Increase in voice level and speaker comfort in lecture rooms

Brunskog, Jonas; Gade, Anders Christian; Bellester, Gaspar Payá; Calbo, Lilian Reig

Published in:
Journal of the Acoustical Society of America

Link to article, DOI:
10.1121/1.3081396

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Increase in voice level and speaker comfort in lecture rooms

Jonas Brunskoga and Anders Christian Gade
Acoustic Technology, DTU Electro, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark

Gaspar Payá Bellester
C/Sènia 1, ler. Monòver, E-03640 Alicante, Spain

Lilian Reig Calbo
C/Aitana, 48, BJ-A Muro de Alcoy, E-03830 Alicante, Spain

(Received 11 March 2008; revised 20 January 2009; accepted 20 January 2009)

Teachers often suffer from health problems related to their voice. These problems are related to their working environment, including the acoustics of the lecture rooms. However, there is a lack of studies linking the room acoustic parameters to the voice produced by the speaker. In this pilot study, the main goals are to investigate whether objectively measurable parameters of the rooms can be related to an increase in the voice sound power produced by speakers and to the speakers’ subjective judgments about the rooms. In six different rooms with different sizes, reverberation times, and other physical attributes, the sound power level produced by six speakers was measured. Objective room acoustic parameters were measured in the same rooms, including reverberation time and room gain, and questionnaires were handed out to people who had experience talking in the rooms. It is found that in different rooms significant changes in the sound power produced by the speaker can be found. It is also found that these changes mainly have to do with the size of the room and to the gain produced by the room. To describe this quality, a new room acoustic quantity called “room gain” is proposed. © 2009 Acoustical Society of America. [DOI: 10.1121/1.3081396]

PACS number(s): 43.55.Hy, 43.70.Aj [NX] Pages: 2072–2082

I. INTRODUCTION

The primary means of communication in most educational settings are speech and listening. The acoustics of the lecture room can restrict or support the speaker and improve the sound of the voice and the intelligibility of speech. The room acoustics in lecture rooms is therefore an important issue when considering the productivity and working environment in schools and other teaching situations. Thus, a large amount of work has been carried out within this field. However, the large body of published articles focuses on the point of view of the listener. It is therefore easy to find works on speech intelligibility in the room and advisable reverberation times (RTs) and background noise levels (BNLs) in order to achieve good learning conditions, etc., (see, e.g., Bi-stafa and Bradley 1). There are also standards and recommendations, 2–4 indicating how well established this field is.

However, it is known that teachers often suffer from health problems or tension related to their voice. Recent works made it evident that the teacher’s labor is one of the professions with high vocal demands. 5 Examples of other professions with high vocal demands are actors, singers, journalists, telephone operators, and military personnel. Studies show that a majority of teachers have experienced vocal problems, about one-tenth have severe problems, and 5% have experienced such severe, numerous, and frequent voice problems that their working ability is challenged. 5 For the teacher, in the long run, this voice load due to speaking in the classroom can result in voice disorders such as hoarseness and voice fatigue and can even force teachers to retire early from their profession. Lubman and Sutherland 6 disclosed that this is an important economic problem for governments and private schools.

Most teachers have probably experienced that different rooms vary in comfort when one speaks in them. However, even though the vocal problem is so important, just a few studies about the speaker and his behavior in and impression of the lecture room have been accomplished. One example is Kleiner and Berntson, 7 where the early reflections of the sound produced by the speaker were studied in a synthetic experimental setup. A system of loudspeakers in an anechoic chamber was used to simulate different rooms. All settings simulated rooms with different shapes but the same volume. The interest was in the effect of lateral and vertical early reflections on the speakers’ comfort. Different combinations of delayed simulated reflections were tested. A paired-comparison test was used in order to find the setting preferred by the speakers. It was concluded that symmetrical settings were preferred over asymmetrical ones. There was however no significant difference between the different symmetrical settings, and perfectly symmetrical settings are not realistic in real rooms with a movable speaker. It can be noted that this was an entirely subjective study—no objective values were calculated from the simulated impulse responses. Kob et al. 8 presented results from a study where the voice status of 25 teachers were investigated using standard methods as applied by audimetrisists, phoniatricians, and speech therapists, in addition to an acoustic analysis of speech and voice samples. The acoustics of some rooms was...
also investigated, and the result of speaking in different rooms was analyzed dependent on the voice status. The results indicate an influence of both the room acoustics and the voice status on the voice quality of the teachers. But the study used RT and speech transmission index as the parameters describing the room acoustic environment. Thus, no clear distinction was made between the problem perceived by the listener and the speaker.

Several studies in which different voice parameters were measured in real classrooms have been reported, e.g., Rantala et al.9,10 or Jonsdottir et al.11 However, in these studies the influence of the room was not included. Instead, the focus here was to study different subgroups of speakers, e.g., with and without voice problems. The voice parameters were primarily the voice level [defined as the sound pressure level a distance of 1 m from the speaker] and pitch (more specifically the fundamental frequency F_0 of the voice signal) and fluctuations in these parameters.

Thus, the literature relating the room to the speaker and the voice signal produced is rather thin; not much information is available on how to design or improve the room in order to make a better environment for the speaker. However, such information is available in the field of acoustics of rooms for music performance. Also here, the majority of works deal with the conditions for the audience, but there have also been studies concerning how musicians experience and react to the room acoustics. An important example is Gade,12 who, in a laboratory experiment in an anechoic chamber equipped with a loudspeaker system similar to that of Kleiner and Berntson,7 let musicians play in and react to simulated sound fields. Gade et al.13 also carried out corresponding subjective and objective studies in real concert halls. In both cases the subjective response answered by the musicians were correlated with different objective measures. Gade found that the “support” provided by the room—the sensation that the room responds to his instrumental effort—is important for the musicians. Gade defines an objective measure, called ST, that correlates well with the sensation of support. ST is determined as

$$ST = 10 \log \frac{E_{20-\infty}}{E_{dir}},$$

(1)

where $E_{20-\infty}$ is the energy in the impulse response from 20 ms to x ms (x being either 100 or 200 ms, or even infinity) [see Eq. (2)] and E_{dir} is the energy in the direct path, defined as $E_{dir}=E_{0-10}$ which is the energy within the first 10 ms. The impulse response is to be measured with a source-receiver distance of 1 m. Obviously, 1 m distance is larger than the typical distance between the musician’s ear and his instrument, but this distance was still chosen to obtain a measure with sensible variation and dynamic range. ST is thus the fraction of energy coming later than 20 ms relative to the direct sound. In the absence of reflected sound ST equals $\rightarrow 0$ dB, and a zero support, $ST=0$ dB, means that the total contribution from the reflections equals the direct sound. This definition works well in large rooms where the direct part of the impulse response is clearly separated from the reflections, but measurements of ST is problematic for smaller rooms. Another problem with the definition in Eq. (1) is that it does not clearly reflect what happens close to the source, which at the same time is the position to be studied. In the real situation, e.g., in case of singing or speaking, the source is the mouth and the receiver position is the ear, just a few centimeters away. The direct path is thus described by the transfer function (or impulse response) from the mouth, around the head, to the ear in absence of reflections. How to deal with this is not obvious in case of the definition in Eq. (1). A third problem is that an anechoic chamber is included in the present study, and ST is undefined in such a room. Thus, in the present study we have made use of another definition using the measured impulse response of a setup with an artificial dummy head torso and taking as reference the measured value in an anechoic room. The new quantity is called room gain, with abbreviation RG and variable G_{RG} (see Sec. II C).

It seems likely that the vocal problems of teachers are due to the voice level being increased in different situations when teachers feel uncomfortable with the environment. The environment here not only includes the physical environment of the lecture room, but also the students and the overall working conditions. There are two hypotheses here, one being that vocal health problems are related to an environment where the speaker feels that he must increase his voice, the other being that the physical environment itself can cause the speaker to increase his voice. Only the latter will be tested in the present paper. The aim of this project was thus to find some of the parameters that cause the speaker to force their voice and situations when it is uncomfortable to speak.

Aspects not taken into account in this study are the influence of the audience, including the background noise (BN) produced by them, the change in voice during the day, the influence of voice problems of the subjects and other aspects related to the subjects (e.g., mood or attitude toward teaching), and the speech intelligibility in the rooms, subjectively or objectively. Moreover, the study only deals with nonamplified voices.

One question is then which objectively measurable parameters to include in the study. Real rooms are to be used, and the focus is on the speaker, not the listener. Thus, the parameters should be related to what the speaker experiences at the position where he speaks. Parameters related to speech recognition and intelligibility are therefore left out. The impulse response contains all information of the transfer path from source to receiver, and most measures can be calculated from it. It is however important that the source and receiver positions are as correct as possible. Parameters that are extracted from the impulse response are the RT and the RG. Parameters not included in the impulse response are those not directly related to the acoustic transfer path—that is, BN and the size of the room. Thus, four basic parameters are chosen to characterize each room—RT, RG, BNL and volume. However, different variants of these parameters were tested as well.

In the subjective study, most of the questions were related to the objective parameters. Thus, the subjects were asked about the impression of reverberation and support, as well as background level in the rooms studied. They were also asked about the general impression of speaking in the
room and if they raised their voice when speaking. A question about echo phenomena was also included in order to be able to say if this parameter influences the general impression of the room.

The main findings in this paper is that the different rooms significantly change the sound power produced by the speaker. It is found that these changes mainly have to do with the size and the RG of the room.

II. METHOD
A. Method overview

Both subjective responses and objective measures of the room and of the voice level are collected. A selection of different natural acoustic environments are used—opposite of using a synthetic sound field. In simulated sound fields the variables can be changed rapidly and with precision in wide ranges. However, the sound quality is still limited due to the need for real time processing of the signals produced by the speaker. Moreover, the visual impression of the room cannot easily be included—this might be a positive aspect in many cases, but here it is important to get the visual size of the room and the distance to the audience right. Therefore, real rooms were chosen to be used—six in total. The range in the physical parameters of the rooms used was wide, including small meeting and listening rooms, a medium size lecture room, two larger auditoria, one with high RT and one with low RT, and a large anechoic room.

In the six rooms the sound power level produced by six speakers was measured. Each of the speakers held a short lecture (about 5 min). Objective room acoustic parameters were measured in the rooms as well, and a subjective questionnaire was handed out to about 20 persons who had experience in speaking in the rooms. A statistical analysis was then used to find relationships between the subjective responses and the objective measures.

B. The subjects

In the objective study six speakers were used. Three of these were teachers at Acoustic Technology, Ørsted*DTU; the other three were students in acoustics. In one of the rooms (meeting room 112, building 352), only five speakers were present. The speakers had no known voice pathology. Each speaker was instructed to give the same lecture in all rooms. However, as the speakers did not have a written text to read, the lectures were not identical. Most speakers used a laptop computer with a Powerpoint presentation as the basis of the speech. In order to get the background level identical, a laptop and a video projector (if available in the room) were present also for those not using it. All speakers were male, age about 20–55. There is a possibility that the speakers do not fully represent all relevant speakers, as it consisted of those finding it interesting to participate. Actually, the teachers participating were known to have weak voices (low voice power). However, most of the analysis are made on a relative voice power level (VPL) (see Sec. II C), which decreases the variance in the data. Another subset problem might be that all subjects were acousticians, a fact that might influence the result—we choose to believe that this has a minor influence only.

In the subjective study 21 subjects participated (between 14 and 21 responses were collected for each room, see Table I). The subjects were teachers and students in acoustics—the participants in the objective part were also present in the subjective part. Both male and female subjects aged between about 20 and 60 participated.

C. Objective measurements and equipment

1. Impulse response measurements

The impulse response $h(t)$ of the rooms is measured to calculate RT and RG. The equipment used for the measurements were power amplifier LAB 300 from LAB Gruppen, microphone unit type 4192-L-001 Brüel & Kjær (B&K), conditioning preamplifier Nexus type 2690 B&K, and sound level calibrator type 4231 B&K. In case of the reverberation measurements, an omnidirectional dodecahedron loudspeaker was used, and in case of the RG measurements a dummy head torso was used, as described below. The DIRAC software was used with e-sweep excitation signal. The sweep length was 21.8 s.

2. Reverberation time

Generally, the most important room acoustic parameter is the RT (variable T_{30}) (see ISO 3382). The early decay time (EDT) (variable T_{EDT}), is the RT determined from the first 10 dB range of the decay curve. The EDT is known to be more closely related to the subjective impression of reverberation than RT. In the analysis EDT was mainly used. (A reference of these basic room acoustic parameters is Kuttruff."

The RT is calculated from the impulse response using the Schroeder method. The RTs were calculated in octave

Table I. The rooms used in the experiments and their objective values.

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbrev.</th>
<th>V (m3)</th>
<th>T_{30} (s)</th>
<th>T_{EDT} (s)</th>
<th>G_{RG} (dB)</th>
<th>$L_{\text{REX,A}}$ (dB)</th>
<th>nr. c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auditorium 81</td>
<td>A81</td>
<td>1900</td>
<td>1.06</td>
<td>1.12</td>
<td>0.28</td>
<td>41.8</td>
<td>14</td>
</tr>
<tr>
<td>Auditorium 21</td>
<td>A21</td>
<td>1220</td>
<td>1.53</td>
<td>1.72</td>
<td>0.29</td>
<td>53.5</td>
<td>19</td>
</tr>
<tr>
<td>Lecture r. 019</td>
<td>LR</td>
<td>190</td>
<td>0.46</td>
<td>0.40</td>
<td>0.42</td>
<td>47.5</td>
<td>21</td>
</tr>
<tr>
<td>Meeting r. 112</td>
<td>MR</td>
<td>94</td>
<td>0.42</td>
<td>0.33</td>
<td>0.58</td>
<td>47.5</td>
<td>17</td>
</tr>
<tr>
<td>Large anechoic ch.</td>
<td>ACH</td>
<td>1000</td>
<td>0.06</td>
<td>0.01</td>
<td>0</td>
<td>45.9</td>
<td>17</td>
</tr>
<tr>
<td>IEC listening room chamber</td>
<td>IEC</td>
<td>100</td>
<td>0.34</td>
<td>0.32</td>
<td>1.12</td>
<td>46.7</td>
<td>16</td>
</tr>
</tbody>
</table>
bands. In order to describe the RT as a single number, the arithmetic mean of the RT in the octave bands centered in 500 and 1000 Hz is used.

3. Room gain

The transmission path from the mouth to the ear has three parts: bone conduction, a direct airborne part, and a room reflection part; it is the latter path that is of interest here. The perceived beneficial increase in the loudness caused by the room is assumed to be due to the early reflections as compared to the direct response without reflections, perceived as one’s ability to hear oneself properly in the room. This is here denoted as a gain, or support, caused by the room. The parameter used in the present study is called RG (variable G_{RG}). It is defined as the energy (in decibels) of the impulse response measured between the mouth and the ear of a dummy head torso, taking as reference the corresponding measurement in the anechoic chamber where only the direct sound is present. As explained earlier, the reason for not using the support measure ST is that small rooms are also to be included in the present study, and then the definition of the ST is not appropriate, as the direct part of the impulse cannot be separated from the rest of the impulse response. Moreover, an anechoic chamber is included in the study, and here $ST = -\infty$.

The energy of an impulse response in a time interval t_1 to t_2 can be calculated as

$$E_{t_1-t_2} = \int_{t_1}^{t_2} h^2(t) dt,$$

where $h(t)$ is the impulse response. The energy in the entire impulse response is in the same way,

$$E = \int_{0}^{\infty} h^2(t) dt.$$

The corresponding impulse energy level is $L_E = 10 \log E/E_{ref}$, where E_{ref} is the reference value. The RG is then defined as the energy in decibel in the signal relative to the direct energy as measured in the anechoic chamber,

$$G_{RG} = L_E - L_{E,ach} = 10 \log E/E_{ach},$$

where $L_{E,ach}$ and E_{ach} are the impulse energy level and energy in the anechoic chamber, respectively.

The RG is related to the support ST, as defined in Eq. (1). If it is assumed that $E_{ach} = E_{0-20} = E_{ach}$ and $E_{20-x} = E_{20-\infty}$, then

$$ST = 10 \log \frac{E - E_{0-20}}{E_{ach}} = 10 \log (10^{G_{RG}/10} - 1).$$

A support value of $ST = 0$ thus corresponds to $G_{RG} = 3$ dB, meaning that the reflections contribute with the same energy as the direct sound. It should, however, be noticed that the source/receiver distance is different in the definition of ST as compared to G_{RG}.

The equipment used was the same as described under the impulse response above, with the following changes: dummy head, head and torso simulator type 4128 with right ear simulator type 4158 and left ear simulator type 4159 B&K, and power amplifier for the sound source (the dummy head).

The dummy head was placed in the area where the speaker normally stands during the lecture (next to the blackboard or similar). The average of six different positions of the dummy head was used. Moreover, the average RG of the left and right channels was calculated and used in the data analysis.

The RG was calculated from the impulse response by means of postprocessing in MATLAB. All signals have been normalized with a maximum amplitude of the signal to 1 (amplitude of the first peak of the impulse response). Some problems with the signals were found during the analysis. Noise was found in all the signals. In order to reduce the effect of this problem, all the impulse response signals were truncated (cutted) so as to avoid the last part of the signal, which mainly contained noise. Thus, the noise effect was minimized, and it is judged that its influence can be disregarded.

The RG was calculated per octave band. In order to define the RG of the room with one characteristic value, the arithmetic mean of the RG in the octave bands between 125 Hz and 4 kHz is used.

4. Background noise level

In a speech situation the BNL (variable $L_{BN,A}$) is important. BNL can be defined as the sound pressure level of the noise measured in the absence of the sound under investigation—in this case the speech. The BN can originate from the ventilation systems, the outdoor environment and traffic, equipment such as computers and projectors, and the students/audience. As the BNL increases, the speaker may increase his voice to compensate and overcome the noise in order to be heard. The voice will be affected by the mental pressure due to the failure of being heard. The frequency content in the voice signal will then be changed—there will be more high frequency content due to an increased fundamental frequency. These changes are known as the Lombard effect; an early reference is Lane and Tranel.17 The effect is included in ANSI-S3.5.2 (Sometimes, the term “Lombard effect” is restricted to just the increase.) This is also closely related to the fact that in a situation with several people talking to each other, they increase their voice level due to schedule reasons and time limits; the present project is focused on the characteristics of the room only, leaving this important aspect to further research. The number of listeners present in the room was just a few (3–5) and adult, so there contribution to the BNL is assumed to be low. The BNL naturally present in the rooms (from the ventilation system, video projector, computers, etc.) was, however, registered.
The equipment used to measure L_{BN} is the same as for the impulse response measurements for the reverberation. The measurement duration is 21.8 s. The mean value of six microphone positions have been used in all rooms. The positions were in the area the teacher was using. To get a single value, the A-weighted level $L_{BN,A}$ is used. The equipment used by the speakers (laptop computer and projector) was present in the room during the measurement.

5. Room volume

Of the objective parameters describing the rooms, finally the size or volume (variable V) has also been used. The hypothesis here is that the speakers unconsciously adjusts the level of the voice depending on the room size and the distance to the audience, so that everyone is likely to hear. However, it is not clear if it is the volume by itself or a typical length scale in the room that is the primary variable here. Thus, V, $\log V$, and $\sqrt[3]{V}$ were all tested.

6. Voice power level

With the rooms defined, the last step is to define the behavior of the speaker in the room. In this project, this is described by the strength of the speaker’s voice. The quantity used here is the voice power level (VPL) (variable L_W) that is the source power in decibel. Thus, the sound power level produced during speech by the different test speakers was measured in the different rooms.

The measurement of the VPL is a central issue of this paper. The measurements are made with a computer phone conversation headset, placed on the speaking subjects. The experimenter made sure that the position of the headset was fixed to the same position in all measurements, about 3 cm from the mouth. The equipment consisted of Headset Creative HS-390 and sound analyzer Dirac. The signals were measured while the speaker was lecturing for about 5 min. An average of 15 signal segments of 21.8 s were used for each subject.

A calibration procedure was needed to transfer the measured signals to sound power level L_W. The dummy head torso equipped with a loudspeaker in the mouth was placed in a reverberation chamber with the headset attached in the same position as described above. A broad band noise signal was fed to the loudspeaker and measured simultaneously by the headset and with microphones in the reverberant field of the room according to sound power level standard measurements (ISO 3743-2). The measurements and calibrations were performed in octave bands. The relation between the sound power of a source and the sound pressure level in one position determined by a microphone can generally be expressed as $L_W=L_p+G$, where G is a gain constant for the setup (depending on the source-receiver distance and source directivity) and L_p is the sound pressure level as measured by the headset. It is now assumed that the microphone is so close to the source that only the direct field is present (i.e., the signal to noise ratio is assumed to be so good that the room response can be neglected). Moreover, it is also assumed that all speakers had the same directivity, equal to that of the dummy head. It is thus assumed that G is constant during all measurements in all rooms. (Note that this quantity obviously is different from G_{RG}.) Finally, having determined both L_W and L_p at the same time in the reverberation chamber, the gain constant G is determined.

The VPL is determined in octave bands from 125 Hz to 4 kHz. In order to have a single value, three different methods are tested: linear ($L_{W,a}$) and A-weighted ($L_{W,A}$) absolute VPL and linear VPL relative to the VPL in the anechoic chamber (ACH), ΔL_W. Note that the subtraction is made for each speaker, so that ΔL_W is made relative to the VPL for that speaker in the ACH. In this way the variance is reduced. The ACH room was chosen as it was the room with the highest average VPL. (The room with the lowest VPL, the meeting room (MR), was also considered to be used as a reference, but this idea was dropped as not all speakers spoke in this room.)

D. The rooms

To get good statistic results, it is important to apply a wide range and even distribution of the different physical variables defining the room. The rooms and the values of the objective measures are given in Table I. The rooms were a small MR and an IEC listening room (IEC), a medium size lecture room (LR), two larger auditoria, one with high RT (A21) and one with low (A81), and a large anechoic room (ACH). Including the anechoic room means that the subjects have a very clear reference for RT and RG—which both are zero in this room. Besides, ACH is relevant as it represents the outer surroundings. The range covered by the volume, the RT and the RG can be considered large in comparison to what can be found in real life situations. For the BN, only the naturally present BN was included. Thus, this variation is small as compared to what can be found in real life situations.

E. Questionnaire and subjective response

In an attempt to relate the objective parameters of the room and the VPL to the subjective experience of the rooms, a questionnaire was designed. The questions were formulated after a first interview with a few teachers. The parameters considered are described below.

The questions were answered for each of the rooms in which the subject had experience talking. Thus, the subjects were not necessarily in the room when the questions were answered—in an attempt to increase the number of answered questionnaires. 21 subjects answered the questions; the number of answers for each room varied between 14 and 21 (see Table I). The questions were answered on a scale from 1 to 7. Only the natural numbers were used. Taking the arithmetic average of these answers, a subjective response variable S_i was formed, where the index i is the abbreviation of the question (see below).

The questions are the following (the questions are given in italic fonts)—it should, however, be noted that the these are not exactly the questions used (due to poor English).

Do you consider this room to be good to speak in? This question is referred to the degree of comfort and how easy it is to speak in the room. The rank is between low if the room...
is not good to speak in and high if it is good to speak in. This parameter is labeled GSI, variable S_{GSI}.

Do you think the RT is too long in the room? This question clearly refers to the objective parameter of RT. The rank in this case goes from “no” if the reverberation is not too long or “yes” if it is too long. This parameter is labeled TR, variable S_{TR}.

Have you noticed echo phenomena in the room? The sensation of echo might influence the general impression of the room, so this response is introduced even though it is not represented in the objective parameters. The answers should be covered between low if no echo is noticed and high if there is too much echo. This parameter is labeled ECHO, variable S_{ECHO}. A low score is considered good.

Is the BN too high in the room? The subjects’ response might be from “yes” if they think there is a lot of BN in the studied room to “no” if they think that there is no noise in the room. This parameter is labeled BN, variable S_{BN}. A low score is considered good.

Do you have to increase your voice in this room to be heard? This question is interrelated to the sound power level. The answer is between “no” if the subjects think they did not increase the voice, to “yes” if they did have to increase the voice. This parameter is labeled IV, variable S_{IV}. A low score is considered good.

Is there enough support in this room? This has to do with whether the room helps the speaker to hear himself. The rank is between bad support if they believe that the room does not yield support at all and good support if the support is sufficient. This parameter is labeled ES, variable S_{ES}. A high score is considered good.

F. Data analysis

The statistical analysis of the data was carried out in MATLAB. This analysis incorporates analysis of variance (ANOVA), correlation coefficients, and linear regressions.

In order to find relationships between the subjective responses and the objective parameters—a psychometric function—some postprocessing has been done. The psychometric function, relating a subjective parameter S with upper limit S_{max} and lower limit S_{min} and an objective parameter d (or a linear combination between such parameters) should be an S-shaped function. The reason for this is that the objective parameter is not bounded, $d \in [-\infty, \infty]$, but the subjective parameter is bounded, $S \in [S_{\text{min}}, S_{\text{max}}]$. One choice of such a function is

$$ S = \frac{S_{\text{max}} - S_{\text{min}}}{1 + e^{-d}} + S_{\text{min}} $$

(6)

(this choice of psychometric function is taken from paired-comparison theory\(^{19,20}\). The point of using such a relation is that S has a finite domain $S \in [S_{\text{min}} \cdot S_{\text{max}}]$, whereas d might have an infinite domain $d \in [-\infty, \infty]$. In the present case $S_{\text{max}} = 7$ and $S_{\text{min}} = 1$. Solving for d in Eq. (6), a suitable transformation from the finite S-domain to the infinite d-domain of the objective measures is found,

$$ d_s = -\ln \frac{S_{\text{max}} - S}{S - S_{\text{min}}} $$

(7)

The parameter d_s can be used as the dependent variable in regressions connecting objective measures to subjective response.

However, in some cases the objective parameter is non-negative, $d > 0$. That is the case for the RT and the RG. Moreover, in the present study the extreme situation of zero RT and RG is included in the study due to the use of the anechoic chamber. In these cases Eqs. (6) and (7) have to be modified. The following equations then applies:

$$ S = \frac{2(S_{\text{max}} - S_{\text{min}})}{1 + e^{-d}} + 2S_{\text{min}} - S_{\text{max}} $$

(8)

and

$$ d_s = -\ln \frac{S_{\text{max}} - S}{S - 2S_{\text{min}} + S_{\text{max}}} $$

(9)

However, in many cases the range of the objective parameter is so small that the error of using a linear regression directly between d and S is small. That is actually the case in the present study, and in the result section below, the regressions are often performed both using the psychometric function and directly between S and d.

III. RESULTS

A. Validity and quality of the data

An ANOVA is used to examine if the variations in the data are significant. The left part of Table II presents these results concerning the subjective parameters. The variations are significant except for BN, where no significant variations are found at the 5% level or better (p-value of 0.16), and for detection of echo ECHO, where the variations are significant at the lower level of 5% (p-value of 0.046), but not higher. It should here be noted that the variation in the background level of the rooms was small and that there are no known problems with echo or flutter echo in the rooms used. In the

<table>
<thead>
<tr>
<th>Question</th>
<th>GSI</th>
<th>TR</th>
<th>ECHO</th>
<th>BN</th>
<th>IV</th>
<th>ES</th>
<th>L_{WJ}</th>
<th>$L_{W,A}$</th>
<th>ΔL_W</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-value</td>
<td><10^{-6}</td>
<td><10^{-6}</td>
<td>0.046</td>
<td>0.16</td>
<td><10^{-6}</td>
<td><10^{-6}</td>
<td>0.13</td>
<td>0.11</td>
<td>0.036</td>
</tr>
<tr>
<td>Significance</td>
<td>***</td>
<td>***</td>
<td>*</td>
<td>___</td>
<td>***</td>
<td>***</td>
<td>___</td>
<td>___</td>
<td>*</td>
</tr>
</tbody>
</table>
same way, the right part of Table II presents the significance test of different versions of the VPL. Here the significance of the variations in the data is less, probably due to the lower number of subjects participating. However, taking VPL relative to the result in the anechoic chamber, ΔL_W, yields significant variations at the 5% level (p-value of 0.036).

In the further analysis, only $L_{W,l}$ and ΔL_W will be used describing the VPL. $L_{W,l}$ is disregarded as it does not increase the significance much and is not as straightforward as $L_{W,j}$. Moreover, results depending on the subjective responses BN and absolute VPL, $L_{W,j}$, should be considered only as trends.

B. Relationships among objective parameters

The objective parameters used to describe the rooms were presented in Table I. The objective changes in the VPL are presented in Table III. The correlation matrix between these parameters is given in Table IV. It should be noted that the VPL measures correlate well with the volume, especially log V, and the RG G_{RG}. There is no significant correlation between the VPL measures and RT and BN. It should also be noted that the RT measures and the BN measure do not correlate significantly with any other measure.

Note that the correlation between support ST as calculated in Eq. (1) and the other parameters is not included here as the support is undefined in the anechoic chamber due to the lack of reflections (the value would be $-\infty$).

The results of single variable linear regression are found in Table V. Only results with $p<0.1$ are shown. It is shown once again that log V and G_{RG} correlate well with VPL. A multiple linear regression model using these two variables is described by the fact that R^2 increases from 0.78 to 0.86 and at the same time the model is at the limit of significance. The model is shown in Fig. 1.

C. Relationships among subjective parameters

The subjective response parameters are presented in Table VI. The correlation matrix for these parameters is given in Table VII. Using the objective domain transformation according to Eqs. (7) and (9) yielded similar results.

The results of single variable linear regressions are found in the right part of Table V. Only results with $p<0.1$ are shown. It can be seen that S_{IV} and S_{ES} correlate well with S_{GS}; these regressions are also shown in Figs. 2 and 3. A multiple linear regression model using these two variables is

$$\Delta L_W = 5.68 + 1.81 \log V - 2.28 G_{RG},$$

with $R^2=0.86$ and $p=0.05$. The improvement of using two parameters is described by the fact that R^2 increases from 0.78 to 0.86 and at the same time the model is at the limit of significance. The model is shown in Fig. 1.

D. Relationships between subjective and objective parameters

Table VIII shows the correlation between the objective parameters and the subjective responses (the number of objective parameters has been reduced as T_{30} and \bar{V} have been

TABLE III. The rooms used in the experiments and their objective values.

<table>
<thead>
<tr>
<th>Abbrev.</th>
<th>$L_{W,j}$ (dB)</th>
<th>$L_{W,A}$ (dB)</th>
<th>ΔL_W (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A81</td>
<td>62.9</td>
<td>60.0</td>
<td>-1.30</td>
</tr>
<tr>
<td>A21</td>
<td>63.9</td>
<td>60.9</td>
<td>-0.08</td>
</tr>
<tr>
<td>LR</td>
<td>62.9</td>
<td>60.1</td>
<td>-1.93</td>
</tr>
<tr>
<td>MR</td>
<td>58.7</td>
<td>55.2</td>
<td>-4.33</td>
</tr>
<tr>
<td>ACH</td>
<td>65.0</td>
<td>62.1</td>
<td>0</td>
</tr>
<tr>
<td>IEC</td>
<td>59.8</td>
<td>57.0</td>
<td>-4.32</td>
</tr>
</tbody>
</table>

TABLE IV. Correlation matrix for the objective measures, including the VPL. Only correlations with $p<0.1$ are shown. Left: between VPL, ΔL_W and the objective parameters. Right: between S_{GS} and the subjective parameters. The variables b_0 and b_1 are the regression constants, the constant term and the linear term, respectively.

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>ΔL_W</th>
<th>S_{GS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent variables</td>
<td>log V</td>
<td>G_{RG}</td>
</tr>
<tr>
<td>R^2</td>
<td>0.78</td>
<td>0.74</td>
</tr>
<tr>
<td>p</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>b_1</td>
<td>2.94</td>
<td>-4.40</td>
</tr>
<tr>
<td>b_0</td>
<td>-9.64</td>
<td>-0.021</td>
</tr>
</tbody>
</table>

The results of single variable linear regressions are found in Table V. Only results with $p<0.1$ are shown. It is shown once again that log V and G_{RG} correlate well with VPL. A multiple linear regression model using these two variables is

$$\Delta L_W = 5.68 + 1.81 \log V - 2.28 G_{RG},$$

with $R^2=0.86$ and $p=0.05$. The improvement of using two parameters is described by the fact that R^2 increases from 0.78 to 0.86 and at the same time the model is at the limit of significance. The model is shown in Fig. 1.

C. Relationships among subjective parameters

The subjective response parameters are presented in Table VI. The correlation matrix for these parameters is given in Table VII. Using the objective domain transformation according to Eqs. (7) and (9) yielded similar results.

The results of single variable linear regressions are found in the right part of Table V. Only results with $p<0.1$ are shown. It can be seen that S_{IV} and S_{ES} correlate well with S_{GS}; these regressions are also shown in Figs. 2 and 3. A multiple linear regression model using these two variables is

$$S_{GS} = 6.82 - 0.715 S_{IV} - 0.189 S_{ES},$$

with $R^2=0.74$ and $p=0.13$. Thus, the improvement of the two parameter model was not large, and the model is not significant. This is probably due to a high linear dependency between S_{IV} and S_{ES}.

D. Relationships between subjective and objective parameters

Table VIII shows the correlation between the objective parameters and the subjective responses (the number of objective parameters has been reduced as T_{30} and \bar{V} have been
The results from single variable linear regressions are found in Table IX. Only the regressions with $p<0.1$ are shown. The regression between IV and ΔL_W is shown in Fig. 4, and that between TR and T_{EDT} is shown in Fig. 5. A multiple linear regression model for IV using two variables is

$$S_N = -0.198 + 1.73 \log V - 1.11G_{RG},$$

with $R^2=0.90$ and $p=0.03$. The improvement of using two parameters is described by the fact that R^2 increases from 0.86 to 0.90 while the model is still significant.

IV. ANALYSIS AND DISCUSSION

The ANOVA test in Table II indicates that in general the statistical quality of the subjective data is better than in the VPL data. One reason for this is probably the higher number of participants in the subjective questionnaire (about 20) as compared to the VPL measurements (about 6). However, it is known that it is difficult to get statistically consistent data for the voice strength (see, e.g., Rantala et al.8). Anyway, in the present study significant variations in the VPL data are found in case of the relative VPL, ΔL_{W}, using just six subjects. One reason for this is the normalization procedure of the data by taking the value relative to the anechoic chamber. In this way the natural variation in VPL among the subjects is reduced, and only the increments for different rooms are studied. Moreover, using a wide range of different rooms—including the anechoic chamber, large auditoriums, and small meeting rooms—is likely to increase the variation in VPL.

Considering Table IV, room volume and RG show high correlation with the VPL. An increase in volume increases the VPL, and an increase in RG decreases the VPL. These results are significant if considering ΔL_{W} related to log V and G_{RG}. Of the size measures, the logarithm of the volume, log V, has the highest correlation. One can regard $V^{1/3}$ to be a typical length scale of the room and log V to be related to the average sound pressure level in the room for a given source power level. Thus, the fact that the increase in VPL is better correlated to log V than $V^{1/3}$ suggests that the aural cues might be more important than the visual cues. The VPL relative to the value in the anechoic chamber, ΔL_{W}, correlates in general better than the absolute linear VPL, L_{W}. This is probably linked to the fact that ΔL_{W} has higher significance than $L_{W,1}$ in the ANOVA test in Table II. Equation (10) expresses the relationship between ΔL_{W}, log V, and G_{RG}, also shown in Fig. 1. In Table VIII there is a trend that ΔL_{W} is correlated with ES, the question related to support in the room. Moreover, log V and G_{RG} are correlated to IV, the

<table>
<thead>
<tr>
<th>Abbrev.</th>
<th>S_{GIS}</th>
<th>S_{TR}</th>
<th>S_{ECHO}</th>
<th>S_{BN}</th>
<th>S_{IV}</th>
<th>S_{ES}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A81</td>
<td>5.64/0.74</td>
<td>2.64/1.34</td>
<td>1.93/1.64</td>
<td>4.00/1.52</td>
<td>4.50/1.34</td>
<td>3.29/0.83</td>
</tr>
<tr>
<td>A21</td>
<td>3.37/1.54</td>
<td>5.16/1.50</td>
<td>3.42/2.11</td>
<td>3.74/1.59</td>
<td>5.16/1.26</td>
<td>4.16/0.96</td>
</tr>
<tr>
<td>LR</td>
<td>5.71/0.78</td>
<td>1.76/0.54</td>
<td>2.95/2.01</td>
<td>4.33/1.43</td>
<td>3.29/1.27</td>
<td>5.05/0.86</td>
</tr>
<tr>
<td>MR</td>
<td>6.12/1.27</td>
<td>2.00/1.00</td>
<td>2.53/2.03</td>
<td>4.59/1.80</td>
<td>2.12/1.05</td>
<td>5.53/0.94</td>
</tr>
<tr>
<td>ACH</td>
<td>2.59/2.03</td>
<td>1.00/0</td>
<td>1.41/1.46</td>
<td>5.29/2.73</td>
<td>5.41/2.12</td>
<td>1.29/0.99</td>
</tr>
<tr>
<td>ICE</td>
<td>5.88/1.54</td>
<td>1.63/1.08</td>
<td>2.38/2.31</td>
<td>5.06/2.38</td>
<td>2.31/1.01</td>
<td>5.50/0.97</td>
</tr>
</tbody>
</table>

Brunskog et al.: Increased voice level in lecture rooms
question if the subject had to increase the voice to be heard. There is also a trend that log V and G_{RC} are correlated to ES. These results confirm the results above.

Considering again Table IV, RT and BNL did not show any correlation with the VPL. Both of these results can seem surprising; RT is the generally most frequently used room acoustic measure, and BN is known to increase the speech level in other circumstances, e.g., in connection with the Lombard effect. However, there is an important difference between these parameters in the present study. The variation in the RT data is rather large, T_{EDT} from 0.01 s in the anechoic room to 1.53 s in auditorium 21, but the variation in background level is small, from 41.8 dB (A) in auditorium 21 to 53.5 dB (A) in auditorium 21 (see Table I). “Large” and “small” should be understood as relative to what is normally found in lecture rooms. Moreover, the BNL in the room used was too low to influence speech. It is thus quite likely that a dependency in BN could be found if more extreme values had been included. The same conclusion does not apply for the RT. Moreover, in Table VIII, it can be noted that ΔL_W is not correlated with the corresponding subjective responses TR or BN, which confirms the discussion above.

Considering the correlation among the subjective responses (Table VII), it can be noted that the question of whether the room is good to speak in, GSI, is correlated with the question about increase in voice level to be heard, IV. Thus, the ability to make oneself heard is judged to be important in the general judgment of the room. This is confirmed in Table VIII, where GSI is correlated with ΔL_W. There is also a trend that GSI is correlated to ES, the question of whether there is enough support in the room. The other questions (TR, ECHO, and BN) do not show any correlation. It can thus be concluded that a room is good to speak in if it has support, and it is not necessary to increase the voice too much.

In Table VII it can also be seen that the question of whether the RT is too long, TR, is correlated to the question of whether there is too much BN (with negative sign due to the orientations of the subjective scales). Moreover, in Table VIII, it is found that T_{EDT} is correlated to BN but L_{BN} is not. This might seem strange. However, it should be remembered here that the questionnaire was not answered at the same time as the measurements, and that the subjects had the option to answer it while being elsewhere. Thus, BN is rather the experience of the BN as they could remember it. The most severe source of BN is probably the students present during the lecture. In the light of the Lombard effect, it is likely that this noise increases with increasing RT. It is thus not so surprising that T_{EDT} turns out to correlate well with BN. Thus, the subjective response BN does not refer to and is not related to the measured BN.

![FIG. 3. Regression model between subjective variables S_{GSI} (good to speak in) against S_{ES} (enough support), according to right part of Table V. Room abbreviation according to Table I.](image)

![FIG. 4. Regression model between subjective variable S_{IV} (increase voice) against increase in VPL ΔL_W according to Table IX. Room abbreviation according to Table I. Solid line: Using objective domain transformation equation (7). Dashed line: Linear regression.](image)
In Table VII it is also found that there is a trend that the question of whether echo is noticed, ECHO, is correlated to the question of whether there is enough support in the room, ES. This can be interpreted as follows: the reflections that contribute to the RG and support also might be imagined to cause echo phenomena, e.g., flutter echo. However, ECHO does not show big influence on any other parameter and is not correlated with GSI or IV, so it is judged that echo phenomena have not influenced the results. None of the rooms are known to have problems with flutter echo.

In Table VII the question of whether there is enough support in the room, ES, is correlated to the question of whether the subject had to increase the voice to be heard, IV. This seems natural, and it is also reflected in the correlation between ΔL_W and G_{RG} among the objective measurements (Table IV).

The strong correlation between the subjective response of increasing the voice, S_{IV}, and the objectively measured VPL should be noticed in Table VIII. This can be interpreted as the subjects being aware that they have to increase the voice in the room.

In Table VIII T_{EDT} is strongly correlated to TR. Thus, the subjects are aware of the RT. It should then be remembered that all subjects were teachers or students in acoustics and therefore familiar with the concept of RT.

Concerning the frequency range of RT and RG: the frequency range used (the octave bands from 125 Hz to 4 kHz for the RG and 500 Hz and 1 kHz octave bands for the RT) has in this study been assumed to be most responsible for the impression of the two measures. Different versions of the parameters have been tested, but not reported, and the chosen definitions and frequency range give good correlation. However, there probably is a need for more research in order to finetune the measures.

Using the regression between ΔL_W and IV (Table IX and Fig. 4), some preliminary design guidelines can be proposed. If a subjective response of $S_{IV} \leq 3$ is regarded as a good room, the model yields that this corresponds to $\Delta L_W \leq -3.1$ dB. Now, using the model in Eq. (10) (see Fig. 1), this corresponds to $G_{RG} \geq 0.80 \log V - 1.1$ dB. Thus, for a room with volume 100 m3 the RG should be $G_{RG} \approx 0.5$ dB, and for a room with volume 1000 m3 the RG should be $G_{RG} \approx 1.3$ dB. It should however be noted that such guidelines are preliminary, and should not be used before further evidence has been obtained. Also note that the recommended values might be difficult to realize in reality for large auditoriums. Thus, these guidelines are limited to smaller rooms and rooms without voice amplification systems.

V. CONCLUSIONS

The voice power relative to the value in the anechoic chamber varies significantly between room.

The increase in the voice power produced by a speaker lecturing in a room is correlated with the size of the room (especially $\log V$) and the gain produced by the reflections in the room, G_{RG}. These relations are significant.

No significant correlation is found between the increase in the voice power and the RT or background level of the

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>S_{GSI}</th>
<th>S_{TR}</th>
<th>S_{IV}</th>
<th>ΔL_W</th>
<th>T_{EDT}</th>
<th>$\log V$</th>
<th>G_{RG}</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>0.68</td>
<td>0.92</td>
<td>0.96</td>
<td>0.86</td>
<td>0.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>0.04</td>
<td>0.003</td>
<td>0.0006</td>
<td>0.007</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_1</td>
<td>-0.64</td>
<td>2.20</td>
<td>0.72</td>
<td>2.27</td>
<td>-3.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_0</td>
<td>3.61</td>
<td>0.94</td>
<td>5.23</td>
<td>-2.12</td>
<td>5.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.71</td>
<td>0.89</td>
<td>0.97</td>
<td>0.86</td>
<td>0.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>0.03</td>
<td>0.005</td>
<td>0.0004</td>
<td>0.008</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_1</td>
<td>-0.50</td>
<td>0.903</td>
<td>0.538</td>
<td>1.68</td>
<td>-2.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_0</td>
<td>-0.27</td>
<td>-0.075</td>
<td>0.895</td>
<td>-4.55</td>
<td>0.863</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
room in this study. The latter is probably due to the too small variations in the background levels in the rooms studied.

The general impression of whether a room is good to speak in is linked to the impression of whether it is necessary to increase the voice in the room and if the room provides support to the speaker. The former relation is significant, and the latter is only a trend.

There is a significant correlation between the question of whether the subject had to increase the voice and the actual increase in voice power. There is also a significant correlation between the question about the reverberation in the room and the measured RT. This means that the subjects participating were aware of these parameters.

ACKNOWLEDGMENTS

The authors are grateful to the colleagues and students at DTU participating in the study. Most of the practical work presented in this paper were carried out by two students at DTU during their MSc projects, Gaspar Payá Bellester and Lilian Reig Calbo.