

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Jun 15, 2021

A Sophomore Course in Codesign

Madsen, Jan; Steensgaard-Madsen, Jørgen; Christensen, Lars Munk

Published in:
Computer

Link to article, DOI:
10.1109/MC.2002.1046983

Publication date:
2002

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Madsen, J., Steensgaard-Madsen, J., & Christensen, L. M. (2002). A Sophomore Course in Codesign.
Computer, 35(11), 108-110. https://doi.org/10.1109/MC.2002.1046983

https://doi.org/10.1109/MC.2002.1046983
https://orbit.dtu.dk/en/publications/b05e6008-c5f2-4702-969c-1d78bb57bbd9
https://doi.org/10.1109/MC.2002.1046983

108 Computer

W e teach a hardware and
software codesign course
to second-year students
who have expressed an
interest in either elec-

tronics or informatics (computer sci-
ence). The course emphasizes concepts
and methods that are useful to both

hardware and software developers and
in particular to developers of embed-
ded systems who must consider both
disciplines as well as their interaction.
We consider the course to be part of a
search for better development methods
and hope to increase the number of
professional developers.

WHY A SOPHOMORE COURSE?
As others, we do have a course in

hardware/software codesign at the
graduate level. However, we believe
that introducing codesign at the sopho-
more level has three advantages:

• Students are exposed to codesign
before they choose to specialize in
either field.

• It motivates students to take both
hardware and software courses
to better meet the challenges of
embedded systems design.

• Illustrating concepts in these two
disciplines emphasizes the relation
between abstract and concrete.

The philosophy underlying the
course is that a function can be imple-
mented in either software or hardware.
The choice between the two is based
on system requirements and measur-
able properties of the implementation.
Hence, a central part of the course is
that students not only must assess their
design according to its functionality,
they also must quantify properties of
their design.

An important aspect of the course
is that it uses examples such as the
following from both hardware and
software:

• software multiword addition ver-
sus a hardware n-bit ripple-carry
adder,

• software pipe connections versus
hardware signal connections, and

• software translation into assem-
bly code versus hardware netlist
synthesis from a model.

These examples help to illustrate con-
cepts from these apparently different
disciplines.

FROM HARDWARE TO SOFTWARE
The main approach is top-down. In

one assignment, for example, we ask
students to design hardware using an
algorithm expressed in C.

To illustrate the process, let’s con-
sider the example of a simple, well-

A Sophomore
Course in Codesign
Jan Madsen, Jørgen Steensgaard-Madsen,
and Lars M. Christensen, Technical University of Denmark

E M B E D D E D C O M P U T I N G

program {
 cmd("int p1 = 0, p2 = 1, i = 0");

 def("fib(int n)"){

 cmd("p1 = 0");
 cmd("p2 = 1");
 cmd("i = 0");
 } else {
 cmd("skip");
 };

 cmd("p2 = p2 + p1");
 cmd("p1 = p2 p1");
 cmd("i = i + 1");
 };
 cmd("return p2");
 };
};

 if (test("i > n")){

 while(test("i < n")){

Computations

Control

Variables Memory

Datapath

FSM

Gate
netlist

FPGA

Development stages:

program {
 cmd("int p1 = 0, p2 = 1, i = 0");

 def("fib(int n)"){

 cmd("p1 = 0");
 cmd("p2 = 1");
 cmd("i = 0");
 } else {
 cmd("skip");
 };

 cmd("p2 = p2 + p1");
 cmd("p1 = p2 — p1");
 cmd("i = i + 1");
 };
 cmd("return p2");
 };
};

 if (test("i > n")){

 while(test("i < n")){

Figure 1. Algorithm for calculating the nth Fibonacci number and development stages for
developing it from C code to implementation in a field programmable gate array.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 05:52:01 EST from IEEE Xplore. Restrictions apply.

November 2002 109

known algorithm for calculating the
nth Fibonacci number. The top part of
Figure 1 lists the abstract program. The
cmd and test tokens classify a string
as either a nonbranching command or
a test, respectively.

This program contains computation,
control flow, and storage requirements.
Students learn to convert such code
stepwise into a hardware model. The
ultimate goal is to implement the model
with a field-programmable gate array.
Students use SystemC, an open-source
industry standard for system-level
design (http://www.systemc.org), that
spans hardware and software design
from concept to implementation.

FSM WITH DATA PATH
Students know finite state machines

and Boolean algebra from mathemat-
ics, but not the notion of a data path—
that is, an architecture containing
registers, simple operations, and their
interconnections using buses or multi-
plexers. We introduce the general model
of an FSM with data path (FSMD) early
in the course and support it with a sim-
ple tool that translates an abstract pro-
gram into an FSMD description.

Figure 2 shows partial results for the
FSMD translation of the abstract pro-
gram from Figure 1. Students can exe-
cute and test a corresponding concrete
program version of the algorithm. The
interpretation displays the FSM liter-
ally and the data path as labeled sec-
tions of code (for A_S7 in Figure 2).

In this way, we introduce the students
to the key concepts of basic blocks and
control structure. The assembler code
that a C compiler generates is another
illustration. We use both concepts to
prescribe systematic software test and
to justify methods to prove program
correctness.

The transition S0 => S1 in Figure
2 lets us discuss the initialization that
must take place before the component
can react to external signals. The pre-
cise coupling of memory to the data
path—in particular, the choice between
registers and memory—is left for later
development steps.

Students use SystemC to write behav-
ioral models for a circuit having data
path operations identical to the basic
blocks. We introduce various tech-
niques for refining the models. After
each refinement, the students simulate
the design to validate it.

In the last step, the students refine
the data path to a register transfer
level, making design decisions that
influence quantifiable properties. For
example, Figure 3 shows two possible
schedules of the computation of p1 and
p2 in basic blockA_S7 in Figure 2. The

Memory
p1 ip2

A_S0 ...

Datapath

...A_S7

p1 = p2 — yp1;
i = i + 1;
i < n;

p2 = p2 + p1;

Operation: (A_Sk) ==> (A_Si)
 with Si = NextState(Sk,Status(A_Sk))
 starting from S0

NextState:
 S0 ==> S1
 S8 ==> S1
 S6 ==> S7, when Status(A_S6)=1, else S8
 S7 ==> S7, when Status(A_S7)=1, else S8
 S2 ==> S4, when Status(A_S2)=1, else S5
 S5 ==> S6
 S4 ==> S6
 S1 ==> S2, when Rdy=1, else S1
 S3 ==> halt

(status) (select)

FSM

Figure 2. The Fibonacci code “compiled” into an FSM with data path. A simple tool trans-
lates the computation into basic blocks (in the data path). A finite state machine
represents the control structure.

S7_1

S7_1

S7_2

p2

p2

p2 p1

p1

p1

Sub

Add

p2

p2 p1

p1

Sub

Add

Figure 3. Optional scheduling operations in the data path for basic block A_S7 in Figure 2.
The schedule on the left requires two cycles but only one arithmetic logic unit; the sched-
ule on the right computes in one cycle but requires two ALUs.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 05:52:01 EST from IEEE Xplore. Restrictions apply.

110 Computer

schedule on the left requires two cycles
but only one arithmetic logic unit
(ALU) because it executes the two
operations (Add and Sub) in different
cycles, allowing them to share the same
resource—a single ALU. The schedule
on the right computes in one cycle but
requires two ALUs.

When they complete the design, stu-
dents measure its speed, size, and
power consumption and compare it
with measures of the original pure soft-
ware implementation.

D uring this course, students are
faced with problems and facts
that challenge their prejudices.

The lessons they learn include the fol-
lowing:

• Running software on a Pentium
processor can be faster than using
dedicated hardware.

• Dedicated hardware is more
power-efficient than general-pur-
pose hardware.

• It is difficult to write assembler
programs that are better than
compiled C-code.

• Memory and time efficiencies are
not always in conflict.

These experiences emphasize the value
of using a scientific approach.

Measure what is measurable, and
make measurable what is not so.

—Galileo Galilei �

Jan Madsen is a full professor with pri-
mary interest in hardware-software
codesign. Contact him at jan@imm.
dtu.dk.

Jørgen Steensgaard-Madsen is an asso-
ciate professor with primary interest in
software. Contact him at jsm@imm.
dtu.dk.

Lars M. Christensen is a research sci-
entist with primary interest in soft-
ware. Contact him at lmc@imm.dtu.
dk.

E m b e d d e d C o m p u t i n g

Wireless Security
�

Designing for Security
�

Infrastructure Security
�

Legal & Privacy Issues

look
what’s
new

for
2003!

look
what’s
new

for
2003!

Don’t run the risk! Be secure.
Order your charter subscription today.

http://computer.org/security

Ensure that your networks operate safely and provide critical services even in the face

of attacks. Develop lasting security solutions with this new peer-reviewed publication.

Top security professionals in the field share information you can rely on:

Cybercrime
�

Digital Rights Management
�

Intellectual Property
�

Protection and Piracy

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 10,2010 at 05:52:01 EST from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

