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Abstract - We consider codes based on simple 
bipartite expander graphs. These codes may be seen as 
the first step leading from product type concatenated 
codes to more complex graph codes. We emphasize 
constructions of specific codes of realistic lengths, and 
study the details of decoding by message passing in 
trees. 

I. INTRODUCTION 

The codes considered in this paper are a specific case of 
the codes based on bipartite expander graphs described in 
[ 1 ,  21. By specializing the analysis to a class of graphs with 
well-understood properties we are able to obtain more 
details. Even though this is only the fust step in the 
generalization that leads from product type concatenated 
codes to more complex graph codes, the codes are already 
about as long as it would be practical for a n y  
implementation. 

11. A CLASS OF BIPARTITE GRAPHS FROM PROJECTIVE 
PLANES 

Let M be a cyclic incidence matrix for a projective plane 
of order n-1 with S lines and points. 

s = n(n -1) + I  

Thus each row has n I s ,  the largest eigenvalue is nand  the 
corresponding eigenvector is the all-ones vector. The scalar 
product of any two different rows is one, and all remaining 
eigenvalues have modulus 1 = f i  . A bipartite graph 
consisting of two sets of S nodes of order n is described by 
the incidence matria 

This matrix may be seen a s  a simple expander graph: 
Starting from a node in the right set, nnodes in the left set 
can be reached in one transition, and the remaining nodes 
in the right set can be reached from these nodes. The 
eigenvalues of A are b a n d  +,I (all real since A is 
symmetric). 

The graph can he used to define a code by associating a 
symbol with each branch and letting all branches that meet 
in a node satisfy the parity checks of an (n, k, d) code. Thus 
the length of the code is 

N = Sn 

If the rate of the code associated with the nodes is r, the 
total rate is 
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To obtain a lower bound on the minimum distance, we 
want to determine the smallest size of sets of nodes in each 
of the two parts of the graph, s, such that the subgraph 
consisting of these nodes and the branches connecting 
them has  degree at least d. Clearly in this case sd is a lower 
bound on the minimum distance. 

We give details only of the case where d is the same for 
the two sets of codes. In the asymptotic analysis the rates 
and distances are different, and a more general result is 
needed. 

111. A LOWER BOUND ON S 

In [l ,  2 )  the sue of the sets considered in Section 2 was 
bounded in terms of 1. Our argument will follow the proof 
from [2] closely, but provide some additional detail. Thus X 
will be a vector of length 2Swith coordinates 1 in s places 
indicating the positions in each ofthe two sets, and Y is the 
corresponding balanced vector 

1x1 Y = X - - U  
2s 

where U is a vector of 1 s. Thus Y may he expressed as a 
sum of those eigenvectors of A that have eigenvalue d. 
Following the steps of the proof in [2], we get 

d 5 n s / S  + 1(l - s is) 

with equality if Y is an eigenvector with eigenvalue h. 
Since Yhas s coordinates with value 1-s/S while the 

remaining are -s/S, and we may assume that each of the s 
nodes in the right subset is connected to exactly d nodes in 
the left subset (and thus n-d other nodes in the left set), we 
can find the coordinates in the subsets of AY to be 

(1 - S/S)(Sd - ns) / (S  - .) 

On the average, the remaining coordinates are scaled by the 
same factor. Thus for Y to be an eigenvector we must have 

1 = (Sd- ns)/(S -3) 

and in general the right side is at most equal to h. From 
earlier relations between the parameters we get 

s L (d-L)(L2 + l + l )  

Clearly equality is possible only for integer values of h. For 
small d, the bound is useless, and we can have s=d(d-l)+l. 
This follows from the expansion property of the graph: 
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Consider a node on the right with at  least one nonzero 
symbol. There has to be at  least d nonzero branches leading 
to left nodes. These are again connected to did-1) distinct 
right nodes. In the case when the projective plane used in 
the construction contains a smaller projective plane over a 
subfield, we can have 

d = l + l  

Thus the minimum distance is always lower bounded by 

d( (d - l )d+ l )  = d(dz - d + l )  

If the two codes have the same length, but different 
minimum distances, we can apply the same argument 
starting from either side of the graph. Thus the minimum 
distance is lower bounded by 

These two terms can be interpreted as minimum weights of 
codewords in tree codes rooted an the right or left side of 
the graph. Thus in a decoding based on tree codes we would 
use the version that gives the larger tenn, and this will 
equal the estimate on the minimum distance of the code, d. 

It follows immediately that for any error pattem of 
weight less than d / 2 ,  the branches directly connected to 
the root of the tree are correctly decoded. However, 
peripheral branches may not be correct, and in that case 
the estimated total number of errors is not necessarily 
correct. By combining the decoding results for all tree 
codes, we will of C D U I S ~  get the correct codeword. 

case, and the subgraph is the incidence matrix of the 
projective plane with s=7. For d=4 we get the 
complementary sets, and in both cases Yis an eigenvector 
of A. 

The lower bound on s indicates that in order to get a 
strong bound on the minimum distance of the graph code, 
the minimum distances of the component codes have to 
exceed the square root of the length. Since the codes (or at 
least one code) also must have moderately high rate, the 
component codes cannot be short. In case of binary codes 
the bound applies for n 2 256. It is easier to get a useful 
construction with RS component codes, and we shall 
discuss such codes in the following section. 

Example I :  For S=21 and h=2 we get d=3 as the smallest 

N. GENERALIZED CONCATENATED CODES 
The same type of bipartite graphs can be used with q-ary 

connections (q a power of 2) and RS component codes. To 
get an asymptotic result, we assume that codes in the right 
subset of nodes have a moderate rate rl and codes in the 
left subset have rate p1 close to 1. This will lead to a Fomey 
type decoding of the concatenated code. The codes on the 
right side can be interpreted as  b i n q  codes, and their 
properties can be made to approach that of a random 
ensemble by a suitable randomization of the mapping of the 
symbol field. 

The analysis of the weight of these binary codes (C. 
Thommesen 131) shows that the minimum distance is on the 
GV bound for binary codes of rate n, but also that the 
minimum distance is reached only for codewords of 
m-al q-ary weight. Words with a smaller number of 
nonzero symbols have larger minimum weighs. As pointed 
out by Barg [4] this observation leads to a lower bound on 

the minimum weight of the concatenated code that exceeds 
the product bound. 

For moderate values of n, there are cases where the 
binary images of RS codes are known to have good 
minimum distances. In such cases there are  often many low 
weight codewords, and the restriction on the number of 
nonzero q-ary symbols does not necessarily lead to an 
increased minimum weight. In this case n should also be 
chosen as  a lower value. 

v. OUTLINE OF A DECODING ALGORITHM 

The following algorithm is designed to make use of the 
graph structure of the code to decode beyond half the 
minimum distance. The algebraic properties are used to 
reduce the complexity and to allow the performance of a t  
least some of the steps to be analyzed. The decoding 
consists of 5 stages: 

- Decode the binary images of the right side codes to a 

distance of(l-e)nH-'(l-q), i.e. close to the Hamming 
bound for binary codes of rate n. I t  is known that the 
number of words within this distance is upper 
bounded by a constant that is a function of E , but does 
not depend on the length 151. Clearly the average 
number of words is only slightly greater than 1. For 
each F(q) symbol in a given position, propagate a 
message along the branch in the graph indicating the 
minimum number of binary errors corrected in the first 
stage of decoding, If no word was found with the symbol 
in question, the value of the Hamming bound is used as  
an estimate. 
. Using these messages, decode the left codes a s  RS 
codes. Use information set decoding [5] (or another 
suitable approach, maybe Koetter-Vardy decoding 161) 
to find codewords within the small lists of symbols 
provided by the first stage and an additional small 
number of emors. The advantage a t  this stage over 
standard concatenated codes is that  there is a large 
number of codes, but that they are smaller. 
- Pass the result to the right side, and consider these 
codes as RS codes. Each code on the right side is now 
the root of a tree code consisting of all codes on the 
right side, a small subset of codes on the left side, and 
all symbols in the total code. When decoded, it provides 
an estimate of the total number of binary errors 
corrected (since this number was propagated as  part of 
the messages from each stage). Decoding by message 
passing is ML for each tree code, and thus the actual 
number of errors cannot be smaller than the maximum 
estimated by the Stree codes. 
- Choose a set of n nodes on the right among the S sets 
that are connected to a common node on the left. The 
set with the largest number of estimated errors is 
preferred, but in addition the decoded symbols on the 
branches connecting to the common left node must be 
a codeward. Let Tbe the largest estimated number of 
errors among the tree codes in th is  set. Propagate the 
decoding decisions consistent with at  most Terrors to 
all remaining nodes on the left. 
- Using the symbols from third decoding stage, choose 
the corresponding codeword in the left codes such that 
the decisions are consistent for all symbols and the 
total number of errors is T. If no result is found, 
increase T and repeat the process. 
A s  in the original Fomey codes 171, the construction 

asymptotically reaches capacity, although the error 
exponent is reduced. This is done by increasing the length 
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afthe codes and letting R approach 1. However, in the 
codes considered here, the length of the total code increases 
quickly, while the component codes remain moderate. The 
set of tree codes used in the decoding includes all 
component codes, and thus a decoding result is a codeword 
in the total code. If a codeword is found, it is ML since 
message passing in tree codes is ML and all error pattems 
of lower weight have been eliminated. However, the error 
rate cannot exceed the Hamming bound for n, and if T has 
to be increased much from its initial value, the last step in 
the decoding becomes exponentially complex. For codes of 
moderate length and minimum distance in the order 8, the 
algorithm corrects errors of weight less than half the 
minimum distance, hut aiso many error patterns of higher 
weight. 

VI. EXAMPLES 
Example 2: We consider the details of the construction 

and the decoding performance for a small example based on 
(5,3,3) RS codes over F(4) and a 42 node bipartite graph 
derived from the 21 point projective plane constructed over 
F(4). The dimension ofthe code depends on the assignment 
of code positions to branches of the graph. Since Mis 
chosen to he cyclic, we can assign positions 1, 2, .. , n to 
the branches that correspond to the I s  in the fust row of M 
taken in the order in which they appear in that row. 
Similarly the positions of the component codes associated 
with the following right nodes in the graph are found as 
cyclic shifts of the first assignment. The codes of the left 
nodes can be assigned using the same labels, and thus a 
given branch has the same position in both codes. In fl4) 
the parameters ofthe code are (N,&Ej=(105, 23, 21). In F121 
(N, x) = (210. 46). 

The decoding is based on comparing the results of 
decoding 2 1 tree codes which include all symbols of the 
code (SO of these as leaves). Each tree consists of an R S  
code as the root. This code is connected by 5 symbols to 
other RS codes, and these are connected to 20 binary codes. 
A codeword of minimum weight with a nonzero root has 
three nonzero symbols at this level, two additional nonzero 
symbols in each of thhe next level RS codes, and two 
additional nonzero symbols in each of 6 binary codes. The 
F(4) minimum weight is 21 and equal to the minimum 
weight of the code. 

The binary image of the component code is a (10, 6, 3) 
shortened Hamming code. The message associated with a 
branch connecting the code to the RS code below is the 
minimum number of bit errors assuming each of the 4 
possible values of the branch symbol. In general, messages 
in the decoding of the tree code are vectors of estimated 
numbers of bit errors in the subtrees above a given branch 
conditioned on the symbol values on the branch. We could 
fmd these messages exactly by decoding each of the 
shortened (8, 4) codes, but we assume a simplified 
approach where each code is decoded only once, and the 
message is (0, 3, 3, 3) far a correct codeword, (1, 2, 2, 2) 
when one error has been corrected, and (2, 2, 2, 2) when the 
error is in one of the remaining 4 cosets. For a given error 
probability we can calculate the probability distribution of 
the message vectors, and in a particular tree code, the 
messages from the 20 binary codes are independent. 

fix the symbol on the output branch to a given value, and 
then find the codeword that gives the smallest sum of the 
weights in thhe 4 inputs. Again we can simplify this step by 
performing a list-in-list-out decoding to obtain the 

In the decoding of the RS codes in the second stage, we 

codewards of smallest weight and use a lower bound for the 
remaining outputs. 

codes of the first stage, but they are now decoded in the 
bigger field using the messages generated by the second 
decoding stage. The sum of the messages from the previous 
state is a lower bound on the number of errors in the tree. 
The result of the decoding is also a preliminary decision on 
the 5 symbols. 

Each left node is connected to a set of 5 right codes. 
Select a corresponding set of 5 RS codes in the last stage 
such that they have the largest possible number of 
estimated hit errors (since taking the highest value of the 
lower bound gives the best approximation to the actual 
error pattem). However, the decisions on the symbols 
connecting to the common left node must also be a 
codeward. 

estimates in the first stage are correct. Thus we can expect 
to correct 20 errors, but not a much larger number. A 
typical distlibution is for the 20 codes in the first stage to 
have 7, S. 4, 1 codes with 0, 1, 2, and S2 errors. Thus of the 
20 messages, 3 or 4 have a higher weight for correct symbol 
value than for some other value, 'and since the RS codes can 
correct an error. they will decide in favor of the correct 
word, possibly with a single exception. Thus in stage 3, the 
decision will be correct, and the estimated number of bit 
errors will be 2-4 below the actual number. The actual error 
pattem is easily corrected by propagating the decisions from 
the root. In a worst case situation, the 20 errors give rise to 
erroneous changes of one position in 10 codes in the fust 
stage. However, in the next stage each RS code on the 
average has 2 symbols with weigh'ts 2 to 1 in favor of an 
incorrect value, but this correction will be preferred to 
changing a symbol from an error-free code where the 
weights are 0 to 3. Clearly a relatively small number of error 
patterns will be close enough to low weight codewords to 
cause decoding errors. 

The RS codes of the third stage are the same as the 

The messages are not useful unless most of the 

. . 

Example 3 For the stronger bound on the minimum 
distance to apply, we can use RS codes of length 64. At this 
length there is still little room for the codes to have different 
rates, so we let both component codes be (n, k)=(64, 40). 
Thus the length of the binary coda is about 
N = 6.2" - 1 .5 ,  IO6 , and D = 64.16.40 = 41,000. Even though 
the minimum distance is not vely good, the error probability 
would be negliable. The performance is limited by the rate 
of the inner b i n q  code, which has to be correctly decoded 
in most cases. For comparison, a similar standard 
concatenated code could use the same inner code and 20 
interleaved outer RS codes over F p ) .  The graph code 
would have a slight advantage in decoding complexity'by 
using a smaller field, but the overall rate is U compared to 
about 318 for the concatenated code with the same outer 
code rate. 

VII. CONCLUSION 
Asymptotic analysis of concatenated codes based on 

expander graphs indicates that they could have 
performances similar to standard concatenated codes with a 
lower decoding complexity. For codes of moderate lengths, 
the restrictions on the rates of the component codes lead to 
a significant loss in the overall rate. To obtain codes that 
have advantages over standard concatenated codes, the 
lengths would have to be in the range 107 to 109, which 
might still be realistic. 
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