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Technical Notes and Correspondence 

Identification of a Class of Nonlinear State-Space 
Models Using RPE Techniques 

WEI-WU ZHOU AND MOGENS BLANKE 

Abstruct-The recursive prediction error methods in state-space form 
have been efficiently used as parameter identifiers for linear systems; and 
Ljung's innovations filter using a Newton search direction has especially 
proved to be quite ideal. In this note, the RPE method in state-space form 
is developed in the nonlinear case and extended to include the exact form 
of a nonlinearity, thus enabling structure preservation for certain classes 
of nonlinear systems. Both the discrete and the continuous-discrete 
versions of the algorithm in an innovations model are investigated, and a 
nonlinear simulation example shows a quite convincing performance of 
the filter as combined parameter and state estimator. 

I. INTRODUCTION 

In this note we present two parameter identifiers for nonlinear-discrete 
and continuous-discrete state-space models. These algorithms are investi- 
gated by using the linear recursive prediction error (RPE) method, Ljung 
and Siiderstrom [9], in combination with nonlinear second-order filtering 
theory Jazwinski [7], and Maybeck [13]. See also Zhou [I51 and [16]. 

n. MODEL AND ALGORITHM IN DISCRETE VERSION 

We assume a nonlinear discrete state-space model of the following 
form: 

where f( ) and h( ) are nonlinear functions of the state, u(t )  is white 
process noise, and e ( t )  is uncorrelated measurement noise with statistics 

Eu( t) = Ee( t )  = 0 

The initial value of the state x(o) has the properties 

( 1 - 4  

From the nonlinear filtering theory [13] it is known that an attractive and 
applicable nonlinear filter is the first-order filter with bias correction term 
(FOFBC), which is based on using first-order covariance and gain 
computations, but with the second-order terms in state expectation and 
prediction error equations. In this study we use the FOFBC method for 
identification of the nonlinear model (1 -a), (1 -b) . When a fixed value 0 is 

~ x ( o )  = xo (e) 
E rx(o) - x0 (e )I r x o  - x0 (e )I T = n, (e). 
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given, the predictor corresponding to (I-a), (1-b) will be 

iy t+  1, e ) = f ( e ,  U ;  t ,  a(t, e))+B,( t )  

+K(t)r.m)-h(e; t ,  m, e))-B,(t)i ( 2 4  

~ ( t i e ) = h ( e ;  t ,  au, e)) (2-b) 

where the second-order bias correction term B,(& t )  is an n,-vector. With 
Bxk and fk denoting the kth component of Bx-and f vectors, 
r71 

and B J t )  is similarly the ny-vector with kth component 

In the expressions for Bxk and Byk, P ( t )  is the prediction error 
covariance. One finds that use of the recursive prediction error method by 
Ljung and Siiderstrom [9], directly on the nonlinear predictor model (2- 
a), (2-b) is hardly feasible, due to computational complexity. If a linear 
measurement equation is chosen instead, however, complexity of the 
algorithm is reduced significantly. Then the predictor has the following 
form: 

q t +  1, e ) = f ( e ,  U ;  t ,  a(t, e ) ) + m t )  

+ K ( t ) [ y ( t ) - H ( e ) w ,  e)] ( 3 4  

w i e ) = w w ,  0). (3-b) 

The assumption of a linear measurement is valid in a wide class of 
practical applications. Then the recursive prediction error method using a 
Newton search direction for parameter updating can be applied to the 
model (3-a), (3-b). The derivation for the linear case can be found in 
Ljung and Siiderstrom [9]. Details for the nonlinear extension are given in 
Zhou [15] and [16]. The algorithm will consist of the following set of 
recursive equations: 

c( t )=y (O -E(O (4-4 

R( t )  = R( t  - 1) + a(t)[  *( f )S - I  (t)* '( t )  - R( t - l)] (4-b) 

8 ( t ) = 8 ( t -  l ) + a ( t ) R  - ' ( t ) * ( t ) S - l ( t ) e ( t )  ( 4 4  

P ( t +  l)=F,P(t)FT+Qi(t)-K(t)S(f)K7(t) (4-3 

S( t )=H,P( t )HT+ Q z ( f )  (40 

Z ( t +  1)=f(8, U ;  1, x(t, B))+B,( t )+K( t )€( t )  (4%) 

( 4 4  

(4-i) 

j y t  + 1) = H , f ( t  + 1) 

W ( t +  1, 8 ) =  WX(t ,  b ) + ~ ~ ( t ) + ~ , € ( f ) - K ( t ) D ,  

* ' ( t  + 1) =H,  W ( t +  1, 8)+4. ( 4 3  

When deriving the gradient e T( t  + l), we differentiate (3-b) with respect 
to 0 and have introduced the notation below for the sake of brevity. The 
equivalent linear expressions are explained in Ljung and Siiderstrom [9]. 
In this nonlinear case, the explicit structure of the nonlinearity is reflected 
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in the gradient through the matrices (5-c) and (5-d) below. The effect on 
convergence properties from these terms are demonstrated in the 
example. The terms (5-c), (5-d), and (2-c) need to be calculated for the 
particular nonlinear structure in each case. However, the results 
obtainable make this effort worthwhile. The notation is 
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in (2-c). It is noted that in version (7-a)-(7-h) one has to use (4-e) and (4-0 
in order to obtain the covariance matrix P ( t )  in B,(t). Hence, the 
covariances QI and Q2 need to be known to provide the bias correction in 
the nonlinear system, while Ql and Qz would not be required in the linear 
case if the measurement vector y ( t )  has the same dimension as the state x, 
and the matrix H is an identity matrix, then the covariance matrix is 

H, = H ( 8  ( t ) )  

Since y ( t )  = H, x ( t )  = x( t ) .  Consequently, the matrix P ( t )  can be 
replaced by A ( t )  in this case, and P ( t )  no longer needs to be calculated. 
The covariances Q1 and Q2 need not be known for bias correction 
calculation either in this case. 

a wxct, e)=% w e ,  U ;  t ,  a( t ,  e ) ) + ~ , ( t ,  xu, e) ) }  

a 
- K ( w ( e )  - a(t ,  B ) I ~ = ~ ( , )  (5-c) ae 

In. MODEL AND ALGORITHM IN CONTINUOUS-DISCRETE VERSION 
where the derivative is taken of x only, i.e., 6 is considered fixed inf(0, . . .) In most applications involving the identification of parameters of a 

physical continuous-time system, it is generally preferable to use a 
a (5-d) continuous-discrete algorithm. The reasons are primarily structure 

preservation of known parts of the system and the possibility to include fim=,, { f ( e ,  U ;  t ,  a)+B,(e, t ) }  

where the derivative is taken of the parameter matrices off + B,, not 
implicitly of the x term. Note that the first part of (5-c) and (5-d) together 
give the derivative off + B, with respect to 0 

bounds on parameter estimates of physical parameters whose constraints 
are known’ The latter is a way to Overcome part Of the 
difficulties with possible local minima when identifying parameters of 
nonlinear svstems. As in the mesentation in Section I1 the discrete 
measurement equation will be chosen in its linear version, and an 
innovations model is employed. We, hence, assume the nonlinear 
continuous-discrete state-space model of the form: 

(5s) 

a ( t ) = l / ( l + t ) .  (5%) 

The gain factor ct is a convenient choice, chosen from experience. This 
version of the filter (4-a)-(4-j) includes a calculation of the Kalman gains 
in (4-d)-(4-f) and K,  is calculated from (4-d)-(4-f). The noise covariances 
Q1, Q2, Q12 need to be known in this case. Following Ljung [12], the 
predictor can assume an innovations model of the form: 

y ( t , + d  =H(O)x(t ,+ I )  + e(t,+ I )  (8-b) 

wheref( ) is the nonlinear function of state. L J ( ~  I t , )  is white Process noise, 
e(t,) is uncorrelated measurement noise with statistics, 

ELJ ( t ) = Ee( t , )  = 0 

where ~ ( t )  is the innovation due to measurement t ,  and K(0) is a set of (as 
yet undetermined) steady-state Kalman gains, which is treated as 
parameters and will be identified directly along with the system d 

corresponding to (6-a)-(6-b) will then be as follows: 

The second-order predictor using an innovations model will be 

( 9 4  parameters. This gives less complex computations, and the algorithm ,a(tit, ,  e ) = f ( e ,  U ;  t ,  a ( t ~ t , ,  e))+B,(tlt,) 

d ( t )=d ( t -  I ) + c f ( t ) [ E ( t ) E  ‘(t)-d(t- l)] 
where E (  t, + 1) is the innovation due to measurement t, + 1, and K(  t, + I ,  

0) comprise parameterized steady-state Kalman gains. The algorithm 
corresponding to (9-a)-(9-c) will be as follows: 

R ( t ) = R ( t -  l ) + a ( t ) [ s ( r ) d - l ( t ) s r ( t ) - R ( t -  l)] (7-c) 

(7-d) e (  I )  = 8 (  t - 1) + a( t ) R  - I ( t )  ‘Z’( t)d ( t ) ~  ( t )  

(IO-a) d 
dt 
- P ( t l t , + ) = f ( 8 ,  U ;  t , P ( t ( t : ,  8 ) ) + B x ( t l t , )  P(t+ 1)=f(8, U ;  t, x(t, 8 ) ) + B x ( t ) + K r t ( t )  ( 7 4  

9(t+ l)=H,P(t+ 1) (7-0 

W ( t + l ,  e)=  PAt, 8)+M,*( t ) -KrD,  (7%) 

(10-c) d 
dt 

(7-h) - w(t(t ,+,  e)=w;(tlt,+, 8 )+Mo( t , ) .  * ‘ ( t +  l)=H,W(t+ 1, $)+of 

where 
Kr = K (e ( t )) 
Hr = H ( 8 ( t ) )  

The linear version of the continuous-discrete problem was derived by 
Gavel and Azevedo [4]. For the nonlinear version, we get by integration 
of(lO-a)-(lO-c) ~ ( t ~ + ~ - ) ,  ~ ( t ~ + ~ - ) ,  W(t i+l- ,  8) as (7-i) 

W,(t, e), D, are defined in (5-c)-(5-f), respectively, and B,( t )  is defined + N ( t , + , .  B ) - K ( f , ,  B)D(B, X ( t , ] ) )  (1o-d) 
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Estimated a ( - . 58 )  ‘1 I Input and Output Signals 

- 2 . 1  : 4 . o Y  : 
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 

‘‘T Estimated b (+.20l 
.4 ,  

- . 4  D - . 4  
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 

Number of Samples Number o f  Samples 
Fig. I .  Identification of parameters a and b of (1 1) with square wave perturbation on 

the input signal. The nonlinear estimator is used. (1) is estimate, (2) is true value, (3) is 
input, and (4) is output signal. 

(10-f) 
( 10-P) 

The same treatment will be used when H, is an identity matrix and has the 
same dimension as the state vector x. In this c2se the P ( f , )  matrix will not 
be calculated any longer and is replaced by A(t , ) .  

4 4 ,  I )  =y(t,+1)-9(t, 

A ( t, + I ) = A( f, ) + ( t, + I ) [ e  ( t,+ I )€  T( 4 + I 1 - A( GI 

R ( f , +  I )  = R ( f J  + 4 6 ,  I )[* (t,+ I )A - I ( f , +  I )* ‘(t,+ I) - R(t,)l 

B o , +  I ) = 8 ( f,) + (Y ( t ,  + I ) R  - ( f ,  + I )U ( f , +  I ) A - ( t,+ I ) E  ( r,+ I 

a ( f : , l )=a(~ , , )+K(~,+l ,  m t , + l )  

(10-0 

(10-j ) 
IV. EXAMPLE 

The ability of the nonlinear W E  method to estimate parameters and 
states of a nonlinear system of practical importance is demonstrated in this 
example. The continuous-discrete version of the nonlinear filter derived 
above is compared to the corresponding linear algorithm by Gavel and 
Azevedo [4]. The results demonstrate the advantages in terms of bias 
correction of the nonlinear filter. 

The nonlinear system considered is an equivalent to the ship speed 
equation. The parameters identified will, for the real ship, mean hull 
resistance and efficiency in utilizing the prime mover of the vessel for 
forward thrust. Both values are of major technical importance and as they 
change over time, they have vast impact on the ship’s fueI economy and 
efficiency. The criteria for maintenance of the ship’s hull, propeller, and 
prime mover system can be directly derived from these parameters, and it 
is hence of prime importance that they are estimated without bias. 

p(t ,++l)=p(tr+l)  -K(tt+i, 8)H8P(I,,) 

where B,(t I t,) again is an n,-vector with the kth component 

B A  t I t , )  = 5 tr (10-m) 
e = a(r,) 

and the following notation is used: 

a W t l ~  e )=% 1, . ~ ( t l t , ,  e ) ) + ~ , ( t ~ t , ) } ~ ~ = ~ ~ , , )  (10-n) 

d 
with the derivative being taken of x only. ;ii X(f) = a r 2 ( f )  + bu(t)  + u ( t )  

a 
QI=O, Q2=0.01, Q12=0. (1 1) MdtJ=-jj { f ( e ,  U ;  t ,  .Q+B,(tIt,)} Ie=g(r,) ( 10-0) 

with the derivative being taken of the parameter off and B,, not The nonlinearity type Of system is 
important when identifying propulsion losses of ships at sea aiming at 
autopilot and steering gear performance evaluation, Blanke [l], Blanke 
and SQrensen [3], Blanke [2]. 

The response and parametex estimates below were obtained using a 
square wave perturbation to the input u(t). The amplitude of the 
perturbation is 10 percent of its steady-state value. The practical 
equivalent to this experiment would be a stepwise increase/decrease in 
propeller thrust. 

The matrices B,, p;, A&, and N in the algorithm (10-a)-(10-1) 

of x.  
a We, a ( t , l ) ) = ~  {H(e)fJ I e=~( t , )  

H, = H(8 ( 0) 
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Estimated a ( - . 58 )  2'oll Estimated Kalman Gain K 

-2.1 : I 0.01 ! 

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 

.41 1 Estimated b (t.20) 
7 

P r e d i c t i o n  E r r o r  * 100 

- . 4 c  : 
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 

Number o f  Samples Number o f  Samples 

The linear estimator is used. (1) is estimate, (2) is true value. 
Fig. 2. Identification of parameters a and b of (1 1) with similar excitation as in Fig. I .  

'11 Estimated a ( - . 58 )  I d e a l  and Noisy Outputs and I n p u t  
..I 

1. 

0. 

-1 .  

-2. 
0 50 100 150 200 250 300 350 

Estimated b (t.20) ::k=++- 
- . 2  

- . 4  
0 50 100 150 200 250 300 350 

Number o f  Samples 

O Y  : 
0 50 100 150 200 250 300 350 

''] P r e d i c t i o n  e r r o r  if 100 

.2 

.a 

-"i______ - . 4  0 50 100 150 200 250 300 350 

Number o f  Samples 

Fig. 3. Same example as Fig. 1 with the nonlinear fdter, but measurement cormpted 
with noise. (1) is estimate, (2) is m e  value, (3) is input, (4) is output with noise, and 
(5) is noise free output. 

corresponding to the example are calculated below. Note that the 
parameter vector used is (a, b, k) 

equation using the nonlinear filter. The curves plotted in Fig. 2 illustrate 
the performance of a linear RPE filter applied to the same nonlinear 
equation. Although the driving signal's perturbation is only 10 percent of 
its average, the bias of the linear estimator is apparent, and the superior 
performance of the nonlinear fiter is obvious. This is also the case when 
measurement noise is added, as shown in Figs. 3 and 4. 

B,(f(t,)=ap(t,)=a8(t,) 

w:Ult,, 8)=2uf ( t , )  ZfU, d 8 )  

%(t,= [(fVtJ+P(f,)), u(t,) ,  01 = [ ( 2 2 ( t , ) + A ( t , ) ) ,  u(t , ) ,  01 V.  CONCLUSIONS 

(12) 

Fig. 1 shows results of identifying the parameters a and b in the nonlinear 
This note has presented two algorithms for identifying parameters of a 

nonlinear discrete state-space system model and a nonlinear continuous- 

N(t , )= [O,  0, E ( t J 1 .  
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2.0- 
Estimated a (-.58) 
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Estimated Kalman Gain K 

. 4 T  f Estimated b (t.20) Pred ic t ion  E r r o r  “T 

Number o f  Samples 

- 4  1 -.21 : 
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 

Number o f  Samples 

Fig. 4. Same example as Fig. 2 with the linear fdter, but measurement corrupted with 
noise. (1) is estimate, (2) is true value. 

discrete state-space system model. Both versions are treated using a linear 
discrete measurement equation. These algorithms were investigated with 
reference to the theory of linear RPE methods and the theory of nonlinear 
filtering. The innovations model formulation was found to be attractive, 
and the algorithms were implemented and tested against computer 
simulations showing excellent convergence and bias properties that by 
far exceed those of a linear continuous/discrete filter. 

Failure Detection and Identification 

MOHAMMAD-ALI MASSOUMNIA, GEORGE c. VERGHESE, 
AND ALAN S .  WILLSKY 

Abstract-Using the geometric concept of an unobservability subspace, 
a solution is given to the problem of detecting and identifying control 
system component failures in linear, time-invariant systems. Conditions 
are developed for the existence of a causal, linear, time-invariant 
processor that can detect and uniquely identify a component failure, first 
for the Case where components can fail simultaneously, and second for 
the case where they fail only one at a time. Explicit design algorithms are 
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provided when these conditions are satisfied. In addition to time domain 
solvability conditions, frequency domain interpretations of the results are 
given, and connections are drawn with results already available in the 
literature. 

I. INTRODUCTION 

Failure detection and identification (FDI) is currently the subject of 
extensive research, and is being used in the design of highly reliable 
control systems. An FDI process essentially comprises two stages: 
residual generation and decision making. In this note we concentrate on 
residual generation, and refer the reader to the extensive literature on the 
decision-making phase of FDI (see [2 11, [lo], and [ 191 for comprehensive 
surveys). All our discussion will be for finite-dimensional, linear, time- 
invariant (LTI) systems. 

The output of a residual generator is, by definition, a function of time 
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