A circular finite-element model reconstruction in electrical impedance tomography

Møsner, Lars Nordahl; Andersen, Ole Trier; Dawids, Steen; Sørensen, John Aasted

Published in:
Proceedings of the Annual International Conference of the IEEE Engineering in Engineering in Medicine and Biology Society

Link to article, DOI:
10.1109/IEMBS.1989.95811

Publication date:
1989

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
A CIRCULAR FINITE-ELEMENT MODEL RECONSTRUCTION IN ELECTRICAL IMPEDANCE TOMOGRAPHY

Lars Nordahl Moesner*, O.Trier Andersen*, S.Dawids**, J.Aa.Sørensen*

*) Electronics Institute, Build.349
**) Dept.of Engineering Design, Build.421
Tech.Univ.of Denmark, DK-2800 Lyngby, Denmark

ABSTRACT

A circular finite element model utilising triangular picture elements has been constructed using the reconstruction method described by Yorkey et al (1). Application of the model to examples of simulated reconstructed pictures illustrates its properties with regard to sensitivity, contrast and shape of object.

1. INTRODUCTION

Compared to the many imaging techniques which have evolved during the last decades the electrical impedance tomography seems quite inferior. The picture resolution is relatively poor, and no good accuracy in the resistivity estimation is to be expected, partly because of electrical anisotropy of the tissue, and partly because of inconsistency between the three-dimensional body and the two-dimensional models normally used. Nevertheless, the technique is attractive because it is easy to apply, non invasive, painless, without risk to the patient and cheap. Finally it depicts a property of the tissues not covered by other imaging techniques. The large variations in tissue resistivity counteract somewhat the inaccuracy of the method (2,3).

2. RECONSTRUCTION OF A CIRCULAR FINITE-ELEMENT MODEL BASED ON A TRIANGULAR PICTURE ELEMENT

With the purpose of obtaining more natural boundary conditions of the finite-element model for the above reconstruction method (1), a triangular resistor picture element, shown in Fig. 1, is developed. Then the characteristics of this model: sensitivity, contrast, and importance of object shape to be reconstructed are investigated by simulation and the following questions are examined:

Sensitivity: Difference in reconstruction properties with respect to changes in resistivity in the central part of the model compared to the peripheral part shading of centrally placed objects by peripheral high resistivity tissues.

Contrast: Reconstruction dependence on the contrast conditions.

Shape of object: Reconstruction dependence on the object size and shape.

The following reconstruction parameters are used for the tests shown in Figs. 3-8:

obj : resistivity of object \(\Omega \, \text{m} \)

bag : background resistivity \(\Omega \, \text{m} \)

ro : initial homogeneous resistivity \(\Omega \, \text{m} \)

it : number of reconstruction iterations necessary to obtain an error < 0.01.

The resistivity scale of the reconstructed pictures is shown in Fig. 2. In each picture the true object is outlined. Fig. 3 shows a perfect reconstruction of a symmetrical object positioned in the center of the finite-element model. In Fig. 4 it is demonstrated that a symmetrical object positioned off center in the model is reconstructed exhibiting shadows. A low contrast reconstruction is shown in Fig. 5 and a high contrast in Fig. 6. Here the reconstructed resistivity value is in the range of 10-20 \(\Omega \, \text{m} \). Tests on object shape are shown in Figs. 7-8. Here a minimum resolution object is perfectly reconstructed in Fig. 7 and a large bar shaped object is reconstructed with some shadows in Fig. 8.

(1) : Thomas J.Yorkey, John G.Webster, Willis J. Tomkins
Comparing reconstruction algorithms for electrical impedance tomography.

(2) : Brown, Barber and Seagar
Applied potential tomography: possible clinical applications.

(3) : S.G.Dawids
Evaluation of applied potential tomography: a clinician's view.

S.Dawids
Dept.of Engineering Design, Build.421
Tech.Univ.of Denmark
DK-2800 Lyngby, Denmark
Phone + 45 42 88 25 22, ext. 3022
Fig. 1. Circular finite-element model.

Fig. 2. Resistivity scale of reconstructed pictures.

Fig. 3. Central positioned object.

Fig. 4. Non central positioned object.

Fig. 5. Low contrast object.

Fig. 6. High contrast object.

Fig. 7. Minimum resolution object.

Fig. 8. Large bar shaped object.