High-speed OTDM switching

Jepsen, Kim Stokholm; Mikkelsen, Benny; Clausen, Anders; Poulsen, Henrik Nørskov; Stubkjær, Kristian; Vaa, Michael


Link to article, DOI: 10.1109/CLEO.1998.675780

Publication date: 1998

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

The speed limit for electronic switching and signal processing is currently 30–40 Gbit/s, and thus optical techniques are needed in order to fully exploit the transmission bandwidth of optical fibers. Two complementary techniques for optical multiplexing exist, namely, optical time division multiplexing (OTDM) and wavelength division multiplexing (WDM). In both technologies the basic multiplexing and demultiplexing is carried out in the optical domain, but more advanced signal processing such as switching and regeneration can also be performed all-optically, i.e., without any optoelectronic conversion. WDM offers simple (passive) demultiplexing and routing of the optical channels, while, on the other hand, OTDM has transmission advantages such as simultaneous dispersion compensation and regeneration of all channels, reduced requirements to erbium-doped fiber amplifier gain flatness, and zero cross talk from four-wave mixing (FWM) or stimulated Raman scattering (SRS). As such, OTDM is well suited for "backbone" networks with long spans and few nodes but is also being considered for ultrahigh-speed local area networks (LANs). Several research groups and projects are currently investigating OTDM technology, and the state of the art currently allows point-to-point transmission followed by clock recovery and demultiplexing of up to 400-Gbit/s signals.

Besides the techniques needed for point-to-point transmission, networking issues are also important in OTDM systems. As an example, consider WDM islands or OTDM rings, which are interconnected by an OTDM bus as shown in Fig. 1, which also lists the key functionalities needed in an OTDM network. At the network nodes, add/drop multiplexers (ADM) are placed for dropping (demultiplexing) channels from the bus and inserting new channels into the vacant timeslots. If the "add" channels originate from remote locations, an all-optical bit alignment and regeneration prior to adding is essential. In packet-switched networks, methods for dynamic header processing and routing and packet buffering are also needed.

High-speed all-optical signal processing/switching such as clock recovery, demultiplexing, header processing, and buffering has been demonstrated at very high speeds using electroabsorption modulators, FWM in semiconductor optical amplifiers, and a variety of NOLM schemes using both fiber- and semiconductor-based nonlinearities. Also, SOAs monolithically integrated in Mach-Zehnder [Fig. 2(a)] or Michelson interferometers (SOA-MZI or SOA-MI) have proven to be a flexible solution as, e.g., add/drop multiplexers and regenerative wavelength and format converters with ultrahigh-speed capabilities. Using these structures, stable, bit-rate flexible demultiplexing can be performed as shown in Fig. 2(b). Moreover, the devices enable an efficient clearing of time slots for performing add/drop multiplexing, as seen in Fig. 2(c).

A further example of the application of this type of device in the context of OTDM networking is given in Fig. 3. Here two all-optical SOA-MI wavelength converters (AOWCs) are cascaded to perform the tasks of bit alignment, regeneration, wavelength conversion, and, if needed, format conversion, providing the interface from a local network to an OTDM bus.

To summarize, OTDM continues to be of interest both for point-point transmission and as a networking technology for both LANs and long-distance transmission. Recent research has demonstrated enabling techniques for OTDM networks at high speeds, and in conclusion, OTDM is emerging as an attractive complement to WDM.