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Estimation of Dense Image Flow Fields in Fluids
Rasmus Larsen, Knut Conradsen, and Bjarne Kjær Ersbøll

Abstract—The estimation of flow fields from time sequences
of satellite imagery has a number of important applications.
For visualization of cloud or sea ice movements in sequences
of crude temporal sampling, a satisfactory nonblurred temporal
interpolation can be performed only when the flow field or
an estimate thereof is known. Estimated flow fields in weather
satellite imagery might also be used on an operational basis
as inputs to short-term weather prediction. In this paper, we
describe a method for the estimation of dense flow fields. Local
measurements of motion are obtained by analysis of the local
energy distribution, which is sampled by using a set of three-
dimensional (3-D) spatio-temporal filters. The estimated local en-
ergy distribution also allows us to compute a confidence measure
of the estimated local normal flow. The algorithm, furthermore,
utilizes Markovian random fields in order to integrate the local
estimates of normal flows into a dense flow field by using measures
of spatial smoothness. To obtain smoothness, we will constrain
first-order derivatives of the flow field. The performance of
the algorithm is illustrated by the estimation of the flow fields
corresponding to a sequence of Meteosat thermal images. The
estimated flow fields are used in a temporal interpolation scheme.

Index Terms—Fluid flow, Markov random field, Meteosat op-
tical flow.

I. INTRODUCTION

I NDEPENDENTLY moving objects, rotation, dilation, and
shear in image sequences combine to produce complex

velocity fields. Therefore, valid velocity estimation is re-
stricted to local computations. This ensures that, for suffi-
ciently smooth velocity fields, the estimation can be based
on translational image velocity.

Coherent image translation is the basis for several compu-
tational methods. The main methods include correlation-based
methods [1]–[3], differential methods [4], [5], energy-based
methods [6]–[8], and phase-based methods [9], [10].

Restricting measurements to small spatio-temporal neigh-
borhoods, however, often results in the measurements being
based on one-dimensional (1-D) intensity structures (edges
and/or lines). In this case, we can only determine the compo-
nent of the velocity orthogonal to the intensity contour reliably.
This is known as the aperture problem [11].

In general this problem exists in neighborhoods of the image
sequence that have a 1-D structure only, as well as neighbor-
hoods that have no structure at all, that is, in homogeneous
areas. On the other hand, for image sequence neighborhoods
that exhibit two dimensional (2-D) spatial structures, such as
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intensity corners or various textured regions, we can reliably
extract the true velocity. In order to identify the type of
neighborhood, several approaches have been reported. In a
correlation-based approach, Anandan [12] used the curvature
of the match surface and Nagel and Enkelmann [5] investi-
gated the use of second-order spatial derivatives to identify
the neighborhood. The use of quadrature-type filters tuned to
different spatio-temporal frequencies has been used to identify
the type of the neighborhood in energy—as well as phase-
based approaches [10], [13].

Because the aperture problem results in flow fields that are
not fully constrained, an assumption of (piecewise) smoothness
of the velocity field must be applied in order to obtain a
dense velocity field. One way of doing this is by applying
a restriction that forces the spatial derivatives to be small.
These restrictions are referred to as smoothness constraints [4].
Methods utilizing this type of smoothness constraints include
the work of [5], [14]–[16]. Other approaches based on spatial
filtering also have been reported. Simpson and Gobat [17],
for example, used a vector median filter to obtain a smooth
velocity field.

It is evident that local velocity estimation algorithms that are
able to distinguish between the different natures of the neigh-
borhood and thus the estimated velocity—component velocity
or not—should be more successful than algorithms that are
not. In Section III-A, we will consider a method to extract
velocity estimates as well as related directional probabilities
of the estimates, based on the local energy distribution. This
is especially important because of the distortion of features,
due to physical processes, that can occur in fluids (e.g., [18]).

In Section III-B, we will describe the implementation of
the smoothness constraint. This smoothness constraint is for-
mulated as a prior probability distribution for the velocity
field that assigns high probability to fields that have small
first-order spatial derivatives and low probability to fields that
have large spatial derivatives. We will, furthermore, suggest
an observation model that carefully relates the local estimates
of normal velocity to a particular realization of the velocity
field. Here it is important to recognize that local estimates
are normal flows and that standard smoothing operations are
not well suited in this case. Finally, we will combine the
prior distribution and the observation model into a posterior
distribution by using Bayes’ theorem.

The algorithm is illustrated by the estimation of smooth
cloud velocity fields in a series of Meteosat satellite images.
Other work on cloud-motion estimation has been reported
by [1] and [2]. The estimated flow fields will be used in
two temporal interpolation schemes. First, intermediate frames
between each of the originals are generated. Second, the
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Fig. 1. Infrared channel from the Meteosat 5 satellite mapped to a polar stereographic projection showing the cloud cover over Europe at August 24,
1994, 05:00 GMT. The images are provided by the Danish Meteorological Institute.

estimated flow field is used to generate a frame to replace
a missing frame in the sequence.

II. DATA

The algorithms described in this article will be applied to
a sequence of images recorded by the Meteosat 5 satellite.
The images are from the infrared channel (10.5–12.5m).
Preliminary processing performed by the Danish Meteoro-
logical Institute consists of mapping to a polar stereographic
projection and resampling to a 576 768 equirectangular 7-
km grid. The center of the grid is at 48.4N latitude and 8.2
E longitude. The images are recorded with a time interval of
30 min. We will be using a 384 512 sequence of subimages
centered at August 24, 1994, 05:00 GMT. The center image
of the sequence is shown in Fig. 1.

III. M ETHODS

This section is divided into two subsections. In Section III-
A, we will consider the local velocity estimation by using
a set of spatio-temporal directional quadrature filter pairs.
After this, in Section III-B, we will formulate an algorithm
for integrating these local estimates to a dense velocity field

by using smoothness constraints based on first-order spatial
derivatives of the velocity field.

A. Local Velocity Estimation

Because motion estimation in image sequences can be
viewed as identification of patterns repeating themselves over
time, it is natural to try to describe the motion analysis in the
Fourier domain. Let us consider a neighborhood containing a
1-D intensity structure (e.g., a line) that translates coherently
through time. In the spatio-temporal domain, this corresponds
to a neighborhood of iso-grey-level planes. Let these planes be
given by their unit normal vector . We will
refer to this vector as the spatio-temporal orientation vector.
The nonzero Fourier coefficients of this neighborhood are
concentrated near a line in the Fourier domain defined by.

The relationship between the spatio-temporal orientation
vector and the normal flow vector is illustrated in
Fig. 2. In this figure, a line translating with constant velocity
through space is shown at four time instants. These lines span
a plane in space-time, andis the normal vector of this plane.
In the figure and the line orientation vector

. Because is perpendicular to as well
as , its direction is given by the outer product of these vectors.
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Fig. 2. Relationship between the spatio-temporal orientation vector and the
normal flow. Refer to the text for a detailed explanation.

Finally, this outer product should be normalized so that the
temporal coordinate equals 1. This results in the following
relationship:

(1)

Now, in order to estimate the spatio-temporal orienta-
tion vector, we will sample the Fourier domain by using
a set of spatio-temporal filters. Using a method developed
by Knutsson [8], this can be achieved by applying a set of
directional quadrature filter pairs symmetrically distributed
over the spatio-temporal orientation space. The directional
quadrature filter pairs consist of a real even part and an
odd imaginary part. The phase of the transfer function for
the real part is shifted 90, relative to the imaginary part.
By squaring and adding the two filter responses we obtain
a phase-independent estimate of the spectral density of the
corresponding image structure.

As an approximation to such a set of filters, we will
employ a set of Gabor filters [19] with center frequencies
given by the vertices of a diametrical symmetric regular
polyhedron [8] (e.g., using the set of six filter directions,

listed in Table I. The th Gabor
filter consists of a Gaussian function shifted to the point

in frequency space. The corresponding
convolution mask consists of an odd (real) and an even
(imaginary) part, which are easily computed by taking the
Fourier transforms

(2)

. Although Gabor filters are not quadrature pairs,
they provide a reasonably good approximation for sufficiently

TABLE I
SPATIO-TEMPORAL DIRECTIONS OF THEGABOR FILTERS ARE GIVEN BY THESE

COEFFICIENTS, WHEREa = 2= 10 + 2
p
5 AND b = (1+

p
5)= 10 + 2

p
5

small bandwidths [20]. If the bandwidth in octaves is measured
at one standard deviation of the Gaussian envelope in the
frequency domain, it is given by (e.g., [13])

(3)

. Thus, the direction of is given by the
choice of , and the length is given by the choice of

and . The choice of these parameters should be made
taking into account the maximum expected velocity in the
image sequence. A maximum velocity of corresponds
to a spatio-temporal frequency of . Here
the product of spatio-temporal frequency and spatio-temporal
period is . Setting the extent of the filter to one standard
deviation of the Gaussian envelope in the frequency domain
and by using (3), we find that

(4)

Finally, the energy distribution of the Fourier domain as esti-
mated by the set of quadrature filter pairs may be represented
by the tensor (e.g., [8])

(5)

where is the output from the th quadrature filter pair, and
is the unit normal vector defining the direction of the filter.

In order to find the direction of maximum spectral den-
sity, we must find the unit vector that maximizes .
This vector is the eigenvector corresponding to the largest
eigenvalue of (e.g., [21]). So for the coherently translating
1-D intensity structure, which has an effectively 1-D Fourier
domain, the spatio-temporal orientation vector is found by an
eigenanalysis of . Because the Fourier domain is 1-D,has
only one nonzero eigenvalue.

Now, if the translating structure has a 2-D intensity structure
(e.g., a grey-level corner), the spatio-temporal domain is
described by two spatio-temporal orientations, each of which
gives rise to a nonzero eigenvalue of. The eigenvectors
corresponding to these nonzero eigenvalues each correspond
to a normal flow by using (1).

Given the true flow, we may determine the difference
between the projection of the true flow onto either of these
estimated normal flows and the normal flows themselves

(6)

, where are the true flow and
the estimated normal flows taken at the position . It is
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the (weighted) sum of squares of these distances that should
be minimized across the image in order to obtain an estimate
of the velocity field.

Deviation from the assumption of coherent translation,
imperfectly designed filters and noise will result in nonzero
Fourier coefficients not being contained in one single line
or plane. In this case, all three of the tensor eigenvalues
will be nonzero. This allows us to extract information about
the quality of the estimates of constraint lines we get from
the eigenvectors corresponding to the two largest eigenval-
ues. Because imperfect conditions result in a nonzero third
eigenvalue, we suggest using a confidence measure for each
of the linear constraints, based on the difference of the corre-
sponding eigenvalue and the smallest eigenvalue. Furthermore,
a normalization of this difference should be made. This is
evident as a noise-free high-step edge measures the motion
just as well as a lower step does. We propose the following
confidence measure for each of the linear constraints, given by
the eigenvectors corresponding to the two largest eigenvalues

(7)

where denote the
eigenvalues of the tensor at position . This confidence
measure approaches zero when the difference of the corre-
sponding eigenvalue and the smallest eigenvalue approaches
zero, and it attains its maximum value of one, when the
smallest eigenvalue is zero, and the corresponding eigenvalue
is the largest, or is equal to the largest eigenvalue, respectively.

B. Integration of Local Measurements

As mentioned in Section I, we will apply an assumption of
smoothness with the purpose of fully constraining the velocity
field by forcing the spatial derivatives of the velocity field
to be small. Since Horn and Schunk’s original paper [4],
this has been investigated by several authors (e.g., [22] and
[23]). One way of formulating such a smoothness constraint
is by use of Markovian random fields [16], [24]. We do
this by using the Bayesian paradigm [25]. First, we will
formulate a prior distribution for the velocity field, based on
the spatial derivatives of the field. If the spatial derivatives are
implemented using the following finite differences:

(8)

where are the pixel positions, then
the prior distribution of the flow field may be described by a
Gibbs distribution , where is a
normalization constant and the energy term is given by

(9)

This probability distribution assigns high probability to fields
that exhibit small derivatives and low probability to fields
with high spatial derivatives. We will need a first-order neigh-
borhood to implement . In Fig. 3(a), this neighborhood is

(a) (b)

Fig. 3. Neighborhood systems and cliques for the pixel process. (a) The
neighborhood configurations for (interior) points for a first-order Markovian
random field. The points marked with the symbol� are the neighbors of
the point marked�. (b) The cliques corresponding to the neighborhood
configuration in (a).

shown. In Fig. 3(b), the cliques necessary to implement the
energy function are shown.

Having constructed this prior distribution for the flow field,
we will now concern ourselves with an observation model.
The observation model relates the local observations or mea-
surements of velocity to any particular realization of the prior
distribution. This is done by a conditional Gibbs distribution

OBS

(10)

where is the difference between the projection of the
true flow onto the normal flow, given by theth eigenvector
and the normal flow itself at pixel , as described by
(6). is the confidence measure corresponding to this
normal flow, given by (7). is a normalization constant. By
using a Gibbs energy function that punishes large deviations
in the projection of the true flow onto the observed normal
flows, we allow smoothing in the direction not constrained
by the normal flows, while smoothing in the direction of
the normal flows is punished. Furthermore, the use of the
confidence measures , derived in the previous section as
weights, allows us to take into consideration the quality of our
measurements.

The prior distribution and the observation model are com-
bined into a posterior distribution by using Bayes’ theorem.
The energy function of the posterior distribution thus becomes

(11)

In this energy function, we can control the properties of
the estimated motion field. The smoothness is controlled by

and the faith in the observed or measured normal flows is
controlled by .

We can now apply a maximization scheme to the posterior
distribution in order to obtain the maximum aposteriori
estimate of the velocity field. Note that maximizing the poste-
rior probability is equivalent to minimizing in (11). Thus,
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Fig. 4. The criterion for choosing� is shown as a function of�. The global minimum of 5.5 is attained for� = 0:11.

without loss of generality, we can set where
. This has been implemented by using the iterated

conditional modes (ICM) scheme by Besag [26]. The objective
function is quadratic in the variables and the corresponding
Hessian matrix is positive-definite for positive confidence
weights. This ensures that we have one and only one local
minimum, and that this is also the global minimum. In this
case, ICM will converge to this minimum. We will start the
algorithm by initializing all vectors to those of the previous
image in the sequence, or in the case of the first image, to.

It should be noted that the prior distributions listed here
are suitable for a globally smooth field, i.e., such fields that
we observe in fluids. Relevant examples in this case are the
cloud movement recorded by weather satellites or ground-
based radar stations as well as ocean current patterns that may
also be observed from various spacecraft. In other situations,
we are faced with independently moving well-defined objects,
and in these cases, additional modeling is necessary (e.g., the
inclusion of a line process [24] or a labeling procedure [27]
in order to be able to estimate motion boundaries).

IV. RESULTS

This section is divided into three subsections. First, we will
illustrate the local estimation of normal flows and how these
normal flows may be integrated into a smooth flow field by
using the proposed prior distribution. Second, we will use an
estimated flow field to perform a temporal interpolation, and
third, we will investigate how the estimated flow field may be
used in order to generate replacement frames in the case of
missing frames in an image sequence of a time varying scene.

A. Estimation of the Flow Field

As described in Section III-A, we will describe the local
Fourier domain by the tensor given in (5). It should be noted
here that the Fourier method of estimating the local velocities
assumes that patterns of thermal gradient are moving without
change over the time period spanning the actual filter size [18].

We will use a set of six Gabor filter pairs to sample
the Fourier domain. The spatio-temporal directions of the
Gabor filters are shown in Table I. Setting the bandwidth
to one octave to approximate quadrature filter pairs, and by
assuming a maximum (normal) velocity of 100 ms, as
prescribed in [2], we find by using (4) that the standard

(a)

(b)

Fig. 5. Normal flows corresponding to the (a) largest eigenvalue and (b) the
second largest eigenvalue computed from the Meteosat sequence correspond-
ing to the 05:00 GMT frame.

deviation of the Gaussian envelope should be approximately
2.5 when operating on the second level of a Gaussian pyramid
[28] (i.e., corresponding to a pixel size of 28 km/pixel). By
truncating the Gaussian envelope of the Gabor filters at three
standard deviations, we arrive at the filter size 1717
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Fig. 6. Velocity field computed from the Meteosat sequence corresponding
to the 05:00 GMT frame using� = 0:11.

17. Because the Gabor filter kernels are separable [7], the 12
three-dimensional (3-D) convolutions may be performed by
84 1-D convolutions. Thus, reducing the computational load
by a factor of 40.

The parameters and of (11) allow us to
control the final velocity field. We will choose the optimal

for a given image at time as the one that minimizes
the mean value of the absolute differences between the pixel
intensities of a predicted and the actual image at time .
The predicted image is calculated by moving the pixels of the
image at time according to the estimated flow field at time
and resampling using nearest neighbor interpolation. The mean
value of the absolute differences between the pixel intensities
of a predicted and the actual image at time is shown in
Fig. 4. For the Meteosat sequence corresponding to the 05:00
GMT frame we find that should be chosen to . The
estimated normal flows for this image are shown in Fig. 5 and
the estimated flow field is shown in Fig. 6.

B. Temporal Interpolation in a Meteosat Satellite Sequence

An obvious application of the flow field estimation is
temporal interpolation. We will illustrate how this may be
done by using the flow field from Fig. 6. We will generate
an intermediate image between the original images recorded
at 05:00 and 05:30 GMT. We extrapolate from each of the
two original images by using the corresponding flow field
estimates. As we emphasize, while not blurring the image,
we will use a nearest neighbor interpolation scheme to sample
the extrapolated images to the original grid. Finally, we take
the average of the two extrapolations. This is our intermediate
image.

The interpolated images are shown in Fig. 7(a). A naïve
approach to an interpolation would be to simply take the
average of the two originals. The result of this is shown in
Fig. 7(b). We can see that the naïve approach results in a much
more blurred result than the method based on the estimated
flow field. This intermediate image on the other hand displays
a very satisfactory temporal interpolation.

(a) (b)

Fig. 7. (a) Segment of the artificially generated intermediate image corre-
sponding to 5:15 GMT. (b) Simple average of the two original images recorded
at 05:00 and 05:30 GMT. Note the echoing of all the moving contours. It is
evident that our approach results in a more satisfying, sharper intermediate
image without echoes.

Fig. 8. Velocity field computed from the Meteosat sequence corresponding
to the 05:00 GMT frame, estimated using the average of the 04:30 and the
05:30 GMT images in the place of the 05:00 image.

C. Missing Frame Replacement by Temporal Interpolation

At least twice every day we have missing frames in the
Meteosat sequences. This is very disturbing to the eye when
viewing the sequence as a film. We will show how the
algorithm described above may be used to generate a satis-
factory replacement for the missing frame. First, we need to
estimate the flow field at the time of the missing frame. When
performing the filtering operation, we will replace the missing
frame with the average of the previous and the next images. In
order to evaluate how this affects the flow estimation, we have
removed the original 05:00 GMT image from the sequence,
substituted it with the average of the 04:30 and 05:30 GMT
images, and computed the flow field. The resulting field is
shown in Fig. 8. Now we can generate the replacement 05:00
image by warping the 04:30 image according to this flow field.

Fig. 9 shows the capability for the missing frame replace-
ment of the algorithm. In the top row, a 120 120 pixel
segment from the Meteosat sequence corresponding to times
04:30, 05:00, and 05:30 is shown. In the bottom row, we
see the replacement 05:00 image. This image is generated by
estimating the flow field in a sequence where the 05:00 image
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Fig. 9. This figure shows the capability for missing frame replacement of the algorithm. In the top row, a 120� 120 pixel segment from the Meteosat
sequence corresponding to times 04:30, 05:00, and 05:30 is shown. In the bottom row, we see the replacement 05:00 image.

is replaced by the pixelwise average of the 04:30 and the
05:30 images and subsequently by using the 04:30 flow field
to project the 04:30 image to 05:00. To ease the identification
of cloud features for the reader, a white grid is overlaid. It
is evident that position as well as shape of the clouds in
the replacement image correspond well to the original 05:00
image.

V. DISCUSSION

A. Data

The purpose of the exercises described above has been to
perform a nonblurred temporal interpolation of the sequence. It
should be noted that the extracted flow fields do not necessarily
assimilate the corresponding wind fields. This is true because
only some clouds move with the wind. Other problems are
that we are only observing the top layer of the clouds and that
the wind speed varies with height [29].

The use of the Fourier technique assumes that the patterns
of thermal gradient are moving without (or with little) change
over the time period spanned by the filters. Other physical
processes that have an effect are diffusion and different types
of heat transfer (sources/sinks) other than advection [3], [18].

B. Estimation of Normal Flows

The spatio-temporal Gabor filtering described in Section III-
A provides a robust estimation of normal flows. In addition to
identifying the zero, one, or two normal flows at each pixel, it
provides us with a measure of the confidence we should attach
to the corresponding normal flow.

The filter design (and choice of scale) has been based on
an assumption of a maximum velocity based on the physical
phenomenon that we are observing. In situations where this

is not possible and in order obtain better resolution of the
velocity estimates, we may utilize a pyramid representation
of the image sequence. Preliminary studies of this have been
carried out by Heeger [7]. Other studies that exploit the use
of a coarse to fine approach include [30].

C. Integration Using Markovian Random Fields

The Markovian random field approach to integrate the
measured normal flows has proven to be a powerful and
successful technique. We have used restrictions on the first-
order spatial derivatives of the flow field to reconstruct the
flow field. The diversity of the admissible fields has proven
sufficient for the estimation of flow fields in the case shown.
The experiments indicate that it is necessary to restrict the
first-order derivatives in order to propagate velocities across
regions of sparse measurements.

The smoothness constraints have been chosen from a math-
ematical and not a physical point of view. Smoothness con-
straints involving terms that are more easily interpreted may
be constructed. The sum of the norm of the first-order spatial
derivatives may for instance be separated into three forms
of deformation: dilation, shear, and rotation [31]. Knowledge
of the physical phenomena we are observing may then be
translated into different weights for the three terms. Also
the estimation may be improved by including restrictions on
temporal variation.

D. Temporal Interpolation

By using the flow field when performing the temporal
interpolations, we have achieved much more satisfying results
than the simple alternatives shown. The flow field estimations
and the interpolations shown have, however, been contingent
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on the intensity variation across the image being due to clouds
only.

In case of intensity variation, due to variation in the terrain,
sea/land-, land/ice-boundaries, etc., these areas should be
screened prior to applying this algorithm. If these areas are not
screened, they would create false normal flows. Algorithms for
cloud screening, however, do exist (e.g., [32]–[34]).

E. Comparison with Standard Technique

In order to illustrate the power of the flow-field estimation
technique described in this article for the estimation of fluid
motion in spacecraft data, we will make a comparison with
a standard technique for motion estimation by Anandan [12].
We have chosen this method because it also results in a 100%
dense flow field, and because it too recognizes and utilizes the
directional confidences in the estimated local velocities.

Anandan’s algorithm consists of a hierarchical matching
strategy based on a Laplacian pyramid representation of the
images. At each level, the velocity at a pixel is estimated
as the displacement that yields the best match between image
regions at different times. The best match is defined as the one
that minimizes the sum-of-squared differences (SSD) within
a 5 5 window with Gaussian weights. The search space
for the local velocity estimates is determined as the 33
neighborhood of the displacement computed at the immediate
coarser level. Subpixel accuracy is obtained by fitting a
quadratic surface to the SSD values about the minimum
SSD value found with integer values. Furthermore, directional
confidence measures are derived by extracting the principle
curvatures of the SSD surface at the minimum. Then the
smoothness constraint of Horn and Schunk [4] is employed.
The sum of the squared first-order spatial derivatives of the
flow field and the deviations from the local estimates weighted
by the directional confidences is minimized over the entire
field. The algorithm is initialized at the coarsest level by
centering the search area at the position corresponding to a
displacement equal to.

In this comparison, we also start by subsampling the original
images by a factor of four. By using four levels of the
Laplacian pyramid, we are able to contain a maximum velocity
of 100-ms pixels/frame in the search area at the
coarsest level. We use a software implementation of Anandan’s
algorithm used in and made available by Barronet al. [35]. In
Fig. 10, the estimated flow field corresponding to August 24,
05:00 GMT of the Meteosat sequence using Anandan’s method
is shown. It is evident that there are qualitative differences
between the flow field estimated by our method shown in
Fig. 6 and that using Anandan’s method. The latter field does
not possess the degree of continuity that would be expected of
a natural phenomenon as the one we are observing. We may
quantify this difference by using the same measure of goodness
as we did when estimating the smoothness parameter of our
method. For the optimal we found that the mean value of the
absolute differences between the prediction of the next image
in the sequence using the estimated flow field was 5.5. For
all other ’s in the range [0.01, 0.99] this measure is never
above 6.2. For Anandan’s method, we find the same quantity

Fig. 10. Velocity field computed from the Meteosat sequence corresponding
to the 05:00 GMT frame by use of the Anandan algorithm [12].

to be 8.3, which is significantly higher. Thus, showing the
competitiveness of the algorithm described in this paper.

VI. CONCLUSION

A technique for estimation of smooth flow fields based on
observations of the local distribution of energy measured by
a set of Gabor-type filters and a prior distribution involving
restrictions on the first-order derivatives using Markovian
random fields has been described. The estimation technique
is formulated using the Bayesian paradigm, and the maximum
a posterioriestimate is found by use of the iterated conditional
modes algorithm. The parameters of the model consist of the
choice of standard deviation of the Gaussian envelope of the
Gabor filters and of a parameter that balances the trust in the
local observations of flow and the smoothness constraint that
is inherent in the Markov model. The first of these parameters
is chosen by setting a maximum velocity. For the application
shown a physical limit is assumed. The latter parameter is
estimated by using an exterior criterion based on the ability to
predict the next image in the sequence by use of the estimated
flow field.

The estimated flow fields have been used successfully in
two temporal interpolation schemes. First we have used the
flow fields to generate intermediate frames in a sequence of
Meteosat images, and second, we have used the estimated
flow fields to generate replacements for missing frames in the
sequence. Both schemes are superior to the simple alternatives
shown. Furthermore we have made a comparison between our
algorithm and a standard method for estimating smooth flow
fields. For the case study of this article our algorithm turned
out to be superior to the standard algorithm.
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