Optical clock recovery employing an optical PLL using cross-phase modulation in a Sagnac-interferometer

Published in:
Summaries of papers presented at the Technical Digest Conference on Lasers and Electro-Optics

Link to article, DOI:
10.1109/CLEO.2001.948126

Publication date:
2001

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
THURSDAY AFTERNOON / CLEO 2001 / 525

Clock recovery (CR) is an essential part of any transmission system. In this paper we propose a new type of optical clock recovery based on an optical PLL, where a SLALOM acts as ultrafast phase comparator.

The principle is seen in the experimental setup (Fig. 1). A data signal at 1550 nm with a high bit-rate \(f_{data} \), n-times time-division multiplexed from a 10 Gb/s base-rate, enters the SLALOM. Optical pump pulses (pulse width 2 ps, wavelength 1540 nm) from a tuneable mode-locked laser (TMLL), that is hybridly mode-locked by an electrical VCO, generate switching windows in the SLALOM at a repetition rate \(f_{K0} \) near the base-rate of the signal.

Recovered clock pulses

40, 80, and 160 Gb/s input signal \(f_{data} \)

SLALOM

\(f_{VCO} \)

References

Fig. 1. Experimental setup of the all-optical clock division.

Fig. 2. Sinusoidal signals showing (a) the input and (b) the output of the all-optical clock division scheme.

Fig. 3. (a) The modulated waveform and (b) the corresponding optical clock output.
Ultra-high speed OTDM transmission systems and sub-systems

Hidehiko Takara, Kentaro Uchiyama, Ippei Shake, Toshio Morioka, NTT Network Innovation Laboratories, Hikari-no-oka, Yokosuka, Kanagawa, 239-0847 Japan; Email: takara@ee.cs.nrl.nco.jp

Ultra-high speed optical time-division-multiplexed (OTDM) transmission systems are becoming increasingly important as one of the key technologies capable of satisfying the growing demand for large capacity optical networks. OTDM has several advantages in terms of system operation such as natural accommodation of higher bit rate payloads, and ease of supervising the multiplexed line. OTDM was proposed in 1988 in order to overcome the electrical TDM system speed limit, and since then its bit rate has been significantly increased to 1.28 Gbit/s as shown in Fig. 1. From this figure, we see that the bit-rate is increasing at 40 times/10 years. This paper focuses on recent developments in OTDM transmission systems and sub-systems.

Main functions in the OTDM transmitter are optical short pulse generation and multiplexing. For ultrahigh speed OTDM transmission, it is essential to generate short transform-limited (TL), low-jitter optical pulses that are synchronized to a master clock. We have developed a supercontinuum (SC) light source. By nonlinearly pumping optical fiber with picosecond optical pulses, spectral broadening greater than 200 nm is possible. Picosecond or femtosecond short TL optical pulses can be obtained by filtering the SC spectrum. Time-division-multiplexing of optical signals with stable pulse separation is important in order to suppress the influence of the crosstalk from adjacent pulses on demultiplexing, and to minimize the jitter in timing extraction. Integrating the optical elements into a small circuit is one solution to make pulse separation stable because of the shorter optical path lengths and simpler temperature control. An OTDM multiplexer, recently constructed on a hybrid integrated planar lightwave circuit, multiplexes four 20 Gbit/s optical signals into an 80 Gbit/s signal. This device is expected to be applied to over-160 Gbit/s OTDM systems.

The OTDM receiver consists of several functions such as demultiplexing, clock recovery, and dispersion compensation. The requirements imposed on the demultiplexing function, ultrafast operation, polarization-independency, and multiple output operation. So far, several ultrafast demultiplexing experiments have been reported that were based on nonlinear effects such as four wave mixing and cross phase modulation (XPM). Multiple output demultiplexing with low polarization dependency has been successfully demonstrated using MOXCIC (Multiple-channel Output all-optical OTDM demultiplexer using XPM-induced Chirp Compensation). Ultra-low-jitter clock recovery is also required, so many clock recovery methods have been proposed including injection locking and PLL. Bit-phase synchronization between the OTDM signal and the control pulses is an important for robust demultiplexing operation. Bit-phase synchronization methods based on photonic down-conversion have recently been demonstrated as shown in Fig. 2. This method achieved the control pulse timing jitter of 0.12 ps and kept relative timing displacement to better than 0.7 ps.

OTDM signal waveform measurement is indispensable in evaluating high-speed OTDM systems. An ultra-fast waveform measurement system based on sum-frequency-generation optical sampling has been developed. This system can measure the eye-diagrams of over 160 Gbit/s optical signals. Signal quality monitoring is also essential for realizing OTDM systems. Asynchronous monitoring methods based on the optical sampling that enable Q-factor measurement of ultra-high speed OTDM signals without timing extraction have been investigated (see Fig. 3). Q-factors can be estimated from the amplitude histogram of the asynchronous measured eye-diagram. This system has been confirmed to offer 160 Gbit/s OTDM signal quality monitoring.

We will also describe dispersion compensation and transmission, and briefly discuss the impact of optical nonlinear effects, such as inter-bit FWM, on OTDM transmission systems.

References