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A model of computational auditory signal-processing and perception that accounts for various
aspects of simultaneous and nonsimultaneous masking in human listeners is presented. The model
is based on the modulation filterbank model described by Dau et al. �J. Acoust. Soc. Am. 102, 2892
�1997�� but includes major changes at the peripheral and more central stages of processing. The
model contains outer- and middle-ear transformations, a nonlinear basilar-membrane processing
stage, a hair-cell transduction stage, a squaring expansion, an adaptation stage, a 150-Hz lowpass
modulation filter, a bandpass modulation filterbank, a constant-variance internal noise, and an
optimal detector stage. The model was evaluated in experimental conditions that reflect, to a
different degree, effects of compression as well as spectral and temporal resolution in auditory
processing. The experiments include intensity discrimination with pure tones and broadband noise,
tone-in-noise detection, spectral masking with narrow-band signals and maskers, forward masking
with tone signals and tone or noise maskers, and amplitude-modulation detection with narrow- and
wideband noise carriers. The model can account for most of the key properties of the data and is
more powerful than the original model. The model might be useful as a front end in technical
applications. © 2008 Acoustical Society of America. �DOI: 10.1121/1.2924135�

PACS number�s�: 43.66.Ba, 43.66.Dc, 43.66.Fe �BCM� Pages: 422–438
I. INTRODUCTION

There are at least two reasons why auditory processing
models are constructed: to represent the results from a vari-
ety of experiments within one framework and to explain the
functioning of the system. Specifically, processing models
help generate hypotheses that can be explicitly stated and
quantitatively tested for complex systems. Models of audi-
tory processing may be roughly classified into biophysical,
physiological, mathematical �or statistical�, and perceptual
models depending on which aspects of processing are con-
sidered. Most of the models can be broadly referred to as
functional models, that is, they simulate the experimentally
observed input-output behavior of the auditory system with-
out explicitly modeling the precise internal biophysical
mechanisms involved.

The present study deals with the modeling of perceptual
masking phenomena, focusing on effects of intensity dis-
crimination and spectral and temporal masking. Explaining
basic auditory masking phenomena in terms of physiological
mechanisms has a long tradition. There have been systematic
attempts at predicting psychophysical performance limits
from the activity of auditory nerve �AN� fibers �e.g., Siebert,
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1965, 1970; Heinz et al., 2001a, 2001b, Colburn et al.,
2003�, combining analytical and computational population
models of the AN with statistical decision theory. A general
result has been that those models that make optimal use of all
available information from the AN �e.g., average rate, syn-
chrony, and nonlinear phase information� typically predict
performance that is one to two orders of magnitude better
than human performance, while the trends often match well
human performance.

Other types of auditory masking models are to a lesser
extent inspired by neurophysiological findings and make cer-
tain simplifying assumptions about the auditory processing
stages. Such an “effective” modeling strategy does not allow
conclusions about the details of signal processing at a neu-
ronal level. On the other hand, if the effective model ac-
counts for a variety of data, this suggests certain general
processing principles. These, in turn, may motivate the
search for neural circuits in corresponding physiological
studies. Models of temporal processing typically consist of
an initial stage of bandpass filtering, reflecting a simplified
action of basilar-membrane �BM� filtering. Each filter is fol-
lowed by a nonlinear device. In recent models, the nonlinear
device typically includes two processes, half-wave rectifica-
tion and a compressive nonlinearity, resembling the compres-
sive input-output function on the BM �e.g., Ruggero and

Rich, 1991; Oxenham and Moore, 1994; Oxenham et al.,
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1997; Plack and Oxenham, 1998; Plack et al., 2002�. The
output is fed to a smoothing device implemented as a low-
pass filter �Viemeister, 1979� or a sliding temporal integrator
�e.g., Moore et al., 1988�. This is followed by a decision
device, typically modeled as the signal-to-noise ratio. For-
ward and backward masking have been accounted for in
terms of the build-up and decay processes at the output of the
sliding temporal integrator. The same model structure has
also been suggested to account for other phenomena associ-
ated with temporal resolution, such as gap detection and
modulation detection �e.g., Viemeister, 1979�.

An alternative way of describing forward masking is in
terms of neural adaptation �e.g., Jesteadt et al., 1982; Nelson
and Swain, 1996; Oxenham, 2001; Meddis and O’Mard,
2005�. A few processing models include adaptation and ac-
count for several aspects of forward masking �e.g., Dau
et al., 1996a, 1996b; Buchholz and Mourjoloulus, 2004a,
2004b; Meddis and O’Mard, 2005�. It appears that the two
types of models, temporal integration and adaptation, can
lead to similar results even though they seem conceptually
different �Oxenham, 2001; Ewert et al., 2007�.

Dau et al. �1996a� proposed a model to account for vari-
ous aspects of simultaneous and nonsimultaneous masking
using one framework. The model includes a linear, one-
dimensional transmission-line model to simulate BM filter-
ing �Strube, 1985�, an inner-hair-cell transduction stage, an
adaptation stage �Püschel, 1988�, and an 8-Hz modulation
lowpass filter, corresponding to an integration time constant
of 20 ms. The adaptation stage in that model is realized by a
chain of five simple nonlinear circuits, or feedback loops
�Püschel, 1988; Dau et al., 1996a�. An internal noise is added
to the output of the preprocessing that limits the resolution of
the model. Finally, an optimal detector is attached that acts as
a matched-filtering process. An important general feature of
the model of Dau et al. �1996a� is that, once it is calibrated
using a simple intensity discrimination task to adjust its
internal-noise variance, it is able to quantitatively predict
data from other psychoacoustic experiments without further
fitting. Part of this flexibility is caused by the use of the
matched filter in the decision process. The optimal detector
automatically “adapts” to the current task and is based on the
cross correlation of a template, a suprathreshold representa-
tion of the signal to be detected in a given task, with the
internal signal representation at the actual signal level.

In a subsequent modeling study �Dau et al., 1997a,
1997b�, the gammatone filterbank model of Patterson et al.
�1995� was used instead of Strube’s transmission-line imple-
mentation because its algorithm is more efficient and the
bandwidths matched estimates of auditory-filter bandwidths
more closely. The modulation lowpass filter was replaced by
a modulation filterbank, which enables the model to reflect
the auditory system’s high sensitivity to fluctuating sounds
and to account for amplitude-modulation �AM� detection and
masking data �e.g., Bacon and Grantham, 1989; Houtgast,
1989; Dau et al., 1997a; Verhey et al., 1999; Piechowiak
et al., 2007�. The modulation filterbank realizes a limited-
resolution decomposition of the temporal modulations and
was inspired by neurophysiological findings in the auditory

brainstem �e.g., Langner and Schreiner, 1988; Palmer, 1995�.
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The parameters of the filterbank were fitted to perceptual
modulation masking data and are not directly related to the
parameters from physiological models that describe the
transformation from a temporal neural code into a rate-based
representation of AM in the auditory brainstem �Langner,
1981; Hewitt and Meddis, 1994; Nelson and Carney, 2004;
Dicke et al., 2007�.

The preprocessing of the model described by Dau et al.
�1996a, 1997a� has been used in a variety of applications,
e.g., for assessing speech quality �Hansen and Kollmeier,
1999, 2000�, for predicting speech intelligibility �Holube and
Kollmeier, 1996�, as a front-end for automatic speech recog-
nition �Tchorz and Kollmeier, 1999�, for objective assess-
ment of audio quality �Huber and Kollmeier, 2006�, and for
signal-processing distortion �Plasberg and Kleijn, 2007�. The
model has also been extended to predict binaural signal de-
tection �Breebaart et al., 2001a, 2001b, 2001c� and across-
channel monaural processing �Piechowiak et al., 2007�.

However, despite some success with the model of Dau
et al. �1997a�, there are major conceptual limitations of the
approach. One of these is that the model does not account for
nonlinearities associated with BM processing since it uses
the �linear� gammatone filterbank �Patterson et al., 1995�.
Thus, for example, the model must fail in conditions which
reflect level-dependent frequency selectivity, such as in spec-
tral masking patterns. Also, even though the model includes
effects of adaptation which account for certain aspects of
forward masking, it must fail in those conditions that directly
reflect the nonlinear transformation on the BM. This, in turn,
implies that the model will not be able to account for conse-
quences of sensorineural hearing impairment for signal de-
tection since a realistic cochlear representation of the stimuli
in the normal system is missing as a reference.

Implementing a nonlinear BM processing stage in the
framework of the model is a major issue since the interaction
with the successive static and dynamic processing stages can
strongly affect the internal representation of the stimuli at the
output of the preprocessing depending on the particular ex-
perimental condition. For example, how does the level-
dependent cochlear compression affect the results in condi-
tions of intensity discrimination? To what extent are the
dynamic properties of the adaptation stage affected by the
fast-acting cochlear compression? What is the influence of
the compressive peripheral processing on the transformation
of modulations in the model? In more general terms, the
question is whether a modified model that includes a realistic
�but more complex� cochlear stage can extend the predictive
power of the original model. If this cannot be achieved, ma-
jor conceptual changes of the modeling approach would
most likely be required.

In an earlier study �Derleth et al., 2001�, it was sug-
gested how the model of Dau et al. �1997a, 1997b�, referred
to in the following as the “original model,” could be modi-
fied to include fast-acting compression, as found in BM pro-
cessing. Different implementations of fast-acting compres-
sion were tested either through modifications of the
adaptation stage or by using modified, level-dependent gam-
matone filters �Carney, 1993�. Derleth et al. �2001� found

that the temporal-adaptive properties of the model were
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strongly affected in all implementations of fast-acting com-
pression; their modified model thus failed in conditions of
forward masking. It was concluded that, in the given frame-
work, the model would only be able to account for the data
when an expansion stage after BM compression was as-
sumed �which would then partly compensate for cochlear
compression�. However, corresponding explicit predictions
were not generated in their study.

Several models of cochlear processing have been devel-
oped recently �e.g., Heinz et al., 2001b; Meddis et al., 2001;
Zhang et al., 2001; Bruce et al., 2003; Irino and Patterson,
2006� which differ in the way that they account for the non-
linearities in the peripheral transduction process. In the
present study, the dual-resonance nonlinear �DRNL� filter-
bank described by Meddis et al. �2001� was used as the
peripheral BM filtering stage in the model—instead of the
gammatone filterbank. In principle, any of the above co-
chlear models could instead have been integrated in the
present modeling framework. The DRNL was chosen since it
represents a computationally efficient and relatively simple
functional model of peripheral processing. It can account for
several important properties of BM processing, such as
frequency- and level-dependent compression and auditory
filter shape in animals �Meddis et al., 2001�. The DRNL
structure and parameters were adopted to develop a human
cochlear filterbank model by Lopez-Poveda and Meddis
�2001� on the basis of pulsation-threshold data.

In addition to the changes at the BM level, several other
substantial changes in the processing stages of the original
model were made. The motivation was to incorporate find-
ings from other successful modeling studies in the present
framework. Models of human outer- and middle-ear transfor-
mations were included in the current model, none of which
were considered in the original model. An expansion stage,
realized as a squaring device, was assumed after BM pro-
cessing, as in the temporal-window model �Plack and Oxen-
ham, 1998; Plack et al., 2002�. Also, certain aspects of
modulation processing were modified in the processing, mo-
tivated by recent studies on modulation detection and mask-
ing �Ewert and Dau, 2000; Kohlrausch et al., 2000�. The
general structure of the original perception model, however,
was kept the same.

The model developed in this study, referred to as the
computational auditory signal-processing and perception
�CASP� model in the following, was evaluated using a set of
critical experiments, including intensity discrimination using
tones and broadband noise, tone-in-noise detection as a func-
tion of the tone duration, spectral masking patterns with tone
and narrow-band-noise signals and maskers, forward mask-
ing with noise and tone maskers, and AM detection with
wide- and narrow-band-noise carriers. The experimental data
from these conditions can only be accounted for if the com-
pressive characteristics and the spectral and temporal prop-
erties of auditory processing are modeled appropriately.

Section II specifies the processing stages of the CASP
model. Section III describes the experimental methods, the
stimuli in the different conditions, and the parameters used in

the simulations. Section IV focuses on the results of the ex-
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periments and the corresponding simulations. The main out-
comes of the study and perspectives for further modeling
investigations are discussed in Sec. V.

II. DESCRIPTION OF THE MODEL

A. Overall structure

Figure 1 shows the structure of the CASP model.1 The
first stages represent the transformations through the outer
and the middle ear, which were not considered by Dau et al.
�1997a, 1997b�. A major change to the original model was
the implementation of the DRNL filterbank. The hair-cell
transduction, i.e., the transformation from mechanical vibra-
tions of the BM into inner-hair-cell receptor potentials, and
the adaptation stage are the same as in the original model.
However, a squaring expansion was introduced in the model
after hair-cell transduction, reflecting the square-law behav-
ior of rate-versus-level functions of the neural response in
the AN �Yates et al., 1990; Muller et al., 1991�. In terms of
envelope processing, a first-order 150-Hz lowpass filter was
introduced in the processing prior to the modulation band-
pass filtering. This was done in order to limit sensitivity to
fast envelope fluctuations, as observed in AM detection ex-
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filter
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Gammatone
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Gammatone
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FIG. 1. Block diagram of the model structure. See text for a description of
each stage.
periments with tonal carriers �Ewert and Dau, 2000; Kohl-
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rausch et al., 2000�. The transfer functions of the modulation
filters and the optimal detector are the same as used in the
original model. The details of the processing stages are pre-
sented below �Sec. II B�.

B. Processing stages in the model

1. Outer- and middle-ear transformations

The input to the model is a digital signal, where an am-
plitude of 1 corresponds to a maximum sound pressure level
�SPL� of 100 dB. The amplitudes of the signal are scaled to
be represented in pascals prior to the outer-ear filtering. The
first stage of the auditory processing is the transformation
through the outer and middle ears. As in the study of Lopez-
Poveda and Meddis �2001�, these transfer functions were re-
alized by two linear-phase finite impulse response filters. The
outer-ear filter was a headphone-to-eardrum transfer function
for a specific pair of headphones �Pralong and Carlile, 1996�.
It was assumed that the headphone brand only has a minor
influence as long as circumaural, open and diffuse-field
equalized, quality headphones are considered, as was done in
the present study. The middle-ear filter was derived from
human cadaver data �Goode et al., 1994� and simulates the
mechanical impedance change from the outer ear to the
middle ear. The outer- and middle-ear transfer functions cor-
respond to those described by Lopez-Poveda and Meddis
�2001, their Fig. 2�. The combined function has a symmetric
bandpass characteristic with a maximum at about 800 Hz
and slopes of 20 dB/decade. The output of this stage is as-
sumed to represent the peak velocity of vibration at the
stapes as a function of frequency.

2. The DRNL filterbank

Meddis et al. �2001� developed an algorithm to mimic
the complex nonlinear BM response behavior of physiologi-
cal chinchilla and guinea pig observations. This algorithm
includes two parallel bandpass processing paths, a linear one
and a compressive nonlinear one, and its output represents
the sum of the outputs of the two paths. The complete unit
has been called the DRNL filter. The structure of the DRNL
filter is illustrated in Fig. 1. The linear path consists of a
linear gain function, a gammatone bandpass filter, and a low-
pass filter. The nonlinear path consists of a gammatone filter,
a compressive function which applies an instantaneous
broken-stick nonlinearity, another gammatone filter, and, fi-
nally, a lowpass filter. The output of the linear path domi-
nates the sum at high signal levels �above 70–80 dB SPL�.
The nonlinear path behaves linearly at low signal levels �be-
low 30–40 dB SPL� and is compressive at medium levels
�40–70 dB SPL�. In the study of Meddis et al. �2001�, the
model parameters were fitted to physiological data so that the
model accounted for a range of phenomena, including isove-
locity contours, input-output functions, phase responses,
two-tone suppression, impulse responses, and distortion
products. In a subsequent study, the DRNL filterbank was
modified in order to simulate the properties of the human
cochlea �Lopez-Poveda and Meddis, 2001� by fitting the
model parameters to psychophysical pulsation-threshold data

�Plack and Oxenham, 2000�. These data have been assumed
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to estimate the amount of peripheral compression in human
cochlear processing. The parameters of their model were es-
timated for different signal frequencies and Lopez-Poveda
and Meddis �2001� suggested how to derive the parameters
for a complete filterbank.

The CASP model includes the digital time-domain
implementation of the DRNL filterbank described by Lopez-
Poveda and Meddis �2001�. However, slight changes in some
of the parameters were made. The amount of compression
was adjusted to stay constant above 1.5 kHz, whereas it was
assumed to increase continuously in the original parameter
set. This modification is consistent with recent findings of
Lopez-Poveda et al. �2003� and Rosengard et al. �2005�,
where a constant amount of compression was estimated at
signal frequencies of 2 and 4 kHz based on forward-masking
experiments. A table containing the parameters that were
modified is given in the Appendix. For implementation de-
tails, the reader is referred to Lopez-Poveda and Meddis
�2001�.

Some of the key properties of the implemented DRNL
filter are reflected in the input/output �I/O� functions at dif-
ferent characteristic frequencies �CFs�. Figure 2�A� shows
I/O functions of the filters at 0.25, 0.5, 1, and 4 kHz. The
0.25 kHz function �dotted curve� is linear up to an input
level of 60 dB SPL and becomes compressive at the highest
levels. With increasing CFs, the level at which compression
begins to occur decreases. It is well known that the compres-
sive characteristics of the BM are most prominent near CF
�0.2–0.5 dB /dB�, at least for CFs above about 1 kHz,
whereas the response is close to linear �0.8–1.0 dB /dB� for
stimulation at frequencies well below CF �e.g., Ruggero
et al., 1997�. Figure 2�B� shows the I/O functions for the
filter centered at 4 kHz in response to tones with several
input frequencies �1, 2.4, 4, 8 kHz�. It can be seen that the
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FIG. 2. Properties of the DRNL filterbank. Panel A shows the I/O functions
for on-frequency stimulation at different CFs. Panel B shows the I/O func-
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and 8 kHz. The solid curves in panels C, D, and E show the normalized
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largest response is generally produced by on-frequency
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stimulation �4 kHz�. The I/O functions for stimulation fre-
quencies below CF are linear. The response to a tone with a
frequency of one octave above CF �8 kHz� is compressive
�dotted curve� but at a very low level.

Associated with the compressive transformation for on-
frequency stimulation and the less compressive �close to lin-
ear� response to off-frequency stimulation is the level-
dependent magnitude transfer function of the filter. The
transfer function �normalized to the maximal tip gain� for the
DRNL filter tuned to 1 kHz �solid curves� is shown for input
levels of 30 dB SPL �panel C�, 60 dB SPL �panel D�, and
90 dB SPL �panel E�. For comparison, the dashed curves
indicate the transfer function of the fourth-order gammatone
filter at the same CF. At the lowest level, 30 dB SPL, the
transfer function of the DRNL is very similar to that of the
gammatone filter. The bandwidth of the DRNL filter in-
creases with level and the filter becomes increasingly asym-
metric. With increasing level, the best frequency, i.e., the
stimulus frequency that produces the strongest response,
shifts toward lower frequencies, similar to physiological data
from animals at higher frequencies �e.g., Ruggero et al.,
1997�. Behavioral data from Moore and Glasberg �2003� in-
dicated that this shift may not occur at the 1-kHz site in
humans. Nevertheless, the implementation as suggested by
Lopez-Poveda and Meddis �2001� was kept in the present
study. The output of the DRNL filterbank is a multi-channel
representation, simulating the temporal output activity in
various frequency channels. Each channel is processed inde-
pendently in the following stages. The separation of center
frequencies in the filterbank is one equivalent rectangular
bandwidth, representing a measure of the critical bandwidth
of the auditory filters as defined by Glasberg and Moore
�1990�.

3. Mechanical-to-neural transduction and adaptation

The hair-cell transduction stage in the model roughly
simulates the transformation of the mechanical BM oscilla-
tions into receptor potentials. As in the original model, this
transformation is modeled by half-wave rectification fol-
lowed by a first-order lowpass filter �Schroeder and Hall,
1974� with a cutoff frequency of 1 kHz. The lowpass filtering
preserves the temporal fine structure of the signal at low
frequencies and extracts the envelope of the signal at high
frequencies �Palmer and Russell, 1986�. The output is then
transformed into an intensity like representation by applying
a squaring expansion. This step is motivated by physiologi-
cal findings of Yates et al. �1990� and Muller et al. �1991�
which provided evidence for a square-law behavior of rate-
versus-level functions of AN fibers near the AN threshold �in
guinea pigs�.

The output of the squaring device serves as the input to
the adaptation stage of the model which simulates adaptive
properties of the auditory periphery. Adaptation refers to dy-
namic changes in the gain of the system in response to
changes in input level. Adaptation has been found physi-
ologically at the level of the AN �e.g., Smith, 1977; Wester-
mann and Smith, 1984�. In the present model, the effect of
adaptation is realized by a chain of five simple nonlinear

circuits, or feedback loops, with different time constants as
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described by Püschel �1988� and Dau et al. �1996a, 1997a�.
Each circuit consists of a lowpass filter and a division opera-
tion. The lowpass filtered output is fed back to the denomi-
nator of the devisor element. For a stationary input signal,
each loop realizes a square-root compression. Such a single
loop was first suggested by Siebert �1968� as a phenomeno-
logical model of AN adaptation. The output of the series of
five loops approaches a logarithmic compression for station-
ary input signals. For input variations that are rapid com-
pared to the time constants of the lowpass filters, the trans-
formation through the adaptation loops is more linear,
leading to an enhancement in fast temporal variations or on-
sets and offsets at the output of the adaptation loops. The
time constants, ranging between 5 and 500 ms, were chosen
to account for perceptual forward-masking data �Dau et al.,
1996a�. In response to signal onsets, the output of the adap-
tation loops is characterized by a pronounced overshoot. In
the study by Dau et al. �1997a�, this overshoot was limited,
such that the maximum ratio of the onset response amplitude
and steady-state response amplitude was 10. This version of
the adaptation stage was also used in the CASP model.

4. Modulation processing

The output of the adaptation stage is processed by a
first-order lowpass filter with a cutoff frequency at 150 Hz.
This filter simulates a decreasing sensitivity to sinusoidal
modulation as a function of modulation frequency �Ewert
and Dau, 2000; Kohlrausch et al., 2000�. The lowpass filter
is followed by a modulation filterbank. The highest modula-
tion filter center frequencies in the filterbank are limited to
one-quarter of the center frequency of the peripheral channel
driving the filterbank and maximally to 1000 Hz, motivated
by results from physiological recordings of Langner and
Schreiner �1988� and Langner �1992�. The lowest modula-
tion filter is a second-order lowpass filter with a cutoff fre-
quency of 2.5 Hz. The modulation filters tuned to 5 and
10 Hz have a constant bandwidth of 5 Hz. For modulation
frequencies at and above 10 Hz, the modulation filter CFs
are logarithmically scaled and the filters have a constant Q
value of 2. The magnitude transfer functions of the filters
overlap at their −3 dB points. As in the original model, the
modulation filters are complex frequency-shifted first-order
lowpass filters. These filters have a complex valued output
and either the absolute value of the output or the real part can
be considered. For the filters centered above 10 Hz, the ab-
solute value is considered. This is comparable to the Hilbert
envelope of the bandpass filtered output and only conveys
information about the presence of modulation energy in the
respective modulation band, i.e., the modulation phase infor-
mation is strongly reduced. This is in line with the observa-
tion of decreasing monaural phase discrimination sensitivity
for modulation frequencies above about 10 Hz �Dau et al.,
1996a; Thompson and Dau, 2008�. For modulation filters
centered at and below 10 Hz, the real part of the filter output
is considered. In contrast to the original model, the output of
modulation filters above 10 Hz was attenuated by a factor of
�2, so that the rms value at the output is the same as for the
low-frequency channels in response to a sinusoidal AM input

signal of the same modulation depth.
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5. The decision device

In order to simulate limited resolution, a Gaussian-
distributed internal noise is added to each channel at the
output of the modulation filterbank. The variance of the in-
ternal noise was the same for all peripheral channels and was
adjusted so that the model predictions followed Weber’s law
in an intensity discrimination task. Specifically, predictions
were fitted to intensity discrimination data of a 1 kHz pure
tone at 60 dB SPL and of broadband noise at medium SPLs
�see also Sec. IV A�. The representation of the stimuli after
the addition of the internal noise is referred to as the “inter-
nal representation.” The decision device is realized as an
optimal detector, as in the original model. Within the model,
it is assumed that the subject is able to create a “template” of
the signal to be detected. This template is calculated as the
normalized difference between the internal representation of
the masker plus a suprathreshold signal representation and
that of the masker alone. The template is a three-dimensional
pattern, with axes time, frequency, and modulation fre-
quency. During the simulation procedure, the internal repre-
sentation of the masker alone is calculated and subtracted
from the internal representation in each interval of a given
trial. Thus, in the signal interval, the difference contains the
signal, embedded in internal noise, while the reference inter-
val�s� contain internal noise only. For stochastic stimuli, the
reference and signal intervals are affected both by internal
noise and by the external variability of the stimuli. The �non-
normalized� cross-correlation coefficient between the tem-
plate and the difference representations is calculated, and a
decision is made on the basis of the cross-correlation values
obtained in the different intervals. The interval that produces
the largest value is assumed to be the signal interval. This
corresponds to a matched-filtering process �e.g., Green and
Swets, 1966� and is described in more detail by Dau et al.
�1996a�.

III. EXPERIMENTAL METHOD

The experimental method, stimulus details, and simula-
tion parameters are described below. In the present study,
data were collected for tone-in-noise detection and forward
masking, while the data on intensity discrimination, spectral
masking, and modulation detection were taken from the lit-
erature �Houtsma et al., 1980; Moore et al., 1998; Dau et al.,
1997a; Viemeister, 1979�.

A. Subjects

Four normal-hearing listeners, aged between 24 and
28 years, participated in the experiments. They had pure-tone
thresholds of 10 dB hearing level or better for frequencies
between 0.25 and 8 kHz. One subject was the first author
and had experience with psychoacoustic experiments. The
other three subjects had no prior experience in listening tests.
These three subjects were paid for their participation on an
hourly basis and received 30 min training sessions before
each new experiment. There were no systematic improve-
ments in thresholds during the course of the experiments.

Measurement sessions ranged from 30 to 45 min depending

J. Acoust. Soc. Am., Vol. 124, No. 1, July 2008
of the subject’s ability to focus on the task. In all measure-
ments, each subject completed at least three runs for each
condition.

B. Apparatus and procedure

All stimuli were generated and presented using the AFC-
Toolbox for MATLAB �Mathworks�, developed at the Univer-
sity of Oldenburg, Germany, and the Technical University of
Denmark. The sampling rate was 44.1 kHz and signals were
presented through a personal computer with a high-end,
24 bit sound card �RME DIGI 96 /8 PAD� and headphones
�Sennheiser HD-580�. The listeners were seated in a double-
walled, sound insulated booth with a computer monitor,
which displayed instructions and gave visual feedback.

A three-interval, three-alternative forced choice para-
digm was used in conjunction with an adaptive 1-up-2-down
tracking rule. This tracked the point on the psychometric
function corresponding to 70.7% correct. The initial step size
was 4 dB. After each second reversal, the step size was
halved until a minimum step size of 0.5 dB was reached. The
threshold was calculated as the average of the level at six
reversals at the minimum step size. The computer monitor
displayed a response box with three buttons for the stimulus
intervals in a trial. The subject was asked to indicate the
interval containing the signal. During stimulus presentation,
the buttons in the response box were successively high-
lighted synchroneously with the appropriate interval. The
subject responded via the keyboard and received immediate
feedback on whether the response was correct or not.

C. Stimuli

1. Intensity discrimination of pure tones and
broadband noise

The data on intensity discrimination of a 1 kHz tone and
broadband noise were taken from Houtsma et al. �1980�. The
just noticeable level difference was measured as a function
of the standard �or reference� level of the tone or noise,
which was 20, 30, 40, 50, 60, or 70 dB SPL. The duration of
the tone was 800 ms, including 125-ms onset and offset
raised-cosine ramps. The noise had a duration of 500 ms,
including 50-ms raised-cosine ramps.

2. Tone-in-noise simultaneous masking

Detection thresholds of a 2-kHz signal in the presence of
a noise masker were measured for signal durations from
5 to 200 ms, including 2.5-ms raised-cosine ramps. The
masker was a Gaussian noise that was band limited to a
frequency range from 0.02 to 5 kHz. The masker was pre-
sented at a level of 65 dB SPL and had a duration of 500 ms
including 10-ms raised-cosine ramps. The signal was tempo-
rally centered in the masker.

3. Spectral masking with narrow-band signals and
maskers

The data from this experiment were taken from Moore
et al. �1998�. The signal and the masker were either a tone or
an 80-Hz wide Gaussian noise. All four signal-masker com-

binations were considered: tone signal and tone masker �TT�,
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tone signal and noise masker �TN�, noise signal and tone
masker �NT�, and noise signal and noise masker �NN�. In the
TT condition, a 90° phase shift between the signal and
masker was chosen, while the other conditions used random
onset phases of the tone. The masker was centered at 1 kHz,
and the signal frequencies were 0.25, 0.5, 0.9, 1.0, 1.1, 2.0,
3.0, and 4.0 kHz. The signal and the masker were presented
simultaneously. Both had a duration of 220 ms including
10-ms raised-cosine ramps. Here, only the masker levels of
45 and 85 dB SPLs were considered, whereas the original
study also used a level of 65 dB SPL.

4. Forward masking with noise and tone maskers

In the first forward-masking experiment, the masker was
a broadband Gaussian noise, band limited to the range from
0.02 to 8 kHz. The steady-state masker duration was 200 ms
and 2-ms raised-cosine ramps were applied. Three masker
levels were used: 40, 60, and 80 dB SPLs. The signal was a
4-kHz tone. It had a duration of 10 ms and a Hanning win-
dow was applied over the entire signal duration. Thresholds
were obtained for temporal separations between the masker
offset and the signal onset of −20 to 150 ms. For separations
between −20 and −10 ms, the signal was presented com-
pletely in the masker, i.e., these conditions reflected simulta-
neous masking.

The second experiment involved forward masking with
pure-tone maskers. The stimuli were similar to those used by
Oxenham and Plack �2000�. Two conditions were used: in
the on-frequency condition, the signal and the masker were
presented at 4 kHz. In the off-frequency condition, the signal
frequency remained at 4 kHz, whereas the masker frequency
was 2.4 kHz. The signal was the same as in the first experi-
ment. The signal and the masker had random onset phases in
both conditions. The signal level at masked threshold was
obtained for several masker levels. In the on-frequency con-
dition, the masker was presented at levels from 30 to 80 dB
SPL in 10-dB steps. For the off-frequency condition, the
masker was presented at 60, 70, 80, and 85 dB SPLs. The
separation between the masker offset and signal onset was
either 0 or 30 ms.

5. Modulation detection

The data for the modulation detection experiments were
taken from Dau et al. �1997a� for the narrowband-noise car-
riers and from Viemeister �1979� for the broadband-noise
carriers. For the narrowband carriers, a band limited Gauss-
ian noise, centered at 5 kHz, was used as the carrier. The
carrier bandwidths were 3, 31, or 314 Hz. The carrier level
was 65 dB SPL. The overall duration of the stimuli was 1 s,
windowed with 200-ms raised-cosine ramps. Sinusoidal am-
plitude modulation �SAM� with a frequency in the range
from 3 to 100 Hz was applied to the carrier. The duration of
the signal modulation was equal to that of the carrier. In the
case of the 314-Hz wide carrier, the modulated stimuli were
limited to the original �carrier� bandwidth to avoid spectral
cues. To eliminate potential level cues, all stimuli were ad-
justed to have equal power �for details, see Dau et al.,

1997a�.
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For the broadband-noise carrier, a Gaussian noise with a
frequency range from 1 to 6000 Hz was used. The carrier
was presented at a level of 77 dB SPL and had a duration of
800 ms. The signal modulation had the same duration and
the stimulus was gated with 150-ms raised-cosine ramps, re-
sulting in a 500-ms steady-state portion. Sinusoidal signal
modulation, ranging from 4 to 1000 Hz, was imposed on the
carrier. There was no level compensation, i.e., the overall
level of the modulated stimuli varied slightly depending on
the imposed modulation depth.

D. Simulation parameters

The model was calibrated by adjusting the variance of
the internal noise so that the model predictions satisfied We-
ber’s law for the intensity discrimination task from Sec.
III C 1. When setting up the simulations, the frequency range
of the relevant peripheral channels and the suprathreshold
signal level for the generation of the template need to be
specified. The range of channels was chosen such that poten-
tial effects of off-frequency listening were included in the
simulations. The on-frequency channel may not always rep-
resent the channel with the best signal-to-noise ratio, particu-
larly in the present model where the best frequency of the
nonlinear peripheral channels depends on the stimulus level.

The following frequency ranges and suprathreshold sig-
nal levels were used in the simulations: For intensity dis-
crimination with tones, the peripheral channels from one oc-
tave below to one octave above the signal frequency �1 kHz�
were considered. For the broadband noise, all peripheral
channels centered from 0.1 to 8 kHz were used. For both
experiments, the signal level for the template was chosen to
be 5 dB above the standard level. For tone-in-noise masking,
the channels from one octave below to one octave above the
2-kHz signal frequency were considered. The signal level for
the template was set to 75 dB SPL which is about 10 dB
higher than the highest expected masked threshold in the
data. For the spectral masking experiments, the channels
from half an octave below to one octave above the signal
frequency were considered. For the forward-masking experi-
ment with a broadband-noise masker and a 4 kHz signal, the
channels from 3.6 to 5 kHz were used. The signal level for
the template was chosen to be 10 dB above the masker level.
For the forward-masking experiments with pure-tone
maskers, only the channel tuned to the signal frequency
�4 kHz� was used and the template level was 10 dB above
the masker level. In the modulation detection experiment
with narrow-band carriers centered at 5 kHz, the channel at
5 kHz was considered as in the study of Dau et al. �1997a� in
order to directly compare to the results with the original
simulations. For this experiment, the simulations showed a
standard deviation that was larger than that in the data. To
reduce the standard deviation, simulated thresholds were av-
erages of 20 runs instead of only 3 runs as for all other
simulations. For the broadband-noise carrier condition, the
channels from 0.1 to 8 kHz were used. In both cases, the

modulation depth for the template was chosen to be −6 dB.
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IV. RESULTS

In this section, measured data are compared to simula-
tions. The data are represented by open symbols while simu-
lations are shown as filled symbols. For comparison, gray
symbols indicate simulations obtained with the original
model. Differences between the predictions of the two mod-
els are discussed in more detail in Sec. V.

A. Intensity discrimination

For pure-tone and broadband-noise stimuli, the smallest
detectable change in intensity, �I, is, to a first approxima-
tion, a constant fraction of the standard intensity I of the
stimulus �e.g., Miller, 1947�. This is referred to as Weber’s
law. As in many other studies, intensity differences are de-
scribed in the following as just noticeable differences �JNDs�
in level, �L.

The broadband-noise JND at medium levels �from
30 to 60 dB� was used to calibrate the model, i.e., to adjust
the variance in the internal noise in the model. In the original
model, the combination of the logarithmic compression of
the stationary parts of the stimuli, realized in the adaptation
loops, and the constant-variance internal noise produced a
constant Weber fraction �for noise� throughout the entire
level range.

Figure 3 shows the JNDs for the 1-kHz tone �panel A�
and for broadband noise �panel �B��. The simulations �filled
circles� are shown together with average data �open squares�
taken from Houtsma et al. �1980�. For the pure tone, the
simulated JND is about 0.5 dB for all standard levels consid-
ered here. For the levels from 20 to 40 dB SPL, the simu-
lated JNDs lie about 0.5 dB below the data. At higher stan-
dard levels, the simulations agree well with the data. The
simulation does not reflect the near miss to Weber’s law ob-
served in the measured data, i.e., the decrease in threshold
with increasing the standard level. This is discussed in detail
in Sec. V A. The original model �gray symbols� accounts
well for the data at 20 dB SPL and above 50 dB SPL, while
the JND for 40 dB SPL lies 0.5 dB below the measured JND.

The measured JNDs for broadband noise �panel �B�� are
about 0.6 dB for levels from 30 to 50 dB SPL. There is a
slight increase at the lowest and the highest levels in the
data, resulting in a JND of about 0.8 dB. The simulations
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FIG. 3. Intensity discrimination thresholds for a 1-kHz tone �left panel� and
broadband noise �right panel� as a function of the standard level. Model
predictions �closed symbols� are shown along with measured data �open
symbols� taken from Houtsma et al. �1980�. The gray symbols represent
simulations obtained with the model of Dau et al. �1997a�.
agree very well with the data for levels from 30 to 60 dB
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SPL. For the lowest level �20 dB SPL�, the simulated JND
lies 0.3 dB below the measured JND, while it is about 0.2 dB
above the measured value at the highest level. The simula-
tions obtained with the original model show essentially the
same results.

B. Tone-in-noise simultaneous masking

Figure 4 shows the average thresholds of the four listen-
ers from the present study for tone-in-noise masking �open
circles�. The error bars indicate � one standard deviation
across subjects, which is typically less than 1 dB but
amounts to about 2 dB for the shortest signal duration of
5 ms. For signal durations in the range from 5 to 20 ms, the
threshold decreases by about 4–5 dB per doubling of signal
duration, while the decrease is about 3 dB per doubling for
durations above 20 ms. The data are consistent with results
from earlier studies on signal integration in tone-in-noise
masking �e.g., Dau et al., 1996b; Oxenham et al., 1997;
Oxenham, 1998�.

The simulations �filled circles� show a constant decay of
3 dB per doubling of signal duration. This agrees nicely with
the measured data for durations at and above 15 ms. At sig-
nal durations of 200 ms and above �not shown�, the simula-
tions are consistent with the prediction of a threshold of
48 dB obtained with the classical power spectrum model of
masking �Patterson and Moore, 1986�, assuming a threshold
criterion of 1.5 dB increase in power �due to the addition of
the signal to the noise� in the passband of the 2 kHz gam-
matone filter. For the shortest signal duration of 5 ms, the
CASP model underestimates the measured threshold by
4 dB. This results from the 3 dB per doubling decay in the
simulations observed also for the short durations �5–20 ms�
while the data show a somewhat larger slope in this region.
The simulations with the original model �gray symbols�
show similar results2 as the CASP model.

The actual integration of signal information in the model
is realized in the optimal detector. The matched-filtering pro-
cess implies that a variable time constant is available that is
matched to the signal duration. The integration of the cross
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FIG. 4. Results from the tone-in-noise masking experiment with a
broadband-noise masker at 65 dB SPL. The signal was a 2-kHz pure tone.
The open circles show the mean detection thresholds for the four subjects as
a function of signal duration. The error bars indicate one standard deviation.
The closed circles indicate the predicted thresholds for the CASP model
�black� and the original model �gray�.
correlator in the detector is similar to the classic notion of
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temporal integration, but no fixed integration time constant is
necessary for long-term integration. It is the temporal exten-
sion of the template which automatically determines the
weighting of the stimuli across time. This concept is effec-
tively close to the “multiple-looks” strategy discussed by
Viemeister and Wakefield �1991�. Time constants that are
related to the “hard-wired” part of signal processing within
the model represent a lower limit in temporal acuity. The
modulation filterbank represents a set of time constants that
are, however, too short to account for the long-term integra-
tion data. Thus, it is the decision device that inherently ac-
counts for the long effective time constants observed in the
present experiment. The result of the decision process de-
pends critically on the properties of the internal representa-
tion of the stimuli which forms the input to the detector. The
combination of peripheral processing, adaptation, modula-
tion filtering, and decision making, assumed in the present
model, leads to good agreement of the predictions with the
data in this experimental condition.

C. Spectral masking patterns with narrowband
signals and maskers

Masking patterns represent the amount of masking of a
signal as a function of signal frequency in the presence of a
masker with fixed frequency and level. The shapes of these
masking patterns are influenced by several factors, such as
occurrence of combination tones or harmonics produced by
the peripheral nonlinearities, and by beating cues �Moore and
Glasberg, 1987; van der Heijden and Kohlrausch, 1995�. Ad-
ditionally, the width and shape of the masking patterns are
level dependent as a consequence of the level-dependent au-
ditory filters. Moore et al. �1998� measured masking patterns
using pure tones and narrowband noises as signals and pure
tones and narrowband noises as maskers for masker levels of
45, 65, and 85 dB SPL. They found that temporal fluctua-
tions �beats� had a strong influence on the measured masking
patterns for sinusoidal maskers for masker-signal frequency
separations up to a few hundred hertz. The data also indi-
cated some influence of beats for the conditions with
narrowband-noise maskers. The simulations obtained with
the present model are compared here to the data of Moore
et al. �1998� and with simulations of Derleth and Dau �2000�
using the original model.

The open symbols in Fig. 5 show the mean data of
Moore et al. �1998�. The four panels show the results for
conditions TT, TN, NT, and NN. The masking patterns for
masker levels of 45 and 85 dB SPL are indicated by squares
and circles, respectively. The ordinate represents masking,
defined as the difference between the masked threshold and
the absolute threshold at each signal frequency. The masking
patterns generally show a maximum at the masker frequency.
The amount of masking generally decreases with increasing
spectral separation between the signal and the masker. For
the TT condition, the peak in the masking patterns is particu-
larly pronounced, since beating between the signal and the
masker for frequency separations of a few hundred hertz pro-
vides a very effective detection cue in this condition �e.g.,

Moore et al., 1998�. The 45 dB SPL masker produces a sym-
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metric pattern in all conditions, whereas the pattern for the
85 dB SPL masker is asymmetric with a considerable broad-
ening on the high-frequency side.

The filled symbols in Fig. 5 show the model predictions.
In the TT condition, the predictions agree well with the ex-
perimental data, except for the signal frequencies of 500 and
750 Hz for the 85 dB SPL masker, where the amount of
masking is overestimated. The simulations at this masker
level otherwise show the asymmetry found in the measured
masking pattern, which in the model is a direct consequence
of the level-dependent BM filter shapes. The gray symbols
plot the simulated pattern from Derleth and Dau �2000�. Us-
ing level-invariant, linear gammatone filters, these predic-
tions underestimate the amount of masking at high signal
frequencies.

The two filled upward-pointing triangles in panel A in-
dicate simulations that were obtained considering only the
first eight modulation filters �with center frequencies ranging
up to 130 Hz�, while neglecting activity in the remaining
modulation filters tuned to modulation rates above 130 Hz.
These predictions exceed measured thresholds by up to
15 dB. Within the model, the reason for this deviation from
the data is that the beats between the signal and the masker at
rates of 150–200 Hz are not represented and cannot contrib-
ute to signal detection. Thus, in the framework of the present
model, the inclusion of higher-frequency modulation filters
between 130 and 250 Hz is crucial to account for the tone-
on-tone masking pattern.

The masking patterns for condition TN are shown in
panel B. For signal frequencies close to the masker fre-
quency, they are broader than for the TT condition. The sharp
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FIG. 5. Spectral masking patterns for the four stimulus conditions. Masking
is the difference between the masked and the absolute threshold. The masker
was centered at 1 kHz. The squares and circles indicate masker levels of 45
and 85 dB SPL, respectively. The open symbols indicate the measured data
�Moore et al., 1998�. The closed symbols indicate the simulated patterns.
Panel A represents the TT condition. The upward triangles indicate predicted
masking where the modulation filters were limited to have a maximum
center frequency of 130 Hz. Panels B, C, and D show the patterns in the TN,
NT, and NN conditions, respectively. The gray symbols indicate predictions
from Derleth and Dau �2000�.
peak at 2 kHz that occurred for the tonal masker is not
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present for the noise masker. This is also the case in the
simulated pattern since the beating cue for small masker-
signal frequency separations is less pronounced than in the
case of the tonal masker. On the low-frequency side of the
masker, the predictions of the CASP model are considerably
better than those obtained by Derleth and Dau �2000�, where
masking was overestimated by up to 18 dB. Thus, as ex-
pected, in this condition where energy cues play the most
important role, the shapes of the level-dependent BM filters
are mainly responsible for the good agreement between the
data and the simulations.

Panel C shows the results for condition NT. When the
signal and masker are centered at the same frequency, the
amount of masking is about 20 dB lower than for the TN and
TT conditions. This asymmetry of masking has been reported
previously and explained by temporal envelope fluctuations
introduced by the noise signal �e.g., Hellman, 1972; Hall,
1997; Moore et al., 1998; Gockel et al., 2002; Verhey, 2002�.
The simulated patterns agree very well with the data, except
for signal �center� frequencies of 500 and 750 Hz at the high
masker level, where masking is overestimated by about
10 dB. Again, the agreement between simulations and data is
better for the current model than for the original model
which assumed linear BM filters.

Finally, the masking patterns for the NN condition are
shown in panel D. The results are similar to those for the TN
condition. The simulations agree very well with the mea-
sured patterns, except for the signal center frequencies of 3
and 4 kHz, where the masking is overestimated by about
11 dB for the 85 dB masker. The simulations using the origi-
nal model �Derleth and Dau, 2000, Fig. 4� showed a consid-
erable overestimation of the masking on the low-frequency
side of the masker �up to about 20 dB�.

In summary, the masking patterns simulated with the
CASP model agree well with the measured data in the four
masking conditions. For the 45 dB masker, the predictions
were similar to those obtained by Derleth and Dau �2000�.
For the 85 dB masker, however, the simulations were clearly
improved as a consequence of the more realistic simulation
of level-dependent cochlear frequency selectivity. However,
it is the combination of audio-frequency selectivity and the
sensitivity to temporal cues, such as beating between the
signal and the masker, that is crucial for a successful simu-
lation of masking patterns.

D. Forward masking with noise and on- versus off-
frequency tone maskers

The forward-masking experiments of the present study
were conducted to test the ability of the CASP model to
account for data that have been explained in terms of non-
linear cochlear processing. Figure 6 shows the mean masked
thresholds for the four subjects �open symbols� for three
masker levels �40, 60, 80 dB SPL� as a function of the offset-
onset interval between the masker and the signal. The error
bars indicate � one standard deviation. The mean absolute
threshold of the subjects for the brief signal was 12 dB SPL
and is indicated in Fig. 6 by the gray horizontal lines. In the
simultaneous-masking conditions, represented by the nega-

tive offset-onset intervals, the masked thresholds lie slightly
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below the level of the masker. As expected, the thresholds
decrease rapidly for short delays and more slowly for larger
delays. At a masker-signal separation of 150 ms, the three
forward-masking curves converge near the absolute thresh-
old of the signal.

The simulated forward-masking curves are indicated by
the filled symbols in Fig. 6. The model accounts quantita-
tively for the measured thresholds for all three masker levels.
The simulations obtained with the original model �gray sym-
bols� show clear deviations from the data, with a decrease
that is too shallow in the 0–40 ms region of the forward-
masking curve for the highest masker level �panel C�. In the
CASP model, peripheral compression influences the thresh-
olds in this region, since the signal level falls in the compres-
sive region around 50 dB SPL. Large changes in the input
level are thus required to produce small changes in the inter-
nal representation of the signal, resulting in a faster decay of
forward masking.

Oxenham and Plack �2000� presented data that demon-
strated the role of level-dependent BM processing in forward
masking. Similar experiments, using on- and off-frequency
pure-tone maskers in forward masking, were conducted here.
The hypothesis was that growth of masking �GOM� func-
tions in forward masking should depend on whether the
masker and/or the signal level fall within the compressive
region of the BM input-output function. If the masker and
the signal levels both fall in the compressive region, which is
typically the case for very short masker-signal separations,
and if the compression slope is assumed to be constant, the
signal level at threshold should change linearly with chang-
ing masker level by about 1 dB/dB. On the other hand, for
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FIG. 6. Forward-masking thresholds obtained with a 10-ms, 4-kHz pure-
tone signal and a broadband-noise masker. Results for masker levels of 40,
60, and 80 dB SPLs are indicated in panels A, B, and C, respectively. The
open symbols represent the mean data from four subjects, while the closed
symbols represent predicted thresholds. Predictions of the original model are
given in gray. The abscissa represents the time interval between the masker
offset and the signal onset. The horizontal gray lines indicate the absolute
threshold of the signal.
larger masker-signal separations, the masker level may fall in
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the compressive region while the signal level falls in the
linear region of the BM input-output function. In this case, a
given change in masker level will produce a smaller change
of the signal level at threshold, leading to a shallower slope
of the GOM function. For off-frequency stimulation with a
masker frequency well below the signal frequency, the BM
response at the signal frequency is assumed to be linear at all
levels. The slope of the curves should therefore be roughly
independent of the masker-signal interval for off-frequency
stimulation. The data presented by Oxenham and Plack
�2000� provided evidence for such behavior of the GOM
functions by using on- and off-frequency pure-tone maskers.

Figure 7 shows the GOM functions from the second
forward-masking experiment of the present study, averaged
across the four subjects. Panels A and B show the results for
the on- and off-frequency conditions, respectively. Thresh-
olds corresponding to masker-signal intervals of 0 and 30 ms
are indicated by triangles and circles, respectively. In the
on-frequency condition, the measured slope of the GOM
function is close to unity ��0.9 dB /dB� for the 0 ms inter-
val. For the masker-signal interval of 30 ms, the slope of the
GOM function is shallower ��0.25 dB /dB�. This was ex-
pected since the signal and masker can be assumed to be
processed in different level regions of the BM input-output
function. The data agree with the results of Oxenham and
Plack �2000� in terms of the slopes of the GOM functions
�0.82 dB /dB for the 0 ms interval and 0.29 dB /dB for the
30 ms interval�.

The corresponding simulated GOM functions �filled
symbols� for both masker-signal intervals are very close to
the measured data. This supports the hypothesis that the non-
linear BM stage can account for the different shapes for dif-
ferent intervals. Since the BM stage in the original model
processes sound linearly, the slopes of the predicted GOM
functions �gray symbols� are similar for the two masker-
signal intervals. The failure of the original model to correctly
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predict the GOM slope for the 30 ms interval was also ob-
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served in the first forward-masking experiment for the 30 ms
interval for the 80 dB masker from the previous experiment
�Fig. 6, Panel C�.

For the off-frequency masker, the slope of the GOM
function for the 0-ms interval is about 1.2 dB /dB, while it is
0.5 dB /dB for the 30-ms interval. These data are not consis-
tent with the hypothesis that the GOM function for off-
frequency stimulation should be independent of the interval.
The variability in the average data is very low, with a stan-
dard deviation of only 1–2 dB. The data also differ from the
average data of Oxenham and Plack �2000, their Fig. 3�.
They found GOM functions in this condition with a mean
slope close to unity for all masker-signal separations. How-
ever, there was substantial variability in slope across sub-
jects; some showed a clearly compressive GOM function
while other subjects showed a linear or slightly expansive
GOM function.

The initial hypothesis was that both the signal and the
masker were processed linearly in the off-frequency condi-
tion. However, this is not always the case: the signal level
can be above 30–40 dB and thus fall in the compressive
region of the BM I/O function, while the off-frequency
masker is still processed linearly. Such a situation would lead
to a GOM function with a slope greater than 1, a trend which
is observed in the data in panel B for the 0 ms separation, at
least for the two highest masker levels. The data of Oxenham
and Plack �2000� for the same interval support this idea, but
this was not explicitly discussed in their study.

The simulations for the off-frequency condition closely
follow the measured data. The CASP model predicts a GOM
function with a slope below 1 for the 30 ms interval, as
observed in the data. This is caused by the adaptation stage,
which compresses the long-duration off-frequency masker
slightly more than the short-duration signal. This slight com-
pression can also be seen in the simulations obtained with
the original model �gray circles�. For the 0-ms interval, some
of the signal thresholds lie in the compressive part ��30 dB
SPL� of the BM I/O function �see also Fig. 2A�. As a con-
sequence, the GOM function has a slope above 1, since the
masker is still processed linearly. The corresponding simula-
tions obtained with the original model show a function which
is essentially parallel to the 30 ms function. This model thus
fails to account for the different slopes for the two masker-
signal intervals.

E. Modulation detection with noise carriers of
different bandwidths

In the following, AM detection with random noise car-
riers of different bandwidths is considered. Figure 8 shows
the average data �open symbols� from Dau et al. �1997a� for
carrier bandwidths of 3, 31, and 314 Hz. Panel �D� shows the
“classical” temporal modulation transfer function �TMTF�
using a broadband-noise carrier, taken from Viemeister
�1979, open symbols�. The modulation depth at threshold, in
decibels �20 log m�, is plotted as a function of the modula-
tion frequency.

The simulations �closed symbols� for the 3-Hz wide car-

rier account for the main characteristics of the data. The
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simulated TMTF shows a slightly shallower threshold de-
crease with increasing signal modulation frequency than the
measured function. For the 31-Hz wide carrier, the simulated
TMTF follows the highpass characteristic observed in the
data; only at 50 Hz is the measured threshold underestimated
by 3–4 dB. For the 314-Hz wide carrier, the simulated
thresholds roughly follow the shape of the measured TMTF,
but predicted thresholds are typically 1–3 dB below the
data. The agreement of the simulations with the data is
slightly worse for the original model than for the present
model, except for the 3 Hz bandwidth, where the agreement
is similar.

Finally, the broadband TMTF �panel D� shows a low-
pass characteristic with a cut-off frequency of about 64 Hz.
Thresholds are generally lower than for the 314-Hz wide
carrier, which is a consequence of the lower envelope power
spectrum density resulting from intrinsic fluctuations in the
carrier. Since the envelope spectrum of the carrier extends to
the carrier bandwidth, the power density in the envelope
spectrum is lower �given that the overall level of the carriers
is similar in these two conditions� and stretches over a
broader frequency region in the case of the broadband-noise
carrier. If the model was based on a broad “predetection”
filter instead of a peripheral filterbank, the distribution of
power in the envelope spectrum would directly relate to the
lower thresholds in the broadband condition. In the model,
however, the auditory filters limit the bandwidths of the in-
ternal signals and thus the frequency range of their envelope
spectra. The lower thresholds obtained with the broadband
carriers result from across-frequency integration of modula-
tion information in the model, as shown by Ewert and Dau
�2000�. The predicted and measured TMTFs have similar
shapes for frequencies up to 250 Hz, but the simulated

−30

−20

−10

0
A 3 Hz

M
od

ul
at

io
n

de
pt

h
(d

B
)

3 5 10 20 50 100

B 31 Hz

3 5 10 20 50 100

3 5 10 20 50 100

−30

−20

−10

0

Modulation frequency (Hz)

C 314 Hz

4 8 16 32 64 250 1000

D Broadband

FIG. 8. TMTFs for SAM imposed on noise carriers with different band-
widths. In panels A, B, and C, the measured data of Dau et al. �1997a� are
indicated as open symbols for carrier bandwidths of 3, 31, and 314 Hz,
respectively. Panel D shows measured data from Viemeister �1979� as open
symbols. The black filled symbols represent the simulated TMTFs obtained
with the present model. The gray symbols indicate the simulations obtained
with the original model. The black triangle indicates the predicted threshold
for the 500 Hz modulation frequency when no limiting 150 Hz modulation
lowpass filter was used.
TMTF �closed symbols� lies 1–3 dB below the data. At 500
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and 1000 Hz, the modulation is undetectable for the model
�even at a modulation depth of 0 dB� and no predicted
threshold is shown. This is related to the modulation low-
pass filter, which reduces the sensitivity to modulation fre-
quencies above 150 Hz. The filled triangle indicates the
simulated threshold for 500 Hz when the limiting lowpass
filter was left out. In this case, the result is close to the
measured threshold and also similar to the simulated thresh-
old obtained with the original model. However, both the
CASP model and the original model fail to predict the mea-
sured threshold for the 1000 Hz modulation frequency. It is
possible that other cues contribute to detection at these high
modulation rates which are not reflected in the modulation
filterbank of the present model, such as pitch �e.g., Burns and
Viemeister, 1981; Fitzgerald and Wright, 2005�.

V. DISCUSSION

In this section, the effects of the modifications intro-
duced in the CASP model and their interaction with the re-
maining processing stages are considered. The limitations of
the present modeling approach are discussed and potentials
for further model investigations addressed.

A. Role of nonlinear cochlear processing in auditory
masking

The original model �Dau et al., 1997a� is quite success-
ful when predicting simultaneous and nonsimultaneous dis-
criminations and masking data, even though the model’s lin-
ear processing at the BM level is not realistic. The study of
Derleth et al. �2001� demonstrated fundamental problems
when trying to implement BM nonlinearity in a straightfor-
ward way in the model: when the gammatone filterbank was
replaced by a nonlinear cochlear stage, the model could not
account for forward masking since the temporal-adaptive
properties were substantially affected. One might argue that
the assumed processing in the model, particularly the pro-
cessing in the adaptation stage, is inappropriate since it leads
to successful predictions only when combined with a linear
BM simulation. However, the simulations obtained with the
CASP model demonstrate that forward masking actually can
be accounted for including the adaptation stage. One of the
reasons for this result is the squaring device that simulates
the expansive transformation from inner-hair-cell potentials
into AN rate functions. The expansion reduces the amount of
�instantaneous� compression introduced by the compressive
BM stage while the overall compression in the CASP model
is kept level dependent, which is different from the original
model. A squaring stage was also included by Plack et al.
�2002� in their temporal-window model and was crucial for
the success of their model when describing forward masking.

In several of the experimental conditions considered
here, the CASP model produced very similar predictions to
the original model. In the level discrimination task, the pre-
dicted JND in level depends on the overall steady-state com-
pression in the model, which is dominated by the logarithmic
compression in the adaptation stage. This leads to a roughly
constant discrimination threshold in the model independent

of level �see Fig. 3�. The level-dependent compression real-
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ized in the cochlear processing does not affect the model
predictions for broadband noise. For pure tones, the present
model predicts slightly lower JNDs than the original model
for the lowest standard levels of 20 and 30 dB SPLs.

The original model correctly describes Weber’s law
within each channel, consistent with intensity discrimination
data in notched noise �Viemeister, 1983�. With increasing
spread of activity into different auditory channels in the
multi-channel simulation shown here �Fig. 3, gray symbols�,
the original model predicts the near miss to Weber’s law. The
CASP model can no longer predict Weber’s law within an
individual channel as a consequence of the BM compression
at midlevels. An analysis of the model’s behavior revealed
that, when only a single peripheral channel �centered at the
signal frequency� was considered, the pure-tone JNDs were
elevated in the midlevel region �50–70 dB SPL� by
0.3–0.4 dB to a maximum of about 1 dB. If a channel tuned
to a higher center frequency was analyzed, for which the
tone fell in the region of linear processing, the JNDs were
level independent. When using an auditory filterbank �as in
the simulations shown in Fig. 3�, the level-independent JND
contributions from the off-frequency channels produce es-
sentially a constant JND across levels, thus minimizing the
effect of on-frequency peripheral compression. Thus, the
combination of information across frequency leads here to
the prediction of Weber’s law but does not account for the
near miss to Weber’s law. This result is consistent with simu-
lations by Heinz et al. �2001b� when considering only AN
firing rate information �average discharge counts� and disre-
garding nonlinear phase information. AN fibers with CFs
above and below the tone frequency have phase responses
that change with level �e.g., Ruggero et al., 1997� and thus
contribute information. In their modeling framework, Heinz
et al. �2001b� showed that the inclusion of nonlinear phase
information �at low and moderate CFs where phase informa-
tion is available� as well as rate-based information can ac-
count for the near miss to Weber’s law by using an across-
frequency coincidence mechanism evaluating this
information. Thus, it appears that lack of such an evaluation
of nonlinear phase effects across CFs is responsible for the
inability of the CASP model to account for the near miss to
Weber’s law.

The predicted detection of AM is not affected by the
amount of cochlear compression in the CASP model, consis-
tent with earlier results of Ewert and Dau �2000� for broad-
band TMTFs. Since both signal modulation and inherent car-
rier modulations are compressed in the same way, the signal-
to-noise ratio �at the output of the modulation filters� does
not change. This is also consistent with the observation that
sensorineural hearing-impaired listeners often show about
the same sensitivity to modulation independent of the
amount of hearing loss �e.g., Bacon and Viemeister, 1985;
Formby, 1987; Bacon and Gleitman, 1992� at least for
narrow-band noise carriers and for broadband-noise carriers
as long as the hearing loss is relatively flat. Accordingly, the
characteristics of the spectral masking patterns �as in Fig. 5�
that are associated with temporal envelope �beating� cues do
not strongly depend on peripheral compression, i.e., the

simulations obtained with the present model are very similar
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to earlier simulations using the gammatone filterbank. For
example, the sharp tuning of the masking pattern for the tone
signal and the tone masker and the asymmetry of masking
effect for tone-on-noise versus noise-on-tone masking can be
accounted for by both models.

However, cochlear nonlinear processing does play a cru-
cial role in the other conditions considered in the present
study. For the spectral masking patterns obtained with the
high masker level �85 dB SPL�, the effect of upward spread
of masking is accounted for by the level-dependent fre-
quency selectivity in the BM stage, which was not imple-
mented in the original model. In the forward-masking condi-
tions, where the signal and the masker were processed in
different regions of the BM input-output function, the results
obtained with the CASP model showed much better agree-
ment with the data than the original model. Specifically, in
the conditions with an on-frequency tone masker, the mea-
sured slopes of the GOM function strongly depend on the
masker-signal interval, an effect explained by cochlear com-
pression �Oxenham and Plack, 2000�. In the forward-
masking condition with the broadband-noise masker, the
present model was able to account for the data for all masker
levels. In contrast, the original model overestimated forward
masking by 15–20 dB for masker-signal intervals of
10–40 ms at the highest masker level �80 dB SPL�. These
deviations are directly related to the deviations observed in
the GOM functions for the tonal masker.

Ewert et al. �2007� compared forward-masking simula-
tions from an earlier version of the CASP model to predic-
tions from the temporal-window model �e.g., Oxenham and
Moore, 1994; Oxenham, 2001�. They investigated whether
forward masking was better explained by the concept of neu-
ral persistence or temporal integration, as reflected in the
temporal-window model, or by the concept of neural adap-
tation, as reflected in the CASP model. Ewert et al. �2007�
showed that the two models produce essentially equivalent
results and argued that the temporal-window model can be
considered a simplified model of adaptation. The reason for
the similarity of the two models is that the signal-to-noise
ratio based decision criterion at the output of the temporal-
window model acts in a way that corresponds to the division
process in the adaptation stage of the present model. The
remaining difference is that the CASP model includes adap-
tation effects of the signal itself since the model contains a
feedback mechanism in the adaptation loops. In contrast, the
temporal-window model only mimics adaptation effects
caused by the masker which are modeled using a feed-
forward mechanism �Ewert et al., 2007�.

B. Effects of other changes in the processing on the
overall model performance

The signal transformation through the outer and middle
ear was not considered and absolute sensitivity as a function
of frequency was only approximated in the original model.
In the current model, an outer-ear and a middle-ear transfer
functions were implemented. In the experiments considered
here, the effect of the absolute threshold was only observed
in the forward-masking condition at the largest masker-signal

intervals.
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The 150-Hz modulation lowpass filter was included in
the CASP model to simulate the auditory system’s limited
sensitivity to high-frequency envelope fluctuations. The filter
was chosen based on the results of studies on modulation
detection with tonal carriers where performance was limited
by internal noise rather than any external statistics of the
stimuli. The model accounts well for the broadband-noise
TMTF for AM frequencies up to 250 Hz �see Fig. 8�. How-
ever, the 150-Hz lowpass filter caused predicted thresholds to
be too high for high-rate modulations. Additional model pre-
dictions for a 500 Hz modulation rate without the 150-Hz
filter were very close to those obtained with the original
model and the experimental data. This suggests that the slope
of the 150 Hz lowpass filter �6 dB /octave� might be too
steep. A shallower slope of 3–4 dB /octave would most
likely not affect other simulations in the present study sub-
stantially while it would still be in line with the modulation
detection data for pure-tone carriers of Kohlrausch et al.
�2000�. However, it is also possible that other cues, such as
pitch, contribute to the detection of high-frequency modula-
tions. It has been shown that SAM of broadband noise allows
melody recognition, even though the pitch strength is weak
�e.g., Burns and Viemeister, 1981; Fitzgerald and Wright,
2005�. The model does not contain any pitch detection
mechanism and is therefore not able to account for potential
effects of pitch on AM detection. There might be an addi-
tional process responsible for the detection of temporal en-
velope pitch and �fine-structure� periodicity pitch �Stein et
al., 2005�. Such a process might already be effective at
modulation rates above the lower limit of pitch �of about
30 Hz� but particularly at high modulation rates �above about
200 Hz� which are not represented or are strongly attenuated
in the internal representation of the stimuli in the CASP
model.

Another modification of the original model was that the
center frequencies of the modulation filters were restricted to
one-quarter of the center frequency of the corresponding pe-
ripheral channel but never exceeded 1 kHz. In the spectral
masking experiment of the present study, with a masker cen-
tered at 1 kHz, the simulations showed very good agreement
with the data, suggesting that beating cues up to about
250 Hz can contribute to signal detection, at least in the
high-level masker condition. However, it is difficult to deter-
mine the upper limit of the “existence region” of modulation
filters since the sidebands are typically either spectrally re-
solved by the auditory filters �for tonal carriers� or the modu-
lation depth required for detection is very large �for
broadband-noise carriers� such that there is not enough dy-
namic range available to accurately estimate any meaningful
modulation filter characteristic �Ewert and Dau, 2000; Ewert
et al., 2002�. The combination of the first-order 150 Hz
modulation lowpass filter �that provides the “absolute”
threshold for AM detection� and the modulation bandpass
filtering �over a modulation frequency range that scales with
the carrier or “audio” frequency� appears to be successful in

various experimental conditions.
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C. Limitations of the model

Several studies of modulation depth discrimination �e.g.,
Wakefield and Viemeister, 1990; Lee and Bacon, 1997;
Ewert and Dau, 2004� showed that Weber’s law holds for
most modulation depths, i.e., the JND of AM depth is pro-
portional to the reference modulation depth. A modified
internal-noise source would be required in the model to ac-
count for these data �Ewert and Dau, 2004�. Such a noise
could be modeled either by a multiplicative internal noise at
the output of the modulation filters or by a logarithmic com-
pression of the rms output of the modulation filter �see Ewert
and Dau, 2004�. Neither the original model nor the CASP
model can predict Weber’s law in this task since a level-
independent fixed-variance internal noise is assumed. As de-
scribed earlier, both models do account for Weber’s law in
intensity discrimination since the preprocessing realizes a
logarithmic compression for stationary signals �due to the
adaptation stage�. However, the AM depth for input fluctua-
tions with rates higher than 2 Hz �which are represented in
the modulation bandpass filters� is transformed almost lin-
early by the adaptation stage. Thus, the CASP model fails in
these conditions. This might be improved by including an
additional nonlinearity in the modulation domain. Such a
modification was considered to be beyond the scope of the
present study.

Shamma and co-workers �e.g., Chi et al., 1999; Elhilali
et al., 2003� described a model that is conceptually similar to
the CASP model but includes an additional “dimension” in
the signal analysis. They suggested a spectrotemporal analy-
sis of the envelope, motivated by neurophysiological find-
ings in the auditory cortex �Schreiner and Calhoun, 1995;
de Charms et al., 1998�. In their model, a “spectral” modu-
lation filterbank was combined with the temporal modulation
analysis, resulting in two-dimensional spectrotemporal fil-
ters. Thus, in contrast to the implementation presented here,
their model contains joint �and inseparable� spectro-temporal
modulations. In conditions where both temporal and spectral
features of the input are manipulated, the two models re-
spond differently. The model of Shamma and co-workers has
been utilized to account for spectrotemporal modulation
transfer functions for the assessment of speech intelligibility
�Chi et al., 1999; Elhilali et al., 2003�, the prediction of
musical timbre �Ru and Shamma, 1997�, and the perception
of certain complex sounds �Carlyon and Shamma, 2003�.
The CASP model is sensitive to spectral envelope modula-
tion which is reflected as a variation in the energy �consid-
ered at the output of the modulation lowpass filter� as a func-
tion of the audio-frequency �peripheral� channel. For
temporal modulation frequencies below 10 Hz, where the
phase of the envelope is preserved, the present model could
thus use spectrotemporal modulations as a detection cue. The
main difference to the model of Chi et al. �1999�, however, is
that the CASP model does not include joint spectrotemporal
channels. It is not clear to the authors of the present study to
what extent detection or masking experiments can assess the
existence of joint spectrotemporal modulation filters. The as-
sumption of the CASP model that �temporal� modulations

are processed independently at the output of each auditory
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filter implies that across-channel modulation processing can-
not be accounted for. This reflects a limitation of the CASP
model.

D. Perspectives

Recently, comodulation masking release �CMR� has
been modeled using an equalization-cancellation �EC�
mechanism for the processing of activity across audio fre-
quencies �Piechowiak et al., 2007�. The EC process was as-
sumed to take place at the output of the modulation filter-
bank for each audio-frequency channel. In that model, linear
BM filtering was assumed. The model developed in the
present study will allow a quantitative investigation of the
effects of nonlinear BM processing, specifically the influence
of level-dependent frequency selectivity, compression, and
suppression, on CMR. The model might be valuable when
simulating the numerous experimental data that have been
described in the literature and might, in particular, help in
interpreting the role of within- versus across-channel contri-
butions to CMR.

Another challenge will be to extend the model to binau-
ral processing. The model of Breebaart et al. �2001a, 2001b,
2001c� accounted for certain effects of binaural signal detec-
tion, while their monaural preprocessing was based on the
model of Dau et al. �1996a�, i.e., without BM nonlinearity
and without the assumption of a modulation filterbank. Ef-
fects of BM compression �Breebaart et al., 2001a, 2001b,
2001c� and the role of modulation frequency selectivity
�Thompson and Dau, 2008� in binaural detection have been
discussed but not yet considered in a common modeling
framework.

An important perspective of the CASP model is the
modeling of hearing loss and its consequences for percep-
tion. This may be possible because the model now includes
realistic cochlear compression and level-dependent cochlear
tuning. Cochlear hearing loss is often associated with lost or
reduced compression �Moore, 1995�. Lopez-Poveda and
Meddis �2001� suggested how to reduce the amount of com-
pression in the DRNL to simulate loss of outer hair cells for
moderate and severe hearing loss. This could be used in the
present modeling framework as a basis for predicting the
outcome of a large variety of psychoacoustic tasks in �sen-
sorineural� hearing-impaired listeners.

VI. SUMMARY

The CASP model was developed, representing a major
modification in the original modulation filterbank model of
Dau et al. �1997a�. The CASP model includes an outer- and
a middle-ear transformation and a nonlinear cochlear filter-
ing stage, the DRNL, that replaces the linear gammatone
filterbank used in the original model. A squaring expansion
was included before the adaptation stage and a modulation
lowpass filter at 150 Hz was used prior to the modulation
bandpass filterbank. The adaptation stage, the main param-
eters of the modulation filterbank, and the optimal detector
were the same as in the original model.

Model simulations were compared to data for intensity

discrimination with tones and broadband noise, tone-in-noise
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detection as a function of tone duration, spectral masking
with tonal and narrow-band-noise signals and maskers, for-
ward masking with tone signals and �on- and off-frequency�
noise and tone maskers, and AM detection using narrow-
band and wideband noise carriers.

The model was shown to account well for most aspects
of the data. In some cases �intensity discrimination, signal
integration in noise, AM detection�, the simulation results
were similar to those for the original model. In other cases
�forward masking with noise and tone maskers, spectral
masking at high masker levels�, the CASP model showed
much better agreement with the data than the original model,
mainly as a consequence of the level-dependent compression
and frequency selectivity in the cochlear processing.
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APPENDIX: DRNL PARAMETERS OF THE MODEL

The parameters of the human DRNL filterbank used in
the CASP model were slightly different from those by
Lopez-Poveda and Meddis �2001, Table III, average re-
sponse�. Table I shows the original parameters �Lopez-
Poveda and Meddis, 2001, left column� and the parameters
used here �right column�. They were calculated from
regression-line coefficients of the form log10�parameter�
= p0+m log10�BF�, where BF is expressed in Hz. Parameters
a and b are the same as the original for BFs below 1.5 kHz.
For larger BFs, they are set to be constant to reduce the
amount of compression. The original value of the compres-
sion exponent c was 0.25 and is unchanged. The amount of
compression is not determined by c alone, but by a combi-
nation of parameters a, b, and c as a consequence of the
parallel processing structure of the DRNL algorithm.

1
MATLAB implementations of the model stages are available under the name
“Computational Auditory Signal-processing and Perception �CASP�

TABLE I. The left column shows the original values of the DRNL filterbank
parameters which were changed in the present study to reduce the filter
bandwidths and the amount of compression at BFs higher than 1.5 kHz. The
right column shows the values used in the CASP model.

Parameter

Original Present

p0 m p0 m

BWlin 0.037 28 0.785 63 0.037 28 0.75
BWnlin −0.031 93 0.774 26 −0.031 93 0.77
LPlin cutoff −0.067 62 1.016 73 −0.067 62 1.01
aCF�1.5 kHz 1.402 98 0.819 16 4.004 71 0.00
bCF�1.5 kHz 1.619 12 −0.818 67 −0.980 15 0.00
model” on our laboratory’s website: http://www.dtu.dk/centre/cahr/
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downloads.aspx. Implementations of stages from earlier papers are also
included, e.g., Dau et al. �1996a, 1997a�.

2The same condition was earlier tested using the model described by Dau et
al. �1996a�. The model produced a much too shallow decay of the thresh-
old function with increasing signal duration. This was mainly caused by
the excessive overshoot produced by the adaptation stage in response to
the signal onset, such that information from the steady-state portion of the
signal hardly contributed to the detection of the signal. The onset response
of the adaptation stage was therefore limited in the study of Dau et al.
�1997a� in order to obtain a more realistic ratio of onset and steady-state
amplitude.
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