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Polarization forces have become of high interest in micro- and nanomechanical systems. In this
paper, an analytical model for a transduction scheme based on the Kelvin polarization force is
presented. A dielectric beam is actuated by placing it over the gap of two coplanar electrodes. Finite
element method simulations are used to characterize the scheme and to evaluate a field correction
factor, which results from simplifying the form of the electric field. The model has been shown to
be valid for dielectrics with different permittivities. The presented model facilitates the design of
microresonators and nanoresonators with dielectric actuation, which offers a great freedom in the
choice of structural material. © 2010 American Institute of Physics. �doi:10.1063/1.3309027�

I. INTRODUCTION

Polarization forces have been widely used to manipulate
dielectric objects. With an inhomogeneous electric field di-
electric particles can be manipulated, which is known as
dielectrophoresis.1–3 With it, small solid spherical particles
can be levitated in dielectric medium.4,5 It is also often used
for cell manipulation and separation.6,7 The dielectrophoretic
force has been used to make contact less tweezers for single
cell manipulation.8 Furthermore, it has been used to control
biomolecules,9 DNA,10,11 nanowires,12 bundles of carbon
nanotubes,13 and single-walled carbon nanotubes.14

Polarization forces are also used in electrohydrodynamic
continuous flow micropumps15,16 and to operate droplet-
based lab-on-a-chip.17

Inspired by a talk of Feynman18 a scheme for a dielectric
nanomotor was elaborated.19 Dielectric micromotors for the
application in a liquid medium made from polyimide have
been designed and tested.20 An electrostatic glass actuator
working in air has also been realized.21

It has been shown that polarization forces are very inter-
esting for the actuation of micro- and nanomechanical struc-
tures. A dielectric microbeam or nanobeam is placed over the
gap of two coplanar electrodes. The beam is then attracted
toward the electrode gap, that is toward the electric field
intensity maximum. This force is called Kelvin polarization
force or dielectric force. Based on this actuation scheme,
dielectric microresonators made from polymeric materials
have been successfully actuated in vacuum22 and in air and
water.23 Lately, the dielectric force has also been applied in
nanomechanical systems actuating silicon nitride strings.24

The movement of the dielectric beam induces a change of
the capacitance over the two electrodes, which can be used
for the readout of the beam movement.24,25 Because this ac-
tuation scheme does not need an electrical connection to the
dielectric resonator, in principle the actuation and readout

can be decoupled from the resonator itself. This can be of
interest for disposable resonant sensors where the sophisti-
cated and expensive actuation and readout unit is kept for
many measurements and the dielectric resonator unit is ex-
changed for every measurement. This actuation scheme does
not impose constraints on the choice of the structural mate-
rial as e.g., piezoelectrical actuation. The resonators can be
built from one pure material and does not need any metal-
ization, which could increase the damping.26,27 Because of
the purity of the structural material such resonators are well
suited for material characterization.28,29

There are basically two principle designs with which a
microresonator or nanoresonator based on the Kelvin polar-
ization force can be realized. The electrode configuration can
be parallel �parallel plate capacitor� or coplanar and the force
on the dielectric is directed parallel to the electrodes or nor-
mal to the electrodes, respectively. An analytical model for
the dielectric slab moving parallel in between the electrodes
of a parallel plate capacitor has been derived and tested by
means of the finite element method �FEM�.22 In this work,
the force acting on a dielectric that is placed over two copla-
nar electrodes �Fig. 1� is modeled. A dielectric beam is at-
tracted toward the highest electric field intensity over the gap
of the two coplanar electrodes on which a potential differ-
ence is applied. This design which has already been
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FIG. 1. �Color online� Actuation scheme of a dielectric beam experiencing
the Kelvin polarization force normal �FKPn� toward the electrodes.
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applied22,24 has the advantage that it can be fabricated by
means of surface micromachining. The actuation scheme for
dielectric microresonators and nanoresonators based on the
Kelvin polarization force has the potential for many applica-
tions. In this paper, a simple analytical model for an actuator
design based on polarization forces is derived.

II. POLARIZATION FORCES IN DIELECTRIC
MATERIALS

The most common force in context with dielectrics is the
dielectrophoretic force. Dielectrophoresis is defined as the
translational motion of neutral matter caused by polarization
effects in a nonuniform electric field.1 Pohl30 coined this
term to distinguish between this effect and electrophoresis,
which requires charged particles. The polarization which is
responsible for the dielectrophoretic force is defined by the
properties of the neutral object to be moved. The force re-
sulting from the polarization of the dielectric material is
called the Kelvin polarization or dielectric force. The Kelvin
polarization force is defined by the bulk material properties
of the involved dielectrics.

The term dielectrophoresis is closely related to the
movement of neutral particles in a liquid. Therefore, the
single particles are treated as individual dipoles, assuming
that the contribution of the dipoles to the electric field E is
zero. The force on an infinitesimal dipole can then be ap-
proximized by2

F = p · �E , �1�

where p is the dipole moment. From Eq. �1� it is evident that
an electric field has to be inhomogeneous in order to exert a
net force on a dipole. For bulkier objects that cannot be
simplified as an individual dipole, the polarization force act-
ing on the object can be calculated by means of the polariza-
tion bulk force. From a microscopic view, the infinitesimal
dipoles situated in an electric field experience a force that
they pass on to the medium as a whole. With the macro-
scopic polarization P, the Kelvin polarization force density31

is obtained

fKP = P · �E . �2�

With the polarization of a linear dielectric material with
a susceptibility �e

P = �0�eE = �0��r − 1�E , �3�

the Kelvin polarization force density can be written as31

fKP =
1

2
�0��r − 1� � �E · E� . �4�

Equation �4� depicts that the strength of the force depends on
the polarizability and the volume of the attracted medium
and the field intensity squared.

If a dielectric object with a dielectric constant �d is sur-
rounded by a dielectric medium with �m, it has been shown
that the polarization in Eq. �3� can be replaced by the excess
polarization per unit volume32

Pe = �0��d − �m�E . �5�

Thus, the Kelvin polarization force acting on a dielectric
object with volume V surrounded by a dielectric medium
becomes

FKP = �
V

1

2
�0��d − �m� � �E · E�dV . �6�

In an aqueous environment, however, charges, bound ions
�Stern layer�, and a diffuse double layer create electric shells
at the interface between the object and the water.33 These
surface layers have a distinct dielectric behavior which is
important in dielectrophoresis.3,34,35 These induced charges
alter the net polarization of a dielectric object. This effect is
not treated in this work but has to be considered in an appli-
cation where a dielectric is surrounded by water. Further-
more, the permittivities of dielectric materials are frequency
dependent. There are different dielectric mechanisms, such
as dipole orientation, atomic polarization, and electronic po-
larization, which contribute to the dielectric behavior of a
material. Each mechanism has a characteristic cut-off fre-
quency at which it is too slow to follow the alternating elec-
tric field. The dipolar water molecules, for example, are
highly polarizable at low frequencies. But at around 20 GHz,
the dielectric constant of water decreases rapidly.36 However,
dielectrics without dipolar mechanisms have a permittivity
that is constant upto the terahertz region.37 Thus, for dielec-
trics with atomic and electronic mechanisms only, the Kelvin
polarization force stays constant upto this frequency region.

The Kelvin polarization force density sufferes the weak-
ness that the interaction between dipoles is not taken into
account. In order to overcome this shortcoming, an approach
based on the principle of virtual work introduced by Ko-
rteweg and Helmholtz is applied.38 Assuming the electrical
constitutive law takes the form of a state function

E = E��1 . . . �m,D� , �7�

where the �’s are the material properties and D is the electric
displacement. The application of the principle of virtual
work allows the deduction of the electric force density with
combined effects of free charge and polarization. This gen-
eralized form also called the Korteweg–Helmholtz polariza-
tion force density is38

fKHP = �fE − �
i=1

m

�i � � �W

��i
� , �8�

where �f is the free charge density and W is the stored elec-
trical energy given by

W = �
0

D

E��1 . . . �m,D�� · dD�. �9�

Because the Korteweg–Helmholtz polarization force density
has been derived with a thermodynamic technique it includes
the interaction between dipoles which was not taken into
account in the derivation of the Kelvin polarization force.

If the constitutive law takes the form of an electrically
linear material
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D = �0�1 + �e�E , �10�

and �1 is taken as �e, the stored electrical energy and its
derivative becomes

W =
1

2

D2

�0�1 + �e�
;

�W

��e
= −

1

2
�0E2. �11�

To obtain this result it is important that the field E is only
changed by changing �’s and not D. With Eq. �11� the force
density specializes to

fKHP = �fE +
1

2
�0�e � E2. �12�

Assuming that there is no free charge �f, the Korteweg–
Helmholtz polarization force density for a linear dielectric in
Eq. �12� is equal to the Kelvin polarization force density in
Eq. �4�.

III. ANALYTICAL MODEL

When the dielectric beam is introduced into the electric
field it will be polarized and in return it alters the field. At the
boundary between the dielectric with �d and the surrounding
medium with �m a polarization surface charge is induced by
the field. If �d��m the charge weakens the field inside the
dielectric relative to the field of the surrounding medium and
for �d��m the field inside the dielectric is strengthened. In
Fig. 2, a simulation of the electric field is shown for dielec-
tric beams with two different relative dielectric constants. It
can be seen, that the field inside the beam is only slightly
changed for a small �d and it is still concentric as an approxi-

mation. Theoretically, the electric field can be calculated by
solving Laplace’s equation in each region of constant permit-
tivity and using Gauss’s and Faraday’s constitutive laws as
the jump conditions at the surfaces of discontinuity between
the dielectric beam and the dielectric medium.31 In this work,
as an approximation, the electric field is assumed to be con-
centric over the whole area. Figure 3 depicts the actuator
design and the corresponding idealistic electric field. Assum-
ing the electrode gap g to be infinitesimal small, the electric
field for a voltage U produced by the two electrodes without
the presence of the dielectric is written as

E0 =
U

�r
=

U

�	x2 + y2
. �13�

The assumption of having a perfectly concentric electric field
is only valid for the hypothetical case when the dielectric
beam has the same permittivity as the medium ��d=�m�. In
that case the polarization force is zero, as a matter of course.
However, if the permittivities are not equal, the concentric
electric field in the medium is disturbed by the dielectric
beam with the consequence, that the field is not perfectly
concentric both, in the beam and in the medium. As already
mentioned above, the field strength inside the dielectric beam
is a function of the difference in permittivity of the beam and
the surrounding medium. Therefore, the factor � is intro-
duced. The field inside the dielectric beam is now written as

Ed = �E0, �14�

where � represents the field reduction and field imperfection
inside the dielectric material. With Eq. �4�, the Kelvin polar-
ization force density in the normal direction to the electrodes
inside the dielectric is

fKPn =
1

2
�0��d − �m�

�Ed
2

�y
= − �0��d − �m�

�2U2y

�2�x2 + y2�2 .

�15�

To obtain the force acting on the dielectric beam, the force
density has to be integrated over its volume.

(b)

(a)

FIG. 2. Plot of the electric field over two electrode plates disturbed by a
dielectric slab �w=20 �m and h=1 �m� surrounded by vacuum for a di-
electric constant of �d=2 �a� and �d=7 �b�. The electric field was simulated
with FEM �Comsol�.

FIG. 3. Schematic drawing of the electric field for the modeling of the FKPn.
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FKPn�	� = L�
	

	+h �
−w/2

w/2

fKPndxdy =
1

�2�0��d

− �m��2U2L ·

	 arctan
w

2�	 + h�
− �	 + h�arctan

w

2	

	�	 + h�
.

�16�

Assuming the beam width to be large compared to its height
and its distance to the electrodes, the force can be simplified
to

FKPn�	� = −
1

2�
�0��d − �m��2L

h

	�	 + h�
U2. �17�

One can see that in vacuum or air, the FKPn is negative, that
means it acts toward the electrodes. If the dielectric is sur-
rounded by water which has a very high permittivity of
��m
80� the force is positive and the beam is pushed away
from the electrodes. To finally use this expression to define
the polarization force, the weighting factor � has to be
known.

IV. FEM

In this section, the analytical model is tested with FEM
and the field correction factor � is extracted.

In order to evaluate the analytical model it is compared
to the force simulated with FEM. Therefore, the electric field
is simulated and the electric energy density is integrated over
the total area of the model. The electrical energy in the sys-
tem is given by

We�	� = −� FKPn�	�d	

= c − �0��d − �m��2U2L
1

2�
· �ln�	� − ln�	 + h�� ,

�18�

where c is an integration constant. The simulated values of
the electrical energy as a function of the distance 	 can now
be fitted with Eq. �18� and so the factor � can be determined.

First, the assumption of having a perfect concentric field
is tested for beams with different permittivities. Therefore,
the analytical model �Eq. �18�� is fitted to the field energy
calculated with FEM for beams with varying dielectric con-
stants �see Fig. 4�.

Next, the influence of the electrode gap distance g on the
Kelvin polarization force is evaluated. Figure 5 shows the
polarization force in air or vacuum calculated by means of
the FEM. The force was determined for different electrode
gap sizes.

Figure 6 shows the values for � for dielectric beams with
different dielectric constants �d and heights h. The values are
obtained by fitting the model �Eq. �18�� to the energy data
calculated with FEM.

In Fig. 7, the force acting on dielectric beams with dif-
ferent widths is evaluated for varying electrode gaps g and
varying distances 	.

V. DISCUSSION

Assumptions and simplifications have been made in or-
der to obtain a model describing the polarization force for
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FIG. 4. Fits of Eq. �18� to the field energy calculated with FEM for dielec-
tric beams with h=600 nm and w=20 �m surrounded by air or vacuum
��m=1�. The electrode gap was g=0.1 �m and the voltage U=1 V.
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FIG. 5. FKPn plotted against the distance 	 of the dielectric with w
=40 �m, h=600 nm, and �d=7 from the coplanar electrodes with an ap-
plied potential of U=1 V in air or vacuum ��m=1�. The four curves repre-
sent FKPn for different electrode gap sizes g. The insert shows the stored
electrical field energy We simulated with FEM. The simulated values are
fitted with Eq. �18� with the fitting parameter �. The fit was of high quality
with coefficients of determination R2�0.999.
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FIG. 6. � plotted for different dielectric constants and heights. The FEM
simulations were performed with the following conditions: g=0.1 �m, w
=60 �, �m=1, and U=1 V. The lines are heuristic fits corresponding to Eq.
�19�.
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the transduction scheme. Among others, in the derivation of
the analytical model it has been assumed that the electric
field is concentric even though this is only the case if �d

=�m. In Fig. 4, it can be seen that the energy values obtained
with different dielectric constants �d can well be described
by the model �Eq. �18��. The fits are of high quality with
coefficients of determination R2�0.999. Thus, the character-
istic of the polarization force FKPn for a wide dielectric beam
can be described by assuming a concentric electric field.

In a real transduction scheme, the electrode gap has a
finite value ranging from submicrons in case of defining the
electrodes with e-beam lithography to one or two microns for
conventional photolithography. Even though the gap size has
a strong influence on the magnitude of the field energy it has
only little influence on the force. In the inset of Fig. 5, it can
be seen, that the simulated field energy values can be well
described by the analytical model �Eq. �18��. The force
slowly starts to decrease for electrode gaps g�2 �m. Con-
sequently, the electrode gap should be designed to be as
small as possible but it is not a crucial parameter.

In Fig. 6, the field correction values are shown as a func-
tion of �d and h. The polarization force acting on a dielectric
beam surrounded by air or vacuum ��m
1� moving perpen-
dicular toward coplanar electrodes can thus be calculated
with Eq. �17� together with the specific value for � given in
Fig. 6. � can either be read out from Fig. 6 or it can be
calculated from the following heuristic formula

� =
8301h0.6156

8301h0.6156 + ��d�b − 1
, �19�

with

b = 0.5887 −
0.003795

h0.3184 . �20�

With this equation, the simulated values for � can be approx-
imized with an average relative error of 2.0%.

In the model, it has been assumed that the width w is
large compared to the distance 	. In Fig. 7, it can be seen that
from a certain beam width, the force does not become stron-
ger. Thus, the assumption is justified in most cases. In Fig.
7�a� it is shown, that the gap distance g has almost no influ-
ence on the force even when the width of the beam ap-
proaches the dimensions of the electrode gap. Whereas in

Fig. 7�b� it is shown that the force starts to decrease when the
beam width approaches the dimension of the distance 	. The
normalized force can be described by dividing Eq. �16� by
Eq. �17� which results in

FKPn�w�
FKPn�w = 
�

=
2

�h
��h + 	�arctan

w

2	
− 	 arctan

w

2�h + 	�� .

�21�

The analytical solution �Eq. �21�� describes the overall force
decrease well. But it misses the force maximum just before
the force diminishes as given by the simulated normalized
force values. Thus, in order to obtain a maximum beam de-
flection, the beam width should be chosen to be just wide
enough that the force is maximal. That is, it should be a few
times wider than the distance to the electrodes.

Comparing FKPn to the normal force acting on parallel
capacitor plates39

Fel = −
1

2
�0�mwL

1

	2U2, �22�

shows that the two forces are similar. Both are of electro-
static nature and proportional to the applied voltage squared.
The main difference is that Fel is a linear function of the
beam width whereas FKPn is a function of the beam height.
Increasing the beam height strongly increases the flexural
rigidity of the beam and is thus not an option to increase the
polarization force strength. As a result, Fel is typically one
order of magnitude higher than the polarization force.

Water has a very high polarizability ��g=80� and the
area with the field intensity maximum is preferably occupied
by the water. So, the electric field intensity close to the gap
and therewith the total energy stored in the electric field is
minimized. Consequently, the force becomes positive corre-
sponding to Eq. �17� and the dielectric beam experiences a
force away from the electrodes. In an aqueous environment,
however, polarization forces are highly influenced by surface
charges, as already mentioned in Sec. II. The specific behav-
ior of the accumulated interface charges depends on the in-
teraction between the dielectric material and the aqueous so-
lution and the dissolved ions in the solution. Consequently,
the exact force acting on a dielectric beam immersed in water
cannot be described by the Kelvin polarization force only.

(a)
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� � 	 ��
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(b)

FIG. 7. Normalized FKPn plotted for beams with h=600 nm and �r=7 with different widths w for a constant distance 	=1 �m and a varying electrode gap
�a� and for a constant electrode gap g=100 nm and a varying distance 	 �b�. The FEM simulations were done with the following parameters: �m=1 and
U=1 V. The gray dotted lines are plots of Eq. �21� for the corresponding parameters. The black lines are a guide to the eye.
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Nevertheless, based on the polarization body force, the force
strength in water is around one order of magnitude higher
than in air or vacuum. This is due to the large difference
between the permittivity of water and the permittivity of a
typical dielectric material with �d�10.

VI. CONCLUSION

In summary, an analytical model describing the force
acting in micro- and nanomechanical systems that are based
on the Kelvin polarization force has been developed. The
model has a simple form and is easy to apply. The force can
be calculated with Eq. �17� together with the correction fac-
tor � that can either be read out from Fig. 6 or calculated
from the heuristic formula �19�. Even though polarization
forces are considerably weaker than conventional electro-
static forces, they are suitable to actuate dielectric microreso-
nators and nanoresonators made of arbitrary dielectric mate-
rials. The presented model offers a simple and fast way to
calculate the forces being exerted on the dielectric structures
which is important for the design of systems based on this
dielectric transduction scheme, which allows the full explo-
ration and employment of specific material properties of pure
dielectric materials in micro- and nanomechanical systems.
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