

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Nov 21, 2019

Upper bounds on the number of errors corrected by a convolutional code

Justesen, Jørn

Published in:
I E E E Transactions on Information Theory

Link to article, DOI:
10.1109/TIT.2003.822600

Publication date:
2004

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Justesen, J. (2004). Upper bounds on the number of errors corrected by a convolutional code. I E E E
Transactions on Information Theory, 50(2), 350 - 353. https://doi.org/10.1109/TIT.2003.822600

https://doi.org/10.1109/TIT.2003.822600
https://orbit.dtu.dk/en/publications/upper-bounds-on-the-number-of-errors-corrected-by-a-convolutional-code(4cfc76db-c8b9-41cb-803b-d0113f28b1b1).html
https://doi.org/10.1109/TIT.2003.822600

350 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 2, FEBRUARY 2004

Upper Bounds on the Number of Errors
Corrected by a Convolutional Code

Jørn Justesen, Member, IEEE

Abstract—We derive upper bounds on the weights of error patterns that
can be corrected by a convolutional code with given parameters, or equiv-
alently we give bounds on the code rate for a given set of error patterns.
The bounds parallel the Hamming bound for block codes by relating the
number of error patterns to the number of distinct syndromes.

Index Terms—Convolutional codes, Hamming bound.

I. INTRODUCTION

The aim of this correspondence is to study the error patterns that
can be corrected by a binary convolutional code with a given rate and
memory. In particular, we derive bounds similar to the Hamming bound
for block codes. As in the block code bound, the argument is based on
upper bounding the number of correctable error patterns by the number
of distinct syndromes. In some cases it is more convenient to fix the set
of error patterns and the memory and to derive an upper bound on the
rate.

The only previous Hamming-type upper bound that we are aware of
is the result in [1].

For block codes, there is a direct relationship between distances and
correctable error patterns. Thus, the Hamming bound is often stated as
an upper bound on the minimum distance of a block code. Since we
cannot apply the same geometric argument to convolutional codes, we
prefer the following statement of the block code bound.

Hamming bound for (N;K) block codes: If a linear code can correct
all error patterns of weight � T , then

j�T

N

j
� 2N�K (1.1)

where the left side of the inequality enumerates the error patterns and
the right side is the number of distinct syndromes.

It is well known that in most cases it is not possible to correct all error
patterns of the weight indicated by the Hamming bound. However, the
bound gives a useful estimate of the performance of a code when the
decoding is maximum likelihood and the rate is close to the capacity
of the binary symmetric channel.

Syndromes are essential to our arguments. In the discussion of trellis
decoding, we use the version that is based on syndrome former states.
The structure of encoders and syndrome formers is not the topic of this
analysis, and we make some simplifying assumptions at the expense of
generality.

In Section II, we derive a bound on correctable error patterns by
relating them to nonzero syndromes of a specific length. In Section III,
this approach is extended to longer error sequences of increasing
weight. In Section IV, we consider segmentation of error sequences
using concepts from trellis decoding. We then derive an upper bound
based on a variable-length description in Section V.

Manuscript received November 30, 2000; revised September 30, 2003.
The author is with COM, Technical University of Denmark, DK-2800

Lyngby, Denmark (e-mail: jju@com.dtu.dk).
Communicated by R. Koetter, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2003.822600

II. FINITE ERROR PATTERNS

In this section, we derive an upper bound on the number of errors T
that can be corrected for any location of the errors. This result is also
an upper bound on the free distance since

T =
dfree � 1

2
: (2.1)

It was proved in [2] that an (n; k) convolutional code with memory
M (measured in bits) has a dual (n; n�k) code with the samememory.
M has the interpretation that the number of states in minimal encoders
and syndrome formers is 2M . Whenever encoders or syndrome for-
mers are referred to, we always assume that they are minimal and basic.
However, we assume the additional simplifying property.

Definition 2.1: A pair of encoders for a convolutional code and its
dual are said to be regular if their memories measured in blocksm and
m0 satisfy

M = mk = m
0(n� k): (2.2)

A code is called regular if it has a regular encoder and syndrome
former.

The purpose of this definition is only to focus the discussion on the
typical situation. Clearly, there are values ofM such that (2.2) cannot
be satisfied, and some codes have slightly different structures, but the
results could be modified to include such cases at the expense of a more
complex notation.

Definition 2.2: If a sequence is zero before block i, has nonzero
blocks i and i + j � 1, and is zero from block i + j on, we say that
then length of the sequence is j.

If the error pattern has length s blocks, the number of nonzero syn-
drome blocks is at most s +m0.

Lemma 2.1: For a regular (n; k) code with memory M , the error
patterns of length s are checked by at most (n�k)(s+m0) syndrome
bits.

Our first bound will be based on syndrome sequences that are zero
with the exception of a finite segment, and we get an upper bound on
T by comparing the number of error patterns to the number of distinct
syndromes.

Lemma 2.2: A regular code of rate R and memory M can correct
at most T errors, where for any s > 0

j�T

ns

j
� 2n(1�R)s+M

: (2.3)

Proof: We count the number of error patterns of length s blocks.
From Lemma 2.1 we get an upper bound on the number of relevant
syndrome bits, and this gives an upper bound on the number of distinct
syndromes.

This is exactly the translation of the Hamming bound using the “in-
verse concatenation construction” [3]. We find an upper bound on T
by applying (1.1) to terminated codes with parameters N = sn, K =
ks �M , and taking the minimum for s > 0. We can get a different
interpretation of the bound from the right-hand side of the equation by
noting that 2M is the number of states of the syndrome former.

Lemma 2.3: Two error patterns of length sn can be distinguished
only if the syndromes are different or the states of the syndrome former
are different at the end of the error patterns.

0018-9448/04$20.00 © 2004 IEEE

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 22, 2010 at 08:27 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 2, FEBRUARY 2004 351

The block code bound (1.1) is tight for short codes and codes of high
rate. However, for finite lengths, the bound of Lemma 2.2 is not tight.
The reason is that more error patterns have to be corrected by the same
syndromes. If the first jn bits of an error pattern coincide with the first
blocks of a codeword, the first jk syndrome bits equal zero. A similar
argument applies to the end of the error pattern. Thus, more low-weight
error patterns than those counted by the left-hand side of (2.3) have to
be distinguished by the syndromes on the right-hand side.

In order to state the modified upper bound, we need a lower bound on
the number of truncated codewords of low weight. Only the first term
of the correction is considered here. If the best (n; k) convolutional
code has no truncated codeword of weight less than t, and at is a lower
bound on the number of weight t truncated words on both sides of the
sn bits under consideration, we get the following.

Theorem 1: A regular code of rateR and memoryM can correct at
most T errors, where

for any s > 0

j�T

sn

j
+

j�T�t

at
sn

j
� 2sn(1�R)+M : (2.4)

From capacity considerations it is clear that the asymptotic bound is
not changed.

Proof: The additional error patterns have nonzero syndrome
bits only in the window under consideration. A different distribution
of truncated word weights gives a larger number of low-weight error
patterns.

Example 1 : Consider a (3; 2) code withM = 6. If we consider s =
4, there are 10 syndrome bits, and Lemma 2.2 is satisfied with T = 3.
In order to apply Theorem 1, we notice that the first block can have
three vectors of weight 2. Furthermore, there is at least one segment
of length 2 blocks which has a zero second block. The same argument
applies to the weight of the last blocks in a codeword. Thus, we evaluate
Theorem 1 with a2 = 8. The 1024 syndrome values must identify not
only 299 error patterns of weight 0–3 among the 12 bits, but also eight
double errors in adjacent blocks and 96 triple errors where two errors
are outside and the last error inside the window, a total of 403.

The example shows that the syndromes are used more efficiently
than indicated by (2.3). There are no simple cases where the upper
bound on T is changed by the correction, but the bounds on longer
error patterns can change, as we demonstrate when we return to the
example in Section III.

III. MORE ERRORS CAN BE CORRECTED IN LONGER SEGMENTS

The bound (2.4) gives a minimal value of T for a finite range of s,
but eventually it increases with increasing s. Similarly, a typical con-
volutional code contains only a small number of short codewords of
low weight. Thus, more errors can be corrected, provided that at most
T of the errors occur in any s0 consecutive blocks. A lower bound
of this form may be expressed in terms of the extended (or active)
distances [4], [5] of the code. However, since these distances are ob-
tained as minimum weights of codewords that are constrained not to
pass the zero state, they are not minimum distances of linear block
codes. Thus, we cannot obtain upper bounds on specific codes by trans-
lating block code bounds. However, it may be noted that asymptotically
the number of correctable errors is upper-bounded by the same ex-
pression as the Gilbert-type lower bound on extended distances. Thus,
TR=M is upper-bounded by the Costello bound on the free distance
[4], and for long error patterns the relative number of correctable errors
is upper-bounded by H�1(1 � R).

To get an upper bound we shall again enumerate the relevant error
patterns. Either the total number of errors is at most T , or there is at

least one error in each of the blocks at the ends. Thus, we have the
following.

Theorem 2 : If a regular (n; k) convolutional code corrects any
combination of T errors, and any combination of T + 1 errors such
that at most T are in s0 consecutive blocks, then

T

i;j=1

n

i

n

j

(s0 � 1)n

T � i� j + 1
+

j�T

(s0 + 1)n

j

� 2(s +1)n(1�R)+M : (3.1)

Proof: All error patterns of at most weight T are counted. In ad-
dition, error patterns of length s0 +1 and weight T +1 are included if
they have at least one error in the first and last block.

Example 2 : We consider a (2; 1) M = 2 code. The terminated
block codes have parameters (2s; s� 2). Applying (2.4) with M = 2
and a2 = 2 we get

2

j=0

2s

j
+ 2 = 3 + s+ 2s2 < 2s+2

indicating that two errors can be corrected. The upper bound is T � 2,
since T =3 would violate (2.3). Applying (3.1) with T =2 and s0=3,
we get 37 error patterns of weight at most 2 from the last term and 20
error patterns of weight 3 from the first term. However, we can get a
slightly tighter bound by the same reasoning as in Theorem 1: the same
syndrome should correct two patterns of weight 2 and eight patterns
that have a double error outside the four blocks and a single error at
least two blocks away. Thus, the total number of error patterns becomes
67 exceeding the number of syndromes. Repeating this calculation for
s0 = 4 blocks we get 56+ 2 error patterns of weight at most 2, and 28
+ 8 error patterns of weight 3. Thus, the 128 syndromes should identify
84 error patterns within the five blocks and 10 additional patterns. Thus,
the upper bound allows three errors in five blocks, while the code with
generators (111) and (101) actually has a word of length 5 and weight
6, and we cannot be sure to correct three errors until the length reaches
six blocks.

Example 1 (Continued): For the (3; 2) code withM = 6 we found
T = 3. Here we consider correcting four errors provided that short
segments contain at most three errors. Taking s0 = 3 we may apply
Theorem 2 to get 258 error patterns of weight 4 in addition to the 403
error patterns of lower weight. From this calculation, the 10 syndrome
bits are sufficient. However, if we take into account the errors patterns
that have double errors outside the 12-bit window, there are 448 addi-
tional error patterns of weight 4, and 10 syndrome bits are not enough.
Theorem 2 is satisfied for s0 = 4.

As indicated by Lemma 2.3, the number of correctable error patterns
increases by a factor 2n�k for each additional block. Consequently, the
weight of the error patterns can also increase with the length, but since
this approach does not give any simple expressions, we omit the details.

IV. TRELLIS DECODING

We use the following version of trellis decoding of the convolutional
code. As the first step, we assume that the n � k syndrome bits are
computed for each received block. We take the syndromes as the input
to the trellis decoder, and let the trellis consist of states and transitions in
the syndrome former. In this way, we can study the error pattern directly
in a way that is independent of the data. It may be noted that for our
purpose it is important that all decisions are data independent, even then
we choose among several equally likely possibilities, whereas many
Viterbi decoders choose a particular data bit in such situations.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 22, 2010 at 08:27 from IEEE Xplore. Restrictions apply.

352 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 2, FEBRUARY 2004

For a block code, a list of the error patterns indexed by the syndromes
gives a complete description of the error correction process. A partial
list of syndromes and error patterns for a convolutional code could be
constructed, but the complete list is in general not finite. It has been
noted by several authors [6], [7] that, at least in principle, the perfor-
mance of a convolutional code on a discrete memoryless channel where
the log-likelihood ratios are approximated by rational branch weights
can be modeled as a finite-state process. We refer to such a model as a
big trellis model (BTM).

Definition 4.1 : The BTM is a finite state model of the decoding
process for a given convolutional code. The states of the BTM are iden-
tified by a vector of reduced metric values and an indication of the syn-
drome former state that is chosen in the back search. The output is the
corrected error pattern.

Since we only discuss the binary symmetric channel, the metric
values indicate the Hamming weight of the error patterns, and we
assume that in each step the state metrics are reduced to make
the smallest one equal zero. Clearly, the number of states is finite,
although it may be exponential in the number of encoder states. Note
that even though the selected state refers to the back-search phase of
the decoding, this model proceeds in the forward direction only. Each
state transition in the BTM reflects a step in the Viterbi algorithm,
but it has only one branch connecting the two preferred states. On the
other hand, there may be several possible transitions for a given state
and a given input syndrome, each labeled with the minimum-weight
error on the corresponding branch. Whenever there is an ambiguous
decision in the Viterbi algorithm, it is important to make a specific
choice of error pattern.

Even for codes of moderate size, the number of states in a BTM
makes it infeasible for actual computations. However, the model pro-
vides some insight into the general properties of correctable error pat-
terns. We use the term ground state to indicate the state of the BTM for
a sufficiently long error-free input.

Definition 4.2 : A correctable error pattern is the labeling of a path
that leaves the ground state of the BTM on the first branch and ends in
the ground state. A basic error pattern ends the first time it returns to
the ground state.

Lemma 4.1 : Any concatenation of basic error patterns results in a
correctable error pattern.

Proof: The decoding process is described by the BTM with the
segments joined in the ground state.

This variable-length description of the error patterns may be seen
as a parallel to the variable-length description of codewords [8]. The
connection to the syndrome sequences ismade by the following lemma.

Lemma 4.2 : There is a one-to-one correspondence between cor-
rectable error patterns and syndrome segments, and a syndrome seg-
ment has the same length as the error pattern measured in number of
branches.

Proof: For a given initial state of the syndrome former, a par-
ticular error sequence gives a unique syndrome sequence. Since the
syndrome former is returned to the zero state at the end of each seg-
ment, that is always the initial state. Even though from a given state the
syndrome does not uniquely determine the error, the error sequence is
unique once the syndrome former is returned to a particular state.

Lemma 4.3 : The basic error patterns satisfy the prefix condition.
Proof: Since the error sequence is given, the correct syndrome

former state is known, and the error sequence is recognized as a basic
error pattern when the BTM reaches the ground state. Thus, it is not a
prefix of another basic error pattern.

We note that in Viterbi decoding, a block is decoded when all sur-
viving branches share the same first branch. When we reach the end of
a correctable error pattern, the metric vector indicates that the decoder
interprets the current segment as essentially an error-free codeword.
However, as discussed in Section II, a short error pattern may be iden-
tical to the start of a codeword, and depending on theminimumdistance
and constraint length of the code, there is a finite delay in detecting the
beginning of a nonzero error pattern.

We can now state an important upper bound.

Theorem 3: Assume that each branch of the convolutional code has
n � k redundant symbols. Let the number of basic error patterns of
length L, measured in branches, be A(L). Then the number of redun-
dant symbols on each branch must satisfy

L

A(L)2�L(n�k) � 1: (4.1)

Proof: It follows from Lemma 4.2 that the error patterns corre-
spond to syndromes of the same length (measured in blocks), and the
inequality then follows from the Kraft–MacMillan theorem.

Theorems 1 and 2 provide information about short error patterns.
However, for these sequences to become basic error patterns in the
sense of Theorem 3, they have to be followed by a suitable number
of zero blocks. In Section V, we shall discuss the set of lengths.

Theorem 3 implies a tree description of the basic error patterns. If
this description can be converted to a finite-state description of the cor-
rectable error patterns, we shall prove in Section V that the result is
equivalent to the upper bound of [1]. However, the present version of
the upper bound has the advantage that an estimate can be obtained by
restricting the sum (4.1) to a finite number of terms and a desired in-
teger value can be used for n � k.

V. FINITE-STATE DESCRIPTIONS OF ERROR PATTERNS

In this section, we introduce a simplified description of the error pat-
terns. The intention is to describe a set which has some of the simplicity
of a set of bounded weight in the block code case. However, at the same
time the set should be a good approximation to the set of correctable
error patterns for a convolutional code.

Let the upper limit on the number of correctable errors be approxi-
mated by a function of the following type.

Definition 5.1 : A set of bounded weight is a set of sequences of
blocks ei with weight ti = W (ei) which satisfy

tkj =

k+j�1

i=k

ti � Tj (5.1)

for

Tj = maxfT; b�j + �cg (5.2)

where T is an integer and � and � are positive rational numbers.

Given a weight sequence tk , we may check that (5.1) is satisfied in
the following way. Let j0 be the largest value of j such that �j < T .
Verify that any window of length j0 contains at most T errors. Then,
starting from the beginning of the sequence, calculate the sum t0j as
long as it satisfies

�j < t0j � �j + �: (5.3)

If the last inequality is not satisfied, the sequence clearly does not
satisfy (5.1). When we reach a block j = k1 where the first inequality

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 22, 2010 at 08:27 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 2, FEBRUARY 2004 353

is not satisfied, the summation is reset, and we start calculating a new
sum tk j from the next block.

It was proved in [1] that a set of bounded weight can be generated
(or recognized) by a finite-state machine. The essential state variable
in the description is

� = �v� +

u+v�1

j=u

tj (5.4)

which is updated with the term tj � � in each transition. In addition,
the state may have to include a finite number of past inputs. Thus, �
tracks the deviation of the total weight from the linear function �j.

We can now derive a final version of the upper bound by counting the
number of error patterns of each length that satisfy (5.1) and (5.2). For
that purpose, we need the adjacency matrix of the finite state source,
i.e., a matrix P where the elements pij indicate the number of tran-
sitions between two states. From the adjacency matrix of the source
we can find the total number of correctable error patterns of a certain
length, or we may split the zero state into a starting state and a final
state and determine the number of basic error patterns of each length.

If the number of redundant symbols in each block is n � k, it was
proved in [1] that the largest eigenvalue of P , � satisfies

log� � n� k:

This result is also a consequence of Theorem 3, which may be seen
in the following way: If A(x) is the length generating function for the
set of basic error patterns, we may express the total number of error
patterns terminating in the ground state by

u(P � xE)�1u0 =
A(x)

1� A(x)

where u = (1; 0; 0; . . . ; 0). Thus, the smallest pole of this function is
x = 2�n+k , which implies A = 1 and � = 1=x.

We now have the following.

Theorem 4 : If a regular convolutional code of rateR with memory
M corrects a set of bounded weight with parameters (T; �; �), T must
satisfy Theorem 1, and the largest eigenvalue of P , the adjacency ma-
trix for the set of correctable error patterns with block length n, satisfies

� � 2n(1�R):

Example 2 (Continued): The extended row distances of the
(111;101) code are drj = b4 + j=2c for j > 2 branches. We shall
derive an upper bound on the rate of a code where the weights of the
correctable error patterns are given by Tj = b7=4 + j=4c. These
values agree with T = 2 and T5 = 3 which were found earlier. The
error patterns may be counted in a systematic way by introducing a
finite-state source as outlined above. Thus, there are eight states with
� = 0, 1=4; . . . ; 7=4. The first state corresponds to the ground state
of the BTM. The adjacency matrix of the finite-state source is

P =

1 0 0 2 0 0 0 1

1 0 0 0 2 0 0 0

0 1 0 0 0 2 0 0

0 0 1 0 0 0 2 0

0 0 0 1 0 0 0 2

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

:

The number of error patterns starting in the ground state and ending
in arbitrary states after j blocks may be calculated as

[1 0 0 0 0 0 0 0]P j [1 1 1 1 1 1 1 1]0 :

Without including error patterns extending outside the j blocks we
get 84 for s = 5 in agreement with the first part of the example. We
can include a double error in the previous block by changing the left
vector to (10000001). Alternatively, we may split the zero state of the
source and obtain the generating function for the number of basic error
patterns

A(x) =
2x4 � 3x8

1� 8x4
= 2x4 + 13x8 + 104x12 + � � � :

Here the two patterns of length 4 have weight 1 and the 13 patterns
of length 8 have weight 2. Using this generating function and adding
the length 1 zero branch we may apply Theorem 3 and verify that the
rate is upper-bounded by R < 0:556. In [1], the upper bound was
expressed in terms of the maximal eigenvalue of P , � = 1:853, where
log � = 0:890 is a lower bound on the redundancy per block. The
rate–1=2, memory-2 code generated by (111;110) has row distances
that increase by 2 in every three branches, but the free distance is only 4.
It may be verified that the upper bound for codes correcting 5=3+ j=3
errors in j branches is R < 0:467. Thus, a code of rate 1=2 cannot
correct all patterns of two errors and one error in every three blocks.

Example 1 (Continued): In Sections II–IV we found T = 3 and
T5 = 4. These values are consistent with Tj = b11=4 + j=4c and
Tj = b3 + j=5c. However, only the last set satisfies Theorem 4 for
R = 2=3. The upper bound on the rate for this set isR < 0:676. Thus,
for R = 2=3, M = 6, and T = 3, the upper bound on � is only
slightly greater than 1=5.

VI. CONCLUSION

The block code Hamming bound gives a direct performance esti-
mate and is related to syndrome decoding in an obvious way. We have
provided a similar relation between syndromes and correctable error
patterns for convolutional codes. The upper bounds serve to estimate
the number of errors corrected by a convolutional code when max-
imum-likelihood (ML) decoding is used.

REFERENCES

[1] J. Justesen, “Bounded distance decoding of unit memory codes,” IEEE
Trans. Inform. Theory, vol. IT-39, pp. 1616–1627, Sept. 1993.

[2] G. D. Forney Jr., “Structural analysis of convolutional codes via dual
codes,” IEEE Trans. Inform. Theory, vol. IT-19, pp. 512–5518, Sept.
1973.

[3] , “Convolutional codes II: Maximum likelihood decoding,” Inform.
Contr., vol. 25, pp. 222–266, July 1974.

[4] R. Johannesson and K. Zigangirov, Fundamentals of Convolutional
Coding. Piscataway, NJ: IEEE Press, 1999.

[5] C. Thommesen and J. Justesen, “Bounds on distances and error expo-
nents of unit memory codes,” IEEE Trans. Inform. Theory, vol. IT-29,
pp. 637–649, Sept. 1983.

[6] J. P. M. Schalkwijk and A. J. Vinck, “Syndrome decoding of binary
rate 1/2 convolutional codes,” IEEE Trans. Commun., vol. COM-24, pp.
977–985, Sept. 1976.

[7] M. R. Best, M. V. Burnashev, Y. Levy, A. Rabinovich, P. C. Fishburn, A.
R. Calderbank, and D. J. Costello, “On a technique to calculate the exact
performance of a convolutional code,” IEEE Trans. Inform. Theory, vol.
41, pp. 441–447, Mar. 1995.

[8] A. J. Viterbi, “Convolutional codes and their performance in commu-
nication systems,” IEEE Trans. Commun. Technol., vol. COM-19, pp.
751–772, Oct. 1971.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 22, 2010 at 08:27 from IEEE Xplore. Restrictions apply.

