

On the importance of the phase distribution and acidity of VOx-ZrO2-SO4-sepiolite catalysts for the NH3-SCR process in relation to biomass fueled power plants

Due-Hansen, Johannes; Rasmussen, Søren Birk; Riisager, Anders; Ávila, Pedro; Fehrmann, Rasmus

Publication date: 2010

Link back to DTU Orbit

Citation (APA):

Due-Hansen, J., Rasmussen, S. B., Riisager, A., Ávila, P., & Fehrmann, R. (2010). On the importance of the phase distribution and acidity of VOx-ZrO2-SO4-sepiolite catalysts for the NH3-SCR process in relation to biomass fueled power plants. Sound/Visual production (digital)

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- · You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

On the importance of the phase distribution and acidity of VO_x-ZrO₂-SO₄-sepiolite catalysts for the NH₃-SCR process in relation to biomass fueled power plants

<u>Johannes Due-Hansen¹</u>, Søren Birk Rasmussen², Anders Riisager¹, Pedro Ávila², Rasmus Fehrmann¹ ¹Centre for Catalysis and Sustainable Chemistry, DTU Chemistry, Technical University of Denmark ²Instituto de Catálisis y Petroleoquímica, C.S.I.C., Campus de UAM, Madrid, Spain

Abstract

A series of V₂O₅-ZrO₂-SO₄²⁻-sepiolite mixtures were extruded, calcined and characterized. NH₃-SCR activity was related to the phase distribution of the agglomerant and active VO_X-ZrO₂-SO₄²⁻ phase, as well as the acidity of the composite material. Electrophoretic migration results showed that the addition of sepiolite to zirconia had effect on the quantity of zirconia present at the support's surface, both strongly decreasing the molar fraction of zirconia at the surface, and altering the electrophoretic properties of the mixtures. Addition of extra ammonia sulfate eliminate both effects, and thus facilitate the production of a sepiolite-based conformed catalyst based on VO_X-ZrO₂-SO₄²⁻, which has been shown to be more resistant to the industrially implemented V₂O₅-WO₃/TiO₂ catalyst.

Introduction

In recent years [1], the use of bio-fuels has attracted much attention in energy production since they are renewable energy sources which do not contribute to the greenhouse effect. Selective catalytic reduction (SCR) of NO_x with ammonia as reductant is the most efficient method to eliminate NO_x from flue gases produced in stationary sources (e.g. power plants) via the reaction

$$4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$$

The traditional SCR catalyst suffers significant deactivation due to the presence of relative large amounts of potassium in the fly ash from bio-fuels. A possible solution to this problem is use of highly acidic supports [2], which would interact with potassium stronger than active metal species. Furthermore, this can be combined with the properties of sepiolite, providing physical strength and coverage for the active catalyst.

Experimental

Sulfated zirconia was prepared by impregnating $Zr(OH)_4$ (Melcat) with $(NH_4)_2SO_4$ (Panreac, > 99%) by the incipient wetness method. After digestion, the samples were dried at 150°C for 3 hours and then calcined at 500°C for 4 hours in air. Then a VOSO₄ solution was impregnated onto the sulphated zirconia, producing a slurry. Thereafter sepiolite, (Pansil 100, Tolsa S.A.) and water were added in the desired amounts to obtain a homogeneous paste with an adequate viscosity for extrusion by a syringe with a 2 mm orifice. The numeration "0/8" to "8/8" corresponds to weight fraction of sepiolite in V₂O₅-ZrO₂-SO₄²⁻, i.e. 0/8 being V₂O₅-ZrO₂-SO₄²⁻ and 4/8 corresponding to a 1:1 weight mixture of the catalyst with sepiolite.

Results and discussion

The X-ray diffractograms of the composites after extrusion and calcination at 500°C are depicted in Fig. 1. At $2\theta = 28-32^{\circ}$ the diffraction reflections from ZrO_2 is seen. Even though a small amount of monoclinic zirconia is observed, the predominating ZrO_2 phase is cubic, resembling much the tetragonal phase of ZrO_2 .

Figure 1 X-ray diffraction of VO_X-ZrO₂-SO₄²⁻ /sepiolite composites after calcination at 500°C

At higher loadings of sepiolite, a Rietveld analysis suggests formation of a number of new phases, such as $CaCO_3$ and SiO_2 . At lower sepiolite concentrations $CaSO_4$ (sulfate from sulfated zirconia and Ca^{2+} from the sepiolite) and a small fraction of vanadium forming a solid solution with the zirconia is observed. The physical coverage of the zirconia phase by the sepiolte has also been confirmed by SEM analysis of the calcined catalysts (Fig. 2). Supported by zeta potential measurements, it is observed that at higher sepiolite loadings than 25% (2/8) the particles are covered by bundles of the sepiolite fiber material.

SCR activity tests of the catalysts have shown a larger decrease in activity with the decrease in V_2O_5 - ZrO_2 - SO_4^{2-} loading than expected stoichiometrically. However, addition of extra (NH₄)₂SO₄ compensates for the formation of CaSO₄ and restores the surface acidity and activity.

Figure 2: SEM micrograph of VO_x-ZrO₂-SO₄²⁻ with increasing ratio of sepiolite

Conclusion

The preliminary extruded series of V_2O_5 - ZrO_2 - $SO_4^{2^-}$ - Sepiolite hybrid catalysts were active in the SCR reaction. Although the coating sepiolite fibers has a "diluting" effect of the active phase of V_2O_5 - ZrO_2 - $SO_4^{2^-}$, the corresponding enhancement in catalyst lifetime due to the covering sepiolite is an interesting candidate to a possible alkali resistant catalyst in biomass fired power plants.

References

- [1] Y. Zheng, A.D. Jensen, J.E. Johnsson, J.R. Thøgersen, Appl. Catal. B: Environ., 83, 186-194 (2008)
- [2] A.L. Kustov, S.B. Rasmussen, R. Fehrmann, R. Fehrmann, P. Simonsen, Appl. Catal. B: Environ., 76, 9–14 (2007)