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Estimation of Dense Image Flow Fields in Fluids

Rasmus Larsen, Knut Conradsen, and Bjarne Kjeer Ersbgill

Abstract—The estimation of flow fields from time sequences intensity corners or various textured regions, we can reliably
of satellite imagery has a number of important applications. extract the true velocity. In order to identify the type of
For visualization of cloud or sea ice movements in seq“encesneighborhood several approaches have been reported. In a
of crude temporal sampling, a satisfactory nonblurred temporal . ’ )
interpolation can be performed only when the flow field or COrTelation-based approach, Anandan [12] used the curvature
an estimate thereof is known. Estimated flow fields in weather Of the match surface and Nagel and Enkelmann [5] investi-
satellite imagery might also be used on an operational basis gated the use of second-order spatial derivatives to identify
as inputs to short-term weather prediction. In this paper, we the neighborhood. The use of quadrature-type filters tuned to

describe a method for the estimation of dense flow fields. Local . . . . .
measurements of motion are obtained by analysis of the local different spatio-temporal frequencies has been used to identify

energy distribution, which is sampled by using a set of three- the type of the neighborhood in energy—as well as phase-
dimensional (3-D) spatio-temporal filters. The estimated local en- based approaches [10], [13].

ergy distribution also allows us to compute a confidence measure  Because the aperture problem results in flow fields that are
of the estimated local normal flow. The algorithm, furthermore, not fully constrained, an assumption of (piecewise) smoothness

utilizes Markovian random fields in order to integrate the local f th locity field t b lied i der t btai
estimates of normal flows into a dense flow field by using measures© € velocity nield must be applied In order to obtain a

of spatial smoothness. To obtain smoothness, we will constrain dense velocity field. One way of doing this is by applying
first-order derivatives of the flow field. The performance of a restriction that forces the spatial derivatives to be small.

the algorithm is illustrated by thfe EStimatiO“hOf thel flow fi9|d5h These restrictions are referred to as smoothness constraints [4].
corresponding to a sequence of Meteosat thermal images. Theoihods tilizing this type of smoothness constraints include
estimated flow fields are used in a temporal interpolation scheme. .
_ _ the work of [5], [14]-[16]. Other approaches based on spatial
; Ir;dfTX Terms—Fluid flow, Markov random field, Meteosat op- fjltering also have been reported. Simpson and Gobat [17],
ical Tiow. for example, used a vector median filter to obtain a smooth
velocity field.
I. INTRODUCTION It is evident that local velocity estimation algorithms that are

NDEPENDENTLY moving objects, rotation, dilation, ang?Ple to distinguish betwe_en the differept natures of the neigh-
I shear in image sequences combine to produce Comppé;(hood and thus the estimated velocny—comp_onent velocity
velocity fields. Therefore, valid velocity estimation is re©f not—should be more successful than algorithms that are
stricted to local computations. This ensures that, for suffiot: In Section lll-A, we will consider a method to extract
ciently smooth velocity fields, the estimation can be basdglocity estimates as well as related dlrectlongl propabllltle§
on translational image velocity. of the estimates, based on the local energy distribution. This

Coherent image translation is the basis for several compg-especially important because of the distortion of features,
tational methods. The main methods include correlation-basé¢e to physical processes, that can occur in fluids (e.g., [18]).
methods [1]-[3], differential methods [4], [5], energy-based !n Section IlI-B, we will describe the implementation of
methods [6]-[8], and phase-based methods [9], [10]. the smoothness constraint. This smoothness constraint is for-

Restricting measurements to small spatio-temporal neighulated as a prior probability distribution for the velocity
borhoods, however, often results in the measurements befigdd that assigns high probability to fields that have small
based on one-dimensional (1-D) intensity structures (edd#@st-order spatial derivatives and low probability to fields that
and/or lines). In this case, we can only determine the comgave large spatial derivatives. We will, furthermore, suggest
nent of the velocity orthogonal to the intensity contour reliablyan observation model that carefully relates the local estimates
This is known as the aperture problem [11]. of normal velocity to a particular realization of the velocity

In general this problem exists in neighborhoods of the imadjeld. Here it is important to recognize that local estimates
sequence that have a 1-D structure only, as well as neighbaie normal flows and that standard smoothing operations are
hoods that have no structure at all, that is, in homogenedust well suited in this case. Finally, we will combine the
areas. On the other hand, for image sequence neighborhoptsr distribution and the observation model into a posterior
that exhibit two dimensional (2-D) spatial structures, such dsstribution by using Bayes’ theorem.

Manuscript received March 19, 1996; revised January 1, 1997. This woy The algorlthm 'S I."usnate.d by the estimation .Of S.mOOth
was supported in part by the Danish Agricultural and Vet'erinary./ ReseargtPUd velocity fields in a series of Meteosat satellite images.
Council. Other work on cloud-motion estimation has been reported

The authors are with the Section for Image Analysis, Department Efy [1] and [2]. The estimated flow fields will be used in
Mathematical Modeling, Technical University of Denmark, DK-2800 Lyngby . . . . .

Denmark (e-mail: @imm.dtu.dK). two temporal interpolation schemes. First, intermediate frames
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;.’;

Fig. 1. Infrared channel from the Meteosat 5 satellite mapped to a polar stereographic projection showing the cloud cover over Europe at August 24,
1994, 05:00 GMT. The images are provided by the Danish Meteorological Institute.

estimated flow field is used to generate a frame to replalbg using smoothness constraints based on first-order spatial
a missing frame in the sequence. derivatives of the velocity field.

II. DATA A. Local Velocity Estimation

The algorithms described in this article will be applied to Because motion estimation in image sequences can be
a sequence of images recorded by the Meteosat 5 satelliewed as identification of patterns repeating themselves over
The images are from the infrared channel (10.5-120%). time, it is natural to try to describe the motion analysis in the
Preliminary processing performed by the Danish Meteor&ourier domain. Let us consider a neighborhood containing a
logical Institute consists of mapping to a polar stereographleD intensity structure (e.g., a line) that translates coherently
projection and resampling to a 5%6 768 equirectangular 7- through time. In the spatio-temporal domain, this corresponds
km grid. The center of the grid is at 48./ latitude and 8.2 to a neighborhood of iso-grey-level planes. Let these planes be
E longitude. The images are recorded with a time interval gfven by their unit normal vectok = (k1, ko, k3)¥. We will
30 min. We will be using a 384 512 sequence of subimagesefer to this vector as the spatio-temporal orientation vector.
centered at August 24, 1994, 05:00 GMT. The center imadée nonzero Fourier coefficients of this neighborhood are
of the sequence is shown in Fig. 1. concentrated near a line in the Fourier domain defined.by

The relationship between the spatio-temporal orientation
vector and the normal flow vectgr= (;:, )7 is illustrated in
IIl. METHODS Fig. 2. In this figure, a line translating with constant velocity

This section is divided into two subsections. In Section llthrough space is shown at four time instants. These lines span
A, we will consider the local velocity estimation by usinga plane in space-time, arkdis the normal vector of this plane.

a set of spatio-temporal directional quadrature filter pairk the figureu* = (i1, , 1)¥" and the line orientation vector
After this, in Section IlI-B, we will formulate an algorithm e = (—k», k1, 0)7. Becauseu* is perpendicular td as well
for integrating these local estimates to a dense velocity figdge, its direction is given by the outer product of these vectors.
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TABLE |
SPATIO-TEMPORAL DIRECTIONS OF THEGABOR FILTERS ARE GIVEN BY THESE
y COEFFICIENTS WHEREG = 2/V/10 + 2 /5 AND b = (1+/5)/ V10 + 25
pl1 2 3 4 5 6
x{fa a b -b 0 0
y|l0O 0 a a b -b
t|b -b 0 0 a a
Ya small bandwidths [20]. If the bandwidth in octaves is measured
at one standard deviation of the Gaussian envelope in the
Vi frequency domain, it is given by (e.g., [13])
1
lkpll + = 192841
B=log, | ——F| = Ikl = sm_1 ©
eall - =

p = 1,.--, P. Thus, the direction ofk, is given by the
choice ofn,, and the length|k,|| is given by the choice of
B and 0. The choice of these parameters should be made
taking into account the maximum expected velocity in the
image sequence. A maximum velocity of,.. corresponds
Fig. 2. Relationship between the spatio-temporal orientation vector and {gg g spatio-temporal frequency @fﬁ(vfnax + 1)—1/2_ Here
normal flow. Refer to the text for a detailed explanation. the product of spatio-temporal frequency and spatio-temporal
period is2x. Setting the extent of the filter to one standard
Finally, this outer product should be normalized so that thfeviation of the Gaussian envelope in the frequency domain
temporal coordinate equals 1. This results in the followingnd by using (3), we find that

relationship:
Vmax < \/[WU(2B -DP-1. 4)

—k

T 3 T
= s 1V = — - k 5 k . 1 ) ) . . . . .
=) k3 + k3 (hy, k2) Finally, the energy distribution of the Fourier domain as esti-

Now, in order to estimate the spatio-temporal orientdnated by the set of quadrature filter pairs may be represented
tion vector, we will sample the Fourier domain by usingy the tensor (e.g., [8])
a set of spatio-temporal filters. Using a method developed r r
by Knutsson [8], this can be achieved by applying a set of T= Z V(@) + (@0 npn, = Z gprpn,  (5)
directional quadrature filter pairs symmetrically distributed p=1 p=1
over the spe_1t|o—temlporal orientation space. The dwecuoq,%ereqp is the output from theith quadrature filter pair, and
quadrature filter pairs consist of a real even part and gn s the unit normal vector defining the direction of the filter.
odd imaginary part. The phase of the transfer function forp|n order to find the direction of maximum spectral den-
the real part is shifte_d 90 relative_to the imaginary part. sity, we must find the unit vectok that maximizesk” Tk.
By squaring and adding the two filter responses we obtafiis vector is the eigenvector corresponding to the largest
a phase-independent estimate of the spectral density of figanvalue off (e.g., [21]). So for the coherently translating
corresponding image structure. _ _1-D intensity structure, which has an effectively 1-D Fourier
As an approximation to such a set of filters, we Wiljomain, the spatio-temporal orientation vector is found by an
employ a set ofP Gabor filters [19] with center frequenc'eseigenanalysis of". Because the Fourier domain is 1-D has
given by the vertices of a diametrical symmetric regulz:gmy one nonzero eigenvalue.
polyhedron [8] (e.g., using the set of six filter directions, Now, if the translating structure has a 2-D intensity structure
n,,p = 1,---, P(= 6) listed in Table |. Thepth Gabor (¢ g a grey-level corner), the spatio-temporal domain is
filter consists of a Gaussian function shifted to the poiRfescriped by two spatio-temporal orientations, each of which
kp = (kp1, by, kps)T in frequency space. The correspondingives rise to a nonzero eigenvalue Bt The eigenvectors

convolution mask consists of an odd (real) and an eveRyresponding to these nonzero eigenvalues each correspond
(imaginary) part, which are easily computed by taking th¢) 53 normal flow by using (1).

Fourier transforms Given the true flow, we may determine the difference
. 1 T ||2||? between the projection of the true flow onto either of these
¢i(z) = —=7— cos(k, z)exp | ——5 .
P (2m)3/243 P 202 estimated normal flows and the normal flows themselves
1 T [1]* (T Yi)
o(2) =353 k - 2 di(@i, yi) = i Yi) — (@ Y | (6
qp(z) (27?)3/20'3 Sln( Pz) exp < 252 ( ) k(ﬂ? Y ) [’U,(.’IZ Y ) Il’k(x Y )] ||Il'k($i7 yz)H ( )
p=1, -+, P. Although Gabor filters are not quadrature pairg; = 1, 2, whereu(z;, v;), p,.(z;, y;) are the true flow and

they provide a reasonably good approximation for sufficientthe estimated normal flows taken at the positjop, ;). It is
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the (weighted) sum of squares of these distances that should O
be minimized across the image in order to obtain an estimate
of the velocity field.
Deviation from the assumption of coherent translationo o O O O O
imperfectly designed filters and noise will result in nonzero
Fourier coefficients not being contained in one single line
or plane. In this case, all three of the tensor eigenvalues O
will be nonzero. This allows us to extract information about
the quality of the estimates of constraint lines we get from @ ()
the eigenvectors corresponding to the two largest eigenvBl: 3. Neighborhood systems and cliques for the pixel process. (a) The
. L . nejghborhood configurations for (interior) points for a first-order Markovian
ues. Because imperfect conditions result in a nonzero thiflgqom field. The points marked with the symbolare the neighbors of
eigenvalue, we suggest using a confidence measure for e&ehpoint markede. (b) The cliques corresponding to the neighborhood
of the linear constraints, based on the difference of the corf@nfiguration in (a).
sponding eigenvalue and the smallest eigenvalue. Furthermore,
a normalization of this difference should be made. This &hown. In Fig. 3(b), the cliques necessary to implement the
evident as a noise-free high-step edge measures the motaergy function are shown.
just as well as a lower step does. We propose the followingHaving constructed this prior distribution for the flow field,
confidence measure for each of the linear constraints, givenwg will now concern ourselves with an observation model.
the eigenvectors corresponding to the two largest eigenvaligs observation model relates the local observations or mea-
M@, 1) = As(, i) surements of vglqcity to any particullqr reali;ation pf the prior
’)\:(x‘ o) Az k=1,2 (7) distribution. This is done by a conditional Gibbs distribution
9 (3] T

wi (i, yi) =

1
where A (zi, 4;) > Ao(@i, 4i) > As(wi, y;) > 0 denote the P(OBS{u}) ~Z exp(=alh)
eigenvalues of the tensor at positior;, v;). This confidence 1 N 2
measure approaches zero when the difference of the corre- = exp |-« Z Z wi (i, i) d(zi, )2
sponding eigenvalue and the smallest eigenvalue approaches i=1 k=1
zero, and it attains its maximum value of one, when the (20)

smallest eigenvalue is zero, and the corresponding eigenvaILHae

is the largest, or is equal to the largest eigenvalue, respective‘g’!’%é redy(z;, ;) is the difference between the projection of the

flow onto the normal flow, given by thigh eigenvector
and the normal flow itself at pixelz;, v:), as described by
(6). wy(x;, 1) is the confidence measure corresponding to this
As mentioned in Section |, we will apply an assumption afiormal flow, given by (7)Z is a normalization constant. By
smoothness with the purpose of fully constraining the velocitysing a Gibbs energy function that punishes large deviations
field by forcing the spatial derivatives of the velocity fieldn the projection of the true flow onto the observed normal
to be small. Since Horn and Schunk’s original paper [4flows, we allow smoothing in the direction not constrained
this has been investigated by several authors (e.g., [22] and the normal flows, while smoothing in the direction of
[23]). One way of formulating such a smoothness constraittfe normal flows is punished. Furthermore, the use of the
is by use of Markovian random fields [16], [24]. We daconfidence measures;, derived in the previous section as
this by using the Bayesian paradigm [25]. First, we willveights, allows us to take into consideration the quality of our
formulate a prior distribution for the velocity field, based omeasurements.
the spatial derivatives of the field. If the spatial derivatives are The prior distribution and the observation model are com-
implemented using the following finite differences: bined into a posterior distribution by using Bayes’ theorem.
The energy function of the posterior distribution thus becomes

B. Integration of Local Measurements

(T, i) =w(zi + 1, i) — uw(zi, vi) N 9
(@i, i) = (@i, 4i + 1) — (i, i) (8) U=ad > wlwi, ui)dilei, 4:)?
where(z;, v:), i € {1, 2, ---, N} are the pixel positions, then =1 ]’“\‘rzl
the prior distribution of the flow field may be described by a : 9 9
Gibbs distributionp({u}) = (1/Z) exp(—AU.), whereZ is a +6 z_; (e (i, )l + Iy (i, ) IP]- (22)

normalization constant and the energy term is given by _ _ _
In this energy function, we can control the properties of

al al the estimated motion field. The smoothness is controlled by
U= Z bz (i, i) I” + Z lay (s w)l* (9 /3 and the faith in the observed or measured normal flows is
=t =t controlled by .
This probability distribution assigns high probability to fields We can now apply a maximization scheme to the posterior
that exhibit small derivatives and low probability to fielddistribution in order to obtain the maximum posteriori
with high spatial derivatives. We will need a first-order neighestimate of the velocity field. Note that maximizing the poste-
borhood to implement/;. In Fig. 3(a), this neighborhood isrior probability is equivalent to minimizing’/ in (11). Thus,
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6.2 b
6.1 .

6 .
59 -]
58 .
57 N
56 4
55 T

5.4 I 1 1 1 | L
0 0.2 0.4 0.6 0.8 1

Fig. 4. The criterion for choosing is shown as a function ok. The global minimum of 5.5 is attained fer = 0.11.

without loss of generality, we can s¢t = 1 — « where
« € [0, 1]. This has been implemented by using the iterated -
conditional modes (ICM) scheme by Besag [26]. The objective —> - - -\
function is quadratic in the variables and the corresponding
Hessian matrix is positive-definite for positive confidence
weights. This ensures that we have one and only one local .
minimum, and that this is also the global minimum. In thig ' — >« — . . .. ot L
case, ICM will converge to this minimum. We will start the L\N/" T Co ’{ R
algorithm by initializing all vectors to those of the previous — \l'w > s .. 1, AL T
image in the sequence, or in the 'case.of_the'first image, to %3?;)/) \\// ’/”;rj;? Ve .
It should be noted that the prior distributions listed here
are suitable for a globally smooth field, i.e., such fields that VISR ﬁﬂﬁx\ 1S
we observe in fluids. Relevant examples in this case are the ﬂiﬁ Ty N \)/4> y
cloud movement recorded by weather satellites or ground- i \ ﬁ —:Xi\} [
. \/ P 2
based radar stations as well as ocean current patterns that rnay /
also be observed from various spacecraft. In other situations,
we are faced with independently moving well-defined objects
and in these cases, additional modeling is necessary (e.g., the
inclusion of a line process [24] or a labeling procedure [27]
in order to be able to estimate motion boundaries).

—~
Q
=g

IV. RESULTS

This section is divided into three subsections. First, we will
illustrate the local estimation of normal flows and how thes

(1]

normal flows may be integrated into a smooth flow field by g \*ﬁ/ :\,% \'\\ A \ ot
using the proposed prior distribution. Second, we will use an f\k N f\'/ VLN
estimated flow field to perform a temporal interpolation, and .o /\/ X NN 7&

third, we will investigate how the estimated flow field may be j e , X \ L
used in order to generate replacement frames in the case| o //;Z\Z v \ \/ & T
1e/ / ‘ -

missing frames in an image sequence of a time varying scer

A. Estimation of the Flow Field T &N\l -

As described in Section IlI-A, we will describe the local !
Fourier domain by the tensor given in (5). It should be noted ()
here that the Fourier method of estimating the local velociti€®. 5. Normal flows corresponding to the (a) largest eigenvalue and (b) the
assumes that patterns of thermal gradient are moving Wlthﬁﬁfond largest eigenvalue computed from the Meteosat sequence correspond-

to the 05:00 GMT frame.

change over the time period spanning the actual filter size [18”]g

We will use a set of six Gabor filter pairs to sample _ _
the Fourier domain. The spatio-temporal directions of th#eviation of the Gaussian envelope should be approximately
Gabor filters are shown in Table I. Setting the bandwidth.5 when operating on the second level of a Gaussian pyramid
to one octave to approximate quadrature filter pairs, and [38] (i.e., corresponding to a pixel size of 28 km/pixel). By
assuming a maximum (normal) velocity of 100 ms as truncating the Gaussian envelope of the Gabor filters at three
prescribed in [2], we find by using (4) that the standarstandard deviations, we arrive at the filter size 2717 x
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G N v o Sl P N . : i i i
\3;’7////7/////////////,,.2 at 05:00 and 05:30 GMT. Note the_ echoing of aI_I thg moving contours. It is
evident that our approach results in a more satisfying, sharper intermediate

image without echoes.

Fig. 6. Velocity field computed from the Meteosat sequence corresponding
to the 05:00 GMT frame using: = 0.11.

NN R N S S Attt
: SRR
17. Because the Gabor filter kernels are separable [7], the 12> 00 TIANAN N {’7“

. . . LT UNAN NNV ALY A I T
three-dimensional (3-D) convolutions may be performed by ZS3ST50000.  cvvaaanaaaa il
84 1-D convolutions. Thus, reducing the computational load BN
by a factor of 40. R N R

The parametersy and 3(= 1 — «) of (11) allow us to ‘f???i\gggi N NN
control the final velocity field. We will choose the optimal ‘ L AR i‘ CoLoTTTI
. . . .. . N [ P

o for a given image at timg as the one that minimizes AR R R
. . \\\ﬂ’»/’ ! 7 d ::‘,—>—>
the mean value of the absolute differences between the pi §§§:ﬁ%;% A s
intensities of a predicted and the actual image at timel. szfiﬁﬁﬁﬁ???ﬁ 2 2 22;/Zﬁ
The predicted image is calculated by moving the pixels of th ST
. . . . . . S a2V,
image at timef according to the estimated flow field at time MG CRREE S S
d resampling using nearest neighbor interpolation. The me ST n LA IS S
Gl pling 9 ; 9 p S o P A e e A A

value of the absolute differences between the pixel intensities

of a predicted and the actual image at titne¢ 1 is shown in Fic. 8. Velocity field ed from the Meteosat i
. . . eloCity Tield computed trom the ieteosat sequence corresponding

Fig. 4. For the N_Ieteosat sequence correspondlng to the 05t e 05:00 GMT frame, estimated using the average of the 04:30 and the

GMT frame we find thaty should be chosen t@ = 0.11. The 05:30 GMT images in the place of the 05:00 image.

estimated normal flows for this image are shown in Fig. 5 and

the estimated flow field is shown in Fig. 6. C. Missing Frame Replacement by Temporal Interpolation

o . At least twice every day we have missing frames in the

B. Temporal Interpolation in a Meteosat Satellite Sequence \jateosat sequences. This is very disturbing to the eye when
An obvious application of the flow field estimation isviewing the sequence as a film. We will show how the
temporal interpolation. We will illustrate how this may bealgorithm described above may be used to generate a satis-
done by using the flow field from Fig. 6. We will generatdactory replacement for the missing frame. First, we need to
an intermediate image between the original images recordestimate the flow field at the time of the missing frame. When
at 05:00 and 05:30 GMT. We extrapolate from each of theerforming the filtering operation, we will replace the missing
two original images by using the corresponding flow fielrame with the average of the previous and the next images. In
estimates. As we emphasize, while not blurring the imagerder to evaluate how this affects the flow estimation, we have
we will use a nearest neighbor interpolation scheme to sampégnoved the original 05:00 GMT image from the sequence,
the extrapolated images to the original grid. Finally, we tal®ubstituted it with the average of the 04:30 and 05:30 GMT
the average of the two extrapolations. This is our intermedidteages, and computed the flow field. The resulting field is
image. shown in Fig. 8. Now we can generate the replacement 05:00
The interpolated images are shown in Fig. 7(a). Avea image by warping the 04:30 image according to this flow field.

approach to an interpolation would be to simply take the Fig. 9 shows the capability for the missing frame replace-
average of the two originals. The result of this is shown iment of the algorithm. In the top row, a 120 120 pixel
Fig. 7(b). We can see that theiwa approach results in a muchsegment from the Meteosat sequence corresponding to times
more blurred result than the method based on the estima@{d30, 05:00, and 05:30 is shown. In the bottom row, we
flow field. This intermediate image on the other hand displagee the replacement 05:00 image. This image is generated by
a very satisfactory temporal interpolation. estimating the flow field in a sequence where the 05:00 image
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Fig. 9. This figure shows the capability for missing frame replacement of the algorithm. In the top row, >a 120 pixel segment from the Meteosat
sequence corresponding to times 04:30, 05:00, and 05:30 is shown. In the bottom row, we see the replacement 05:00 image.

is replaced by the pixelwise average of the 04:30 and tige not possible and in order obtain better resolution of the

05:30 images and subsequently by using the 04:30 flow fieldlocity estimates, we may utilize a pyramid representation

to project the 04:30 image to 05:00. To ease the identificatiofi the image sequence. Preliminary studies of this have been
of cloud features for the reader, a white grid is overlaid. ttarried out by Heeger [7]. Other studies that exploit the use

is evident that position as well as shape of the clouds @f a coarse to fine approach include [30].

the replacement image correspond well to the original 05:00

image.
C. Integration Using Markovian Random Fields
V. DISCUSSION The Markovian random field approach to integrate the
measured normal flows has proven to be a powerful and
A. Data successful technique. We have used restrictions on the first-

order spatial derivatives of the flow field to reconstruct the

The purpose of the exercises described above has beeqdg field. The diversity of the admissible fields has proven
perform a nonblurred temporal interpolation of the sequenceligicient for the estimation of flow fields in the case shown.
should be noted that the extracted flow fields do not necessasiyg experiments indicate that it is necessary to restrict the

assimilate the corresponding wind fields. This is true becauggy.order derivatives in order to propagate velocities across
only some clouds move with the wind. Other problems alRgions of sparse measurements.

that we are only observing the top layer of the clouds and thatrhe smoothness constraints have been chosen from a math-
the wind speed varies with height [29]. ematical and not a physical point of view. Smoothness con-
The use of the Fourier technique assumes that the patteffiSints involving terms that are more easily interpreted may
of thermal gradient are moving without (or with little) changye constructed. The sum of the norm of the first-order spatial
over the time period spanned by the filters. Other physicglyivatives may for instance be separated into three forms
processes that have an effect are diffusion and different typgsyeformation: dilation, shear, and rotation [31]. Knowledge
of heat transfer (sources/sinks) other than advection [3], [18k he physical phenomena we are observing may then be

translated into different weights for the three terms. Also
B. Estimation of Normal Flows the estimation may be improved by including restrictions on
The spatio-temporal Gabor filtering described in Section IIfemporal variation.
A provides a robust estimation of normal flows. In addition to
identifying the zero, one, or two normal flows at each pixel, it )
provides us with a measure of the confidence we should att&eh Temporal Interpolation
to the corresponding normal flow. By using the flow field when performing the temporal
The filter design (and choice of scale) has been based interpolations, we have achieved much more satisfying results
an assumption of a maximum velocity based on the physidhhn the simple alternatives shown. The flow field estimations
phenomenon that we are observing. In situations where thisd the interpolations shown have, however, been contingent
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on the intensity variation across the image being due to clou
only.
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In order to illustrate the power of the flow-field estimation W SN \ \\ ii/, é/\jJ E
technique described in this article for the estimation of fluid k\\\ \ qj;j}ji;%l é ;
motion in spacecraft data, we will make a comparison with 350y 4 2555%};%” !
a standard technique for motion estimation by Anandan [127]. S35 5 oS3 bl M}éf;gﬁﬁj | 1 \
. . . NN NS T / g
We have chosen this method because it also results in a 10P%- <~ SR 1 1 7 /92 f\““ AN AR

dense flow field, and because it too recognizes and utilizes the

directional confidences in the estimated local velocities.  Fig. 10. \Velocity field computed from the Meteosat sequence corresponding
Anandan’s algorithm consists of a hierarchical matchirfg the 05:00 GMT frame by use of the Anandan algorithm [12].

strategy based on a Laplacian pyramid representation of the

images. At each level, the velocity at a pixel is estimated be 8.3, which is significantly higher. Thus, showing the

as the displacement that yields the best match between imagenpetitiveness of the algorithm described in this paper.

regions at different times. The best match is defined as the one

that minimizes the sum-of-squared differences (SSD) within VI]. CONCLUSION

a 5 x 5 window with Gaussian weights. The search space

for the local velocity estimates is determined as thex 3 b i f the local distributi f db

neighborhood of the displacement computed at the immedig@>cvatons of Ihe focal distrioution of energy measured by

coarser level. Subpixel accuracy is obtained by fitting aaset of Gabor-type filters and a prior distribution involving

quadratic surface to the SSD values about the minimurr%strlctmns on the first-order derivatives using Markovian

SSD value found with integer values. Furthermore, directiong}ndom fields h_as been desgrlbed. Th.e estimation technlque
formulated using the Bayesian paradigm, and the maximum

. . . . .
nfidence m r r riv xtracting the principl T . . o
confidence measures are derived by e t"?‘c.t g the princ Fz%%osterlorlestlmate is found by use of the iterated conditional
curvatures of the SSD surface at the minimum. Then th . .
odes algorithm. The parameters of the model consist of the

smoothness constraint of Horn and Schunk [4] is employercrfj.oice of standard deviation of the Gaussian envelope of the

The sum of the squared first-order spatial derivatives of t ; ;
flow field and the deviations from the local estimates weight(;g(?‘i"mor filters and of a parameter that balances the trust in the

by the directional confidences is minimized over the entit cal observations of flow and the smoothness constraint that
field. The algorithm is initialized at the coarsest level bis inherent in the Markov model. The first of these parameters

centering the search area at the position corresponding t(})/S é:hosen by setting a maximum velocity. For the application

displacement equa to. csimated by using an exteror cerion based on tne abily o
In this comparison, we also start by subsampling the originar?edict the r?ext irr?a e in the sequence by use of the estimyated
images by a factor of four. By using four levels of th low field 9 q y

Laplacian pyramid, we are able to contain a maximum veloci yThe estimated flow fields have been used successfully in

f 100-ms! = 6.4 pixels/frame in th rch ar h : . .
of 100-ms 6.4 pixels/frame . the search area att ?wo temporal interpolation schemes. First we have used the
coarsest level. We use a software implementation of Anandaﬂ S . . ) :

. : . ow fields to generate intermediate frames in a sequence of
al_gorlthm used i and made _ava||ab|e by Ba_r aral. [35]. In eteosat images, and second, we have used the estimated
g'sgoéoGl\tﬂh.? O?S{E:]:Iﬂtg?egg;vt 22Idugggreeizﬁ]ndrr?aaodQ#gl:rs];tzhfotam fields to generate replacements for missing frames in the
o : . q g /AN i sequence. Both schemes are superior to the simple alternatives
is shown. It is evident that there are qualitative dlﬁerenc%%own Furthermore we have made a comparison between our
between the flow field estimated by our method shown | 5'gorithm and a standard method for estimating smooth flow

Fig. € and that using Anandan’s method. The latter field d(fl s. For the case study of this article our algorithm turned
not possess the degree of continuity that would be expecte td ' . y : 9
to be superior to the standard algorithm.

&
a natural phenomenon as the one we are observing. We n%fy
guantify this difference by using the same measure of goodness
as we did when estimating the smoothness parameter of our
method. For the optimal we found that the mean value of the The authors wish to thank Senior Scientists H. Valeur and P.
absolute differences between the prediction of the next imajeelsen of the Danish Meteorological Institute, for providing
in the sequence using the estimated flow field was 5.5. Horage data. Also, Dr. J. Simpson of the Scripps Institution of
all other «’s in the range [0.01, 0.99] this measure is nevédceanography, University of California, San Diego, is thanked
above 6.2. For Anandan’s method, we find the same quantity his comments on an earlier version of this paper. Finally,

A technique for estimation of smooth flow fields based on
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