set Q consists of the vertices with undominated labels that have not yet
been used to generate other labels. Each label is given as the tuple (C1(P), . . . , Cr(P), pred(P)),
where pred(P) is a pointer to the label it was generated from. The label correcting algorithm
is outlined in the following pseudocode, inspired by [3] and [22]. In each node v we maintain

5

a list Lv of labels. Clearly, by following the pred(P) pointers backward from a vertex v to the
source s one gets the subpath the label represents. Thus, each label in the lists Lv represents a
subpath P = {s, . . . , v} which is not dominated by other subpaths from s to v. The set Q can
with advantage be implemented as an lexicographically ordered list.

LABEL-CORRECTING(G, s, t)

1: Lv ← ∅ for all v ∈ V \ {s}
2: Ls ← {(0, . . . , 0, {s}))};
3: Q← {s};
4: while Q 6= ∅ do
5: u← extract vertex from Q;
6: for all edges euv do
7: L′

v ← Merge(Lv, Lu ◦ {euv});
8: if L′

v 6= Lv then
9: Lv ← L′

v;
10: Q← Q ∪ {v}
11: end if
12: end for
13: end while
14: return Lv for all v ∈ V ;

The label correcting algorithm repeatedly extracts a vertex u from the set Q, and for each outgoing
edge euv extends the labels (C1(Psu), . . . , Cr(Psu), pred(Psu)) in Lu to (C1(Psv), . . . , Cr(Psv),
pred(Psv)). These new labels Lu ∪ {euv} are then Merge’d together with the old labels Lv of v.
The merging eliminates dominated labels. If the set of labels at v has been changed during the
Merge, then v is added to Q. This is repeated until the set Q is empty. The ◦ operator in line 7
must match the objective functions, and the dominance criterion used implicit in Merge must be
tailored to return the undominated labels. We will in the next section propose various sufficient
criteria for removing dominated labels.

5 Non-Additive Objectives in Dynamic Programming

As mentioned before, dynamic programming algorithms for shortest path problems rely on the
monotonicity requirement. The monotonicity requirement ensures that subpaths of a Pareto op-
timal path are Pareto optimal and therefore the subpaths that are not Pareto optimal can be
eliminated from the search. Clearly the additive case is monotone, however there exists other
monotone objective functions. Theorem 1 covers a set of objective functions which satisfies the
monotonicity requirement. It should be noted that Theorem 1 is not exhaustive, as other objectives
may exist that satisfy the monotonicity requirement.

Section 5.1 defines a dominance criterion for problems where the objective function is based on
two or more additive weight functions. Section 5.2 defines dominance criteria for problems where
the objective function is defined as the maximum of a set of edge weights visited on the path. The
recently published example of optimizing the mean and variance of a random variable associated
with an edge described in [12] by Hutson and Shier shows a non-additive objective of the structure
described in Section 5.1. Weight functions evaluate a single criterion along a path. However an
objective can include several criteria. Thus several weight functions including the weight of a
criterion on a path can be transformed by one function in the objective. An additive objective
requires that the weight functions (also called criteria) included in it are additive, however, an
objective on one or more additive weight functions is not necessarily additive as the additive weight
function can be part of a non-additive function in the objective.

Theorem 1 Given a weighted directed graph G = (V, E) with an additive weight function w : E →
R

k (wℓ : E → R, ℓ ∈ {1, .., k}) where k is the number of objective functions, let the objective

6

functions be Cℓ = fℓ ◦wℓ where fℓ : R→ R is a strictly increasing or strictly decreasing function.
Let Pst be a Pareto optimal path from s to t, then any subpath Pij of Pst is a Pareto optimal path
from i to j.

The theorem shows that if the objective functions are strictly increasing or strictly decreasing,
then the normal principle of optimality holds, and hence we can use an ordinary dominance rule
in the label correcting algorithm.

Proof First assume that the objective functions are to be minimized. Assume that Pij is not a
Pareto minimal path, then there would be a path P ′

ij that dominates the path Pij . Decompose
the Pareto minimal path Pst into three subpaths Psi, Pij and Pjt. Then, because of the additive
structure of the weight function, we have w(Pst) = w(Psi)+w(Pij)+w(Pjt). Let the path P ′

st be
defined by subpaths Psi , P ′

ij and Pjt. Clearly the weight of P ′
st is w(P ′

st) = w(Psi) + w(P ′
ij) +

w(Pjt). Since P ′
ij dominates Pij we have fℓ(wℓ(P ′

ij)) ≤ fℓ(wℓ(Pij)) where the inequality is strict
for at least one ℓ ∈ {1, ..., k}. Then, in the case where fℓ is strictly increasing, one gets the
following inequalities where for at least one ℓ the inequality is strict:

fℓ(wℓ(P
′
ij)) ≤ fℓ(wℓ(Pij)) ⇒ wℓ(P

′
ij) ≤ wℓ(Pij) ⇒

wℓ(P ′
st) ≤ wℓ(Pst) ⇒ fℓ(wℓ(P ′

st)) ≤ fℓ(wℓ(Pst))

In the case where fℓ is strictly decreasing one gets a similar result by reversing the appropriate
inequalities. Therefore the path P ′

st dominates the path Pst, which contradicts the Pareto mini-
mality of the path Pst. For maximization the proof is similar.

�

Note that Theorem 1 also holds for graphs with negative weights and that an additive objective
function with nonnegative edge costs ck

ij is a special case of the strictly increasing function.

5.1 Objectives Based on Additive Weight Functions

We will start by showing the case of an objective based on a finite number of additive weight
functions. The problem for non-additive objectives is that the value of C(Pit) can vary depending
on the path taken from s to i. This is also the case when the non-additive objective is based on
additive weight functions.

Only the single objective case is considered, although the results easily can be generalized to
the multi-objective case by using the definition of Pareto optimality.

Theorem 2 (Gradient domination) Given a weighted directed graph G = (V, E) let wi : E →
R, i ∈ {1, . . . , n} be additive weight functions on G. Let there be an objective function of the form:
C(P) =

∑n

i=1 fi(wi(P)). Let Pst be composed of subpaths Psj and Pjt and let P ′
st be composed of

P ′
sj and Pjt (see Figure 1). Let

M−

i ≤
fi(wi(P ′

st))− fi(wi(Pst))

wi(P ′
st)− wi(Pst)

≤M+
i , i ∈ {1, . . . , n}, wi(Pst) 6= wi(P

′
st) (7)

u u u

P ′
sj

Psj

Pjt

Figure 1: Path from s to t is split into Psj ,P ′
sj ,Pjt.

7

where M−

i ,M+
i ∈ R. Moreover let:

n
∑

i=1

Miwi(P
′
sj) <

n
∑

i=1

Miwi(Psj) (8)

with strict inequality for at least one i, where

Mi =

M+
i if wi(P ′

sj) > wi(Psj)
1 if wi(P ′

sj) = wi(Psj)

M−

i if wi(P ′
sj) < wi(Psj)

Then C(P ′
st) < C(Pst).

Proof Assume that (8) holds. For each i where wi(Psj) 6= wi(P
′
sj) we have:

fi(wi(P ′
st))− fi(wi(Pst))

wi(P ′
sj)− wi(Psj)

=
fi(wi(P ′

st))− fi(wi(Pst))

wi(Pjt) + wi(P ′
sj)− (wi(Psj) + wi(Pjt))

=
fi(wi(P ′

st))− fi(wi(Pst))

wi(P ′
st)− wi(Pst)

which is less than or equal toM+
i if wi(P ′

sj) > wi(Psj) and which is greater than or equal toM−

i

if wi(P ′
sj) < wi(Psj). This implies that

fi(wi(P
′
st))− fi(wi(Pst)) ≤Mi(wi(P

′
st)− wi(Pst)) (9)

It is easy to see that inequality (9) also will hold if wi(Psj) = wi(P ′
sj). This means that

n
∑

i=1

(fi(wi(P
′
st))− fi(wi(Pst))) ≤

n
∑

i=1

(Mi(wi(P
′
st)− wi(Pst)))

and hence
n

∑

i=1

(fi(wi(P
′
st)) ≤

n
∑

i=1

(Mi(wi(P
′
st)− wi(Pst))) +

n
∑

i=1

fi(wi(Pst)) (10)

Now, adding inequalities (8) and (10) we get:

n
∑

i=1

(fi(wi(P
′
st)) <

n
∑

i=1

(fi(wi(Pst))

and hence C(P ′
st) < C(Pst) which proves the theorem.

�

In the next corollary we consider problems with additive weight functions where an objective
function is based on two additive criteria. This case is relevant for some of the real life problems
considered in Section 6.

Corollary 1 (minimization of objective) Given a weighted directed graph G = (V, E) let w1 :
E → R and w2 : E → R be two additive weight functions on G. Let there be an objective function
of the form: C(P) = w1(P)+f(w2(P)) which is to be minimized. Let Pst be composed of subpaths
Psj and Pjt and let P ′

st be composed of P ′
sj and Pjt (see Figure 1). Let

M− ≤
f(w2(P ′

st))− f(w2(Pst))

w2(P ′
st)− w2(Pst)

≤M+, w2(P
′
st) 6= w2(Pst) (11)

where M−,M+ ∈ R. Moreover let:

w1(P ′
sj) +M+w2(P ′

sj) < w1(Psj) +M+w2(Psj) if w2(P ′
sj) > w2(Psj)

w1(P ′
sj) +M−w2(P ′

sj) < w1(Psj) +M−w2(Psj) if w2(P ′
sj) < w2(Psj)

w1(P ′
sj) < w1(Psj) if w2(P ′

sj) = w2(Psj)
(12)

Then C(P ′
st) < C(Pst).

8

Corollary 1 states that if two subpaths Psj and P ′
sj ending at the same node j satisfy inequality

(12), then for minimization problems the path P ′
sj dominates Psj and the latter may be deleted.

Proof This is the special case of Theorem 2 where n = 2 and f1 is the identity function.
�

The dominance rule (12) was defined for a minimization problem. In the case of maximization
Corollary 1 is changed to

Corollary 2 (maximization of objective) Given a weighted directed graph G = (V, E) let w1 :
E → R and w2 : E → R be two additive weight functions on G. Let there be an objective function
of the form: C(p) = w1(p) + f(w2(p)) which is to be maximized. Let Pst be composed of subpaths
Psj and Pjt and let P ′

st be composed of P ′
sj and Pjt (See Figure 1) . Let

M− ≤
f(w2(P

′
st))− f(w2(Pst))

w2(P ′
st)− w2(Pst)

≤M+, w2(P
′
st) 6= w2(Pst) (13)

where M−,M+ ∈ R. Moreover let:

w1(P
′
sj) +M+w2(P

′
sj) > w1(Psj) +M+w2(Psj) if w2(P

′
sj) < w2(Psj)

w1(P ′
sj) +M−w2(P ′

sj) > w1(Psj) +M−w2(Psj) if w2(P ′
sj) > w2(Psj)

w1(P ′
sj) > w1(Psj) if w2(P ′

sj) = w2(Psj)
(14)

Then C(P ′
st) > C(Pst).

In finding M− and M+ the goal is to maximize M− and minimize M+ so that the number of
paths kept for investigation is minimized.

Remark 1 When f is differentiable and there exists M− and M+ such that M− ≤ f ′(x) ≤
M+ for all x in the domain of f , then by the Mean Value Theorem we have

M− ≤
f(w2(P ′

st))− f(w2(Pst))

w2(P ′
st)− w2(Pst)

≤M+.

Note that on a fixed weight graph G the domain of f can be restricted to a closed interval [a, b]
such that f(w2(P)) ∈ [a, b] for every simple path P in G. Moreover there could be a lower bound
on how much w2(P ′

st) − w2(Pst) can be for two different paths. This could for example be the
smallest cost of an edge in G.

Such upper bound on f(w2(P ′
st)) − f(w2(Pst)) and lower bound w2(P ′

st) − w2(Pst) could be
used to find a possible value for M+. In the same way possible values for M− can be found.
Clearly if f is a differentiable bounded function then M+ can be the maximum of the derivative
andM− the minimum of the derivative in the bounded region.

Remark 2 When f is convex and w2 : E → R
+
0 then

f(w2(Psi))− f(w2(P
′
si))

w2(Psi)− w2(P ′
si)

≤
f(w2(Pst))− f(w2(P

′
st))

w2(Pst)− w2(P ′
st)

=
f(w2(P

′
st))− f(w2(Pst))

w2(P ′
st)− w2(Pst)

(15)

and thus M− can be chosen as:

M− =
f(w2(Psi))− f(w2(P ′

si))

w2(Psi)− w2(P ′
si)

(16)

when substituting the value of M− into the portion of the dominance definition in Corollary 1
containing M− (both in the minimization and maximization versions) then regular dominance
(principle of optimality) is achieved in that portion.

9

d

x

f(x)

a a + c b b + c

Figure 2: The property of f to facilitate the use of Floor domination

Moreover if w2(Pit) ≤ b for all simple paths Pit from i to t in G then we can choose M+ as
follows:

M+ =
f(b + w2(P ′

si))− f(b + w2(Psi))

w2(P ′
si)− w2(Psi)

≥
f(w2(P ′

st))− f(w2(Pst))

w2(P ′
st)− w2(Pst)

Similarly when w2 : E → R
−

0 then M+ can be chosen as

M+ =
f(w2(P ′

si))− f(w2(Psi))

w2(P ′
si)− w2(Psi)

≥
f(w2(P ′

st))− f(w2(Pst))

w2(P ′
st)− w2(Pst)

, (17)

which in the portion containingM+ reduces to regular dominance in the dominance definition of
Corollary 1. If ∃a ≤ w2(Pit) for all simple paths Pit from i to t in G then M− can be chosen as

M− =
f(a + w2(Psi))− f(a + w2(P ′

si))

w2(Psi)− w2(P ′
si)

≤
f(w2(Pst))− f(w2(P ′

st))

w2(Pst)− w2(P ′
st)

. (18)

Remark 3 When f is concave, −f is convex and therefore we can apply Remark 2 to −f to
find suitable values ofM− andM+ for f .

These remarks will be used when returning to the objective functions described in Section 6.1.

Another function used in the objectives described in Section 6 is the floor function. Clearly
the floor function fulfills the requirements of Corollary 1, however,M+ is infinite. Using the floor
dominance stated by Jepsen et al. in [16], we present a general form of domination.

Theorem 3 (Floor domination) Given a weighted directed graph G = (V, E) let w1 : E → R

and w2 : E → R be two additive weight functions on G. Let there be an objective function of
the form: C(P) = w1(P) + f(w2(P)). Let the function f: R → R satisfy f(a + c) − f(a) − d ≤
f(b + c)− f(b) for all a,b,c in the domain of f (see Figure 2) where a, b satisfy some property D
and d ∈ R

+
0 . Let Pst be composed of subpaths Psj and Pjt and let P ′

st be composed of P ′
sj and Pjt

(see Figure 1). Then:
C(P ′

sj) + d ≤ C(Psj)⇒ C(P ′
st) ≤ C(Pst) (19)

when w2(P ′
sj), w2(Psj) are satisfying property D.

Proof Assume w1(P
′
sj)+f(w2(P

′
sj))+d ≤ w1(Psj)+f(w2(Psj)) and that w2(P

′
sj), w2(Psj) satisfy

a property D. Then, by the additivity of w1 we have that:

w1(P
′
st) + f(w2(P

′
sj)) + d ≤ w1(Pst) + f(w2(Psj)) (20)

By the property of f we have:

f(w2(P
′
sj) + w2(Pjt))− f(w2(P

′
sj))− d ≤ f(w2(Psj) + w2(Pjt))− f(w2(Psj)) (21)

10

by adding the previous two inequalities we get:

w1(P
′
st) + f(w2(P

′
st)) ≤ w1(Pst) + f(w2(Pst)) (22)

�

Theorem 3 is applied to real life problems in Sections 6.6 and 6.7, and examples of the determi-
nation of d and property D are presented.

5.2 Objectives Based on the Max and Min Function

In this subsection we consider a non-monotone objective function defined as the maximum of a
set of edge weights visited on the path P . Theorem 4 and its proof is a generalization of the work
in [2].

Theorem 4 (Max domination) Given a weighted directed graph G = (V, E) let w1 : E → R be
an additive weight function and aj : E → R, j ∈ {1, ..., n} be a map from the edges of G into R

and let e ∈ E be an edge in G. Then, let w2(P) =
∑n

j=1 maxe∈P aj(e). Let there be an objective
function of the form C(p) = w1(p) + w2(p) to be minimized. Let Pst be composed of subpaths Psi

and Pit and let P ′
st be composed of P ′

si and Pit. Moreover let:

w1(P
′
si) +

n
∑

j=1

max
e∈P′

si

{aj(e)} < w1(Psi) +

n
∑

j=1

max
e∈Psi

{aj(e)} − F (Psi,P
′
si) (23)

where

F (P ,P ′) =

n
∑

j=1

max{0, max
e∈P

aj(e)−max
e∈P′

aj(e)}.

Then C(P ′
st) < C(Pst).

In other words if two subpaths Psi and P ′
si end at the same node i and (23) is satisfied, then the

label corresponding to subpath P ′
si dominates the label corresponding to subpath Psi and hence

the latter may be deleted.

Proof With some trivial case studies it is easy to see that for each j = 1, . . . , n we have

max

{

0, max
e∈Pit

{aj(e)} − max
e∈P′

si

{aj(e)}

}

−max

{

0, max
e∈Pit

{aj(e)} − max
e∈Psi

{aj(e)}

}

≤ max

{

0, max
e∈Psi

{aj(e)} − max
e∈P′

si

{aj(e)}

}

Adding these inequalities for j = 1, . . . , n, we obtain

n
∑

j=1

max

{

0, max
e∈Pit

{aj(e)} − max
e∈P′

si

{aj(e)}

}

−
n

∑

j=1

max

{

0, max
e∈Pit

{aj(e)} − max
e∈Psi

{aj(e)}

}

≤
n

∑

j=1

max

{

0, max
e∈Psi

{aj(e)} − max
e∈P′

si

{aj(e)}

}

By the definition of F (P ,P ′), the above inequality is the same as:

n
∑

j=1

max

{

0, max
e∈Pit

{aj(e)} − max
e∈P′

si

{aj(e)}

}

≤
n

∑

j=1

max

{

0, max
e∈Pit

{aj(e)} − max
e∈Psi

{aj(e)}

}

+ F (Psi,P
′
si) (24)

11

Adding inequality (24) to the assumption (23) we achieve:

w1(P
′
si) +

n
∑

j=1

max
e∈P′

si

{aj(e)}+
n

∑

j=1

max

{

0, max
e∈Pit

{aj(e)} − max
e∈P′

si

{aj(e)}

}

< w1(Psi) +

n
∑

j=1

max
e∈Psi

{aj(e)}+

n
∑

j=1

max

{

0, max
e∈Pit

{aj(e)} − max
e∈Psi

{aj(e)}

}

It is easy to check that this is the same as:

w1(P
′
si)+

n
∑

j=1

max

{

max
e∈Pit

{aj(e)}, max
e∈P′

si

{aj(e)}

}

< w1(Psi)+
n

∑

i=1

max

{

max
e∈Pit

{aj(e)}, max
e∈Psi

{aj(e)}

}

which is equivalent to

w1(P
′
si) +

n
∑

j=1

max
e∈P′

st

{aj(e)} < w1(Psi) +
n

∑

j=1

max
e∈Pst

{aj(e)}

By adding w1(Pit) to both sides we get the desired result C(P ′
st) < C(Pst).

�

Theorem 5 (Min domination) Given a weighted directed graph G = (V, E) let w1 : E → R

be an additive weight function and ai : E → R, i ∈ {1, ..., n} be a map from the edges of G to
the reals. Then, let w2(P) =

∑n
i=1 mine∈P ai(e). Let there be an objective function of the form

C(P) = w1(P) − w2(P) to be minimized. Let Pst be composed of subpaths Psi and Pit and let
P ′

st be composed of P ′
si and Pit. Let F (P ,P ′) =

∑n
j=1 max{0, mine∈P aj(e) − mine∈P′ aj(e)}.

Moreover let:
C(P ′

si) < C(Psi)− F (Psi,P
′
si) (25)

Then C(P ′
st) < C(Pst).

In the cases where domination (25) of Theorem 5 holds we can eliminate paths C(Psi) when
minimizing C(P).

Proof Clearly, since maxe∈P{aj(e)} = −mine∈P{−aj(e)} and therefore

C(P) = w1(P)−
n

∑

i=1

min
e∈P
{−ai(e)} = w1(P) +

n
∑

i=1

max
e∈P

ai(e).

By Theorem 4, it follows that Theorem 5 holds.
�

Theorem 4 is applied to some real life problems in Section 6.3 and 6.4. For an example of how
F (P ,P ′) is determined see Sections 6.3 and 6.4.

5.3 Goal domination

Goal domination is a well known and commonly used way of eliminating labels (see [19]). This
domination does not require monotonicity, however it can only be used for objectives C(P), that
are non-decreasing or non-increasing and a feasible solution to the problem must be found before
goal domination can be used. The goal domination checks each new label whether it is dominated
by a label at the destination.

To improve the goal domination one can find lower bounds (upper bounds in the case of a
maximization problem) on all objectives and pairs of vertices. This can be done by preprocessing
the graph data. When using preprocessing, the goal domination can be extended so that the lower

12

bound of the remaining path is added to the label when testing whether it is dominated by labels
at the destination.

Dumitrescu and Boland [7] show that preprocessing can reduce computation time significantly
on resource constrained shortest path problems. Preprocessing is useful in graphs where the edge
weights seldom change. Nevertheless, the storage requirements increase as there can be a quadratic
number of lower bounds. However, each lower bound will not be very space-consuming as it is a
simple number. Lower bounds generated “on the fly” are often used in graphs where the vertices
are placed in a coordinate system and therefore the Euclidean distance between nodes can be
calculated “on the fly” [19]. Another lower bound method [19] is to make simplified versions of
the graph in which a specific lower bound can be found at a given shortest path request.

6 Solving Real Life Shortest Path Problems

With the properties covered in previous section we now return to the objectives (A) through (G)
listed in Section 6.1. We describe how the developed framework can be adapted to the considered
objectives.

6.1 Multiplicative cost function

The multiplicative objective described in (A) is given as follows: Each edge eij has a probability
πij ∈ (0, 1] for being traversed successfully, and the corresponding objective is

C(P) =
∏

eij∈P

πij

The objective is monotone since we have ([23] Example 6.3.2)

max log C(P) = max log
∏

eij∈P

πij = max
∑

eij∈P

log πij (26)

Defining w1 : E → R
+
0 as w1(eij) = log πij and choosing f = ex, Theorem 1 gives that the

objective is monotone. Therefore all subpaths are also optimal, and if the problem contains
several monotone objective functions all subpaths are Pareto optimal. Notice that w1(eij) ≥ 0
since all 0 < πij ≤ 1 .

6.2 Combined distance and probability function

The second objective (B) is a combination of the two criteria: distance d and probability π ∈ (0, 1].
The objective is written as −d + λπ with λ > 0 which is to be maximized. Let f(x) = λax so
that f(loga(π(P))) = λπ(P). Let w1(P) = −d(P) and w2(P) = loga(π(P)). As loga(π(P))
is additive, we can use Corollary 2. Since loga(π(P)) : E → R

−

0 and f is convex, we can use
Remark 2. By Remark 2 the only case where the principle of optimality does not work is the
case where w2(P ′

si) > w2(Psi). Therefore, we need to find a good M−. We choose M− =
(f(b + w2(Psi))− f(b + w2(P ′

si)))/(w2(Psi)−w2(P ′
si)) where b ≤ w2(Pit) for all simple paths Pit

from i to t on G as suggested in Remark 2 Equation (18). Inserting this value into the definition
of dominance for the case w2(P ′

si) > w2(Psi) in Corollary 2 we get:

w1(P
′
si) > w1(Psi) + f(b + w2(Psi))− f(b + w2(P

′
si)) (27)

A lower bound L for π(Pit) where Pit is an arbitrary simple path from i to t on G results in loga(L)
being a lower bound for loga(π(Pit)). Therefore we can substitute b with loga(L). Moreover, we
can use that f(x) = λax, w1(P) = −d(P) and w2(P) = loga(π(P)) to rewrite (27) as:

w1(P
′
si) > w1(Psi) + λaloga(L)+loga(π(Psi)) − λaloga(L)+loga(π(P′

si))

13

this inequality is the same as

w1(P
′
si) > w1(Psi) + λLπ(Psi)− λLπ(P ′

si),

and hence
−d(P ′

si) > −d(Psi) + λLπ(Psi)− λLπ(P ′
si)). (28)

This means that the dominance of Corollary 2 in this case is: If (29) or (30) is satisfied then then
C(P ′

st) > C(Pst).

−d(P ′
si) + π(P ′

si) > −d(Psi) + π(Psi) and π(P ′
si) ≤ π(Psi) (29)

−d(P ′
si) > −d(Psi) + λLπ(Psi)− λLπ(P ′

si)) and π(P ′
si) > π(Psi) (30)

Carraway et al. [4] propose the following algorithm for implementing the dominance test. Let
P be a path from a vertex s to a vertex i then d is the distance of the path P and π is the
probability of the path P . Let the path P ′ be a path from s to i different from P and let d̂ and π̂
be the distance and probability on that path.

Algorithm by Carraway et al.:

Step 0. Designate (d, π) and (d̂, π̂) such that d ≤ d̂.

Step 1. If d = d̂ and π ≤ π̂ then delete (d, π) and stop; else if d = d̂ and π > π̂ then delete (d̂, π̂)
and stop.

Step 2. If π = π̂, delete (d̂, π̂) and stop.

Step 3. If d̂− d ≤ λbj(π̂− π) where bj is the minimum of the probability on the remaining path.
Delete (d, π) and stop.

Step 4. If d − d̂ ≤ λmj(π − π̂) where mj is the maximum of the probability on the remaining

path. Delete (d̂, π̂) and stop.

Step 5. Retain both returns and stop.

In [4] Step 2 was written as follows: If π ≤ π̂, delete (d̂, π̂) and stop. As this does not hold,
it is presumed to be a typing error and we have inserted = instead of ≤. Note that by using
a non-strict inequality, Carraway et al. only get the minimal complete set of solutions. Clearly,
by making the inequality non-strict, our dominance method, (29) and (30), will find exactly the
minimal complete set of Pareto optimal solutions.

We now show that Theorem 2 allows for the elimination of all of the paths eliminated by the
algorithm of Carraway et al.

It can easily be shown that all paths deleted by step 1 and 2 are eliminated by Corollary 2,
inequalities (29) and (30).

In order to prove the same for step 3 we have to show that when d ≤ d̂ and d̂−d ≤ λbj(π̂−π),
where bj is the minimum of the probabilities, on the remaining path (π(Pit)), then one of the

domination statements (29) and (30) holds. Let (d, π) be the pair (d(Psi), π(Psi)) and (d̂, π̂) be
the pair (d(P ′

si), π(P ′
si)). Since bj > 0 we can choose the lower bound L = bj > 0. When π̂ < π

no path is deleted in step 3. Now insert the values in the inequality of step 3:

d(P ′
si)− d(Psi) ≤ λL(π(P ′

si)− π(Psi)) ⇒ −d(P ′
si) + d(Psi) ≥ λL(−π(P ′

si) + π(Psi)) (31)

⇒ −d(P ′
si) ≥ −d(Psi) + λL(π(Psi)− π(P ′

si)) (32)

which by (30) means that Corollary 2 eliminates (d, π) when π̂ > π. In the case where π̂ = π it is
easy to show that Corollary 2 eliminates (d, π).

To show that a path deleted in step 4 is also deleted by (29) and (30), set (d, π) = (d(P ′
si), π(P ′

si))

and (d̂, π̂) = (d(Psi), π(Psi)) and note that in the case where π > π̂, the inequality (30) is trivially
true. If π ≤ π̂, then we must show that the inequality of step 4 implies (29). But this must be
true as (29) amounts to the principle of optimality (regular domination).

14

6.3 Maximum of commissions

The objective described in (C) is taken from [2]. The cost of a path is calculated as the price of
the edges (transports) plus some commission to agents.

Let the set of agents be 1, . . . , A and let Sa be the edges covered by agent a ∈ {1, . . . , A}.
Each edge is covered by at most one agent. Each edge eij has a corresponding commission ca

ij .
An agent is paid the largest commission he is entitled to on the path P . The objective is then

C(P) =
∑

eij∈P

cij +

A
∑

a=1

max
eij∈Sa∩P

{0, ca
ij}

In this case we can use Theorem 4 to obtain that

∑

eij∈P′

sh

cij +

A
∑

a=1

max
eij∈Sa∩P′

sh

{0, ca
ij} <

∑

eij∈Psh

cij +

A
∑

a=1

max
eij∈Sa∩Psh

{0, ca
ij} − F (Psh,P ′

sh)

where

F (Psh,P ′
sh) =

A
∑

a=1

max{0, max
eij∈Sa∩Psh

{0, ca
ij} − max

eij∈Sa∩P′

sh

{0, ca
ij}}

implies C(P ′) < C(P).

6.4 Number of zones visited

In the zone system objective described in (D) the price is calculated depending entirely on the
zones passed on the journey. More formally let the set of edges be divided into zones Z1, . . . , Zn.
Without loss of generality we may assume that each edge only corresponds to one zone, as we
otherwise may split the edge. Let we have the value 1 for all edges e.

The objective then is to minimize the number of different zones on a path P . The objective
can be written as follows:

min : C(P) =

n
∑

h=1

max
e∈Zh∩P

{0, we} (33)

To use Theorem 4 on the zone system each edge must be assigned the zones it travels through.
Let

F (P ,P ′) =

n
∑

h=1

max{0, max
e∈Zh∩P

{0, we} − max
e∈Zh∩P′

{0, we}}

By Theorem 4 we get that

n
∑

h=1

max
e∈Zh∩P′

si

{0, we} <
n

∑

h=1

max
e∈Zh∩Psi

{0, we} − F (Psi,P
′
si) (34)

implies that the C(P ′
st) < C(Pst).

However for objectives of the form
∑n

h=1 maxe∈Zh∩P{0, we} where w1(P) is 0 for all paths,
Theorem 4 will not be able to eliminate any simple subpaths from the investigation. This means
that in this case no subpath will be eliminated by the dominance of Theorem 4. In this case goal
domination must be used to eliminate paths that are not Pareto optimal compared to a solution
that is already found. This, however, requires that a solution is found. Another way to circumvent
the problem is to combine an additive criterion with the price in the objective so that w1(P) will
have a value greater than zero. The other criterion could for example be time or distance.

15

6.5 Maximum zone distance from origin

The objective (E) of finding the maximum zone distance from a origin can be handled by creating
new zones around the source s. Let Z ′

1 be the zone in which s is located. Let Z ′
2 be the set of

zones that are adjacent to Z ′
1. In general Z ′

h is the set of zones adjacent to Z ′
h−1. Note that to get

to the distance of three zones of the origin one must have passed zones distance two and one from
origin. Let the cost function cij = ch where eij ∈ Z ′

h so that h is the number of zones visited. In
this case the objective function is:

C(P) = max
eij∈Z′∩P

{cij} (35)

Clearly in this case if
max

eij∈Z′∩P′

si

{cij} ≤ max
eij∈Z′∩Psi

{cij} (36)

then C(P ′
st) ≤ C(Pst). Notice that it is possible for the domination to eliminate paths if only the

minimal complete set is desired. If all paths of minimum value are desired then goal domination
must be used.

6.6 Zone distance and time

The objective (F) is another version of objective (E). However this objective takes a time and a
number of zones and returns a cost. With reference to the Copenhagen ticket system, we assume
that the cost function is the number of time intervals times a factor σ. Let us suppose that the
time intervals all are of some size k. The time is clearly additive and, as in the model of (E),
the zones are not. It is a general assumption that the cost function is monotonously increasing.
Moreover the time and zone criteria are not independent in the objective function as the cost is
the maximum of the cost of the ticket for the time used and the cost of the ticket for the traveled
number of zones. The objective now becomes:

C(P) = max

c

∑

eij∈P

tij

 , max
eij∈Z′∩P

{cij}

(37)

From the dominance of objective (E) we have that:

max
eij∈Z′∩Psi

{cij} ≤ max
eij∈Z′∩P′

si

{cij} ⇒ max
eij∈Z′∩Pst

{cij} ≤ max
eij∈Z′∩P′

st

{cij} (38)

Since the cost function is the product of a factor σ and the number of time intervals, and all
time intervals are of same size k, we get

c

∑

eij∈P

tij

 = σ

⌈

1

k

∑

eij∈P

tij

⌉

(39)

It is easy to see that:

σ

⌈

a + c

k

⌉

− σ

⌈

a

k

⌉

+ σ ≥ σ

⌈

b + c

k

⌉

− σ

⌈

b

k

⌉

(40)

When a mod k ≥ b mod k and for all other cases regular domination holds.
For two paths P and P ′, we now by Theorem 3 have that:

σ

⌈

1

k

∑

eij∈P′

si

tij

⌉

− σ ≥ σ

⌈

1

k

∑

eij∈Psi

tij

⌉

⇒ σ

⌈

1

k

∑

eij∈P′

st

tij

⌉

≥ σ

⌈

1

k

∑

eij∈Pst

tij

⌉

(41)

16

holds when
∑

eij∈P′

si
tij mod k ≥

∑

eij∈Psi
tij mod k. Let α = σ if

∑

eij∈P′

si
tij mod k ≥

∑

eij∈Psi
tij mod

k, and α = 0 otherwise. Clearly, if:

σ

⌈

1

k

∑

eij∈Psi

tij

⌉

≤ σ

⌈

1

k

∑

eij∈P′

si

tij

⌉

− α (42)

and
max

eij∈Z′∩Psi

{cij} ≤ max
eij∈Z′∩P′

si

{cij} (43)

then C(Pst) ≤ C(P ′
st).

6.7 Modulo k penalties

Let S be a given set of edges. We consider a shortest path problem where we pay an additional
penalty σ ≥ 0 each time the set S has been visited k times. Our objective is hence

C(P) =
∑

eij∈P

wij + σ

1

k

∑

eij∈S∩P

cij

 = W (P) + σ

⌊

1

k
CS(P)

⌋

(44)

Jepsen et al. [16] handle this problem by using a dominance criterion that takes into account when
the cost σ⌊cij/k⌋ is to be paid. In other words, if two subpaths Psi and P ′

si end at the same node
i and either (45) or (46) is satisfied then P ′

si dominates Psi.

C(P ′
si) + σ ≤ C(Psi) and CS(P ′

si) mod k ≥ CS(Psi) mod k (45)

C(P ′
si) ≤ C(Psi) and CS(P ′

si) mod k ≤ CS(Psi) mod k (46)

We have previously seen that:

σ

⌊

a + c

k

⌋

− σ

⌊

a

k

⌋

− σ ≤ σ

⌊

b + c

k

⌋

− σ

⌊

b

k

⌋

(47)

holds when a mod k ≥ b mod k and for all other cases regular domination holds.
By Theorem 3 we now have that:

W (Psi) + σ

⌊

1

k
CS(Psi)

⌋

+ σ ≤ σ

⌊

1

k
W (P ′

si) + CS(P ′
si)

⌋

⇒W (Pst) + σ

⌊

1

k
CS(Pst)

⌋

≤W (P ′
st) + σ

⌊

1

k
CS(P ′

st)

⌋

(48)

holds when CS(Psi) mod k ≥ CS(P ′
si) mod k and otherwise regular domination holds. Since

Theorem 3 was inspired by the domination found in Jepsen et al. [16] it is not a surprise that it
holds for their case.

7 Computational Results

In this section we demonstrate that even though non-additive criteria functions are hard to solve
in theory, several real-life problems are tractable in practice. The label-correcting algorithm was
implemented in C++ and all tests were carried out on a 2.1 GHz Pentium processor.

The considered instances are based on real-life data from a shipping company which wants to
find the Pareto optimal paths for transporting a container from s to t when considering various

17

objectives. The given network data contained 15 vertices and 125 edges. In order to construct
larger instances, the network has been upscaled.

In all tests we have restricted the number of transfers to at most 10. This number is quite large
and in reality could be set lower. For comparison, we have run tests where the Pareto optimal
solutions are found without using the nonadditive domination. In some of the graph instances the
tests not using nonadditive domination while using goal dominance only were omitted from the
test set as they were too time consuming.

To improve the performance of the algorithm we have applied some extra methods for elim-
inating undesirable paths such as goal dominance described in Section 5.3. In the case of goal
dominance the standard elimination is used for all objectives. Another way to improve elimi-
nation is to preprocess the data by creating lower bounds between all pairs of vertices for all
objectives. This method was described in Section 5.3. The lower bounds can be used to see if a
subpath will be sure to yield a dominated path. This process uses the subpath values combined
with the lower bounds of all objectives from the current vertex to the destination to check for
dominance against a path already found.

Transfer, time and price with maximum of commissions objectives

Instance Number of Pareto optimal solutions
found on 100 random requests

Time for prepro-
cessing (s)

Number of hubs Number of depar-
tures

R1 571 3.96 91 1176
R2 491 137.42 221 4176
R3 583 2934.72 321 10176

With weighted domination Without weighted domination

No optimization Goal dominance Lower bounds Goal dominance Lower bounds

R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

Avg. time (s) 0.24 0.94 4.30 0.12 0.40 1.98 0.08 0.23 1.05 15.74 - - 3.71 3.87 7.05
Max. time (s) 0.54 1.72 9.23 0.39 1.30 7.11 0.25 0.91 4.84 543.04 - - 243.25 141.82 147.18
Avg. # labels 1.6e5 6.9e5 2.4e6 8.0e4 3.0e5 1.2e6 5.1e4 1.6e5 5.3e5 4.2e5 - - 1.7e5 4.6e5 1.1e6

Table 1: Running times and number of labels generated when finding the Pareto optimal paths
in a graph. The tests are done with 100 random requests where one of the objectives contains a
max function.

Transfer, time and price with maximum of commissions and probability objectives

Instance Number of Pareto optimal solutions
found on 100 random requests

Time for prepro-
cessing (s)

Number of hubs Number of depar-
tures

R1 652 0.24 21 176
R2 3665 9.90 91 1176
R3 3242 55.15 121 2176

With weighted domination Without weighted domination

No optimization Goal dominance Lower bounds Goal dominance Lower bounds

R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

Avg. time (s) 0.06 7.18 15.60 0.04 2.19 6.66 0.02 0.46 1.01 3.21 - - 0.07 34.41 55.02
Max. time (s) 0.18 32.83 70.04 0.18 19.17 61.33 0.08 4.77 14.26 130.21 - - 1.08 2244.09 2174.12
Avg. # labels 3.7e4 9.9e5 2.4e6 2.3e4 4.4e5 1.1e6 1.0e4 1.2e5 2.6e5 1.4e5 - - 2.3e4 4.5e5 9.0e6

Table 2: Running times and number of labels generated when finding the Pareto optimal paths in a
graph. The tests are done with 100 random requests where one of the objectives is the probability
function.

The tests reported in Table 1, considers a real-life shipping problem similar to case C described
in Section 6.1. The shipping company wants to find the Pareto optimal paths for transporting a
container from s to t when considering the time, the number of transfers, and the cost. The cost is
non-additive as it includes payments to agents along the path. Even though the same agent may

18

Time and price with maximum of commissions and transfer-probability objectives

Instance Number of Pareto optimal solutions
found on 100 random requests

Time for prepro-
cessing (s)

Number of hubs Number of depar-
tures

R1 408 0.23 21 176
R2 700 9.90 91 1176
R3 799 54.12 121 2176

With weighted domination Without weighted domination

No optimization Goal dominance Lower bounds Goal dominance Lower bounds

R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

Avg. time (s) 0.04 0.37 1.40 0.02 0.16 0.55 0.01 0.10 0.34 0.81 - - 0.08 1.76 6.19
Max. time (s) 0.11 0.84 9.44 0.08 0.69 4.06 0.08 0.38 2.33 28.50 - - 1.82 76.89 146.86
Avg. # labels 2.0e4 2.1e5 4.7e5 1.2e4 1.0e5 2.1e5 7.9e3 5.9e4 1.3e5 5.5e4 - - 2.0e4 1.8e5 3.9e5

Table 3: Running times and number of labels generated when finding the Pareto optimal paths in a
graph. The tests are done with 100 random requests where one of the objectives is the probability
combined with transfer function.

be responsible for several vertices on a path, the agent only gets paid once, corresponding to the
largest commission the agent is entitled to along the path taken. To solve this problem we have
used max-dominance (Theorem 4) for the cost objective and regular dominance (Theorem 1) for
the time and transfer objectives.

To illustrate the strength of the domination presented in this paper we have compared the
results with results where we only eliminate a path at an intermediate point if all the commissions
to agents on the eliminated path are smaller than or equal to the commissions paid on the domi-
nating path. Note that the random requests are different for the different test instances. The fact
that the requests are different for the instances may explain the surprising result that the longest
time it takes to solve a problem without using max-dominance takes longer for the smaller R1
instance than for the other two larger instances.

In the second test, reported in Table 2, the four objectives of time, transfers, cost and the
probability of reaching the destination are considered. The probability objective is described in
case A of Section 6.1. As we did not have access to real-life probability data, the probability
of each edge was uniformly randomly distributed. It is clear that with an additional objective
the complexity of the problem will increase. This can be seen from the fact that the average
number of Pareto optimal paths in Table 2 for instance R2 and R3 is more than 32 per request,
where real-life instances typically have fewer. Note that the probability objective uses regular
domination as it has the monotonicity property. However the price objective is the nonadditive
objective from case C described in Section 6.1. To solve this problem we have used max-dominance
(Theorem 4) for the cost objective and regular dominance (Theorem 1) for the time, transfers and
probability objectives. In the comparison without using nonadditive domination we have changed
the nonadditive domination on the price objective as in Table 1. It is clear that the max-dominance
has a significant impact on the running time as does the lowerbound method even though the the
time used on preprocessing increases significantly with the instance size.

In the third test, reported in Table 3, the three objectives time, price and the weighted objective
of transfers and probability was considered. The weighted function of an additive function and
the probability function is described for the distance and probability in case B of Section 6.1. The
price objective is the nonadditive objective from case C described in Section 6.1. To solve this
problem we have used Corollary 2 for the weighted transfer and probability objective and regular
dominance (Theorem 1) for the time objective and the max-dominance (Theorem 4) for the price
objective.

For comparison tests reported in Table 1, 2 and 3 are also run without using the domination
of Corollary 2. In that case the weighted objective of transfer and probability is dominated when
the transfers are greater and the probability is smaller than those on the dominating path. For
the time objective we use ordinary domination, while the price objective makes use of the same

19

domination as in the previous tests.
The results clearly indicate that the presented tightened dominance methods for non-additive

objectives significantly decrease the number of labels generated. In fact for the large graphs,
less than a third of the labels are generated when using the non-additive domination methods for
objectives. The data used for the lower bound method generated during preprocessing can be used
for all requests as long as the graph and objectives are the same. The time used on preprocessing
clearly depends on the graph size. If the graph seldom is changed, it is computationally cheap to
find the lower bounds. In the case of Table 2 instance R3 it is evident that preprocessing reduces
the running time and number of generated labels significantly.

Not surprisingly, comparing instances R2 and R3 in Tables 2 and 3 it is clear that adding
objectives has an impact on the complexity of the problem with an significant increase in the
number of Pareto optimal solutions. For all the tests, the tightened domination reduces the
average running time by at least a factor three and the longest running time by at least a factor
two. One can also see that the improvement increases as the graph gets larger.

8 Conclusion

This paper has presented some general techniques to restrict the subpaths that need to be inves-
tigated in a dynamic programming algorithm, when solving shortest path problems with several
non-additive functions. The dynamic programming method for the shortest path problem is sim-
ple and easy to adjust when the complicated cost functions that arise in real-life applications
are encountered. The domination criteria presented in the theorems can, as shown in Section 6,
be used on different real-life applications. However it should be noted that there are still many
non-additive criteria and objectives not covered by the theorems presented in this article.

Based on the experimental results we may conclude that the tightened domination method
significantly lowers the number of labels generated for each problem. Using better data structures
which make it possible to quickly test for domination may further improve the running times.

Being able to handle non-additive objectives, the shortest path algorithms can more widely be
applied to real-life problems. We believe that the tightened domination criteria given in this paper
can be a tool box for others when defining such criteria for other real-life problems. Our method
is a contribution in the process of optimizing more and more real-life problems and thereby using
our resources optimally and minimizing waste both in the literal and metaphorical sense.

Acknowledgments

The authors wish to thank Patrick Lincoln, Julia Lawall, Amelia Regan and two anonymous
referees for valuable comments.

The second author would like to thank the The Danish Council for Strategic Research (The
Programme Commission on Strategic Growth Technologies) for their support.

References

[1] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows : Theory, Algorithms, and Applications.
Prentice Hall, 1993.

[2] L. Blander-Reinhardt. Multi-objective shortest path for cargo transportation. Master’s thesis,
University of Copenhagen, DIKU, Denmark, April 2005.

[3] J. Brumbaugh-Smith and D. Shier. An empirical investigation of some bicriterion shortest
path algorithms. European Journal of Operational Research, 43:216–224, 1989.

[4] R. Carraway, T. L. Morin, and H. Moskowitz. Generalized dynamic programming for multi-
criteria optimization. European Journal of Operational Research, 44:95–104, 1990.

20

[5] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT Press/McGraw-
Hill Book Company, 1997.

[6] G. Desaulniers, J. Desrosiers, I. Ioachim, M. Solomon, F. Soumis, and D. Villeneuve. Fleet
Mangaement and Logistics. Kulwer Academic Publisher, 1998. chapter: Unified Framework
for Deterministic Time Constrained Vehice Routing and Crew Scheduling Problems.

[7] I. Dumitrescu and N. Boland. Improved preprocessing, labeling and scaling algorithms for
the weight-constrained shortest path problem. Networks, 42:135–153, 2003.

[8] M. Ehrgott and X. Gandibleux. An annotated bibliography of multiobjective combinatorial
optimization. OR Spectrum, 22:425–460, 2000.

[9] C. Gueguen, P. Dejax, M. Dror, and M. Gendreau. An exact algorithm for the elementary
shortest path problem with resource constraints. Technical report, Laboratoire Productique
Logistique, Ecole Centrale Paris, 1998. revised in July 1999, also with D. Feillet as co-author.

[10] P. Hansen. Bicriteria path problems. G. Fandel and T. Gal: Multi Criteria Decision Making
Theory and Applications, Lecture Notes in Economics and Mathematical Systems, 177:109–
127, 1979.

[11] HUR. http://trafikinfo.hur.dk/priserogbilletter.

[12] K. Hutson and D. Shier. Extended dominance and a stochastic shortest path problem. Com-
puters & Operations Research, 36:584–596, 2009.

[13] I. Ioachim, S. Gelinas, J. Desrosiers, and F. Soumis. A dynamic programming algorithm for
the shortest path problem with time windows and linear node costs. Networks, 31:193–204,
1998.

[14] S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In M. M. S.
G. Desaulniers, J. Desrosiers, editor, Column Generation, pages 33–65. Springer, USA, 2005.

[15] S. Irnich and D. Villeneuve. The shortest path problem with resource constraints and k-cycle
elimination for k > 3. Informs Journal on Computing, 18:391–406, 2006.

[16] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. Subset-row inequalities applied to
the vehicle-routing problem with time windows. Operations Research, 56:497–511, 2008.

[17] T. Lengauer and D. Theune. Efficient algorithms for path problems with gernal cost citeria.
In International Colloquium on Automata, Languages and Programming (ICALP), pages 314
– 326, 1991.

[18] E. Martins. On a multicriteria shortest path problem. European Journal of Operation Re-
search, 16:236–237, 1984.

[19] M. Müller-Hannemann and M. Schnee. Finding all attractive train connections by multi-
criteria pareto search. In Proceedings of the 4th Workshop on Algorithmic Methods and Models
for Optimization of Railways (ATMOS 2004) Bergen, Norway, Lecture Notes in Computer
Science, 2004.

[20] M. Müller-Hannemann and K. Weihe. On the cardinality of the pareto set in bicriteria shortest
path problems. Annals of Operation Research, 147:185–197, 2004.

[21] W. Powell and Z. Chen. A generalized threshold algorithm for the shortest path problem with
time windows. In P. Pardalos and D. Du, editors, DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 303–318. American Mathematical Society, 1998.

[22] S. Skriver and K. Andersen. A label correcting approach for solving bicriterion shortest-path
problems. Computers & Operations Research, 27:507–524, 2000.

21

[23] H. Taha. Operations Research - An introduction. Pearson Prentice Hall, eight edition edition,
2007.

[24] G. Tsaggouris and C. Zaroliagis. Non-additive shortest paths. In Algorithms - ESA 2004.
12th Annual European Symposium, volume 3221 of Lecture Notes in Computer Science, pages
822–834, 2004.

[25] G. Tsaggouris and C. Zaroliagis. Multiobjective optimization: improved fptas for shortest
paths and non-linear objectives with applications. In Algorithms and Computation. 17th
International Symposium, ISAAC 2006, volume 4288 of Lecture Notes in Computer Science,
pages 389–398, 2006.

[26] D. Villeneuve and G. Desaulniers. The shortest path problem with forbidden paths. European
Journal of Operational Research, 165:97–107, 2005.

22

Shortest path problems appear as subproblems in numerous optimization problems. In most papers
concerning multiple objective shortest path problems, additivity of the objective is a de-facto
 assumption, but in many real-life situations objectives and criteria, can be non-additive. The purpose
of this paper is to give a general framework for dominance tests for problems involving a number
of non-additive criteria. These dominance tests can help eliminate paths in a dynamic programming
framework when using multiple objectives. Results on real-life multi-objective problems containing
non-additive criteria are reported. We show that in many cases the framework can be used to
 effi ciently reduce the number of generated paths.

ISBN 978-87-90855-61-1

DTU Management Engineering

Department of Management Engineering

Technical University of Denmark

Produktionstorvet

Building 424

2800 Kongens Lyngby

Tel. 45 25 48 00

Fax 45 93 34 35

www.man.dtu.dk

	Rap16-2009-1T
	ikkeadditivlinepubversion1.pdf

