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Spatial Solitons and Induced Kerr Effects in Quasi-Phase-Matched Quadratic Media
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'Department of Mathematical Modelling, Technical University of Denmark, DK-2800 Lyngby, Denmark
2Australian Photonics Cooperative Research Center, Research School of Physical Sciences and Engineering,
Optical Sciences Center, Australian National University, Canberra 0200 ACT, Australia
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We show that the evolution of the average intensity of cw beams in a quasi-phase-matched quadratic
(or x®) medium is strongly influenced by induced Kerr effects, such as self- and cross-phase
modulation. We prove the existence of rapidly oscillating solitary waves (a spatial analog of the guided-
center soliton) supported by the quadratic and induced cubic nonlinearities. [S0031-9007(97)03436-4]

PACS numbers: 42.65.Tg, 03.40.Kf, 42.65.Jx, 42.65.Ky

One of the most spectacular manifestations of nonals [5], proton exchange [6], and etching and cladding [7],
linearity in physical systems is the existence of solitaryto mention a few.
waves, which occur when dispersion (or diffraction) is In view of this an important question isCan QPM
balanced by nonlinearity. In nonlinear optics the funda-be employed to achieve self-trapping of light and to
mental equation to describe solitary waves is the nonlineasupport spatial solitary waves in quadratic materials?
Schradinger equation, valid for both pulse (temporal) andrhe answer is not obvious, because resonances between
beam (spatial) propagation in a medium withbic (or  the domain length of the periodic structure and the
Kerr) nonlinearity. However, as has been already estatheam characteristic length might induce instability. In
lished (see Ref. [1] to cite a few), solitary waves can alsdhis Letter we therefore investigate self-trapping and
exist in media with quadratic nonlinearity as a result ofpropagation of spatial solitary waves in QPM quadratic
cascading, under the condition of phase matching. media, and derive effective average equations that are

Solitary waves in quadratic (ox?) materials have shown to include both quadratic and periodicity-induced
attracted growing attention, because of the possibility ta@ubic nonlinearities. We prove the existence ohavel
employ large second-order nonlinearities for the needs aflass of solitary waves, QPM solitonsypported by the
all-optical switching. Such spatial solitary waves havecompeting nonlinearities, and we analyze their structure
been recently observed experimentally in a potassiumand stability.
titaynl-posphate bulk crystal and in a LiNRGslab We consider the interaction of a cw beam with the
waveguide [2]. However, the efficiency of the cascadedundamental frequency and its second harmoniQw),
nonlinearities in those experiments was quite low, and thupropagating in a QPMy? slab waveguide, where only
high input powers were required. This was partly becauséhe nonlinear susceptibility is modulated. Assuming non-
of the limitations imposed by the use of conventionallinearity to be of the same order as diffraction, the evolu-
phase-matching techniques based on birefringence aribn of slowly varying beam envelopes is governed by the

temperature tuning. normalized equations (see, e.g., Refs. [3,4,8,9])

In the context of second-harmonic generation the quasi- oW 1 9°w
phase-matching (QPM) technique is known as an attrac- la_ + 3 ox2 + d(z)W*Ve Pt =0,
tive way to obtain good phase matching, and has been ¢ 5 @
studied intensively (see Ref. [3] for a review). The QPM lﬂ + 1 ﬂ + d(z)W2eP: =0,
technique relies on the periodic modulation of the non- 0z 4 ox

linear susceptibility and/or refractive index, by which anwhere W(x,z) and V(x,z) are the envelopes of the fun-
additional (grating) wave vector is introduced, which candamental and the second harmonic, respectively. The
compensate for the mismatch between the wave vectoparameterg = Aklk,, |x3 is proportional to the phase
of the fundamental and second-harmonic waves. With thenismatchAk = 2k, — k2., k, andk,, being the wave
QPM technique, phase matching becomes possible at amumbers at the two frequencies. The normalization pa-
bient temperatures, and does not introduce spatial walkameterx, is equal to the input beam width. Spatial walk
off; the polarization with the largest nonlinearity can beoff is neglected; it will usually not be present in QPM ma-
used, and materials with strong nonlinearities can be exterials, since perpendicular or parallel polarization states
plored, which are not phase matchable by angle or temean be employed. The transverse coordinais mea-
perature tuning. The physics of QPM has been knowrsured in units ofxg, and the propagation coordinatds
since 1962 [4], but only recently have the experimentameasured in units of the diffraction length = x|k, |.
difficulties been overcome and stable techniques been dé&he spatial, periodic modulation of the nonlinear suscepti-
veloped, such as domain inversion in ferroelectric materibility y@ is described by the QPM-grating functiaftz),
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whose amplitude is normalized to 1, and whose domaimRefs. [10], we assume that the higher harmonics are of
length we define as/«. In general, the periodic func- order of1/k < 1 or smaller, compared to the averages
tion d(z) can be expanded in a Fourier series wo and vg. Taking into account only the lowest order
terms in the equations for the harmonics, we then derive
d(z) = Z dye™ (2)  the following relations:

where the summation is over alf from —co to . w, = L(d(”“’")vvgvo’ v, = L(M)Wg
In many physical applications the QPM grating can be mk n mk n
well approximated by the square function depicted in (5)

Eig. 1, for which the Eourier series (2) contain only 0dd|yserting the harmonics (5) into the corresponding equa-
armonicsda, = 0 andda,+1 = 2/im(2n + 1). tions for wy and v, and taking only lowest order pertur-

Insertingd(z), given by Eq. (2), into Egs. (1) and mak- a4iqns into account, we arrive at the average equations
ing the transformatioW (x, z) = w(x,z) and V(x,z) =

v(x, z) exp(iBz), we obtain the equations ow 1 9w
(x,2) F('B)Z a la—zOJrE 8x0+d wovo + (ylwol* + pluol)wo =0,
a—w—kl rw +d,wiv+wtv Z dye' M=), 2
9z 2 ax? e N N ) ,
i P + — 7 o2 — Bvg +d—,,wi + 2n|wol vo =0,
cov 1 ’v . 2 2 i(n+m)k
la—‘i'z F—,Bv+d7mw +w Zdne z:0, (6)
Z X —
e 3) wherey, p, andy are all of the order ol /«x and given
. : : . by
where B8 = B — mk is the effective phase-mismatch
parameter for QPM of thenth order. We assume that the y = — Z %z p = 1 Z Pn
QPM period is well controlled, so thg ~ mk. This mk 7o on mk Soon’
means thaiB is of the order of one or less (ideally 0), nn
even thoughB might be large itself. = — Z .
Equations (3) include coefficients that are periodically n#0

varying with the perio@7 /. If « is sufficiently large, with vy, = duu-1dmn(-n), Pn = dm(nﬂ)dm(nﬂ), and
the dynamics could therefore be adequately described by, = d,,+1)dm(-n-1)- From Egs. (6) follows the im-
averaged equations. Physicallyx =~ 8 > 1 meansthat portant result that the QPM grating introdu@eseffective
the coherence length = 27 /Ak is much smaller than the cubic nonlinearityin the form of self- and cross-phase
diffraction lengthl,, since = 2wl;/l.. To derive these modulation terms. However, the self-phase modulation
equations we use an approach based on the asymptotioes not appear for the second harmonic, making the
expansion technique, which has been successfully appliddcalized solutions and the system dynamics be different
in many types of soliton problems [10]. from the earlier analyzed case of competing nonlinearities
We consider therefore the case whete> 1 and [9,11]. Thus, the so-calle¥ soliton [11], wherew, = 0
expand the functionsv(x,z) and v(x,z) in a Fourier anduv, is a nonlinear Schrodinger soliton, does not exist
series in Egs. (6).
' _ Let us consider the most efficient QPM of first order,
W= w,e™* 3y =Dy,e™ < (4) m=1, and the square grating depicted in Fig. 1, for
n n which the Fourier series contaimgld components only.
wherew, (x,z) and v,(x,z) are assumed to vary slowly Then, the expansions fow and v involve only even
compared with ex@ixz). This gives the equations for the components, and the coefficients p, andnp become real
coefficientsw,, andv,,. Now, following the reasoning of and related

p=n=— :_ZdZHI

(2) 277/,5 n#0
T—‘ OO nnnim Equations (6) therefore reduce to the following:
oo oooooooc

. aWO 1 82w0

i— + — —ixywivg + y(wol* = [vol)wo =0,
B, 9z 2 ox2 xwovo T v (Iwol™ — lvol)wo
Jv 1 9%v )
. v 0 7 ) 2. _
Epp lE—i_Z Py — Bvg +ixwy — 2y|wol vo =0,

where both the quadratic and cubic nonlinearity coef-

FIG. 1. Schematic presentation of a crystal with the typicalficients are calculated in an explicit formy = 2/,
square QPM modulation of the® nonlinearity. vy = k~1(1-8/7%). Note ther/2 phase shift in front of
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the quadratic terms and the opposite signs of the cubic p= fm (I, + 1,)dx
self- and cross-phase nonlinear terms. T
We look for stationary solutions to Egs. (7)_ in the form \hich is also equal to the average power, sidge+
wo(x,z) = Wwo(x)e™, wvo(x,z) = ivo(x)e*™,  (8) I, = Wi + w3. The dependence of the total power on
where the real and localized profileg(x) andvy(x) are  the soliton propagation constantis shown in Fig. 3 for
determined by the set of ordinary differential equations « = 10.
1 d*w, For negative 3 there is a power threshold for the

— S —— ~2 ~2\— . . .

2 dx? AWo + xWovo + y(wy — Ty)wo = 0, existence of solitons, which occurs close to the cutoff
| & (9)  at A = maxX0,—B/2}. The induced Kerr effects are
— — (B + 20T + xwg — 2ywgvp = 0 seen toincrease this threshold power. However, for

> — (B 0 + xW5 — 2ywguo =0, t this threshold p H f

positive 8 the Kerr effectsdecreasethe power required
for generating a solitary wave with a certain propagation
constantA. Stability analysis of the zero-order equations
(y = 0) has been developed in Ref. [12]. We except that
similar results would apply when the induced Kerr effects
are taken into account, namely that the solitary waves are
stable fordP/dA > 0, and unstable fodP/dA < 0.

Analysis shows that localized solutions (8) exist only for
positive values of the wave numbaeyr, satisfying A >
max0, —3/2}. Note again ther /2 phase shift appearing
in the definition of the stationary solutions (8), in order
for wo(x) andvy(x) to be real.

Localized solutions of Egs. (9) have been found nu
merically for any allowed value ok and for the coef- X
ficients that correspond to the square grating. Figure 2 I.n order to test our asymptotic results, we use a QPM
shows some of the properties of these numerical sqution%O"ton. as the initial condition |n'Eqs. (1), W.h'ch we solve
for k = 10, e.g., the ratio of peak intensities wsand numerically for the square grating shown in Fig. 1. The

the characteristic profiles of the solutions for= 1, com- results fors = 0 and « = 10 are plotted in Fig. 4 and
pared with the corresponding results for the zero-orde?‘how clearly that the soliton propagates undistorted along

approximation ¥ = 0, dashed curves). z, oscillating with the periodr/x. . .
Looking at the ratio of the peak intensities shown in We have made a series of such numerical experiments

Fig. 2(a), the cubic correction terms are seen to have rp= 0’. in Wh'.Ch we propagate the QPM sohto_ns,
significant effect. In the zero-order approximation = record their peak intensities in a while number of periods
0), this ratio is .a constant fo@ = 0, which we find 7 /k after steady state is reached, and calculate the

numerically to be 0.6865. However, in the QPM Systemaverage, maximum, gnd ”.“”‘”?“m values in a period. Th.e
' results are summarized in Fig. 5. The measured ratio

with the induced Kerr effectgy # 0), this ratio tends to ; o : .
by ) of the average peak intensities of the excited solitons,

2
x~>/18yA for A > 1, shown as a dotted curve. . ; S
In the original variables, the stationary solutiong tshhown n F'g' 5), deylat?_s cle_arla/ fré)ntwlth(.a predltiltlor; of
and v, correspond to self-guided beams with rapidly € zero-order approxima iofy = 0), bu IS In excetlen
oscillating intensities given by agreement with the theory that takes into account the
induced Kerr effects, even far = 4. Also the measured

, maximum and minimum values, shown in Fig. 5(b), are

= 4nt -] in perfect agreement with our theory. It is important to
. 8 _, & codnkz) note thatk = B = 4 corresponds td,/l. = 2/7, and

L, =1|V|I- =79 - — . Wovo A =1 thus our averaged equations seem to be applicable even

n=1

Sinced(z) is real, Egs. (1) conserve the total power

— 8 _ co92nkz
L= WP =2+ g, 5 S0d42nk2)
TK

5 ‘ 90
R A (&) g
S 1.0t RN g 60
€ oo \._llizz- =
S05 NN T : :
= g 30
003 . B
0 5 10
A X 0
FIG. 2. Soliton families of the QPM system (7) far = 10 0 1 2
(solid curves) and the zero-order approximatign= 0, dashed N

curves). (a) Ratio between the peak intensity of the second

harmonic,v(0), and the fundamentaiy3(0), vs A. The value  FIG. 3. Power vs propagation constant for the soliton
of B is indicated at each pair of curves. The dotted curvefamilies of the QPM system (7) fok = 10 (solid curves)
shows the asymptotic resuf?/18yA. (b) Profileswg(x) and  and the zero-order approximatiof & 0, dashed curves). The
5(x) for B =0andA = 1. value of 8 is indicated at each pair of curves.
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verified by direct numerical simulations. We believe our

3l (a)_ g 19 ’MMMIAVmA,AZA)AMMMiE)A results reveahn important physical mechanistoy which
8 VWAV QPM can lead, at a fixed propagation distance, to a reduc-
x 0 glar tion of the power required for supporting self-trapping in
_af 25 0.0 ITVITYIYIVYITIYIYY quadratic media.
. ~ 1,(0,2) The authors acknowledge A.V. Buryak for useful
0 10 20 30 40 0o 2 a4 8 8 suggestions. Yu.K. is indebted to Y. Kodama for clari-
z z fying discussions of the Lie transform method, and to

FIG. 4. Excitation of a QPM soliton with3 = 0, x = 10, Professor A. Hasegawa for warm hospitality at the Osaka
and A = 04. (a) Intensity of the fundamentalf, (x,z), University.

sampled at; = n4w/x, wheren is an integer. Contour plot

with ten equidistant levels between 0.1 and 1.92. (b) Peak

intensities,/,, (0, z) and/, (0, z), of the two harmonics.
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