Pulse Reversal PermAlloy Plating Process for MEMS Applications

Smistrup, Kristian; Tang, Peter Torben; Møller, Per

Published in:
Meeting Abstracts - Electrochemical Society

Publication date:
2006

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Pulse Reversal PermAlloy Plating Process for MEMS Applications
Kristian Smistrup1, Peter T. Tang2 and Per Møller2
1MIC – Department of Micro and Nanotechnology
2Department of Manufacturing Engineering and Management
Technical University of Denmark
DK-2800 Kgs. Lyngby, Denmark

We present a stable permalloy plating bath suitable for MEMS applications. Furthermore, we have established a process control method utilizing spectrophotometry and pH-measurements. We also demonstrate a MEMS device, where the permalloy of this bath is an integral part.

A plating recipe with pulse-reversal (PR) plating has been developed. Fig. 1 shows the spectrophotometric response of the different components of the bath.

Fig. 2 shows spectrophotometric data for the bath over time. It is seen that the peak at 470 nm grows steadily. The pH-value of the solution was maintained in the range between 3.5-4.5. The growth of the 470 nm peak is expected to be due to oxidation of Fe2+ to Fe3+, which is known to have much higher absorbance. It is also seen that after the bath has been used for electroplating, using a 3 cm by 4 cm copper plate for one hour at an average current density of 10 mA/cm2, the absorbance at 470 nm is decreased. This indicates that some of the current is used to reduce the Fe3+ ions to Fe2+, resulting in a reduced current efficiency.

The above measurements were made on a freshly mixed 1 l bath, but a bath with the same formulation was mixed in a 25 l tank, and it has been running stably for approximately one year.

Magnetic separation is a well-known technique for extraction of (bio)chemical species. Magnetic beads with targeted surface chemistries are introduced into a solution, and the bound target molecules are thus extracted magnetically along with the beads. Within the last five years, there has been growing interest in integrating this functionality in MEMS/Lab-on-a-chip devices.

Fig. 3 shows a MEMS device fabricated using the plating bath. It is a passive magnetic separator, where long (yellow vertical) permalloy bars are magnetized by an external magnetic field. The magnetized bars create strong magnetic fields and gradients near the ends of these bars. When magnetic beads flow through the \(\mu \)-fluidic channel, they are attracted to places with large magnetic fields, and thus they will gather at the ends of the long magnetic elements. Fig. 4 shows a close-up of the \(\mu \)-fluidic channel, where both beads and permalloy elements can be seen. It is shown how magnetic beads (green) are captured near the ends of the (orange) magnetic permalloy elements.

The electroplated permalloy is a soft magnetic material with a coercive field of approximately 0.5 mT, and the fabricated magnetic bars are easily magnetized. 20 mT is sufficient to saturate the bars. This enables easy capture of beads with only small applied external fields and, fast release, when the external field is turned off.