Active Magnetic Regenerative Refrigeration

Nielsen, Kaspar Kirstein; Engelbrecht, Kurt; Bahl, Christian Robert Haffenden; Smith, Anders; Pryds, Nini; Hattel, Jesper Henri

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The concept of magnetic refrigeration is based on the magnetocaloric effect (MCE) seen in ferro-magnetic materials. When a magnetic material is exposed to a change in external magnetic field adiabatically, the temperature of the material changes. If the field change is positive, the temperature increases and vice versa.

The MCE typically has a maximum of a few K per tesla of the changed field. Therefore regeneration has to be used to obtain greater temperature spans. The so-called Active Magnetic Regeneration (AMR) cycle is used. This is explained in Fig. 1. The AMR cycle is compared to conventional vapor compression-based refrigeration in Fig. 2.

Introduction: Magnetic refrigeration at room temperature is a potential environmentally friendly and energy efficient technology for a variety of applications such as domestic refrigeration, air conditioning etc.

Challenges

The challenges can be divided into three parts:

First of all a large magnetic field change is desirable since the MCE scales with the field change. Electromagnets may not be practical for most magnetic refrigeration applications, and therefore high field permanent magnets must be developed.

Second, the regenerator efficiency should be as high as possible while keeping the total pressure drop relatively low.

Third, the MCE is quite small and is a strong function of temperature. Therefore multi-material, or composite, regenerators are needed.

Several geometries are suggested. The most common are:

- Packed spheres, which have (too) high pressure drop and very high heat transfer.
- Parallel plates, which have very low pressure drop but perhaps also too low heat transfer.

Fig. 3 shows the NTU of laminar flow between parallel plates as function of spacing and operating frequency. The NTU should be in the range 10-30 for optimal performance (less is too little, more is over-kill), see Nielsen et al. (2009b) for more info.

Fig. 4 shows samples of different geometries currently available at Risø DTU. These include stacked parallel (possibly dimpled) plates and extruded monolithic structures.

In Fig. 5 the concept of multi-material regenerators is described and supported using a detailed model.

Acknowledgements

The authors thank the support of the Programme Commission on Energy and Environment (EnMi) (Contract no. 2104-06-0032) which is part of the Danish Council for Strategic Research.