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Abstract— We determine the number of minimum weight
codewords in a class of Euclidean Geometry codes and link the
performance of bit-flipping decoding to the geometry of the error
patterns.

I. INTRODUCTION

Euclidean geometry codes are classical in coding theory
and it is well known that they can be decoded up to half
the minimum distance using majority logic decoding [1]. In
[2] the authors realized that these and related codes were
indeed LDPC-codes and that they performed remarkably well
under various iterative bit-flipping decoding algorithms. The
present paper is an attempt to give a better understanding of
the reasons for this, in the sense that we use the geometry to
explain the performance of a bit-flipping algorithms.

We have chosen to investigate a special class of codes from
Euclidean geometry, this is given in Section II, which also
contains a theorem giving the number of minimum weight
codewords. In Section III we link the performance of bit-
flipping decoding to the geometry of the error patterns.

II. THE CODES AND THE NUMBER OF MINIMUM WEIGHT

WORDS

Let EG(2, q) where q = 2s denote the Euclidean plane over
the finite field Fq . Remove the point at the origin and all the
lines through the origin. This leaves n = q2−1 points and b =
q2−1 lines. Choose a numbering of the points P1, P2, . . . , Pn

and of the lines L1, L2, . . . , Lb and define the matrix

H = (huv) where huv =
{

1 if Pv ∈ Lu

0 if Pv /∈ Lu

This means that we can number the positions in a word with
the points of the geometry and that a word is a codeword iff
it is orthogonal to all the incidence vectors of the lines.
It is well known [2] that the numbering of the points and lines
can be chosen in such a way that the matrix H is circulant.
Using H as the parity check matrix for a binary code K(s)
we get a code of length n = 22s−1, dimension k = n−3s+1
and minimum distance d = 2s + 1. By construction it follows
that the matrix H has j = 2s ones in each row and i = 2s

ones in each column. Moreover any two rows have at most
one 1 in common and any two columns have at most one 1
in common. With the proper numbering this is a cyclic code.

Example 1: With s = 2 we get a (15, 7, 5) code with i =
j = 4, this is the double error correcting quasiperfect BCH
code.

We will now count the number of minimum weight code-
words in the codes described above. The first observation is

Lemma 1: Let c be a codeword of minimum weight 2s +
1 = j + 1. The set C of points corresponding to the nonzero
positions satisfy

1) Any two points lie on a ( unique) line.
2) Any line has either 2 or 0 points in common with C

and if we have a set of q + 1 points satisfying 1) and 2) the
incidence vector corresponds to a minimum weight codeword.
Proof: It follows immediately from the fact that HcT = 0 that
there must be an even number of ones in common between c
and every row of H . From the cyclic structure of the matrix
it is also clear that there is a line ( which by construction
must be unique) with 2 or more points in common with c. To
finish the proof let ρ > 1 be the number of ones that c has
in common with a fixed line L. For each one that L and c
have in common there are j − 1 other lines that have a one
that has to be cancelled, and we have j + 1 − ρ remaining
ones to do that. But for ρ > 2 we have j + 1 − ρ < j − 1 so
this is impossible. Therefore ρ ≤ 2. The reverse statement is
obvious from the structure of H . �

We will now study the set C of q + 1 points from a
minimum weight codeword a little closer.

In EG(2, 2s) the set O = C ∪ (0, 0) is a set of q + 2 points
with the property that any two points are on a ( unique) line
and no three points are collinear. Moreover the lines through
(0, 0) have exactly 1 point in common with C. This means that
O is an regular oval. For the definition and results on these
see [3]. It is also known that an oval in EG(2, 2s) consists of
a conic and its nucleus.
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Theorem 1: The number of minimum weight codewords in
K(s) is

1) 18 if s = 2
2) (2s + 2)(2s − 1)22s−1 if s > 2
Proof: 1) If s = 2 we have 6 points in EG(2, 4) no three

on a line, it follows from ( [3] p. 184) that these form a
(nondegenerate) conic and a nucleus in 6 different ways, so
we can choose the nucleus to be (0, 0).

Then the equation for the conic is

ax2 + bxy + cy2 + 1 = 0 with abc �= 0 and Tr( ca
b ) = 1,

where Tr is the trace mapping from F4 to F2.

This can be seen from the fact that the general
equation for a conic not passing through (0, 0) is
ax2 + bxy + cy2 + dx + ey + 1 = 0 and the condition
that all lines through (0, 0) shall be tangents. This implies
that the lines with equations x = 0 and y = kx has exactly
one point in common with the conic and from that one
derives the conditions on the equation.
From this it is easily seen that the number of such conics is
32 × 2 = 18.

2) In the case s > 2 every point of O could be the nucleus
so we have that the number of minimal weight codewords is
(q + 2)×(the number of regular ovals with nucleus (0, 0)).
But again this means that we have a conic with equation

ax2 + bxy + cy2 + 1 = 0 with abc �= 0 and Tr( ca
b ) = 1,

where Tr is the trace mapping from F2s to F2.

and it is easily seen that the number of such conics is (2s −
1)2 × 2s−1. �

The above observation can also be used to generate all the
minimum codewords.

III. DECODING EUCLIDEAN GEOMETRY CODES USING

BIT-FLIPPING

Euclidean Geometry codes can be decoded by versions of
the iterative decoding method for LDPC codes known as bit-
flipping. The decoder works on generalized syndromes s =
HrT , where r is the vector at the output of a binary symmetric
channel. ( generalized because s has n bits rather than n−k).
The error pattern is described as a set of points in the Euclidean
plane, and each parity check corresponds to a line in the plane.
For each position in r we calculate the number of lines through
the point where the parity check fails. In each step, one or
more of the bits with a maximal number of parity failures is
flipped, and a new syndrome is calculated. The performance
of different variations of the bit-flipping algorithm may be
analysed by considering the geometry of the error patterns.
We introduce the concepts of the analysis by considering a
small example.

Example 2: The(15, 7, 5) code.
The Euclidean Geometry code with s = 2 has minimum
distance 5, and all coset leaders have weight ≤ 3. The
decoding results for the bit-flipping algorithm can be explained

by considering the weights w(s) of the generalized syndromes,
which are given in the table 2.

w(s) number of cosets description of error patterns
0 1 no errors
4 15 one error
6 100 90 double errors on a line

and 10 cosets with 3 triple errors
8 75 15 double errors not on a line

and 60 cosets with 3 triple errors
10 60 three errors on a line
12 5 three errors, no two on a line

Two errors are always decoded by majority decisions, and
triple errors in those cosets are obviously not decoded. For
syndrome weights 10 and 12 the error positions have a
majority of parity failures, and they are decoded. In the cosets
of weight 6 and 8 with coset leaders of weight 3, the result
depends on the details of the algorithm. For w(s) = 6 no
position has more than 2 parity failures. In the cosets with
w(s) = 8 two of the errors are not on a line, and in this
case the result may be one of the three closest codewords or
a codeword further away depending on the scheduling of the
algorithm.

For the class of codes we consider we have the following
general observation.

Lemma 2: If t errors occur,t ≥ d
2 and w(s) > t2, the errors

are decoded by the bit-flipping algorithm, and hence there is
a unique coset leader.
Proof: Let rj denote the number of parity failures that involves
position j of the received word. We then have

1) w(s) ≤ ∑
error positions rj

2) If rj > t then there is an error at position j and it is
corrected by the bit-flipping algorithm.

Here 1) is obvious and 2) follows from the facts that
rj ≤ q and t ≥ d

2 = q+1
2 .

Since by assumption w(s) > t2 we have from 1) that∑
error positions rj > t2 and since there are t errors there is at

least one position j with rj > t and this is corrected.
After correction the new syndrome has weight w′(s) ≥
w(s)−rj ≥ w(s)−q ≥ t2+1−q ≥ (t − 1)2+2t−q > (t − 1)2

since 2t > q. The proof now follows by repeating this
argumnet. �

Thus for high syndrome weights, the errors are decoded. For
low syndrome weights, there may be an error pattern of lower
weight in the same coset or decoding may fail because no
position has enough parity failures. For intermediate syndrome
weights, there are more error patterns of the same weight
in each coset, and the result depends on the number of bits
that are flipped in each step and the order in which they are
selected.
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Example 3: The (63, 37, 9) code.
For s = 3 we get the following distribution of syndrome
weights ( this is the weight distribution of the dual code and
is found by computer).

TABLE I

SYNDOME WEIGHT DISTRIBUTION OF COSETS FOR THE (63, 37, 9) CODE.

w(s) #
0 1
8 63
14 1800
16 189
18 27048
20 243936
22 740880
24 2317035
26 4845456
28 9912672
30 11755296
32 13966659
34 10372320
36 7709856
38 3315312
40 1390221
42 388080
44 110880
46 10584
48 63
50 504
56 9

All error patterns with at most 4 errors are decoded by
majority decisions. From Lemma 2 it follows that 5 errors are
decoded when the syndrome weight is 26 − 40, 6 errors for
w(s) = 38 − 48 , and 7 errors for w(s) = 50 or 56.
For 5 errors and w(s) = 20, the error pattern is in a coset
with minimum weight 4 or the patterns are not decoded. For
w(s) = 22 and 24 the various cases can be described by their
geometry and counted.

IV. CONCLUSION

We have determined the number of minimum weight words
in a class of Euclidean Geometry codes and demonstrated how
the performance of a bit-flipping algorithm can be explained
by the geometry of the error patterns.
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