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Abstract — Recently Bleichenbacher et al. proposed
a decoding algorithm for interleaved (N, K) Reed-
Solomon codes, which allows close to N − K errors
to be corrected in many cases. We discuss the ap-
plication of this decoding algorithm to concatenated
codes.

I. Introduction

Recently Bleichenbacher, Kiayias, and Yung [1] proposed
a decoding algorithm for interleaved (N, K) Reed-Solomon
codes over Fq, q = 2m, which allows close to N − K errors
to be corrected in many cases. The assumptions are that for
interleaving degree I and T < (N−K)I

I+1
, at most T errors oc-

cur in each codeword and the errors occur in the same set of
positions in each code.

In [1] some form of randomization is suggested to make the
error values in position j of the I words independent, but no
motivation is given. Interleaving may be seen as a method
of spreading the errors that occur in bursts, and a related
algorithm for burst correction has recently been proposed in
[2]. However, the most important application of interleaved
RS codes is concatenated codes.

Following [1] we initially state the encoding of the RS codes
as evaluations of I information polynomials, and the decod-
ing is performed by solving an interpolation problem. How-
ever, the decoding can be implemented and analyzed more ef-
ficiently by considering the equivalent syndrome formulation.

We assume that the inner binary code is decoded Maxi-
mum Likelihood since the code is short relative to the total
block length which is chosen to bee so long that T becomes
large. In most practical systems the inner code is a convo-
lutional code, and the interleaving degree is chosen to make
most error events shorter than mI bits. In [3] the relation
of the interleaving degree to the distance distribution of the
convolutional code was discussed. We can get an inner block
code with similar performance and decoding complexity by
tail-biting the convolutional code for each set of I symbols.

II. Decoding of interleaved outer codes

If the symbol error probability of the inner code is p(e),
the average number of errors that must be corrected by the
outer codes is slightly more than p(e)NI. If the outer codes

are decoded independently, a total of I(N−K)
2

errors can be
corrected, but the decoding error probability depends on the
way the errors are distributed. If one or more of the outer
codes can be decoded, iteration between inner and outer codes
can improve performance.

In the BKY algorithm, decoding of several interleaved
words is combined to allow close to N − K errors to be cor-
rected. The idea is to express the codewords as evaluations
of the information polynomials f1(x), f2(x), . . . , fI(x) in all

powers of a primitive element α of Fq, and to let the error po-
sitions be characterized by a single error locator polynomial
Q(x). We define

mi(x) = fi(x)Q(x)

so if the received words are

ri(x) = fi(x) + ei(x) we get ri(x)Q(x) − ei(x)q(x) = mi(x)

and hence

ri(α
j)Q(αj) = mi(α

j), j = 0, 1, . . . , q − 2 (1)

since ei(α
j)Q(αj) = 0, j = 0, 1, . . . , q − 2

The system (1) gives IN equations in I(K + T ) + T un-
knowns, so if this has maximal rank we can correct close to
T = I(N−K)

I+1
inner codewords or about I(N − K) symbol er-

rors.
A comparison of the two approaches shows that the BKY

algorithm can provide an improved performance for realistic
concatenated codes.

III. Syndrome decoding

The system (1) can be transformed into a smaller homoge-
neous system by eliminating mi(x) [4]. Thus only the error
locator Q(x) is found in this step and the coefficient matrix
consists of syndromes. This is the standard approach to de-
coding RS codes, but it also provides a practical approach
to BKY decoding with about the same complexity as the RS
algorithm. When the algorithm is presented in this way the
degree og Q(x) can be increased because several syndrome
sequences must satisfy the same recursion.

Clearly the syndrome matrix is singular in some cases. The
transform approach shows that the syndrome matrix can be
factored into the product of a matrix of monomials in the error
positions and the error values and a Vandermonde matrix. For
a fixed set of error positions this matrix is linear in the error
values. Thus the probability of a singular syndrome matrix is
in the order 1

q
.
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