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Abstract- The discussion concerning the use of single-stage 
contra two-stage PFC solutions has been going on for the last 
decade and it continues. The purpose of this paper is to direct 
the focus back on how the power is processed and not so much 
as to the number of stages or the amount of power processed. 
The performance of the basic DC/DC topologies is reviewed 
with focus on the component stress. The knowledge obtained in 
this process is used to review some examples of the alternative 
PFC solutions and compare these solutions with the basic two-
stage PFC solution. 
 

I. INTRODUCTION 
 

Numerous single-stage and reduced power processing 

topologies have been presented in the literature predicting 

higher efficiency and/or lower cost. But very seldom these 

predictions are verified.  
The purpose of this paper is to direct the focus back on how 

the power is processed and not so much as to the number of 
stages or the portion of energy processed.  The method used 

to compare the different approaches take its basis in the 

concept of Component Load Factors (CLF) introduced in [1]. 
Component stress can be translated into cost, size and 

efficiency so investigating the basic topologies and reviewing 

how the component stress evolves under different 
circumstances an overview of reasonable solutions are 

obtained together with an overview of what not to do. The 

knowledge obtained from the use of CLF can then be used to 
recognize where unnecessary component-stress is produced. 
Examples are given in section IV. In the first example part of 
a detailed analysis is shown. In the second example the 

limitations of the configuration is identified. 
 

II. COMPONENT LOAD FACTORS (CLF) 
 

The motivation for using a tool like CLF to compare 

different converter topologies is that it gives a quantitative 

measure of the performance of the converter. This is very 

useful when choosing between topologies. 
 
Definition of CLF: 
      

P

IV
CLF

** ⋅=  
 

(1) 

The V* and I* in (1) are the voltages and currents that the 

specific component is sensitive to. E.g. MOSFETs are 

sensitive to maximum drain-source voltage and peak-currents 

with respect to switching losses and rms-currents with respect 
to conduction losses. More information and background for 
CLF can be found in [1]. 
 

To keep the CLF calculations simple, the following 

assumptions are made: 
 

a. PIN = POUT 

b. Inductor ripple current is small – meaning that 
square current waveforms are being switched.  

 

In the first part of this section the case where the input is a 

DC-source will be reviewed. In the second part the CLF for 
the converters connected to an AC-source will be discussed. 
 

A.   DC Input 
 

The Component Load Factors for the three basic topologies 

Buck, Boost and Buck-Boost will be presented. Since CLF 

represents accumulated stress for each component type, the 

calculated CLF of the basic Buck-Boost converter shown in 

figure 1c will actual represent the CLF for all Buck-Boost 
derived converters like the SEPIC, Cuk etc. 

 
If MOSFETs are used as switches (Q) in Fig. 1, the currents 

of interest are the peak-, and rms-currents. For the diodes the 

currents of interests are the peak-, and average-currents and 

to some extend rms-currents. The inductors (L) in Fig. 1 are 

all high-frequency inductors, so the use of rms-currents and 

the average voltage is of interest. The capacitors are sensitive 

to the DC-voltages and the RMS-currents. 
In table 1 the relevant CLF is listed for the three topologies 

shown in Fig. 1. The calculated CLF is presented as a 

function of the input/output voltage ratio. 
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V
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Table 1. CLF for the basic topologies: Buck, Boost, Buck-Boost, isolated Buck and isolated Boost. 
* Does not apply to single-ended isolated Buck- and Boost converters 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 
Figure 1. a) Buck DC-DC converter. b) Boost DC-DC converter. c) Buck-
Boost DC-DC converter. 
 

The capacitor stress calculated in table 1 is carried out by 

assuming that the current flowing into and out of the 

converters of Fig. 1 are DC-currents. 
By investigating the results of table 1, one will find that the 

performance of the Buck and Boost converter is very similar 
and that they exhibit lower component stress than the Buck-
Boost derived converters, which should not come as a 

surprise. 
In the case where peak voltages and peak currents are used 

to calculate the CLF, shown in Fig. 2a, the Buck and boost 
performance is similar. 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Figure 2. Switch CLF. a) CLF calculated with peak voltage and -current. b) 
CLF calculated with peak voltage and rms current. 
 

The lowest CLF is obtained at the input/output ratio of 1 

where the CLF=1 for the Buck and the Boost topology and 

CLF=4 for the Buck-Boost topology. As expected, the switch 

stress in the Buck-Boost topology is significantly higher. 
When the switch CLF using rms currents are used, the Buck 

and the Boost converter no longer perform the same. Fig. 2b, 
shows how the Boost topology is exposed to more stress 
compared to the Buck topology when the output/input ratio  
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Figure 3 CLF. a) Diode CLF calculated with peak voltage and average 

current. b) Inductor CLF calculated with mean voltage and RMS current. c) 
Capacitor CLF calculated with DC voltage and RMS current. 
 

increases/decreases. The stress characteristic for the Buck-
Boost topology seems to follow the Buck and the Boost stress 

pattern in the respective output/input ranges, although higher. 
The diode, inductor and capacitor stress is shown in Fig. 3. In 

all cases the Buck-Boost topology impose the most stress on 

the components. 
It is worth noticing the large difference in inductor and 

capacitor stress between the Buck-Boost derived topologies 

and the Buck- and Boost derived topologies when moderate 

step-up/step-down ratios are considered. As the step-up/step-
down ratio increases the difference in component stress evens 

out. 
If isolated converters derived from these three basic 

topologies are investigated one will find that the stress 

characteristics will change. Using isolated Buck- or Boost 
derived topologies will result in a substantial increase in 

semiconductor stress where as the stress on the rest of the 

components remain the same except when single-ended 

converters are used. The reason for this is that the effective  

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
Figure 4. Switch CLF for the isolated versions of the converters of figure 1. 
a) CLF calculated with peak voltage and current. b) CLF calculated with 

peak voltage and RMS current. 
 

duty-cycle of these converters cannot exceed 50 percent. The 
minimum component stress for the inductors and capacitors 

is therefore equal to the component stress found at a step-
up/step-down ratio of 2 for the non-isolated Buck- and Boost 
converters. For the Buck-Boost topology the isolation will 
not affect the component stress. 

The minimum stress for the isolated Buck and Boost 
derived topologies is obtained at an input/output ratio of 1 

(CLF=4, Fig. 4a). The switch stress for the isolated Buck- 
and Boost derived topologies shown in figure 4a, is a factor 
of 4 larger than for the non-isolated converters. 

The observations made when considering the component 
load factors for the basic topologies leads to the following 

key points: 
 

No voltage variations at the input: 
 

• The non-isolated Buck and Boost topologies are 

superior to the Buck-Boost topologies with regard to 
component stress. 

• Isolating the Buck- and Boost derived topologies 

give rise to a substantial increase in semiconductor 
stress whereas the isolation does not affect the 

Buck-Boost derived topologies. 
• If voltage step-up/step-down of more than a factor 4 

is needed, an isolated topology should be 

considered.  
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Voltage variations at the input: 
 

• Two-stage solutions should be considered since:  
1) Isolated Buck- and Boost derived topologies are 

severely penalized with regard to 

semiconductor stress.  
2)  Buck-Boost derived topologies have high 

overall component stress. 
 

B.   Rectified AC Input 
 

By investigating Boost and Buck-Boost derived topologies 

almost all practical PFC front-end circuits are covered. The 

Buck derived topologies are very seldom used especially 

when the universal line application is considered since the 

output voltage has to be lower the line peak voltage. 
Developing an AC/DC-version of the Component Load 

Factor is not as straight forward as for the DC/DC version. 
The good thing about CLF for the DC/DC converters is the 
simplicity of the calculations. This also insures that the 

correlation between the calculated stress factors and the 

actual component stress is not lost in process. For the AC/DC 

converters the voltages and/or currents change in the 

components during the line period. Therefore some kind of 
averaging is needed and in doing so, some of the 

characteristics of the circuit may disappear in this process. In 

the AC/DC case the inductors carry both a low and a high 

frequency component which makes it unsuitable to be 

characterized with a simple number as done for the DC/DC 

case. Semiconductor stress can be characterized using the 
same methods as in the previous section. The switch stress of 
the 3 obvious PFC candidates is shown in Fig. 5. 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 5. Switch CLF for the PFC Boost, Isolated Boost and Isolated/Non- 
Isolated Buck-Boost converters. a) CLF calculated with peak voltage and 

current. b) CLF calculated with peak voltage and rms current. 

 
The step-up/step-down ratio for the AC/DC converters is 

defined as the ratio of the output- to line peak-voltage. 
From Fig. 5 it is clear to see that the isolated Boost PFC is a 

pour choice with regard to switch stress. The non-isolated 

Boost PFC exhibits the lowest switch stress but it is difficult 
see how it will perform compared to the Buck-Boost PFC, 
especially in case of the universal line range. This property 

will be investigated in section IV. 
 

III. PFC SOLUTIONS 

 
There are numerous ways to classify the different proposed 

PFC solutions. A suggestion of how this can be done is 

shown in Table 2[2]. There are two main groups: “1. 
Sinusoidal Current” and  “2. Non-sinusoidal current”.  
 

1. Sinusoidal Current 2. Non-Sinusoidal Current 
1.1 Voltage follower 2.1 Passive filters 
1.2 Passive filters 2.2 Reducing switches 
1.3 Processing less energy 2.3 Removing control loops 
1.4 Better processing 2.4 Combining topologies 
1.5 Active filtering 2.5 Modifying DC/DC 

Table 2. Characterizing PFC solutions [2] 
 

More information about the groupings of table 2 can be 

found in [2]. 
Almost all of the alternative PFC solutions presented in the 

different subgroups of table 2 uses one or both of the 

following properties: 
 

1. Isolated converters operated directly from the ac-
source (1.4, 1.5). 

2. Energy storage capacitor where the storage voltage 

is dependent on the AC-source voltage (2.2, 2.3, 2.4, 
2.5). 

 

A.  Property 1 

 

For the solutions where the main idea is to process the 

energy less than 2 times the isolated converter has to be 
connected to both the input and the output since any galvanic 

isolation requires at least 1 full power-processing step. So in 

order to keep the processing below 2 full power-processing 

steps the isolated converter must be connected AC-source. 
As shown both for the DC/DC and AC/DC case the isolated 

converters have high semiconductor stress. In case of voltage 

variation at the input the semiconductor stress for the Boost 
converter increase dramatically. The Buck-Boost derived 

converters are not so sensitive to the voltage variation but 
these converters suffer from overall high component stress.  
 

B.  Property 2 
 

In order to comply with the given regulations pulsating 

power has to be drawn from the AC-line. Therefore, internal 
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decoupling of this pulsating power is also a requirement to 
maintain fast output regulation. 

The PFC approaches that use non-regulated internal energy 

storage are also known as Single-Stage converters. Normally 

these converters have a single control loop that regulates the 

output voltage but sometimes frequency control is added to 

the duty-cycle control to either limit the maximum internal 
storage voltage or to force the input current to comply with 

regulations. In all cases, the storage voltage is not constant 
but will vary with the input voltage.  
 

IV.  HIGH COMPONENT STRESS PFC CONFIGURATIONS 
 

In this section examples of converters that suffer high 

component stress caused by the properties outlined in the 

previous section will be presented. The originally idea for the 

example converters of this section was to increase the 

efficiency by either reduce the number of stages or reduce the 

processing of power. 
 

A.  Processing less power:  
 

The converter presented in [3] is the type of converter that 
without increasing the circuit-complexity compared to a two-
stage approach only process the power 1.5 times. The idea is 

that by reducing the total power processed higher efficiency 

can be achieved. 
 

 

 

 

 

 

 
Figure 6. Converter of [3] with 1.5 times power-processing. 
 

The voltage VAUX in Fig. 6 is equal to VOUT, which enables 

half of the power to be transferred directly to the output 
reducing the overall power-processing to 1.5 times compared 

to 2 times for the standard two-stage approach. 
The auxiliary converter can be identified as Q2, D2, L and 

C2 and make up a Buck-Boost converter. The power 
processed by the auxiliary converter is pulsating from zero to 

full output power with an average equal to half the output 
power. 

Instead of the scheme shown in Fig. 6, the components used 

for the buck-boost converter could be used to utilize a Buck 

or a Boost converter as a post regulator in a two-stage 

configuration. In order to keep the comparison fair, the boost 
configuration is omitted because of its lacking ability to limit 
the output current. The voltage, VAUX, on the capacitor C2 is 

assumed to be equal to two times the output voltage so that 
the conditions for the isolated PFC stage is unchanged. A 

simple comparison between the schemes of Fig. 6 and Fig. 7 

can then be carried out. The component stress for the two 

different approaches is presented in table 3. 

 
 

 

 

 

 
Figure 7. Two-stage PFC  

 
 I. Buck-Boost II. Buck I./II. Ratio 

VPeak OV⋅2  
OV⋅2  

1 

IRMS OO VP /  
)2/( OO VP ⋅  2  

 

Q2 

IP,mean )/()4( OO VP ⋅⋅ π  
OO VP /  π/4  

VPeak OV⋅2  
OV⋅2  

1 

IAV )2/( OO VP ⋅  )2/( OO VP ⋅  
1 

 

D2 

IP,mean )/()4( OO VP ⋅⋅ π  
OO VP /  π/4  

VMean OV  
OV  

1 L 

IRMS OO VP /2 ⋅  
OO VP /  

2  

Table 3. Comparison between a “50%” power processing Buck-Boost 
converter and a “100%” power processing Buck converter. 
 

The result of the comparison between the two approaches 

clearly shows that even though the Buck-Boost auxiliary/post 
regulator only process 50% of the power, the component 
stress and thereby the loses are greater than the approach with 

the Buck regulator despite the fact that this stage process 

100% of the power. 
Besides the fact that the approach with the Buck converter 

is offering less component stress also energy storage and 

dynamic behavior of the converter is improved. 
In the scheme of Fig. 6, the auxiliary-converter has to be a 

Buck-Boost type or an isolated Buck or Boost converter – all 
which would have higher component stress compared to the 

solution with the simple Buck converter as a pre regulator. 
 

The isolated PFC converter is necessary for the PFC 

approach that process less power. From Fig. 5 in section II, it 
is clear to see that the isolated Boost PFC are subjected to 

severe semiconductor stress, especially if the universal 
voltage range is applied. For the isolated Buck-Boost derived 

PFC circuits it is not clear to see if the component stress 

could be reduced by separating the PFC-function from the 

isolated converter. 
In order to investigate the switch stress of the isolated PFC 

buck-boost converter of Fig. 8a, the conduction and 

switching losses of this configuration will be compared with 
the two-stage system shown in Fig. 8b. This system consists 

of a PFC boost converter and an isolated Buck derived 

converter. Here the switch stress comparison is carried out 
assuming that the total chip die area is the same for the two 

configurations of figure 8. Further more, it is assumed that 
the switching devices have the same voltage rating. The last 
assumption is not completely fair to the two-stage system 

since lower voltage rated devices can be used compared to 

the isolated PFC Buck-Boost converter. 
For the universal line range (90VAC-270VAC) the output 

voltage of the boost converter has to be: 
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MinLineBOOSTOUT VrangeVoltageV ,,
ˆ_ ⋅=  (2) 

 

As shown in section II, the minimum component stress for 
the Buck-Boost derived converters is in the area of 50% duty-
cycle (VIN = VOUT). The output voltage should therefore be 

calculated as: 

MinLineBOOSTBUCKOUT VrangeVoltageV ,,
ˆ_ ⋅=−

 (3) 

 

The On-resistance of a MOSFET is proportional to 1/ADie 

[4]. The conduction losses are therefore proportional to: 

Die

RMS
lossConduction A

I
P

2

∝−
 

 

(4) 

 

The largest conduction losses occur at low line for both 

systems. An expression for the conduction losses as a 

function of the input power and the peak line-voltage can be 

calculated for the two systems in figure 8. Using the relation 

between VOUT and VLine,Min, expressions for the conduction 

losses can be calculated. For the Buck-Boost PFC the losses 

are proportional to: 
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(5) 

For the two-stage system the losses are proportional to: 

( )
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(6) 

As it is seen from (6), the total chip die area is shared 

between the two stages of figure 8b. Minimum conduction 

losses are achieved for x = 0.28 meaning that 72% of the total 
die area should be used for the PFC Boost converter and the 
rest for the isolated Buck converter. The ratio of (5) to (6) is 

the relation between the conduction losses of the two 

systems. 

07.1
_

_
_ ==

+

−
−

BUCKBOOSTLoss

BOSTBUCKLoss

ratioLossConduction P

P
K  

 

(7) 

From (7) one can see that even though the power is 

processed by two stages the system does not generate more 

conduction loss per chip die are. 
The switching losses are assumed to be proportional to the 

product of the voltages and currents being switched and the 

switching transition-time is proportional to the chip die area. 
The switching losses can then be approximated with: 

DieLossSwithing AIVP ⋅⋅∝−  (8) 

 

The switching loss ratio is given by: 

21.1
_

_
_ ==

+

−
−

BUCKBOOSTLoss

BOSTBUCKLoss
ratioLossSwitching P

P
K  

 
(9) 

Again, the two-stage solution does not increase the switching 

losses. 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 8. a) Isolated Buck-Boost PFC. b) Two-stage PFC system comprised 

of a Boost PFC and an isolated Buck DC/DC converter. 
 

B.  Single-Stage PFC converters:  
 

The most severe problem with the single-stage converters is 
the voltage variation of the internal bus. Besides the problems 

with hold-up capacity the major contributor to power loss in 

the single-stage converters is the increased semiconductor 
stress.  

The biggest problems arise when the application is targeted 

for the universal input voltage. In order to reduce the voltage 

variation, a voltage-doubler version of the Single-Stage 

topology presented in [5] was proposed in [6] (Fig. 9a). The 

converter was designed for a 5V, 90A output. 
When analyzing the current-shaper block in Fig. 9a one will 

find that this configuration is very efficient and the stress 

imposed on the switches in the 2-Switch Forward is 

moderate. If allowing the use of a range-switch, other Boost 
derived topologies would perform just as good as the scheme 

shown in Fig. 9a. An example of such a converter could be 
the half-bridge Boost PFC converter with range-switch 

presented in [7]. 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
Figure 9. a) Single-stage PFC converter proposed in [6]. b) A reduced 

component stress version. 
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 Components 2-Switch Forward: 

VIN: 235V-375V 

2-Switch Forward: 

VIN: 375V 

DC-DC Boost: 

VIN: 235V-375V 

1 Switches 3 ARMS, 375V 1.88 ARMS, 375V 1.3 ARMS, 375V 

2 Diodes 69 AAverage, 21V 50 AAverage, 15V 1.3 AAverage, 375V 

3 Transformer No difference  No difference - 

4 Inductors 3.45 V�s/fSwitch, 100ADC 2.5 V�s/fSwitch, 100ADC 88 V�s/fSwitch, 2.12 ADC 

5 Capacitors * See below in text * See below in text * See below in text 

Table 4. Comparison of the two output sections of Fig. 9. 
 

The voltage at the input-terminals of the 2-switch Forward 

in Fig. 9a varies from 235V to 375V at full power for the 

universal-line range 90VAC-265VAC. From the observations 

made in section II, it is clear that the voltage variation at the 

input of the 2-switch Forward will increase the component 
stress. As an example of the effects of the input voltage 

variations, it will be shown that adding an extra stage to cope 

with this, will actual reduce the overall stress and thereby 

improve efficiency.     
The configuration of Fig. 9b uses an extra switch to 

perform the step-up action. Again, to keep the comparison 

fair the same total chip die-area (ADie) is available for the two 

configurations. In order for the 2-stage output section to have 

less conduction loss than in the case with the single-stage 

output section the following equation has to be true: 
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Solving the above equation and minimizing the conduction 

losses in the two-stage configuration will result in a value of 
x = 0.67. Using the data of table 4 one finds that the Single-
stage configuration increases the switch conduction losses 

with 40% even though the voltage variation is moderate 

compared to other Single-Stage converters. 
The switching losses can found to be about the same in the 

two cases (7% increase in switching losses when using the 

single-stage configuration). 
The output diodes in the single-stage configuration are also 

subjected to an increase of 40% in both blocking voltage and 

current rating which in this case where the output current is 

high will have an impact on the efficiency. The diode added 

in the step-up converter is subjected to an average current of 
1.33A, which will not affect the efficiency noticeable. 

The worst-case transformer stress is at the duty-cycle D = 

0.5 and in both cases the transformer stress is the same. The 

output inductor stress in the two-stage case is less than for the 
single-stage case but an extra inductor is needed in the step-
up converter. The overall inductor stress is higher in the two-
stage configuration because a single-ended Buck derived 

topology is used. The magnetic stress would be the same if 
half-bridge or full-bridge isolated converters were used.  

In case of the capacitor the two-stage solution offer a clear 
advantage with respect to hold-up capacity. The energy is 

stored at a high voltage and since the step-up converter is 

inserted between the current-shaper and the 2-Switch 

Forward all the energy stored at the output of the current-
shaper can be utilized. 
 

V. CONCLUSION 
 

The two-stage approach secures a minimum total stress on 

the circuit components. Further research in PFC systems 

should be directed towards optimizing the PFC stage and/or 
the DC/DC stage. It is misunderstood that reducing the 

number of stages and/or processing less power automatically 

achieves higher efficiency. Proper design and proper power 
processing achieve high efficiency. 

In general low component stress can be translated into high 

efficiency, small physical size and low cost. In the low power 
range some of the alternative solutions can have an advantage 
in cost compared to the two-stage solution but the efficiency 

will be sacrificed. 
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