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Instabilities in RF-Power Amplifiers Caused by a
Self-Oscillation in the Transistor Bias Network

JENS VIDKJAER> MEMBER, IEEE

Abstract–This paper describes a self-oscillation in the bias network of
an amplifier which is commordy used for the output stage in mobile
transmitters. It is demonstrated how some often observed spurious
oscillations may be related to the self-osciffation and a method for
sl.abitiiingthe amplifier is derived and discussed.

I. INTRODUCTION

(APURIOUS oscillations in RF-power amplifiers is a well-

3
known experimental phenomena for which many origins
have been suggested in literature [1] , [2] . According to

common practice and in agreement with Muller and Figel [2],

tlhe origins maybe classified as follows.
1) Instabilities which can be explained by analogy with in-

stabilityy problems in linear circuits.
2) Parametric instabilities.

The classification of a particular oscillation is mainly based
on observations where 1) oscillations of frequencies which are
independent of the signal frequency may exist, and 2) sub-
harmonic are generated.

This paper provides an alternative explanation of the ob-
served instabilities based on a nonlinear self-oscillation in the

bias network of a commonly recommended amplifier for
mobile transmitters [3] , [4] . It is known from nonlinear sys-

tem theory [12] that the presence of self-oscillation in a cir-
cuit may result in both types of spurious oscillations described

above, and this will be the basis for the following discussion.
Due to the strongly nonlinear operation of the transistor and

the complexity of the RF-amplifier circuit the most realistic
method for a detailed study is combined experimental and

numerical investigation. The computational and modeling
aspects of the amplifier will, however, not be considered here;
they are thoroughly discussed in [8] and are the planned
subject for a subsequent paper. It should only be mentioned

that the following physical effects must be included in the

transistor model in order to achieve satisfactory agreement

between simulations and experiments:
1) transit time and gain modulation due to base widening

[5]-[7];
2) high-field current saturation in the collector epitaxial

region [6] , [7] ;
3) avalanche and Zener breakdown in the emitter and col-

lector junctions.

II. SPURIOUS OSCILLATIONS

The amplifier which is the basis for most of the following

cliscussion is shown in Fig. 1. The RF-power transistor is
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Fig. 1. 160-MHz power amplifier. Performance data: output power–
13.8 W; gain–9 dB; and collector efficiency–73 percent.

TABLE I
EXPERIMENTAL OBSERVATIONS ON THE Ahwrmrm OF FIG. I__

Damping of
Base Choke Circuit Performance

Rb=lkS2 Tuning impossible.
Rb = 470 C! Tuning possible. No spurious oscillations for output

VSWR ~ 1.3 or supply voltages down to 22 V. A very
small reduction in input drive causes spurious
oscillations.

Rb =47$2 No spurious oscillations for output VSWR S 7 and supply
voltages down to 8 V. Spurious oscillations occur at
drive power levels 9 dB below the nominal level.

Rb=26fl No spurious oscillations at any load, supply voltage, and
drive power conditions.

biased for class-C operation through the chokes Lb and Lc.
Rb is a damping resistance. At the input side the matching
network raises the rather low transistor RF-input impedance
to the impedance level of the generator. The nominal load is
transformed through the output matching network to the
collector load which gives maximum output power at the given
input drive level.

The primary goals in the design of amplifiers of this type

are obviously connected with the fulfillment of power, gain,
and bandwidth specifications. For this purpose methods are

well established [9] , [10] . It is, however, a frequent experi-
ence that if the bias chokes and their damping are not properly
chosen spurious oscillations may appear in an otherwise well-
designed amplifier, either before optimal tuning conditions are
obtained, or if the working conditions, i.e., load, drive power,
and supply volt age are altered from their nominal magnitudes.

Since mobile transmitters are often required to work properly

or at least survive under heavily changing conditions the sup-
pression of the spurious oscillations may become the most
serious problem in the circuit design. Table I summarizes
some experiments with the amplifier in Fig. 1.

A series of experimental collector voltages showing spurious
oscillations is given in Fig. 2. It is notable that despite the
highly different types of disturbances the resultant oscillations
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Fig. 2. Collector voltage waveshapes where the envelopes show spuri-
ous oscillations in the amplifier of Fig. 1 for Rb = 4?’0 Q In (a)-(c)
the oscillations are caused hy mismatches of VSWR = 3 and 180°,
70°, -60° reflection angles, respectively. (d) is caused by a 3-dB
reduction in the drive power, and (e) results from a halving of the
supply voltage.
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Fig. 3. Simulated response of the amplifier shown in Fig. 1 using Rb = 470 !0 and nominal operation conditions.
time given by the dashed line a numerical steady-state analysis is employed.
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Fig. 4. Releasirm of a self-oscillation in the amplifier by turning the signal generator off at the time given by the dashed
~he. During ~he course of the oscillation th~ transistor is th~own in~o operation modes of: 1) base widening, 2) com-
bined high-field current saturation and base widening, 3) negative dc current gain provided by avalanche current in the
collector junction, and 4) Zener breakdown in the emitter junction.

differ only moderately with respect to frequency. As will be
discussed, the same basic phenomena are excited in all the
cases.

The fundamental observation in this context is the existence
of a self-oscillation in the circuit. Fig. 3 shows the computer
simulated response of the amplifier using Rb = 470 ~, correct
load, and drive power. According to Table I this should result
in a stable operation, but it is seen that a spurious oscillation

is present as soon as the signal source is turned on. At the
time which is indicated by the dashed line in the figure, a

steady-state algorithm [11 ] has been applied in the computa-

tions. Since convergence is obtained within a signal period

both a low-frequency modulated and a strictly periodic mode
of operation exist in the circuit. The occurrence of spurious
oscillations is therefore a question of whether the underlying
self-oscillation is excited or not. This happens initially in the
simulation where the signal source can be turned on instantly,
whereas the actual amplifier requires a slight variation in, for
instance, the drive power level.

Fig. 4 shows initially the same situation as Fig. 3, but after
the first periods the signal source is turned off. Like the

behavior of the experimental amplifier the circuit does not
ring out but it continues in the self-oscillation. The course of

the waveshapes will be discussed in the subsequent section.
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Fig. 5. Spurious oscillations in the amplifier of Fig. 1 using Lb = 20 nH,
Rb = 50 Q, and a slightly detuned output matching network which
corresponds to a mismatch of VSWR = 2.2, -60°. At the time given
by the dashed line, the generator is turned off and the self-oscillation
becomes visible.

Here it should be noted that the oscillation is accompanied

with a considerable power dissipation in the transistor, so both
for the sake of stability and for the sake of avoiding transistor
(damage by second breakdown this oscillation should be
:suppressed.

Experiments and simulations on the amplifier in Fig. 1 have
shown that every time spurious oscillations are excited, a self-
crsciiiation of the type in Fig. 4 is aiso present in the circuit.
The resultant oscillations have always taken formls among

which the two extremes can be characterized.
1) Almost periodic oscillations [12] : If the frequency dis-

tance between the drive signal and the self-oscillatic,n is rela-

tively long, the effect of the drive signal may be considered as

a smoothing of the distinct nonlinear properties in the circuit.
The resultant modulation of the signal becomes thereby less

typical than the isolation oscillation or it even disappears, an
effect which is known and utilized in nonlinear control sys-
tems [13] .

2) Subharmonic synchronization [12] , [15] 1: If the drive
signal is strong enough and if the frequency distance is suffi-
ciently small the self-oscillation may synchronize to an integral
lmultiple of the signal period.

The examples in Figs. 2-4 clearly show oscillations of the
same type as in 1). Fig. 5 shows an oscillation of the same
type as in 2) where a 3rd subharmonic results frolm a syn-

chronization between the drive signal and the self-oscillation,
[t is seen in the figures that the two types of oscillations are

1In literature, a150often referred to as subharmonic entrainment, fre-
quency demultiplication, and frequency division.

the same as those which earlier have been ascribed to either

“linear” or parametric instabilities. This distinction was, how-
ever, made from the assumption [2] that the amplifier could

be considered as a superposition of a linear amplifier and a

nonlinear amplifier, i.e., the point of view which commonly
applies to systems with small nonlinearities [12] . The main
purpose of the power amplifier is to utilize the highly non-
linear characteristics of the transistor for high efficiency ampli-
fication. Since it will be shown that the self-oscillation is due
to the same nonlinear characteristics, the distinction above

in 1) and 2) seems the most natural one when the stability
problem, as here, is considered as a purely nonlinear problem.

III. THE SELF-OSCILLATION

The self-oscillation in the amplifier is localized to the simple
bias network which remains if the two matching networks are
rem oved, as shown in Fig. 6. In this circuit an oscillation can

be excited by the breaking of a dc current path in the base
choke. The resultant waveshapes from both simulation and
experiment are shown in Fig. 7. Although some discrepancies

with respect to the amplitudes are observable the two sets of
curves reflect undoubtedly the same basic phenomena. Since
the deviations are caused by the specific construction of the

2N3632 transistor, the computed results will be the main
concern below and the highiy simplified equivalent diagram in

2The 2N3632 transistor is made of two paralleled chips. At high
power levels the current tends to concentrate in one chip which causes
a heavy distortion of the transistor characteristics [14 ] This effect has
not been included in the simulations.
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Fig. 7. (a) Simulated and (b) experimental waveshapes showing the
self-oscillation in the bias network of Fig. 6. The oscillation can be
subdivided into a period where the transistor is cutoff, C.-O., and a
period where the transistor is active.

Fig. 8 will be used in the interpretation of the results. The
following simplifications are made initially.

1) The collector capacitance can be modeled by a linear
capacitor CC and the collector voltage remains positive through-

out the oscillation.

2) A linear capacitor C. models the emitter capacitance
when the transistor is cutoff. When the emitter charge Qe ex-
ceeds the positive level QeO, the transistor turns active and the

base voltage is fixed to the vahre Vbo.

r‘k ‘cc

L=

cc “c

mill‘lb
lb

‘b
‘b ‘b
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+ 1

Qe ‘t
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1Qm Q=

*

‘b

v
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(a) Equivalent circuit for the bias network. (b) and
main nonlinear characteristics of the transistor.

(c) The

3) The current through the transistor It is related to the

emitter diffusion charge Qed by a constant transit time Tf:

It= Qed/7p (1)

When the transistor is active, the diffusion charge is given by

Qed = Q. - Qeo; (2]

otherwise the diffusion charge is zero.
4) The transit time ~f is assumed to be rather short in com-

parison with all the other characteristic times in the circuit.
5) The resistive base current contributions, i.e., the recom-

bination, the avalanche, and the Zener breakdown currents are
ignored.

Obviously these simplifications cannot provide the back-
ground for a genuine analytical treatment of the oscillation.
This would require a much more comprehensive transistor
model. What can be done is to achieve enough understanding
of the dynamics of the oscillation from the simple model that

a sufficient method of suppressing this can be extracted.
It is easily seen in Fig. 7 that the self-oscillation can be sub-

divided into a period where the transistor is active (Vb % ~b~)
and a period where the transistor is cutoff ( ~b < Vbo). The

periods will be considered separately below but briefly the

oscillation can be summarized as follows: during the active
period an initial positive base current causes a charging of the
collector capacitor. At the end of the active period the base
current has the opposite sense. The discharge of the collector
capacitor in the cutoff period forces a current through the
base-emitter circuit which causes the base current to again go
sufficiently positive to initiate a new active period.

A. The Active Period

The time, to = O, where the transistor has just turned active,
will be used as the starting point. According to the curves in
Fig. 7 the initial state of the circuit can be summarized:

[IL)>~z.> v.> ~b 1 to = [Itm(>O), IM(>O), Vd=Vcc), VM 1.

(3)

Since the voltage across the base choke is fixed, the base cur-
rent must be a linearly decreasing function of time, i.e.,

Ib =Ibo - (Vbo/Lb) t. (4)

If it is assumed that the whole base current charges the col-
lector capacitor, the collector voltage becomes
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1
t

Vc = Vco - (IA) dt = Vco - (~dcc) f
o

+ + (v&JL~cc)t2. (5)

Nloreover, the transit current in the transistor must Iake the
form

J
t

It= IIC+Ib =IICO+ ([VCC- VC]/LC)dt +Ib
o

=IICO+Ibo + ([VCC- VCO]/LC - VbO/LJt

+ + w~IbOt= - $ (GJ!V~O/Lb)t3, (6)

where

UC = (LCCC)-i/2.

The main contribution to It is given by Ilc since I~bI << Zlc
throughout the active period. The shapes of the first-, second-,
and third-order polynomials from (4)-(6) are easily recognized
in Fig. 7 despite the crude approximations which lecl to the

expressions. It should be noted that the assumption for (5) is
ec~uivalent with the assumption of a short transit time. In this

case only an insignificant charging current to the emitter
capacitor is required in order to control the diffusion charge

which shapes the transit current according to (1). The short

transit time can furthermore explain the apparent inconsis-
tency in (6) which shows a transit current different from zero

at t =O. If the time to.-,where the transistor just turns active
because Q. passes QeO, is used as a point of departure, the
node equations for the base and the collector nodes prowide

dQed/dt + (&/Tf - Ilco - Ibo = O; fk (to.)= 0, (7)

where the first term gives the emitter charging current and the
second term is the transit current in the transistor. The cur-

rent in the collector choke and the base current are taken as
constants since the turn-on process is fast. Equation (7) has

the solution

finally be estimated by the assumption that the active period

is longer than the cutoff period and from the requirement
that the mean collector voltage must be equal to the supply

voltage,

i.e., the initial voltage should lie in the range of the supply
volt age, cf. Fig. 7.

The calculations above show that lbO is the most significant

parameter in the active period since this controls the duration
of the period, the maximum transit current, and the final col-

lector voltage. It is also clear that all the assumptions for the
crdculations are violated if lbO is too great. The negative first-

order term in (5) implies a possibility for base widening if the
collector voltage falls to near-zero values. The main effect of
base widening is a considerable rise of the transit time, which
in turns requires that a great amount of charge has to be stored
in the emitter capacit ante. Thereby, the emitter charging cur-

rent and the base recombination current may become the

dominant components in the base current. The second-order
term in (6) may give rise to current levels where the high-field

current saturation in the collector epitaxial layer becomes
appreciable. In this situation much of the collector-base
voltage is dropped across the collector bulk region so the
intrinsic transistor is forced into base widening. Finally, the
second-order term in (5) together with (9) may result in high
collector voltages where the avalanche-generated current
between the collector and the base has to be taken into ac-
count. The main effect of this is that current is taken from
the transit current Zt which accelerates the close of the active
period. The oscillation in Fig. 4 is an example where all these
phenomena occur in sequence and strongly influence both the

amplitude and the duration of the active period. In this case
the simplified treatment is inadequate. The situation which
has been studied is, however, generally useful as a limit case
since all the possibilities which have been excluded imply that
(10) overestimates the excess collector voltage for a given initial
base current. The possible mappings of lbO into V,x provided

so due to assumption 4), the transit current PraCtiCal& JumPs by the active period will therefore lie in the hatched region of

from zero to the sum of the initial currents, IICO+Zbo. Before the ~bo, VCXPlme in Fig ~
the transistor turned active these currents initiated the turn-on

. .

by charging the emitter capacitor. B. The Cutoff Period
The description of the active period is thereby complete,

. .

In the cutoff period where the current generator It is absent
since the circuit behavior has been accounted for from the

time where Qe exceeds QeO to the time where the active
the network reduces to a passive, linear circuit imposed by
some initial conditions which can be summarized:

period closes itself due to the negative third-order term in (6).
By equating the two last and mow significant terms in (6) the [Im , Il.> v., v~ltc= [~d? 0)>~A=U v.. + V.x>Vrml,
duration of the active period can be estimated:

(12)

tc= 3LbIbo/vbo. (9)
where the current in the base choke is related to the base cur-

Inserting tc into (5) gives an estimate of the collector voltage rent by

at the time where the transistor becomes cutoff:
~b ‘~~(vb,~~b) = ‘~~b - Vb/~b. (13)

~c(fc) = ~co + ~cx ; VCX= ;LbIjO/VbOCC. (lo)
For the types of transistors in question the inequality C’e> Cc

V.x, the excess voltage, denotes the gain in collector voltage applies. If it is assumed, moreover, that the resonance fre-
over the active period, The initial collector voltage, VCO,can quency of the base-emitter circuit is less than the resonance
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1
Ilc

Fig. 9, Ibo, Vcx plane showing the possible mappings of I&j into VCX Fig. 11. Phasor diagram illustrating the initiat conditions for the
provided by the active period of the self-oscillation. steady-state response in the base-emitter circuit–Fig. 10.
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‘e 4C
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Fig. 10. Equivalent diagram for the base-emitter circuit in the cutoff
period.

frequency of the collector series circuit, i.e.,

~e = (L&e)-112 < 6.)., (14)

the mode of the series circuit becomes practically unaffected
Fig. 12. vb, ZZOphase plane for the base-emitter circuit–Fig. 10. The

total response is combined from the steady-state eUipseand the tran-
by the parallel circuit Lb, Rb, and Cc. The current in the col- sient trajectory T.

lector choke can thereby be approximated:

IIC= -r.JCCeV,x sin (wCt), (15) VB and IL in a ~b, ]~o phase plane, Fig. 12. The origin of the

where the onset time for the cutoff period has been set to
ellipse moves along a trajectory which, according to the zero-

zero. The situation seen from the parallel circuit is depicted initial state assumption, goes through the point:

in Fig. 10 where the effect of the series circuit is given by the (Vb, ~1~) = (- VB cos U, ‘~~ sin U); (20)
sinusoidal current generator. The response of the circuit has
three components: COSU= (82 - I)/A; sin v = 26 f/A. (21)

1) the steady-state response from the generator,
2) the transient response from the generator turn-on,

3) the transient response from the initial conditions.

If a sustained oscillation takes place the first two contribu-

tions are dominant and only these will be considered. The
initial state of the circuit is therefore assumed tO be (~b, ~~b) =

(O, O). The impedance of the circuit can be written in the
form:

vb/I~c ‘jWc Lb(] -62 + j2@)-1 , (16)

where ( is the damping coefficient, and 6 denotes the reso-
nance frequency ratio, i.e.,

~ = + (L&)112/Rb ; 6 = We/We. (17)

The steady-state response is illustrated by the phasor diagram
in Fig. 11. From straightforward calculations using (1 5)-(17)
the amplitudes of Vb and Izb are found

The state equations for the unforced circuit can be written

dIlb/dt = Vo/Lb ; dvbldt =-Ilb /Ce - 2@4 VO, (22)

so the trajectory is governed by

dVJdI1b = ‘4f2Rb(l +RbI~b/Vb), (23)

where (17) has been used. It is seen from ,(23) that the tra-
jectory crosses the negative IZb axis at a right angle. The cross-
ing point, which will be denoted (O, -lLO ), is the leftmost
point of the trajectory. The most negative value of Zlb due to
the joint effect of the transient and the steady-state responses
therefore becomes

where the last equation is derived in the Appendix. The func-
tion jl”, S) is shown in Fig. 13. According to the direction of
the ~b gradient in the phase plane, Fig. 12, the maximum base
current at the time where the transistor turns active for

VB =CC82VCxjCeA; IL = + CC6VCx/RblCeA, (18) vb = V@ must be restricted by the inequality [cf. (13)]

where max~~~ ~ ~b(vb~, ‘IL - ~L~) = (Vbo/Rb)

A =(S4 +282(2(2 - 1)+- 1)1/2. (19) o(~ vcx G.f(f, ~)/V&#e - 1). (25)

The steady-state response describes an ellipse with the half-axis The possible mappings of E’cxinto zoo implied by the cutoff
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Fig. 13. The function~(~, 6) in (24), (25), and 127).

Fig. 14. rho, Vcx plane showing the possible mappings of Vcx into Ibo
provided by the cutoff period of the self-oscillation.

period lie, therefore, in the hatched region of the lDO, VCX
plane in Fig. 14 where the boundary is given by a straight line.

The possibility for emitter breakdown has been disregarded
in the calculations. Emitter breakdown does not affect the

vrdidity of the inequrdity above because a limitaticm of the
:negative VD amplitude in turn keeps dI1b/dt limited. Thereby
a smaller lbO than the one given by the right-hand sidle of (25)
is obtained.

This finishes the discussion of the cutoff period. If the
curves of Fig. 7 are considered, the sinusoidal shapes of the
currents and voltages are easily recognized. The experimental
curves are especially distinct because the excess voltage is
‘lowered by the power concentration phenomenon in the
2N3632 transistor. In the simulation an emitter breakdown
results because the excess voltage here is somewhalt greater

and therefore forces more current through the base-emitter
circuit.

IV. SUPPRESSION OF THE SELF-OSCILLATIONS

A sustained oscillation must clearly imply an excess voltage

and an initial base current which lie in the region common to

the mappings in Fig. 9 and Fig. 14. By adjusting the param-
eters {, 6 the minimum VCXin this region may be moved to-
wards higher magnitudes, but due to the shapes of the bound-
ary curves a common region will always exist. A physical
limitation must therefore be introduced, and since the col-
lector avalanche breakdown voltage Vad provides the upper-
most collector voltage, this should be used. The maximum

excess voltage becomes

max VCX~ Vcx = Vac - Vcc. (26)

Insertion of VCX in both (1 O) and (25) and equating the
resultant magnitudes of {bo must lead to a condition where no
self-oscillation can be su$.tained in practice. Using (17) the
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Fig. 15. Contours showing the solutions to (26) using u as parameter.
For a given v the magnitudes of f,&, which assure suppression of the
self-oscillation, lie above the corresponding contour.

TABLE II
EXAMPLES SHOWING ESTIMATED AND EXPERIMENTALCONDITIONS FOR THE

SUPPRESSIONOFTHESELF-OSCILLATION

Transistor Data c, cc vb~ VaC v B VC&y

2N3632 78 pFl~v 13 pF128v -lV 11OV 6.831j8v 65 V
2N5642’ 150 pF\3v 30 pF\jxV -lV 100 v 7.20/jsv 65 V
2N6082a 390 pF\3V 120 pF[12v -Iv 55 v 6.61 l~~v 36 V

Estimation (sufficient criterion) Experiment (limits for suppression)

fi f Lb[nH] LC[nH] &[~] 6 .? Lb [nH] LC[nH] Rb[a]

2N3632 2.15 1.88 220 285 14.1 2.15 1.02 220 285 26
2N5642 5.90 1.50 452 65 18.0 5.04 1.30 330 65 18
2N6082 3.07 1.74 160 55 5.85 3.07 1.13 160 55 9

aModern emitter ballasted RF-power transistors.

suppression condition becomes

r(~.f(r, ~) - 1) -(+ V)’/’ = o; (27)

v = + Vcx Cc/ v~oce. (28)

The major property of (27) is that the question of stability can
be answered in the relative, frequency independent terms f, 8
and a parameter, v, which depends solely on properties of the
transistor. Therefore, a solution to (27) using v as a parameter

can be generally useful in design. The contours in Fig. 15,
which are obtained by numerical methods, show the solution.
For a given v the values of{, 6 which lie over the correspond-

ing contour should imply that the oscillation cannot be sus-

tained. Thereby the problem of suppressing the oscillation
reduces to that of estimating v.

In Table II some results concerning the utilization of Fig. 15

are summarized. It is seen initially that in agreement with the
expectations sufficient conditions are obtained from the
estimations in all cases. According to the assumptions for
(27), the discrepancies between experiments and estimations
arise from three major reasons.

1) The maximum collector voltage does not reach the

avalanche breakdown voltage in practice but lies commonly in
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the range above the collector-emitter breakdown voltage
B v~~~ .

2) The emitter breakdown often accompanies the backswing

in the cutoff period.
3) The actual resonance frequency ratio implies that the

worst case current given by (24) cannot be reached when the
transistor turns active.

At the present level of analytical development these addi-
tional phenomena occur in an unpredictable manner. Future
investigations concerning the self-oscillation should therefore
take both the direction of providing a better theoretical back-
ground and a practical investigation showing whether it is
possible to associate a function v = V(VCC)to each transistor

type. In connection with Fig. 15 such a function wcnrld give

the designer the necessary information for an a priori suppres-
sion of the oscillation.

V. DISCUSSIONS AND CONCLUSIONS

If the amplifier circuit of Fig. 1 is considered, two problems

appear in connection with the suppression of the self-
oscillation. These are the question of whether the suppression
can be carried out generally for all working conditions of the
amplifier and the question of whether a suppression w ill imply

a reduction of the circuit performance with respect to gain and
output power.

The inclusion of the matching networks, the generator impe-
dance, and a possibly mismatched load will clearly change the
conditions for the self-oscillation, as illustrated by the differ-
ences bet ween the oscillations in Figs. 4 and 7. Experiments
have shown that if the period of the self-oscillation is long, as
in Figs. 2-4, there are practically no differences between the
suppression conditions for the bias network alone and the
result ant amplifier. As shown in Table I the amplifier of Fig. 1
could be stabilized for all working conditions. According to
(9) and (25) this situation is obtained by means of a relatively

large base choke, Lb. For a low frequency self-oscillation the

effects of the matching networks and possible mismatches

correspond to small variations in 8. It is seen from Table II
and Fig. 15 that the suppression criterion is insensitive to
c5-variations in the practical range of clampings. The closer the
frequency of the self-oscillation comes to the signal frequency,
where the matching networks are tuned and where the col-
lector load depends heavily on the load impedance, tlhe more
unpredictable becomes the mode of the self-oscillation in the

complete amplifier. In this case spurious oscillations of the
subharmonic type in Fig. 5 are the most likely to be excited.

The observations above lead in a natural way to the parallel

method of damping the base choke, considered in this paper.

The criterion in Fig. 15 restricts only i and 8 so the damping
resistance may be determined from the requirement that the

gain should not be reduced more than tolerably. The reduc-
tion is found a priori since the RF input resistance of the tran-
sistor is often specified in the data sheets. For a given value of
Ii!b the base choke Lb can be adjusted to meet the suppression

criterion. On the basis of the discussion above it is seen that the
two goals are followed simultaneously when Lb is enlarged.
Firstly (17) shows that the necessary damping for suppression

is approached and secondly, the period of the self-oscillation

is made long so the stability is maintained under changing

working conditions. No damping of the collector choke is
prescribed and the amplifier can be stabilized without losses in

collector efficiency and output power.
By taking the self-oscillation of the bias network into

account, it has been possible to explain how some often ob-
served instabilities in RF-power amplifiers can arise and to
specify a well-founded method for stabilization. It is there-

fore concluded that one of the difficulties in design has been
removed and it is supposed that this new insight may throw
new light on other unsolved problems in RF-p6wer amplifier
constructions, for instance in areas of transistor paralleling and
intermodulation.

APPENDIX

DERIVATION OF (24)

Introduction of the variables

X = CJeLbIlb, Z = vb/x, (29)

transforms (23) to [using (17)]:

dx/x = ‘Z(Z2 + 2~z + 1)-1 dz = ‘h(Z) dz. (30)

The solution to (30) is given by

~
x = C exp (-g(z)); g(z) = h(z) dz, (31)

The constant C is determined from initial conditions XO,ZO, so

the final solution can be expressed

x/x. = exp (g(zo) - g(z)), (32)

where the function g(z) can be found in standard integral
tables:

{

(1 - ;2)’/2; {<1
P(Z)= Z2+2{Z +1, q= (fz-l)dz; {>1

{<1: g(z) = * lnP(z) - f tan-’ ([z+ fl/q)/4; (33)

f>l: g(z)= ~ln P(z) -+ fln([z+ {-q]/[z+r+q] )/q;

(34)

f=l: g(z)= ln(z+l)+l/(z+ l). (35)

Referring back to the original variables Vb and llb, using

Vb =Oand (20) and(21) gives

lLO = ‘lbI~o.o = exp (g(zo) – g(0)) sin UIL, (36)

where

ZO = VB cos V/CJeLbIL sin v = ~ (62 - 1)/{. (37)

The addition of(18) to (37) results finally in (24):

L + IL. = +(v=xcJRpcJf(c,8): (38)

~(f, ~) = (~/{A) (1 +-26{ exp [g(z~) - g(0)] /A).
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The Effect of
Propagation

Base Contact Position on the Relative
Delays of the Multiple Outputs of an

12L Gate
DAVID V. KERNS, JR., MEMBER,IEEE

Abstract–The multiple collectors of an 12L gate do not slew simulta-
neously, giving different propagation delays for tbe various outputs; the
relative positions of the base contact, the injector, and the cotlector
outputs affect these delays. In this paper, three possible configurations
are modeled, simulated, and the results summarized.

INTRODUCTION

INTEGRATED injection logic (I 2L) or merged transistor

logic (MTL) has received considerable attention since it was
introduced in 1972 [1] , [2] . The now well-known struc-

ture in which a lateral p-n-p current source is merged with an
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The author is with the Department of Electrical Engineering, Auburn
University, Auburn, AL 36830.

inverted n-p-n device with multiple collectors (see Fig. 1) is
challenging both conventional bipolar and MOS technolo~es
in many applications.

The more or less standard layout for 12L circuitry is that
shown in Fig. 2, where gates are placed along both sides of an
injector stripe. This arrangement provides high packing den-
sity and ease of layout, since metal routes can be placed over
unused positions in neighboring cells. Within a gate, the de-
si~er has the freedom to place the base contact at any of the
cell positions, the position chosen usually governed by metal
routing constraints.

In designing any digital system, certain critical paths require
a knowledge of the gate propagation delays. For 12L gates,
the minimum propagation delay has been shown approxi-
mately proportional to fan out [3] ; however, for a given gate,
the propagation delays from input to each of the multiple out-


