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Full charge-density scheme with a kinetic-energy correction:
Application to ground-state properties of the 4d metals
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Research Institute for Solid State Physics, H-1525 Budapest, P.O. Box 49, Hungary

H. L. Skriver
Center for Atomic-scale Materials Physics and Department of Physics, Technical University of Denmark, DK-2800 Lyngby, De

~Received 8 October 1996!

We present a full charge-density technique to evaluate total energies from the output of self-consistent linear
muffin-tin orbitals~LMTO! calculations in the atomic-sphere approximation~ASA!. The Coulomb energy is
calculated exactly from the complete, nonspherically symmetric charge density defined within nonoverlapping,
space-filling Wigner-Seitz cells; the exchange-correlation energy is evaluated by means of the local-density
approximation or the generalized gradient approximation applied to the complete charge-density; and the ASA
kinetic energy is corrected for the nonspherically symmetric charge density by a gradient expansion. The
technique retains most of the simplicity and the computational efficiency of the LMTO-ASA method, and
calculations of atomic volumes and elastic constants of the 4d elements show that it has the accuracy of
full-potential methods.@S0163-1829~97!07420-1#
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I. INTRODUCTION

For more than two decades the linear muffin-tin orbi
~LMTO! method1–9 has been one of the workhorses in ele
tronic structure calculations. In particular, due to its simpl
ity and extreme computational efficiency, it has been ext
sively used in total-energy calculations for close-pack
high-symmetry systems where the atomic-sphere approx
tion ~ASA! may be applied with sufficient accuracy. How
ever, although the LMTO-ASA may be used to calculate
electronic pressure, it cannot in its conventional implem
tations yield forces and, if uncorrected, the ASA brea
down, for instance, when used to calculate elastic sh
moduli. To increase the number of systems to which
LMTO method may be applied, including systems with lo
symmetry, one has developed a number of full-potential~FP!
LMTO techniques.10–15 These techniques are of cour
highly accurate but lack the efficiency of the LMTO-AS
method. Hence, they may be used in static but not
molecular-dynamics calculations, and they cannot be use
orderN methods of the kind recently implemented by Ab
kosovet al.16

According to the theorem of Hohenberg and Kohn,17 there
exists a unique energy functional which is variational in t
density. Hence, if the functional is evaluated with a tr
density close to the exact ground-state density, the erro
the total energy is only of second order in the differen
between the trial density and the ground-state density. T
variational property means that most of the computation
demanding self-consistent calculations are in fact supe
ous, provided an appropriate trial density can be found.
question is therefore: How does one construct dens
which applied in the true functional yield total energies
sufficient accuracy? In the context of the LMTO method o
has the related question: How does one evaluate the
functional rather than the approximate ASA functional? It
550163-1829/97/55~20!/13521~7!/$10.00
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the purpose of the present paper to provide one answe
these questions.

In the following, we describe and test an efficient tec
nique for total energy calculations based on the LMTO-AS
method in the tight-binding representation.6–9 According to
this, we use the complete, non-spherically symmetric cha
density generated in self-consistent ASA calculations
evaluate the true energy functional. Our technique repres
a substantial improvement of the full charge density~FCD!
method,18 which was successfully applied in calculations
surface energies and work functions of 4d and 5f metals18,19

as well as the ground state atomic volumes of open cry
structures such as thea-phases of the light actinides.20 In
these calculations the electrostatic and exchange-correla
terms of the energy functional were evaluated from a co
plete non-spherical charge density while the kinetic ene
was still obtained in the ASA. It turns out, that although t
ASA kinetic energy is often a suitable approximation, it do
not, for instance, yield sufficiently accurate total energies
the small orthorhombic and tetragonal deformations nee
in calculations of elastic constants. Hence, there is a nee
improve the kinetic energy calculation beyond the ASA a
thereby take the remaing step towards the true energy fu
tional.

There are several reasons why, to our knowledge, a
rection to the ASA kinetic energy of the kind presented h
has not been previously attempted. First of all, in m
LMTO calculations the electrostatic and exchang
correlation terms have been evaluated from a spheric
symmetric charge density and, hence, there is no need f
more accurate kinetic energy. Secondly, the kinetic ene
which is obtained from the Kohn-Sham equations as21

TASA5(
j

occ

e j2E nASA~r !veff
ASA~r !dr , ~1!
13 521 © 1997 The American Physical Society
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13 522 55L. VITOS, J. KOLLÁR, AND H. L. SKRIVER
where e j are the one-electron energies,n(r ) the electron
density, and theveff(r ) the effective potential, is variationa
in the potential, and it has often been assumed that the A
kinetic energy is in fact sufficiently accurate. Finally, to im
prove on the ASA kinetic energy one would need to know
explicit kinetic energy functional, e.g., in the form of a gr
dient expansion. However, in view of the relatively slo
convergence of the known kinetic energy gradient exp
sions, it is not obvious that this would in fact lead to t
required accuracy.

One solution to this impasse is to add a single full pot
tial step at the end of the LMTO-ASA calculation. Th
mixed approach avoids the approximate ASA kinetic ener
and has been successfully applied by Rodriguez
Methfessel22 as well as by Antropov and Harmon.23 In the
present paper we take a more consistent route based en
on the spherically symmetric ASA potential. Thus we eva
ate the main contribution to the kinetic energy in the AS
and then apply an approximate functional form to evalu
the difference between the ASA and the kinetic energy of
spherically average of the complete charge density. Fina
the remainder, which yields the complete kinetic energy
presumably small, and may be obtained with sufficient ac
racy by a gradient expansion. A similar approach based
Hartree-Fock densities has been used in atomic calculat
by DePristo and Kress.24 The procedure is closely related
the modern gradient correction to local-density-functio
theory and as we shall demonstrate the corrected F
method has the accuracy of the full potential methods w
retaining most of the simplicity and efficiency of the LMTO
ASA. We note that the correction to the kinetic energy p
sented here is independent of the LMTO method, and m
also be applied to the recently proposed exact muffin-tin
bitals theory.25

II. ENERGY FUNCTIONAL

Within density-functional theory the total energy of th
system may be decomposed in the form17

E@n#[G@n#1F@n#, ~2!

whereG@n# is a universal functional consisting of the kinet
energyT@n# of the noninteracting system and the exchan
correlation energyExc@n#, i.e.,

G@n#[T@n#1Exc@n#, ~3!

andF@n# is the Coulomb contribution to the total energy,

F@n#[E v~r !n~r !dr1
1

2E E n~r !n~r 8!

ur2r 8u
drdr 8. ~4!

Here,v(r ) is an external potential. The total charge dens
n(r ) may be given by the sum

n~r !5(
R

nR~rR! ~5!

over lattice positionsR of atomic-centered charge densiti
nR(rR) defined within space filling, nonoverlapping cel
VR , which in turn may be written in the one-center form20
A
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nR~rR!5(
L

nRL~r R!YL~ r̂R!, ~6!

whereL is shorthand notation for (l ,m), rR5r2R, andYL
is a real harmonic. These atomic-centered charge dens
are normalized within the cells, and the total charge den
is continuous and continuously differentiable in all space

The total-energy functional may now be divided into c
contributionsER@n#5GR@nR#1FR@n#, and the energy den
sity g corresponding to the functionalGR@nR# defined by

GR@nR#[E
VR

g~@nR#,rR!drR ~7!

may, within the density-gradient approximation, be e
pressed as27

g~@nR#,rR![t~@nR#,rR!1exc~@nR#,rR!nR~rR!

5t~nR ,u¹nRu2, . . . !

1exc~nR ,u¹nRu2, . . . !nR~rR!

[g~@nR# !, ~8!

where t and excn are the kinetic and exchange-correlatio
energy densities, respectively. For charge densities which
viate weakly from spherical symmetry,g(@nR#) may be rep-
resented by a Taylor series around the sperically symme
charge densitynR

0(r R)[(1/A4p)nR0(r R), i.e.,

g~@nR# !5g~@nR
0 # !1ñR~rR!

]g~@nR# !

]nR
U
nR5n

R
0

1¹ñR~rR!
]g~@nR# !

]¹nR
U
nR5n

R
0

1
1

2
ñR~rR!2

]2g~@nR# !

]nR
2 U

nR5n
R
0

1
1

2
~¹ñR~rR!!2

]2g~@nR# !

]~¹nR!2
U
nR5n

R
0

1ñR~rR!¹ñR~rR!
]2g~@nR# !

]nR]¹nR
U
nR5n

R
0
1•••, ~9!

where ñR(rR)[nR(rR)2nR
0(r R). As a result, the universa

functional may be expanded in the following form

GR@nR#5GR
0@nR

0 #1GR
1@ ñR ,nR

0 #1GR
2@ ñR

2,nR
0 #1•••,

~10!

which may be used to calculate the total energy, provid
one knows the energy density functions and the correspo
ing gradients. Unfortunately, this is not the case, and o
must resort to approximations.

Within modern density-functional theory the problem
solved, as far as the exchange-correlation energyExc;R@nR#
is concerned, by means of the local-density approximat
~LDA ! or generalized gradient approximation~GGA! ~Ref.
26!, which yield analytic expressions that may easily be a
plied in conjunction with the full LMTO charge density
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Thus only the kinetic energyTR@nR# remains to be accu
rately evaluated. Here the problem is that neither the Ko
Sham equation~1! in the ASA nor a straight density gradien
expansion of the kinetic energy based on the explicit anal
expressions given, for instance, in Ref. 27 have suffici
accuracy when used separately. However, as we shall s
in the following, one may by a combination of the two tec
niques in the form of a density-gradient correction to t
ASA, obtain kinetic energies with the desired accuracy.

We start by isolating the lowest-order terms in Eq.~7! –
~10!, which may be evaluated in the ASA and the ‘‘sma
terms’’ which may be evaluated by the gradient expansi
In the ASA the kinetic energy is obtained from the Koh
Sham one-electron equations in form~1!, which depends
only on the spherical average of the charge density, bec
the effective one-electron ASA potential is spherically sy
metric. Hence, viewed as a functional of an arbitrary den
Eq. ~1! would give the same value for any nonspherica
symmetric charge density having the spherical averagenR

0 . It
may therefore be identified as the kinetic energy belongin
the charge densitynR

0 . Thus we write the kinetic-energy con
tribution to the first term in Eq.~10! as

TR
0@nR

0 #'TR
ASA@nR

ASA#1D@nR
0 ,nR

ASA#, ~11!

whereTR
ASA is the kinetic energy obtained in the ASA from

spherical symmetric self consistent calculation, and the s
ond term is a ‘‘small’’ shape-correction connected with t
fact that the kinetic energyTR

0@nR
0 # corresponding to the

spherically symmetric charge densitynR
0 is defined within

the Wigner-Seitz cell atR while the ASA kinetic energy is
defined inside the corresponding atomic sphere. Within
LMTO-ASA method the kinetic energy may be expressed
means of the ASA HamiltonianHASA, and the one-electron
wave functionsc j (rR) as

28

TR
ASA5(

j

occ E
SR

c j* ~rR!HASAc j~rR!drR

2E
SR

nR
ASA~r R!veff~@nR

ASA#,r R!drR , ~12!

whereveff(@nR
ASA#,r R) is the effective one-electron potentia

SR the atomic Wigner-Seitz radius, andnR
ASA(r R) the ASA

charge density normalized within the atomic sphere whic
equivalent tonR

0(r R) inside of the cell and sphere. This form
may include the so-called combined correction.7,28

The shape-correction term in Eq.~11! may be obtained
from the expression

D@nR
0 ,nR

ASA#5E
VR

t~@nR
0 # !drR2E

SR

t~@nR
ASA# !drR ,

~13!

based on the density-gradient expansion of the kine
energy functional27

T@n#5T~0!@n#1T~2!@n#1•••, ~14!

with
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T~2k!5E t ~2k!~r !dr . ~15!

Here t (2k) is a kinetic energy density which~in atomic Ry
units! has the explicit forms

t ~0!5 3
5 ~3p2!2/3n5/3, ~16!

t ~2!5
1

36

~¹n!2

n
~17!

for k50 and 1. In the actual applications the shape corr
tion has been evaluated by means of the locally trunca
gradient series suggested by Pearson and Gordon29 for
atomic calculations, which also ensures convergence of
expansion in regions of space with large gradients and sm
densities. The kinetic-energy part of the higher-order ter
in Eq. ~10!, i.e., those of first and second-order inñR and
¹ñR , have been evaluated by means of the second o
energy density functionalt (0)(@nR#)1t (2)(@nR#).

The total electrostatic contribution belonging to the cell
R is the sum of the intracell and intercell terms

FR@n#5FR
intra@nR#1FR

inter@n#. ~18!

The intracell energy

FR
intra@nR#[E

VR

S 2
ZR
rR

Dn~rR!drR

1
1

2EVR

E
VR

n~rR!n~rR8 !

urR2rR8 u
drRdrR8 , ~19!

where ZR is the atomic number, may be determined
solving the l -dependent Poisson equation or by numeri
integration using, for instance, the shape functi
technique.2,18,30The intercell energy may be written in the
following form31,32

FR
inter@n#52

1

2S(L (
R8ÞR

1

2l11 S bRR8S D l

3YL~ b̂RR8! (
L8,L9

QRL8@nR#

3
4p~2l 921!!!

~2l21!!! ~2l 821!!!
CL8,L9
L d l 9,l1 l 8

3(
L-

SRL9;R81bRR8L-QR8L-@nR8#, ~20!

whereSRL;R8L8 is the conventional LMTO structure constan

CLL8
L9 a real harmonic Gaunt coefficient,S the average atomic

radius, andQRL the multipole moments defined as

QRL@nR#[
A4p

2l11EVR

S r RS D lnR~rR!YL~ r̂R!drR2ZRdL0 .

~21!

In Eq. ~20!, bRR8 is given by32

bRR85
R2R8

uR2R8u
bRR8, ~22!
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TABLE I. Equilibrium atomic radiusS, bulk modulusB, and elastic shear constantsC8 andC44 calcu-
lated by the FCD technique in the local-density and generalized gradient approximations.

DF Y Zr Nb Mo Tc Ru Rh Pd Ag
Structure hcp hcp bcc bcc hcp hcp fcc fcc fcc

S ~Bohr! LDA 3.684 3.307 3.052 2.908 2.825 2.773 2.782 2.830 2.95
GGA 3.785 3.373 3.104 2.949 2.869 2.824 2.836 2.904 3.0

B ~Mbar! LDA 0.40 1.10 1.95 3.06 3.50 3.63 3.18 2.24 1.44
GGA 0.39 0.99 1.82 2.79 3.04 3.15 2.59 1.74 0.94

C8 ~Mbar! LDA 0.49 1.49 1.18 0.28 0.23
GGA 0.51 1.52 1.16 0.29 0.24

C44 ~Mbar! LDA 0.20 1.20 1.77 0.82 0.62
GGA 0.12 1.01 1.69 0.71 0.57
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1

2a D ~SR
c1SR8

c
!2uR2R8u, ~23!

whereSR
c is the circumscribed sphere radius of the cell

R, anda is a parameter. An optimal choice fora is dis-
cussed in Ref. 32. In the present calculation we u
a50.27.

III. CALCULATIONAL DETAILS

In the calculations we used the scalar-relativistic, seco
order LMTO-ASA Hamiltonian within the frozen-core ap
proximation, and included the combined correction.3,5,9 We
treated the 4p semicore states~first panel! together with the
4d, 5s, 5p, and 4f states~second panel! as band states. In
the first panel we down-folded7,8 thes, d, andf states, and in
the second only thef states. This procedure accounts co
rectly for the important weak hybrization in the occupi
parts of the band structure, and reduces the rank of the
genvalue problem to that of the number of active orbita
i.e., three for the lower panel and nine for the upper pan

The valence electrons were treated self-consiste
within the LDA by means of the Perdew-Zung
parametrization33 of the data of Ceperley and Alder34 for the
exchange-correlation potential and energy, and in the G
by the functional described in Ref. 26 and referred to
PW91. Thek-point sampling was performed on a unifor
grid in the irreducible wedge of the Brillouin zones~IBZ!.
For fcc metals we used 1930k points in the IBZ of the body-
centered-orthorhombic structure; for bcc metals we u
2058k points in the IBZ of the face-centered-orthorhomb
structure; and for hcp metals we used 648k points in the IBZ
of the hexagonal-close-packed structure.

The cell integrations were performed by means of
shape function technique using a linear radial mesh betw
the inscribed and the circumscribed spheres. In the o
center expansion~6! we included terms up tolmax58, and
for the shape function we usedlmax540. Normalization of
the charge density was ensured by the technique describ
Sec. II A of Ref. 18, and corrected for double counting in t
region of atomic sphere overlap by means of thef -function
technique described in Sec. II B of Ref. 20.
t
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IV. APPLICATIONS

In the following we present the results, summarized
Table I, of a series of test calculations of the ground-st
atomic volumes and the elastic constants of the 4d metals
demonstrating the accuracy of the FCD technique includ
the kinetic-energy correction outlined in Sec. II. We po
out that, provided one uses the same exchange-correla
functional and potential, it is the comparison with the fu
potential calculations which is the issue here, and not
agreement with the experimental values.

A. Ground-state volume and bulk modulus of the 4d metals

Our first test case is the ground state atomic volume of
4d metals. Here, we compare with the FP-LMTO calcu
tions by Ozolins and Ko¨rling ,35 who used the code due t
Methfessel and co-workers,13,14 which has been used exten
sively in total-energy calculations and therefore is w
tested. For their LDA calculations Ozolins and Ko¨rling used
the parametrization by Vosko, Wilk, and Nusair36 of the
many-body data of Ceperley and Alder,34 which gives results
very similar to the parametrization by Perdew and Zunge33

used by us. For the GGA Ozolins and Ko¨rling used the
PW91, as is also used in the present calculations.

In Fig. 1 we compare the results for the equilibriu
atomic radii of the 4d metals. In this comparison, one shou
note that although full-potential techniques are highly ac
rate they do have their own set of numerical approximatio
which will lead to uncertainties in the calculated groun
state volumes. It is, however, difficult to estimate the er
bars connected with such calculations, but based on our
perience an uncertainty of the order of61% in terms of the
atomic radius may not be unreasonable. With this in m
the agreement between the two sets of LDA calculations
well as between the two sets of GGA calculations seen in
figure may be considered quite satisfactory.

Inspection of Fig. 1 shows that the LDA tends to overe
timate the binding at both ends of the 4d series, and that the
resulting deviation from the experimental values shows
parabolic variation with atomic number. In contrast, t
GGA results exhibit only a weak linear deviation from th
experimental results, showing that this is in fact an impro
ment over the LDA. We note that the trends are obeyed
the FCD as well as FP calculations, and that the FCD-G
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results exhibit a particularly smooth variation with atom
number, indicating that the physical as well as the numer
aproximations are well controlled in the implementation
the FCD technique.

Our second test case is the bulk modulus of the 4d metals
and again we compare with the FP-LMTO calculations
Ozolins and Ko¨rling.35 In Fig. 2 we show bulk moduli cal-
culated in the GGA at the calculated equilibrium volum
shown in Fig. 1. The agreement between the two sets
calculations is near perfect and we believe that this ag
ment together with the volume results strongly indicates t
the FCD technique with kinetic-energy correction has
accuracy normally only found in full-potential calculations

Since LMTO-ASA calculations normally yield atomi
volumes and bulk modulii in good agreement with expe

FIG. 1. Relative deviations of the calculated and experime
equilibrium atomic radii for the 4d series using LDA and GGA
energy functionals. The full-potential results are those of Ozo
and Körling ~Ref. 35!, and the experimental values are taken fro
Young ~Ref. 37!.

FIG. 2. Bulk moduli for the 4d elements. The full-potentia
results are those of Ozolins and Ko¨rling ~Ref. 35!, and the experi-
mental values are taken from Young~Ref. 37!.
al
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ment~see, e.g., Ref. 7!, one may ask what effect the kinetic
energy correction has for the calculated values of th
ground-state properties. For Y, Zr, Nb, and Mo, we find th
the kinetic-energy correction changes the atomic radii by l
than 0.2%, while for the later elements it increases
atomic radii by approximately 0.5%. Similarly, for the earli
4d elements the kinetic-energy correction leads to a less t
1% change in the bulk modulii, while for the later elements
decreases the bulk moduli by approximately 5%. One m
therefore conclude that in comparison with earlier LMTO
ASA results the present implementation of the FCD te
nique leads to small but systematic improvements of the
culated atomic volume and bulk modulii.

B. Elastic constants of the 4d metals

Our third test case is the shear elastic constantsC8 and
C44 of the cubic 4d metals which is chosen because, a
though the LMTO method yieldsC8 values in reasonable
agreement with experiments,38–41 the LMTO-ASA yields in-
correct results when applied in the calculation ofC44. This is
demonstrated in Fig. 3, where we show various approxim
tions to the total energy of a bcc Mo crystal under the orth
rhombic shear deformations which were also used by So¨der-
lind et al.42 to determine this elastic constant. We obser
that in the pure ASA the calculatedC44 is negative and,
hence, the bcc structure of Mo will be unstable against s
an orthorhombic distortion.

The situation is somewhat improved if the electrosta
and exchange-correlations parts of the energy functional
calculated from the complete nonspherically symme
charge density. This corresponds to the original FC
method, and is sufficiently accurate to yield surfa
energies18,19and atomic volumes of open crystal structures20

However, the ASA kinetic energy is obviously not suffi
ciently accurate to render the bcc structure of Mo stable. I

l

s FIG. 3. Change of the total energy of Mo for orthorhomb
shear deformation as a function of the relative deformation par
eterd.
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only when the kinetic-energy correction is applied tha
positiveC44 is obtained which is, in fact, very close to th
measuredC44 value.

In Figs. 4 and 5 we compare our elastic constants for
cubic 4d metals with the results of the FP-LMTO calcul
tions by So¨derlindet al.42 Again the agreement between t
FCD and FP calculations are quite satisfactory. More imp
tantly, in contrast to all those earlier implementations of
LMTO method, which is based on the ASA and which yie
negative elastic shear modulii, the kinetic-energy correc
presented here allows us to calculated shear elastic cons
not only with the correct sign but also in agreement with f
potential results.

V. CONCLUSIONS

We have presented and tested a full charge-density t
nique based on the complete charge density from a
consistent LMTO calculation employing a spherically sy
metric ASA potential. In the calculations we include
correction to the ASA kinetic energy which means that

FIG. 4. Elastic constants for tetragonal shear for the cubicd
elements. The full potential results are by So¨derlindet al. ~Ref. 42!,
who also listed the experimental values.
a

a

e

r-
e
s
n
nts
ll

ch-
lf-
-

e

now evaluate the true functional rather than an ASA fun
tional. The technique has been tested in calculations of
equilibrium atomic volumes and elastic constants of thed
elements, and the results compared with those of full pot
tial calculations. The comparison shows that the FCD te
nique, including the kinetic-energy correction, leads to sm
but significant improvements in the calculated atomic v
umes and bulk modulii relative to conventional LMTO-AS
calculations. Furthermore, the technique yields accurate e
tic shear constants, and thereby completely cures the w
known failure of LMTO-ASA calculations which leads t
negative shear modulii. We find that the present implem
tation of the FCD-LMTO method has the accuracy of a f
potential description, while the required computational eff
is not significantly larger than in conventional spherica
symmetric LMTO-ASA calculations.
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