Interferometric crosstalk suppression using polarization multiplexing technique and an SOA

Liu, Fenghai; Xueyan, Zheng; Pedersen, Rune Johan Skuillerud; Jeppesen, Palle

Published in:
CLEO 2000 Technical Digest

Link to article, DOI:
10.1109/CLEO.2000.906765

Publication date:
2000

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
nant structure as the measured spectrum. The calculated peak spacing (true spectral range) of 1.34 ± 0.04 THz is in excellent agreement the measured spacing of 1.30 ± 0.04 THz. Both values are close to that obtained using a simple Fabry-Perot model, which predicts 1.0 THz. The calculated envelope differs from the measured spectrum, which is likely caused by a difference in the facet geometry.4 The bandwidth of the guided mode extends over almost the entire width of the gap except for a small frequency range around 0.41 cm$^{-1}$. This feature appears in the measured spectrum at 0.45 cm$^{-1}$ and the shift is attributed to a difference in the size of the holes closest to the waveguide.

These results illustrate, for the first time to our knowledge, the detailed spectral signature and resonant features of a photonic crystal waveguide.

*Max-Planck-Institut of Microstructure Physics, Germany
**MIT, USA

JMA6

3:00 pm

Guided modes with flat photonic bands in textured microcavities

M.G. Salt, W.C. Tan, W.L. Barnes, Thin Film Photonics Group, School of Physics, Univ. of Exeter, Stocker Road, Exeter, Devon, EX4 4QJ, United Kingdom. E-mail: mg.salt@ex.ac.uk

The use of planar microcavity structures to control spontaneous emission from optical devices is now a well-established technique. The simplest geometry is that of a pair of planar mirrors separated by a distance of order the wavelength of light, with the emissive species situated between the two mirrors. It has been clearly demonstrated that the boundary conditions imposed by such planar microcavity systems can modify the spatial and spectral distribution of the emitted radiation from such devices,

However, the extent to which spontaneous emission may be controlled is limited by the planar symmetry of the microcavity. In order to modify the spontaneous emission process further, the dimensionality of the system needs to be reduced,

In this paper, we present a gain-saturated laser diode source has been reported to suppress cross talk, but it cannot be used for high-speed signals and the output signal suffers from extinction ratio degradation and waveform distortion.

In this paper, we present a gain-saturated semiconductor optical amplifier (SOA) to suppress the impact of interferometric cross talk, and show that 6 dB more cross talk can be tolerated for 1 Gbit/s. Using polarization multiplexing of optical signals modulated by data and the complementary, impairments like waveform distortion and extinction ratio degradation are eliminated, and the method is also bit rate transparent.

Figure 1 shows the experimental setup and waveforms at different points. Light from a distributed feedback (DFB) laser is divided into two parts after being amplified in an erbium-doped fiber amplifier (EDFA). Each part is modulated by data or the complementary in an external modulator, and then set to one of two orthogonal polarization states. The two parts are combined in the polarization beam combiner (PBC). A variable fiber delay line and a variable optical attenuator are used before the PBC, in order to obtain a constant power of the combined signal without bit transition patterns. Cross talk is added to the com-

JMA6 Fig. 1. A schematic of the two-dimensionally textured, metal-clad microcavity.
bined signal by adding a fraction of the original signal delayed by 500 m of fiber. The signal-crosstalk beat noise causes amplitude fluctuations, but these fluctuations are significantly suppressed after the SOA because of the gain saturation. The 3-dB saturation input power of the SOA is -10 dBm, and the input power into the SOA is -2 dBm in our experiment. The two orthogonally polarized signals are separated by the polarization beam splitter, and one of them is detected.

Because the SOA only experiences constant optical power of the combined signal, no waveform distortions will be generated by the SOA. Furthermore, because amplitude fluctuations are suppressed by the saturated SOA, crosstalk-induced penalty can be reduced. Figure 2 shows the penalties versus relative crosstalk power with and without the SOA; it can be seen that 6 dB more crosstalk power can be tolerated using the SOA at 1-dB penalty (BER \(\approx 10^{-9} \)). The insets show eye-diagrams of the 10-Gbit/s signal before and after the SOA when -13.8-dB crosstalk is introduced. A clear eye is restored after the SOA.

Because of the constant optical power in the SOA, this method is pattern independent and bit-rate transparent, and there is no extinction ratio degradation. Figure 3 shows the eye-diagrams at 20 Gbit/s before and after the SOA when the relative crosstalk power is -17.8 dB; also here a clear eye can be found after the SOA. Due to lack of a 20-Gbit/s receiver, no BER curves are measured in this case.

We successfully demonstrate that the impact of interferometric crosstalk can be suppressed using a saturated SOA and a polarization-multiplexing technique. The method is pattern independent and bit-rate transparent and gives no waveform distortion or extinction ratio degradation. A 6-dB higher crosstalk level can be tolerated at 1-dB penalty using this method.

CMR2 1:45 pm

200-Gbit/s polarization-multiplexed transmission over 100 km of dense-dispersion-managed fiber

W.L. Kaeckele, M.J. Dennis, L.F. Carruthers, L.N. Dulig III, Advanced Lightwave Applications Section, Code 5654, NRL, 3555 Overlook Ave., SW, Washington, D.C. 20375, USA; E-mail: kaecikel@nrl.navy.mil

High-rate time-division-multiplexed return-to-zero transmission has been demonstrated using both linear and nonlinear transmission in systems employing dispersion-shifted fiber as the transmission medium.\(^1\)\(^2\)\(^3\)\(^4\) Dispersion-managed transmission links, in which the local nonlinearity is utilized to balance the average dispersion of the system, provide another avenue for high-bit-rate communication. Theoretical studies have demonstrated the feasibility of transmitting 100 Gbit/s over distances greater than 1000 km.\(^2\)\(^3\)\(^4\) Using a dense-dispersion map we have successfully transmitted an error-free 200 Gbit/s return-to-zero data stream over 100 km.

The details of the experimental configuration are described in Ref. 5. A mode-locked fiber laser capable of producing 1.5–2.5 ps pulses served as the source of a 12.5-GHz pulse train.\(^6\) The pulses were encoded with a pseudo-random binary sequence \((2^{11} - 1 \text{ bits, 2.2 mark ratio})\) at 1561.6 MHz. The encoded stream is then split, delayed, and recombined. The encoded stream is then amplified and sent through a 5-dB polarization-maintaining coupler to produce a 100-Gbit/s time-division-multiplexed data channel. To achieve an aggregate data rate of 200 Gbit/s, the 100-Gbit/s channel was multiplexed using the walk-off between the orthogonal polarization axes in high birefringence fiber. The pulse trains were delayed by one and a half bit periods to avoid nearest-neighbor interactions during transmission. The autocorrelation trace of the 200 Gbit/s pulse train at launch is illustrated in Fig. 1.

To facilitate clock recovery, a cw signal at 1555.0 nm, modulated at the data base rate, was transmitted along with the data signal. The clock wavelength was filtered from the data using a fiber Bragg grating and optical circulator; the clock frequency was then extracted via a phase-locked loop scheme. Operation of the clock recovery system robustly provided an absolute timing reference for the received channels. The presence of the clock recovery signal necessitates the removal of all filters from the link, reducing the signal-to-noise ratio at the receiver.

The transmission span has a zero-dispersion wavelength of 1560.9 nm and an average dispersion of 0.05-ps/nm/km at the operating wavelength. The pulses are 1.8 ps full-width at half-maximum, which corresponds to a dispersion length of approximately 15 km. To overcome the deleterious dispersive effects over the total transmission distance (107 km), the output power levels of the in-line amplifiers were set to nonlinearly balance the dispersion. Optical performance was obtained with a peak energy of 150 fJ after amplification, which corresponds to a peak pulse power of 83 mW.

At the end of the span, the 200 Gbit/s stream is polarization demultiplexed, then time-division-demultiplexed to 12.5 Gbit/s using a LiNbO\(_3\) modulator based demultiplexer.\(^7\) The received bit error-rate was measured to be better than \(10^{-10}\). A typical error-free eye pattern using a 21-bit word is shown in Fig. 2.

This experiment demonstrates the feasibility of using dense-dispersion management for transmitting rates as high as 200 Gbit/s over