

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 29, 2023

Mobile Robot Navigation

Andersen, Jens Christian

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Andersen, J. C. (2007). Mobile Robot Navigation.

https://orbit.dtu.dk/en/publications/79104a01-7308-413e-8d20-7424c03fc13b

Jens Christian Andersen

Mobile Robot Navigation

PhD thesis, September 2006

2

Technical University of Denmark

Mobile Robot Navigation

PhD thesis
Jens Christian Andersen

September 2006

Supervisors: Associate Professor Ole Ravn,
Associate Professor Nils A. Andersen
both at Automation Ørsted•DTU

ISBN: 87-91184-64-9

4

Preface

This thesis is submitted in partial fulfilment of the requirements for the
PhD degree at the Technical University of Denmark. The work was performed
in the period March 2003–September 2006 at Automation Ørsted•DTU .

The supervisors have been Associate Professor Ole Ravn and Associate
Professor Nils A. Andersen both Automation Ørsted•DTU.

Working with robots is an inspiring, satisfactory occupation and a constant
source of enjoyment. Especially I remember a small event where a class of
about 10-year-old pupils visited our lab. I gave a short demonstration of a few
of our robots, and one of the boys asked with wide open eyes: ’Is this a sort of
playground for adults?’ And when I confirmed with a smile, he replied: ’This
is where I want to go when I get older.’

I would like to thank both supervisors for the cooperation and encourage-
ments in the project period and for the gentle pushes – especially in situations
where details became prohibitive for progress.

Additionally I would like to thank the other members of the robotics group
for the many informal discussions which have been a source of inspiration
throughout the years, and to the service-minded workshop for assistance and
ideas with the mechanical, electronic and logistic issues when needed.

A special thank to Lisbeth Winter for her (patient) proofreading assistance
during the writing of this thesis.

And finally: this project would never have been possible without the support
and encouragement from my beloved family: my wife Birte and my son Mikkel.

Kgs. Lyngby, September 2006

J. Christian Andersen

5

6

Abstract

Robots will soon take part in everyone’s daily life. In industrial production
this has been the case for many years, but up to now the use of mobile robots
has been limited to a few and isolated applications like lawn mowing, surveil-
lance, agricultural production and military applications. The research is now
progressing towards autonomous robots which will be able to assist us in our
daily life. One of the enabling technologies is navigation, and navigation is the
subject of this thesis.

Navigation of an autonomous robot is concerned with the ability of the
robot to direct itself from the current position to a desired destination. This
thesis present and experimentally validates solutions for road classification,
obstacle avoidance and mission execution. The road classification is based on
laser scanner measurements and supported at longer ranges by vision. The road
classification is sufficiently sensitive to separate the road from flat roadsides,
and to distinguish asphalt roads from gravelled roads. The vision-based road
detection uses a combination of chromaticity and edge detection to outline the
traversable part of the road based on a laser scanner classified sample area.

The perception of these two sensors are utilised by a path planner to allow
a number of drive modes, and especially the ability to follow road edges are
investigated.

The navigation mission is controlled by a script language. The navigation
script controls route sequencing, junction detection, junction crossing calcula-
tions and drive mode selection.

The entire system is tested on a combination of narrow asphalt and gravelled
roads connected by a number of junctions. Missions of up to 3 km in length
have been successfully completed using the described system.

The main focus of the thesis has been the experimental validation of the
implemented solutions and the ability of the methods to solve real world prob-
lems.

The amount of software needed by an autonomous robot can be overwhelm-
ing. Software reuse and distributed development are therefore important issues.
The thesis describes a new component architecture for robotics software that
promotes software reuse and distributed development and maintenance.

7

8

Dansk Resumè

Robotter vil om f̊a år blive en del af vores daglige liv. Inden for pro-
duktionsindustrien har det allerede være tilfældet i mange år, men anven-
delsen af mobile robotter har hidtil været henvist til isolerede omr̊ader som
græssl̊aning, overv̊agning, landbrugsproduktion og militære funktioner. Frem-
skridt i forskningen der gør, at robotter vil kunne assistere os i mange af vore
daglige gøremål i en ikke s̊afjern fremtid. En af de teknologier, der skal gøre
dette muligt, er navigation, og navigation er emnet for denne afhandling.

Navigation for autonome robotter handler om robottens evne til autonomt
at manøvrere fra den nuværende position til et ønsket bestemmelsessted. Denne
afhandling præsenterer og validerer eksperimentelt løsninger til detektering af
farbar vej, omg̊aelse af forhindringer og gennemførelse af missioner. Vejklassi-
fikationen er baseret p̊a laserscanner målinger og assisteret med vision for læn-
gere rækkevidde. Vejklassifikationen er tilstrækkelig selektiv til at kunne ad-
skille selv flade vejrabatter fra selve vejen og kan isolere asfaltveje fra grusveje.
Vejgenkendelse ud fra kamera billeder tager udgangspunkt i klassifikationen
fra laserscanneren og bruger en kombination af farve og kantdetektering til at
estimere farbar vej p̊a længere afstande.

Resultatet af disse to sensorer anvendes under planlægning af en farbar rute,
og her er det især robottens evne til at følge vejens kanter, der er undersøgt.

Navigationen i en mission er styret af et sekventielt manuskript. Manuskr-
iptsproget giver mulighed for detektering af vejkryds, for beregninger til brug
under passagen af disse kryds og til valg a styringsmetode iøvrigt.

Det samlede system er testet p̊a en kombination af asfalt- og grusveje, med
et antal forgreninger og vejkryds. Missioner p̊a op til 3 km længde er gen-
nemkørt autonomt med det beskrevne system.

Fokus i afhandlingen har været den eksperimentelle validering af de im-
plementerede metoder og metodernes evne til at løse problemer i en virkelige
verden.

Der skal en betydelig mængde software til for at styre en autonom robot, em-
ner som software genbrug og distribueret udvikling er derfor essentielle. Denne
afhandling beskriver yderligere en komponentbaseret arkitektur for robotter,
som kan fremme software genbrug og distribueret udvikling og vedligeholdelse.

9

10

Contents

1 Introduction 17

1.1 State of the art . 17

1.2 Unsolved aspects . 20

1.3 Objectives . 22

1.4 Navigation disciplines . 23

1.5 Navigation platform elements 24

1.6 Contributions . 25

1.7 Thesis structure . 25

2 Overview 27

2.1 Introduction . 27

2.2 Robot conceptual model . 27

2.3 Task breakdown . 29

2.3.1 Behaviour generation . 29

2.3.2 World model and value judgement 30

2.3.3 Sensor processing . 31

2.4 Experimental platform . 32

2.4.1 Mechanical capabilities 32

2.4.2 Posture detector . 33

2.4.3 GPS . 35

2.4.4 Laser scanner . 35

2.4.5 Camera . 36

2.4.6 Computer . 36

2.4.7 Security . 37

2.5 Approach . 37

2.5.1 Road navigation . 37

2.5.2 Vision support . 38

2.5.3 Sensor fusion . 38

2.5.4 Behaviour decisions . 39

2.5.5 Software architecture . 39

11

12 CONTENTS

3 Laser scanner based perception 43
3.1 Introduction . 43
3.2 Related work . 44
3.3 Overview . 44
3.4 Laser scanner use . 45

3.4.1 Obstacle detection . 46
3.4.2 Security distance . 47
3.4.3 Scan rate requirement 47
3.4.4 Laser scanner tilt . 48
3.4.5 Wet surface reflection . 50
3.4.6 Spurious detections . 50
3.4.7 Summary . 50

3.5 Traversability . 50
3.5.1 Measurements . 52
3.5.2 Feature membership functions 52
3.5.3 Invalid data . 53
3.5.4 Raw height feature . 54
3.5.5 Roughness feature . 54
3.5.6 Step size . 57
3.5.7 Curvature . 59
3.5.8 Slope and width . 59
3.5.9 Single scan classification 61

3.6 Road detection . 61
3.6.1 Segment correlation . 62
3.6.2 Corridor generation . 63
3.6.3 Road lines . 65
3.6.4 Road type . 66
3.6.5 Results . 70
3.6.6 Quality . 72

3.7 Obstacle detection . 72
3.7.1 Wall detect . 74

3.8 Summary . 75
3.9 Further improvements . 76

4 Vision based perception 77
4.1 Introduction . 77
4.2 Related work . 78
4.3 Limitations and possibilities . 79
4.4 Road outline . 80

4.4.1 Shadows . 82
4.4.2 Road-outline polygon . 83
4.4.3 Projection to robot plane 84

CONTENTS 13

4.4.4 Road outline results . 85
4.5 Guidemark recognition . 90

4.5.1 The landmark . 91
4.5.2 Corner detection . 92
4.5.3 Frame detection . 94
4.5.4 Code detection . 96
4.5.5 Guidemark position . 97

4.6 Guidemark results . 101
4.7 Summary . 103
4.8 Further improvements . 103

5 Obstacle avoidance 105
5.1 Introduction . 105
5.2 Obstacle avoidance methods . 105

5.2.1 Design decisions . 107
5.3 Obstacle detection . 107
5.4 Integration of vision data . 108

5.4.1 Extended road corridor 108
5.5 Exit posture . 111

5.5.1 Exit posture results . 112
5.6 Obstacle maintenance . 112
5.7 Obstacle avoidance routes . 116
5.8 Posture to posture manoeuvre 118

5.8.1 Right, straight and then right 118
5.8.2 Right, straight and then left 119

5.9 Route selection . 120
5.10 Drive commands . 122
5.11 Summary . 124

6 Mission planning and execution 127
6.1 Introduction . 127
6.2 Mission . 128
6.3 Navigation scheduler . 128

6.3.1 Drive commands and stop conditions 129
6.3.2 Stop conditions . 131
6.3.3 Sensor control . 132
6.3.4 Control decisions . 133
6.3.5 Watch functions . 134
6.3.6 Support functions . 135

6.4 Mission assignment - operator interface 138
6.5 Mission planning . 139
6.6 Summary . 142

14 CONTENTS

7 Software architecture 143
7.1 Introduction . 143
7.2 Related work . 143
7.3 Software architecture requirements 144
7.4 Design decisions . 145
7.5 Communication . 147
7.6 Component structure . 148

7.6.1 Client connections . 150
7.6.2 Mission monitoring . 150

7.7 Simulation . 150
7.8 Full component structure . 151
7.9 Results . 152
7.10 Summary . 153

8 Results and discussion 155
8.1 Introduction . 155

8.1.1 Test route . 155
8.2 Road line quality . 156
8.3 Excessive roll . 157
8.4 Excessive tilt . 158
8.5 Open areas . 159
8.6 Flat roadsides . 160
8.7 Side roads . 161
8.8 Convex obstacles . 162
8.9 Road ridge . 163
8.10 Odometry navigation . 164
8.11 Discussion . 164

9 Conclusion 167
9.1 Perception . 167

9.1.1 Laser scanner perception 167
9.1.2 Vision-based perception 169

9.2 Behaviour generation . 170
9.3 Architecture . 171
9.4 Results . 172
9.5 Future work . 173

Bibliography 175

A Trinocular stereovision 181
A.1 Introduction . 181
A.2 Objectives and Overview . 182
A.3 Feature filtering . 183

CONTENTS 15

A.4 Stereoscopic scanning . 185
A.5 Camera calibration . 188
A.6 Results . 189
A.7 Conclusion . 191

A.7.1 Next step . 191

B Navigation script definition 193
B.1 Introduction . 193
B.2 Assignments . 194
B.3 Execute statement . 194

B.3.1 Drive command FWD 195
B.3.2 Drive command GOTOWAYPOINT 196
B.3.3 Drive command IDLE 196

B.4 Drive command SMRCL . 196
B.5 Function definition . 197
B.6 Flow control . 197
B.7 Skip statement . 198
B.8 Remarks . 198
B.9 Library functions . 199
B.10 Special functions . 199

B.10.1 Guidemark functions . 200
B.11 System defined variables . 200
B.12 Examples . 204

B.12.1 A 4 m square . 204
B.12.2 Up and down the hallway 205
B.12.3 Up and down the hallway with stops 205
B.12.4 Test area navigation script 207

16 CONTENTS

Chapter 1

Introduction

Navigation is in Encyclopædia Britannica defined as ’science of directing a
craft by determining its position, course, and distance travelled. Navigation is
concerned with finding the way to the desired destination, avoiding collisions,
conserving fuel, and meeting schedules’. Mobile robot navigation is thus the
ability of a mobile robot to get from one place to another in an orderly manner.

For a navigation robot the purpose is to get to a destination, but you do
not buy a robot for this purpose alone. To solve real problems the robot must
be able to do something, a gardening robot must be able to do some gardening
like cutting the hedges, and a delivery robot must be able to deliver items like
mail or groceries, a surveillance robot must report on the surveillance findings.
Navigation is the common ability that enables the robot to reach the destination
required by the job.

This thesis deals with the enabling technologies needed by a navigating
robot. The method is to research methods and test their ability to cope in real
world situations.

1.1 State of the art

The UN publishes annually a status report World Robotics (2005) on the use
of robotics – covering both industrial and service robots – based on contribu-
tions from the member countries. The service robot area is small compared to
the industrial robots, but it is a fast growing area and is expected to exceed
the market size for industrial robots within the next few years. The groth is
estimated by the Japan Robotics Association as shown in Fig. 1.1(a).

The European Union has established the European Robotics Platform (EU-
ROP) (Barontini et al. (2005)) to promote the robotics area, and expects Eu-
rope to play a major role especially in the area of non-military service robots.
At present the USA is dominating the area of military robotics and Japan the
area of domestic (entertainment) robots.

17

18 CHAPTER 1. INTRODUCTION

Robots for autonomous lawn moving and vacuum cleaning have been avail-
able commercially for a number of years; two recent examples of products are
shown in Fig. 1.1(b) and Fig. 1.2(b). The solutions have very limited percep-
tion of the working area, and the working area is covered using a random rather
than a systematic and optimised method.

(a) (b)

Fig. 1.1: The service robot market is expected to exceed the market for in-
dustrial robots within the next few years (a). Automatic lawn mower from
Belrobotics (b).

Within the agricultural area GPS1 has made a spectrum of field robotic
applications attractive, an example of a robot in the area of crops and plant
nursing is shown in Fig. 1.2(a) from the Danish Royal Veterinary and Agricul-
tural University (KVL) and is described in Mejnertsen & Reske-Nielsen (2006).

Robots for storage and recovery of goods in storage systems are already in
place, and robots for delivery to and from end users in hospitals are seen at
places. In the future such systems could be expanded to deliver mail in office
buildings, or to deliver the ordinary mail and other commodities to private
houses.

Potentially computer-driven cars could make the traffic on highways and
motorways more efficient, some results have been demonstrated by Thorpe et
al. (1997), and an image from this event is shown in Fig. 1.3(a), where a number
of cars are driven at high speed with short separation.

1GPS: Global Positioning System

1.1. STATE OF THE ART 19

(a) (b)

Fig. 1.2: Autonomous tractor (a) from the Royal Veterinary and Agricultural
University (KVL); an Electrolux robotic cleaner (b).

Surveillance of areas of high value is an area for robots when camera surveil-
lance or guard dogs are either impractical or insufficient. The present tech-
nology in the area has a limited autonomy though, like the OFRO robot by
Robowatch (2006) shown in Fig. 1.3(b) this was used during the football world
cup event 2006 in Germany. Other areas could be monitoring of agricultural
crops, inspection of deserted mines, areas with dangerous chemicals (like near
an active volcano) or radioactive waste (a depot or after an accident).

Handicap assistance is expected to be a major area for robots in general,
but also for autonomous robots, and could help a number of elderly or disabled
people to be less dependent on human assistance. One of the future examples
in this area could be a robot acting as a guide dog for blind people.

Search and rescue are areas, where robots could save lives without putting
the rescue workers at risk. The rescue robots on the accident scene are primarily
envisaged as guided robots, but autonomous robots could be beneficial if large
areas were to be searched for survivors, like in an avalanche area.

The military applications include ground transportation of goods across
potential hostile areas to support friendly units or own troops. One of the
projects that aim for this segment is described in Aufrere et al. (2003) where a
large number of sensors is used in an attempt to create an autonomous outdoor
platform. The USA defence organisation DARPA2 has sponsored a number of
projects in the area and has organised the Grand Challenge 2004 and 2005
events for autonomous vehicles. Five teams completed in 2005 the 132 miles
desert terrain route; the top two of the participants are shown in Fig. 1.4. A

2DARPA: Defence Advanced Research Projects Agency

20 CHAPTER 1. INTRODUCTION

(a) (b)

Fig. 1.3: Demonstration of computer-driven cars travelling at 65 miles per hour
in San Diego 1997 (a). Surveillance robot used during the football world cup
games in Germany 2006 (b).

number of papers and reports are released from these events, eg Behringer et
al. (2005), Xiang & Ozguner (2005), and the winner from Stanford University
described in Thrun et al. (2006).

1.2 Unsolved aspects

The EUROP describes in Barontini et al. (2005) cognition as one of the main
areas where further research is needed. The cognitive system must base its
decisions on situation awareness. And situation awareness requires for a robot a
qualified perception of the surroundings. Most of the future robots are expected
to operate in an unstructured environment where such skills are needed.

In research work published over the last 20 to 30 years there are sugges-
tions to solutions in almost any of the individual disciplines needed to build
an autonomous robot. A plenitude of drive system solutions is available. Sen-
sor solutions based on sonar, laser, vision, radar, telemetry, odometry, inertia
and others are described, and each description presents aspects that may be
beneficial for an autonomous robot. When entering into the higher levels of
abstraction in perception and cognition there are less published results.

The perception needed by an autonomous robot is primarily the positioning
of nearby objects and a qualified type identification of the objects. When on a
highway with objects in front of the vehicle and on the right side, it is important
to know that the object in front is a car and the object on the right is the road
edge – and not vice versa.

The question as to the position of the objects is often readily solvable by
sensors like a laser scanner, whereas the determination of object types often
requires more data processing and often more data. A vision sensor requires

1.2. UNSOLVED ASPECTS 21

Fig. 1.4: From the DARPA Grand Challenge 2005, the team from Stanford
University (a) and from the Carnegie Mellon University (b).

much more processing to determine where the surrounding objects are located,
but includes typically other aspects – like colour – of the objects. A number of
advances have been published recently in object type determination using vi-
sion; an example is Fergus et al. (2003) who is using a feature detection method
from Kadir & Brady (2001) to recognise objects like a motorbike, a plane or a
panther in a series of images. The method recognises a set of scale related fea-
tures from the image and from the feature types and their relative position the
object type is determined. The method is complex and time consuming, but
this and a number of other advances in vision-based perception is promising
for the future, as summarised in Kragic (2005).

One of the key areas in researching the more advanced issues of autonomous
robots like cognition is the availability of a standardised basic platform. The
research for specific solutions used in robotics is typically performed in small
groups, and to establish new results, these should preferably be based on pre-
viously described results. The previous results are often not available to others
than the researcher and possibly to the colleagues at the research establishment.
A standardised software architecture could reduce the time needed to recreate
already established results, and thus would allow more research time for new
areas. Some software component standardisation is already taking place in for
example the CARMEN project (Montemerlo et al. (2003)) for robot compo-
nents in general, and the system described by Ponweiser et al. (2005) for a
vision-based system.

22 CHAPTER 1. INTRODUCTION

The conclusion is that especially within the perception and cognitive disci-
plines there are many unsolved aspects, and these are the areas that suffer most
from the lack of a standardised component framework. A number of such com-
ponents – like sensor interface, drive control, simulation and mission scheduler
– are needed before perception and cognition components can be integrated
and tested in a real world situation.

It will still take a number of years before robots are able to navigate au-
tonomously and safely in populated areas.

1.3 Objectives

The research objectives of this thesis are to experimentally verify navigation
solutions for mobile robots and their ability to cope with real world situations.
The experimental approach is sketched in Fig. 1.5 and is in general used to

Problem

Solved

Modify
model

Not solved

New or known
solution model

Discard
model

Real world
test

Fig. 1.5: The objectives of this thesis are to take navigation solutions to the
test. This experimental robotics approach is used to create new, to modify or
discard solution models.

verify models or assumptions through experiments. The results should include
a navigating robot and a software architecture that would allow reuse in other
projects.

The navigation solutions investigated should be broad in scope, but may be
evaluated against a more limited environment. A specific test area has been
selected; the area is a nearby nature reserve (Dyrehaven near Copenhagen).
The tests should include autonomous navigation on both asphalt and gravel
surfaced roads and junctions in the test area.

Obstacles are to be avoided, but moving obstacles need not be handled
specifically.

1.4. NAVIGATION DISCIPLINES 23

1.4 Navigation disciplines

Navigation is concerned with finding the way to a desired destination. This can
be divided into three parts: the localisation, where am I; the mission, where
do I want to go; and finally how do I get there.

Where am I

I am at 55.7986◦N and 12.5456◦E or at 346145.264E 6183922.977N in zone 33
of the UTM3 projection heading 72.5◦, may be an accurate positioning, but
a position like ’facing building 326’ or ’eastbound on route 20’ may be much
more useful as navigation reference – dependent on the situation.

The important issue is a knowledge of own position relative to the destina-
tion.

Where do I want to go

The mission objectives for a navigating robot are to get to a different place.
It could be to a position far away, or a position with a number of specific
waypoints, it could be just to explore the surroundings, or search an area until
some success criterion is met.

There may be a number of competing missions, eg the main mission may
be to explore the area to the left, but the batteries may be almost flat and the
charging station is to the right.

These mission types can all be broken down into a sub mission of the type:
bring the robot from A to B.

How to get there

An old Chinese proverb says: ‘Even the longest journey begins with a first
step’. This could be translated as: get moving in the right direction, avoiding
obstacles as they are detected. This reactive approach may work well, and is
in the spirit of Allan Brooks (MIT 1987) ‘Planning is just a way of avoiding
figuring out what to do next’, but a plan may be needed in some situations, eg
when the robot has met a dead end and the final destination is further ahead.

If a map of the area from A to B is available, with traversable terrain
information, then it may be possible to make an overall plan to get to B, and
possibly to select the most appropriate from a number of alternative routes.
But as the obstacle situation along the route most likely is unknown the detailed
planning must wait until the obstacle situation is detected.

3UTM: Universal Trans Mercator

24 CHAPTER 1. INTRODUCTION

Thus a solution should combine long term planning – based on past expe-
rience, eg a map – and a short term reactive behaviour to cope with detected
obstacles and situations not foreseen in the map.

1.5 Navigation platform elements

The elements needed for a navigation robot are (see also Fig. 1.6):

• a mechanical system that is capable of making the move from A to B,

• sensors to get impressions from the current situation,

• cognition to perceive the sensed information and to decide on a behaviour,
and

• a control system to implement the desired behaviour.

Cognition Sensors

Mechanical platformControl

Fig. 1.6: The main elements of a navigating robot are: sensors, a cognitive
function, a control system and a mechanical platform.

Cognition is (in this sense) the process of reasoning on the perceived infor-
mation and from the reasoning the making of intelligent behaviour decisions.
Perception is the interpreting and organising of the sensory information.

A car is a mechanical system capable of making the move from A to B, and
it has a control system to implement the desired behaviour. The driver handles
the remaining elements: the sensors (primarily using the eyes and ears) and the
perception of the sensor data (into road and traffic and the interpretation of
signposts) as well as the decision of an appropriate behaviour (eg take the next
exit and stop when the target position (B) is reached). A normal car is thus
not a navigation robot, as the car does not handle the sensing and cognition.

A (modern) cruise missile has all it takes to get from A to B autonomously,
it has sensors that allow perception of the current situation, it has sufficient
cognition to correct the course as needed and to take the appropriate action
when the target is reached. A cruise missile is thus a navigating robot.

1.6. CONTRIBUTIONS 25

1.6 Contributions

This thesis focuses on the autonomous navigation problem with special em-
phasis on outdoor navigation in the semi-structured environment of the test
area.

The main contributions from this thesis are:

• A laser scanner (2D) based perception of road surface and obstacles. This
is the main sensor for obstacle avoidance and environment perception.
The classification into traversable road surface and nontraversable terrain
is in short form described in the papers (Blas et al. 2005) and (Andersen
et al. 2006).

• A vision-based perception of the available road in front of the robot. The
purpose is to extend the decision range for direction decisions beyond the
laser scanner range. The results were presented at the 10th International
Symposium on Experimental Robotics 2006 (Andersen et al. (2006)).

• A guidemark solution to detect artificial 2D guidemarks using vision.
The solution can evaluate the robot position relative to the guidemark
position. The guidemark includes a (unique) code and can thus be used
as fixed reference points in the navigation process.

• A behaviour control scheduler, where a sequence of prepared navigation
routes can be executed, including decisions based on events on the route,
eg detection of guidemark, or calculations based on sensor measurements
etc. This is the human interface point for the implemented navigation
solution, and is intended as the interface point for a mission planner
above the navigation level. The navigation system has proved its value
on a 3 km autonomous drive on different road types within the test area.

• A software component architecture dividing the software complexity into
a client server structure where the server components complexity is fur-
ther reduced by moving parts of the functionality to plugins. The client
server interface uses an XML4 type text interface, this allows easy exten-
sion, monitoring and debugging.

1.7 Thesis structure

The thesis is divided into an

4XML: Extensible Markup Language.

26 CHAPTER 1. INTRODUCTION

Overview chapter of the used robot solution, and is describing the overall
functionality decisions and design.

Following the overview chapter a separate chapter is allocated for each of
the main functional areas:

Laser scanner based sensing includes the feature extraction used to sep-
arate traversable road areas from nontraversable road sides and other
obstacles.

Vision-based feature extraction describes the determination of available
road area at longer ranges and the position determination of artificial
guidemarks.

Obstacle avoidance includes obstacle management, sensor fusion and deter-
mination of the short term path planning in reaction to the detected
obstacles.

Mission planning and execution include the navigation scheduler which
combines the planned mission with obstacle avoidance.

Following these functional chapters a separate chapter is allocated for a
proposal for a new standardised system architecture.

Software architecture is proposing a new division of the robot functionality
into separately maintainable components and functional modules.

Each of these chapters includes some test results for the described subsys-
tem. The final two chapters primarily deal with the full system.

Results where the results obtained on the full system are discussed.

Conclusion which is a summary of the results.

The appendices hold sections describing results and detailed information
expanding on the results in the main chapters.

Chapter 2

Overview

2.1 Introduction

Outdoor navigation in open terrain requires sensors that can detect obstacles
and traversable terrain directly or indirectly, it requires sensors to determine
own position relative to the obstacles and relative to desired target position,
and finally to implement the navigation decisions, it requires mobility abilities
in the desired terrain.

These requirements are discussed in this chapter and are used to determine
a set of requirements for an outdoor navigation solution.

Some navigation subsystems are then described in the following chapters
and tested against the requirements.

2.2 Robot conceptual model

The National Aeronautics and Space Administration (NASA) and the US Na-
tional Institute of Standards and Technology (NIST) have developed a Standard
Reference Model Telerobot Control System Architecture (NASREM) described
in Albus et al. (1986) and extended it for intelligent system design as in Albus
(1992). This model has been used as the conceptual framework for many robot
projects since then. The basic structure for this model is shown in Fig. 2.1.

The right column in Fig. 2.1 holds the behaviour generation functions, where
the overall mission is sequenced into a specific behaviour to achieve the mission
goal. The mission assignment is entered at the top to the task scheduler that
implements the tasks needed to progress the mission and reflects on the current
state of the system. The relevant system state is supplied by the world model,
eg the current position on the navigation map.

The obstacle avoidance block takes the task assigned from the task sched-
uler, eg follow road 200 m forward, and decides on a route that brings the robot

27

28 CHAPTER 2. OVERVIEW

Map
sensing

Pose
sensing

Navigate
map

Obstacle
map

Robot
state

Obstacle
avoidance

Drive
control

Task
scheduler

Behaviour
generation

World model &
value judgement

Sensor
process

Mission

Obstacle
sensing

Drive systemSensor

O
perator interface

Fig. 2.1: The conceptual architecture for the robot. The sensors with basic data
extraction are in the left sensor column, the centre column holds the model of
the world and the robot as well as the current state. The right column is the
tasks that control the robot behaviour from the more abstract level on top to
the detailed motion control at the bottom.

in the right direction considering the current obstacles, terrain and robot state.

The drive control implements the drive command by controlling the indi-
vidual actuators in the drive system, eg implementing the requested speed and
heading.

The sensor process blocks extract the needed data from the real world; the
intention is that this information can be used to maintain a model of the world
that is sufficient for the behaviour decisions.

The value judgement part of the world model column can evaluate alterna-
tive plans in terms of cost, risks and benefits, add uncertainty, attractiveness
and desirability to measurements and states in the world model. The result of
the value judgement can then be used to improve behaviour decisions.

In the behaviour generation column the planning horizon will decrease as
the task decomposition gets closer to the drive system actuators. The task
decomposition may be hierarchical, so that the task scheduler may issue nav-
igation tasks to the obstacle avoidance planner and at the same time related
tasks to a manipulator or some other subsystem of the robot. The obstacle
avoidance task may issue commands to both the drive system and other sys-
tems like eg an audible alarm or an obstacle movement system. The drive
control – most likely – will control a number of actuators.

2.3. TASK BREAKDOWN 29

2.3 Task breakdown

The task breakdown shown in Fig. 2.2 is an expansion of the conceptual model
presented in Fig. 2.1. The experimental platform (described in section 2.4) sets
some of the possibilities and limitations, and these are included in parts of the
argumentation for the task breakdown.

Guidemark
extract Navigation

scheduler

Behaviour
generation

World model &
value judgement

Sensor
process

Mission

Terrain
classify

Drive system

O
perator interface

Camera
Road
extend

Obstacle
detect

Pose

UTMGPS

Laser
scanner

Gyro

Odometry

World pose

Pose
history

Traversable
map layer

Obstacle
map layer

Kinematic
model

Avoid
obstacles

Drive
schedule

Drive
control

Guidemark
map layer

Mission
map Mission

decision

Fig. 2.2: The conceptual architecture expanded to include first level of func-
tional breakdown. The implemented sensors with data extraction are in the left
column, the centre column holds current state and the model of the world as
generated by the sensors and the planned behaviour. The right column holds
the tasks that control the robot behaviour. The mission map and the mission
assignment blocks are not implemented. The operator interface is available
primarily to initiate and monitor the functionality.

2.3.1 Behaviour generation

Missions are loaded to the mission decision block and are assigned to the
task scheduler after some sort of priority scheme. These parts, neither the
mission map nor the mission decision blocks, are implemented or investigated
in this thesis. The mission priority list could eg hold: go to position B, C or
D, explore new roads around position E or return to docking station. The top

30 CHAPTER 2. OVERVIEW

priority mission should then be compiled into a mission sequence of navigation
commands – eg covering the route from current position to point C – and
present this to the task scheduler.

The implemented navigation command set in the task scheduler includes:
’follow road (left, right or centre)’, ’goto (relative) position’ and a set of condi-
tions that determine when a command is finished (ie a stop criterion). Addi-
tionally, any of the behaviour primitives provided by the drive scheduler may
be used too. The command set supports relative or topological navigation com-
mands, either relative to the road or relative to the current posture or to the
posture history. When following roads and crossing junctions this command set
should be sufficient. The only GPS support implemented is as a stop condition,
where it can be used to determine when to expect eg a junction or a new road
type.

The navigation scheduler will then in sequence present a method to
traverse part of the route – eg keep left on this road or how to cross a square –
to the avoid obstacle function, and monitor the available progress indications
(used as a stop criterion) before continuing to the next part in the sequence. A
stop criterion could be: detection of a vision-based guidemark, that the robot
is near a given GPS position, that the robot has travelled a given distance or
that no route is available. The task scheduler will then decide what to do next,
according to the assignment. This area is covered in detail in chapter 6.

The avoid obstacles function will attempt to follow the directions pre-
sented by the task scheduler by planning a route that follows traversable areas
of the terrain and avoids obstacles. The found route is formed as a sequence of
drive commands – like ’forward 1m’ and then ’turn 20◦ right’ – and presented to
the drive scheduler replacing the previously assigned drive schedule. Obstacle
management and avoidance are the subjects of chapter 5.

The drive scheduler implements the drive schedule taking the current
state and kinematics model of the robot into account, ie aiming for a desired
speed at an acceptable acceleration. The result is then presented to the drive
control for the relevant part of the drive system. The interface to the drive
scheduler is described in chapter 5.

The drive scheduler (named SMRDEMO) and the drive control are not
developed as parts of this thesis.

2.3.2 World model and value judgement

The world posture is intended to maintain a global reference to the mission
map using a GPS. The primary purpose of the world posture is to be able to
determine if a reference point is reached in the mission map. Aiming directly
for a position in GPS coordinates is not implemented, but could be an extension
to the allowed command set. For this purpose a standard GPS unit is available

2.3. TASK BREAKDOWN 31

and allows the robot to get a reference position in absolute coordinates.

The guidemark map layer holds information about detected guidemarks,
ie which guidemarks are observed where. A number of guidemark types could
be interesting, eg a road sign, a wall, a house, a road or a tree, or other objects
that could be used to recognize a given position. Of these guidemark types only
roads are implemented, and the available information includes estimated road
width and the estimation quality. A vision-based artificial guidemark sensor
is available; this detects an artificial two-dimensional barcode (a checkerboard
code). The guidemark code as well as its (3D) position and orientation are
detected. The guidemark extraction is discussed in chapter 4.

The traversable map and the obstacle map are parts of the feature
map used for local navigation for obstacle avoidance. Lack of obstacles is not
the same as good traversable terrain. The roads in the test area are typically
edged by slightly rougher grass areas, some of which may be traversable by
the robot, but the robot should preferably stay on the roads. Obstacles, on
the other hand, are defined as areas that hinder progress and thus should be
avoided at all times. The traversable map can therefore be used in the value
judgement for possible alternative routes.

The pose history holds the newest posture history of the robot. The
intention of this history is recognition of road curves and the average road
direction. This information is available to the task scheduler and may be used
to determine when to advance to the next command in the navigation sequence.

The kinematics model is needed to generate smooth and controlled ma-
noeuvres.

2.3.3 Sensor processing

The laser scanner is selected as the main sensor for terrain following and
obstacle avoidance. As the terrain is primarily flat, the laser scanner is tilted
downwards to get measurements from the road and roadsides. The measure-
ments are used for terrain classification and for obstacle detection. This is the
subject of chapter 3.

The vision sensor is used for road detection beyond the reach of the laser
scanner and for detection of artificial guidemarks. This issue is discussed in
chapter 4.

A gyro is used to supplement the wheel odometry sensor to get a more
stable heading. The odometry based heading is very sensitive to terrain cur-
vature and structure. The combined wheel odometry and gyro sensor provides
stable posture estimate in the tested environment.

32 CHAPTER 2. OVERVIEW

2.4 Experimental platform

The robot platform used for the tests was constructed as part of a master’s
thesis Nielsen & Breiting (2004) in 2004.

2.4.1 Mechanical capabilities

cg

41 cm
9°

86 cm

15°

15 cm

43 cm

22°

45°
90 cm

Fig. 2.3: The experimental robot is 90 cm long and 65 cm wide and weighs about
77 kg. The rear wheels are electrically powered, the wheel base is 45 cm and
the wheel diameter is 30 cm. The front caster wheel has a 20 cm diameter. The
suspension includes rubber shock absorbers. The SICK laser scanner is tilted
down by 9◦ and the camera by 22◦. The centre of gravity (cg) is positioned
close to the driving wheels.

The robot is built to access the same terrain types as are defined in the
Danish standard BR-95 for wheel chair mobility. It is 65 cm wide, 90 cm long
as sketched in Fig. 2.3. It weighs 77 kg and has a top velocity of 10 km/h.

The robot is powered by two electrically driven rear wheels, each with a
180 W DC motor. A single caster front wheel ensures static stability. The
differential steering uses the rear wheels only.

The motors can each produce a sustained torque of T = 13.4 Nm on the
wheel, and with a total weight of M = 77 kg and a wheel radius of r = 0.15 m,

2.4. EXPERIMENTAL PLATFORM 33

the maximum road inclination that the robot can climb is Ri = 13.6◦ as shown
in (2.1).

Ri = sin −1 2T

rMg
= sin −1 2× 13.4

0.15× 77× 9.8
= 13.6◦ (2.1)

This is approximately the same as the angle to the centre of gravity seen
from the rear wheels. This indicates that the robot in this configuration will
be able to do a wheelie (lifting the front wheel), especially as the motors will
be able to deliver a higher peek torque.

To avoid a wheelie the total torque should be limited to Tw = 31.4 Nm as
shown in (2.2), or 15.3 Nm each wheel. This corresponds to a wheelie acceler-
ation aw = 2.7 ms−2 as shown in (2.3)

Mgxcg =
Tw
r
hcg

Tw =
Mgxcgr

hcg
=

77× 9.8× 0.15× 0.075

0.27
= 31.4 Nm,

(2.2)

where xcg = 0.075 m is the position of the centre of gravity in front of the rear
wheels, and hcg = 0.27 m is the height of the centre of gravity, as shown in (2.3)

aw =
Tw
rM

=
31.4

0.15× 77
= 2.7ms−2. (2.3)

The weight distribution is approximately 13 kg on the caster wheel and 32 kg
on each of the rear wheels.

The robot is equipped with a 38 Ah 24 V power pack; this should ensure
continuous driving for about 7.5 hours at a speed of about 1.5 ms−1. The elec-
tronics alone uses approximately 50 W corresponding to about 18 hours of idle
operation time.

2.4.2 Posture detector

Wheel encoders on both driving wheels ensure odometry distance measure-
ments for each wheel. The difference in wheel distance can be used to estimate
heading change, but this estimate is dependent on a known wheel diameter.
The air-filled tires allow for some compression if the load increases, and this
will influence the effective wheel radius and hence the odometry accuracy. On
a curved road as shown in Fig. 2.4 the roll angle results in an uneven weight
distribution as shown in table 2.1.

The wheel depression is measured to approximately 0.0001 mkg−1 (derived
from variations in distance driven with different loads) at a tire inflation pres-
sure of (about) 1.5 bar. The difference in wheel radius (rl − rr) relative to the

34 CHAPTER 2. OVERVIEW

MMR

cg

45 cm

10°

27 cm

17.0 cm27.3 cm

Fig. 2.4: On curved roads the roll of the robot will shift the weight balance
resulting in a change in wheel compression and thereby influence the effective
wheel radius used in the odometry.

wheel base (B = 0.45) is the same as the average wheel radius (r = 0.15) rel-
ative to the turn radius (R), as shown in (2.4) and exemplified for a roll angle
of 10◦

rl − rr
B

=
r

R

R =
Br

rl − rr =
0.45× 0.15

0.15065− 0.14935
= 52 m.

(2.4)

In outdoor terrain a roll angle of 2–5◦ on either side of an asphalt or gravelled

Table 2.1: The effective wheel radius of the wheels depends on the tyre depres-
sion due to load. When the road profile is curved and the wheels are turning at
the same rotation speed, the robot will follow a curve with the shown turn ra-
dius, or suffer the shown systematic heading error (tyre depression effect only).

Roll Load [kg] Radius [cm] Turn Turn err.
angle left right left right radius [m] [deg/m]

0◦ 30.5 30.5 15.00 15.000 ∞ 0
5◦ 27.3 33.7 15.032 14.968 105 0.54
10◦ 24.0 37.0 15.065 14.935 52 1.1

2.4. EXPERIMENTAL PLATFORM 35

road is typical, sometimes – typically close to junctions – the roll angle may
reach 10◦.

The effect of tyre depression may be reduced by increasing the tyre pres-
sure, but effects from loose gravel (or soft soil), slippage and stepping effect on
the tyre treads (as there is a turn momentum from the weight on the caster
front wheel) influence the effective wheel radius too. All in all the heading
estimate based on difference in travelled distance is systematically dependent
on parameters that cannot be deduced from the odometry.

A heading error of more than 1◦m−1 is not satisfactory. On a flat surface
the heading stability is about 0.2◦ m−1 (based on calibration figures in Nielsen
& Breiting (2004)).

Detection of roll angle could be obtained by using a tilt sensor and thereby
reducing one of the error sources. A gyro measuring the heading change rate
would however be able to measure the heading change independent of these
error sources (but introduce others like drift as a function of temperature and
time).

The used gyro reaches a heading stability matching the odometry on a flat
surface at a speed of about 1 ms−1. When the robot is stationary or at very low
speed the time drifting error from the gyro exceeds the odometry error, and
thus a combination of the two sensors should produce a superior result. The
used implementation is a combination that uses the odometry heading when
the wheels are stationary and uses the gyro when the wheels are moving. At
the robot minimum speed (about 0.2 ms−1) the gyro accuracy should still be
superior to the odometry-based heading at a 10◦ roll angle, so a more balanced
use of the odometry and gyro headings is expected to produce minor accuracy
improvements only.

2.4.3 GPS

A GlobalSat GPS BU303 is available on the robot, this device supports EG-
NOS1 and WAAS2 (America only), this enables the device to obtain an about
5 m accuracy in open areas, compared to about 30 m when EGNOS/WAAS is
not available (ref. Nielsen & Breiting (2004)).

2.4.4 Laser scanner

The laser scanner used is a SICK LMS-200; it is interfaced using a high speed
USB-serial connection. This allows a scan rate of up to 72 scans/s with 181
measurements each scan. The used range is 8 m, at this range the absolute
range accuracy is about 1 cm. The laser scanner is mounted on bas that allows

1EGNOS: European Geostationary Navigation Overlay Service
2WAAS: Wide Area Augmentation System

36 CHAPTER 2. OVERVIEW

variable pitch. For the experiments in this thesis the tilt control is fixated at
9◦. The laser scanner is mounted 41 cm above the terrain.

2.4.5 Camera

A single camera is used for vision purposes. A Philips 840K USB webcam is
used, the camera is fitted with a non standard CAML12 fixed wide-angle lens.
In this configuration the focal length is found to be 576 pixels for a 640× 480
image.

The radial distortion constants are estimated to be K1 = 1.29 · 10−6 and
K2 = 1.78 · 10−13 (K1 is a proportional factor for r3 and K2 for r5, where r is
the radial distance (in pixels) from the image centre).

The camera is mounted at a height of 86 cm and is tilted downwards with
an angle of 22◦. The opening angles ϕv vertically and ϕh horizontally are
calculated in (2.5)

ϕv = 2 tan−1 240

576
= 45◦

ϕh = 2 tan−1 320

576
= 58◦.

(2.5)

The camera tilt therefore ensures – in a flat terrain – that the horizon is
at the top edge of the image. This is to reduce the effects of image saturation
when too much of a bright sky is visible in the image.

The out-of-band filtering – infrared and ultraviolet – was implemented as
a coating on the original lens. An infrared filter is attached as a replacement
to maintain a reasonable colour balance, but especially in sunshine the colour
saturation is limited suggesting that the out-of-band filtering is less than opti-
mal.

The automatic white balance filtering provided by the camera is used to
adapt to the changing colour temperature under changing weather conditions.
This is sufficient for the currently implemented usage, and is visually appealing.
Manual operation modes are available.

2.4.6 Computer

The robot has an on-board computer (a mini ATX with a 1.2 GHz VIA proces-
sor). This integrates all sensors and the drive control systems. The operation
system is Linux (in a slackware distribution) on a 1 GB flash disk. A RAM-disk
is used for data logging during missions.

2.5. APPROACH 37

2.4.7 Security

The weight and speed of the platform allows it to inflict some limited damage
on material and persons directly. The robot is therefore equipped with both
an emergency stop switch – that removes power from the driving wheels – and
a hand-held remote control capable of taking control of the vehicle whenever
needed. The remote control must further be within radio coverage at all times
to allow the on-board computer to control the robot.

2.5 Approach

The first attempt was to analyze the laser scanner data to separate traversable
from nontraversable terrain and then follow a sequence of GPS positions to get
to the destination driving on the traversable terrain only. This attempt was
performed as part of the Master’s thesis Riisgaard & Blas (2005), and some
results were obtained. The terrain analysis used was not efficient on all the
terrain types needed for this thesis, and the control strategy, in combination
with the odometry-based posture sensing, was insufficient to successfully com-
plete the navigation objectives. However the basic approach is continued in
this thesis.

The objective is to navigate the different road types, as they are found in
the test area, and be able to do so most of the year.

2.5.1 Road navigation

The approach is to be able to distinguish between road surface and road edges
based on an analysis of the laser data supplemented by analysis of images from
the camera. With the road detection in place a method should be found to
drive the robot steadily on the road and to detect transitions in road topology
– eg at a road junction or when entering open areas – where the control strategy
should be changed.

The robot is capable of passing terrain with steps or obstacles with a height
of less than 5 cm and a terrain inclination of less than 10%, this will allow it
to drive on almost all roads and pass most of the obstacles found on the road,
eg stones, erosions from rainfall, leaves and small branches. Some of the road
edges are relative flat from wear or with cut grass; these areas are in many
cases traversable by the robot, but the robot should, whenever possible, prefer
the road over the grass edges.

Obstacle larger than 5 cm should be detected and avoided. Moving obstacles
like pedestrians, bicycles and cars should be avoided too, but detection of
moving obstacles are outside the scope of this thesis.

38 CHAPTER 2. OVERVIEW

Some of the roads are rather wide (5 m) and here the robot should stick
to normal traffic rules and keep to either the left or right side of the road, to
allow passage of other traffic. On narrower roads it may be more appropriate
to drive in the middle of the road.

The navigation approach is therefore to use the developed algorithms to
follow a road edge or a road centre. This topological approach is independent
of GPS coverage and GPS accuracy. The approach requires detection of change
in topology, eg when the road ends or joins with another road. The navigation
approach is thus to follow a sequence of topological features (eg roads) sup-
plemented by odometry-controlled transitions from one road to the next when
needed.

2.5.2 Vision support

This experimental platform uses a laser scanner to detect the road at a distance
of about 2.5–3 m in front of the robot. This is sufficient for obstacle avoidance
and road detection in most cases, but detection of junctions and obstacles at
longer distances would improve navigation quality as manoeuvring could be
initiated at an earlier stage. The approach is to isolate the extend of the road
from images taken by a forward looking camera. The assumption is that a
homogeneous road surface can be isolated from non-road areas, as the non-
road areas are assumed to have a different colour or structure, or is detectable
at the transition from road to non-road.

The algorithm uses a sample area in the image already classified by the laser
scanner. This sample area is analyzed for colour and intensity profile, and the
area in the image that matches this profile, within an allowed deviation, and
not crossing clear edges, is taken as the road extend.

The reliability of this vision method is – for a number of reasons – less than
the laser scanner method and is therefore used as a support function only.

2.5.3 Sensor fusion

The laser scanner classifies the terrain up to 2.5–3 m with a high probability of
correct classification, the vision system has longer range, but both the accuracy
and the detection probability are inferior to the laser scanner, the vision data is
therefore used at ranges beyond the laser scanner range only. The basis for route
planning is a traversable corridor; this corridor is based on the laser scanner
traversable terrain classification and is extended using the vision data. The
advantage of the extended range is that the manoeuvre planning may include
avoidance of obstacles that is yet unseen by the laser scanner. In junctions the
available exit roads may be visible by the vision sensor and the route therefore
be adjusted in time to reach the desired exit. At places where the roadsides

2.5. APPROACH 39

are as smooth as the road itself (eg warn down grass from next to a gravelled
road), the vision may be able to improve the separation.

When the vision part fails, eg is unable to find the extend of the road suc-
cessfully, either finding too much (including the roadsides) or too little (hin-
dered by eg surface change or hard shadows), the planning reduces to the laser
scanner only.

The update rate of the laser scanner (about 6 Hz) is higher than the vision
analysis (about 1 Hz), as the vision covers a longer range segment and therefore
stays valid for a longer period of time.

2.5.4 Behaviour decisions

A number of traversable corridors may be identified, eg left and right of obsta-
cles, side roads and main roads, or just flat areas in the roadside. A manoeuvre
route is planned for all identified corridors, and the decision on which to follow
is made based on the route attributes and navigation objectives.

When manoeuvring is required an attempt is made to limit the resulting
centripetal acceleration maintaining the desired velocity (where possible).

When no corridor is available the robot will stop, following part of the last
free route planned. If the obstacle disappears the robot will resume the route
after an obstacle timeout period.

2.5.5 Software architecture

The software architecture implemented should be reusable and expandable for
other than the original developers. It should not be needed to know the details
of the reused code to use it, and the maintenance of the reusable code and new
development should be separable. At the same time the interface points should
be simple, fast and allow easy debug and function monitoring.

The component structure in Orca Brooks et al. (2005) was investigated but
was not adopted, primarily for three reasons: the communication structure
seemed too complicated (too much overhead for high data rate connections and
too limited in data content resulting in too many connections), the extensive
library dependency gave implementation difficulties in our Linux distribution,
and the available components were not sufficiently attractive to overcome the
other limitations.

The proposed component structure is based on a number of servers pro-
ducing, where each server may have client connections to other servers. This
structure, as well as the basic communication methods – server-push and client-
pull – is taken from the Orca terminology. The communication media is selected
to be socket-based TCP/IP. Our existing software is focused on socket-based
IP-communication. The communication data formatting is selected to follow a

40 CHAPTER 2. OVERVIEW

Camera
server

Laser
server

O
perator interface

Camera(s)

Road outline

Drive
server

GPS
serverGPS

Laser
scanner

Gyro
Odometry

Guidemark

Emerg. stop

Behaviour
server

Sequencer
Terrain class.

Obstacle
Drive

Drive
system

Mission
assignment

Fig. 2.5: The software architecture is based on a number of server functions
that allows connection from clients (at points marked with a circle). Some of
the servers allow increased functionality by plugins shown as a square attached
to the server. The communication media uses IP, and the message data is
formatted using XML (with a few exceptions).

subset of the XML defined in the World Wide Web Consordium (2004) recom-
mendation. XML is selected as it is well defined, it remains compatible even
if extended, it is text based allowing for interface debugging by use of sim-
ple tools, and a number of parsers and coders exist in different programming
languages.

Transfer of large data structures (eg a camera image) over a socket connec-
tion is relative slow, XML coded or not, compared to data transfer internally
in one application or using shared memory. An internal data transfer rate may
be up to 4 bytes for each CPU clock cycle. Transfer of the same data on a
socket connection is often at least 10–40 times slower.

A server handling large data structures like a camera server or a laser scan-
ner server should therefore include as much data reduction as possible before
delivering data to a client. That is, the server should hold the data analysis
functionality so that only the result is transferred to the client. Much of the
new data analysis functionality should therefore preferably be built into the
server directly. To do this without sacrificing separate maintenance of reused
code and new functionality, the new functionality should be added to the server
as a plugin.

This set of selected communication and structure methods has led to the
block structure shown in Fig. 2.5. Each server serves a unique purpose and may
provide access to a limited set of resources – ie sensors or actuators. A server
typically provides all its services on one line (shown as a small circle). Each
client attached decides on the communication method and content from the

2.5. APPROACH 41

available options provided by the server. The operator interface may connect
to servers for monitoring or configuration. The operator interface may be simple
tools as the text-based TELNET application or more advanced with graphical
data monitoring and control, possibly with capabilities like teleoperation.

42 CHAPTER 2. OVERVIEW

Chapter 3

Laser scanner based perception

3.1 Introduction

The laser scanner is by far the most common sensor used in mobile robotics
to support obstacle avoidance and path finding. The laser scanner measures
direction and distance directly, and is thus an easy starting point for the nav-
igation software. Almost all other sensors need significant processing before
comparable data quality can be obtained.

Two main objectives can be fulfilled by the laser scanner in support of
navigation: detection of obstacles that need to be avoided and detection of tra-
versable areas. Detecting obstacles and defining lack of obstacles as traversable
areas is one solution. The opposite – detection of traversable areas and defining
non traversable areas as obstacles – is another. In an indoor environment the
first method – obstacle detection only – is usually sufficient. In an outdoor
environment the transition from traversable and obstacles is more fluent, and
traversable areas may be more or less desirable for route planning.

Obstacles may be just obstacles – something to avoid – and traversable areas
just for route planning, but they may also be used as guidemarks that can assist
the navigation decisions. This will require that the obstacles or traversable
areas are recognisable, in shape or position, either as unique guidemarks – like
a unique signpost on a highway – or unique within a limited search area – like
a house number when the search area is limited to one road.

This chapter focuses on positive sensing of traversable areas and obstacles
from one and the same laser scanner sensor. The use of the data in navigation
terms is deferred to a later chapter.

43

44 CHAPTER 3. LASER SCANNER BASED PERCEPTION

3.2 Related work

Current work in the area tends to focus on using 3D laser scanners or a com-
bination of 3D laser scanners and vision.

Using 3D laser scanner solutions has been proposed by Vandapel et al.
(2004) by transforming point clouds into linear features, surfaces, and scatter.
These were classified by using a Bayesian filter based on a manually classified
training set.

Identification of navigable terrain using a 3D laser scanner by checking if
all height measurements in the vicinity of a range reading had less than a few
centimetres deviation is described in Montemerlo & Thrun (2004).

An algorithm that distinguished compressible grass (which is traversable)
from obstacles such as rocks using spatial coherence techniques with an omni-
directional single line laser is described in Macedo et al. (2000).

A method for detection and tracking the vertical edges of the curbstones
bordering the road, using a 2D laser scanner, described in Wijesoma et al.
(2004) is a way of indirect road detection.

Detection of borders or obstacles using laser scanners is often used both
indoors and in populated outdoor environments, and is the favoured method
when the purpose includes map building, as in Guivant et al. (2001) and Klöör
et al. (1993).

Detection of nontraversable terrain shapes like steps using laser scanner for
planetary exploration is described in Henriksen & Krotkov (1997).

The DARPA Grand Challenge 2004 race demonstrated the difficulties in
employing road following and obstacle avoidance for autonomous vehicles Urm-
son et al. (2004). This situation seems to be improved in the 2005 version of
the race, where five autonomous vehicles completed the 212 km planned route.
The winning team from Stanford perceived the environment through four laser
range finders, a radar system, and a monocular vision system. Other teams,
like the gray team Trepagnier et al. (2005) also use laser scanners as the main
sensor for traversability sensing supplemented by (stereo) vision. The solution
of the winning team in 2005 is described in Thrun et al. (2006); a 2D laser
scanner detects traversable road based on the vertical distance between mea-
surements, this solution is combined with vision and radar for longer range
detections.

3.3 Overview

As in most of the related work, the primary navigation sensor for this thesis is
the laser scanner. It supports the two main drive methods: road following and
a direct to destination mode.

3.4. LASER SCANNER USE 45

• Road following attempts to keep a fixed position relative to the road, or
aims for a fixed position following the most appropriate of the detected
roads.

• Direct to destination mode is intended for tight manoeuvres where the
road information is either irrelevant or just seen as obstacles.

The same laser scanner data is used for both road finding and for obstacle
detection.

• The road finding is based on a series of connected traversable segments
from successive laser scans; this series is assumed to form a corridor that
describes the road. The traversable segments are found by analysing the
laser scanner data for a set of features that combined describes traversable
terrain.

• Obstacles are found in the part of the laser scanner measurements clas-
sified as nontraversable. These single scan obstacles are then combined
with obstacles found in previous scans into confirmed obstacles. Two
obstacle modes are used when obstacles are correlated with confirmed
obstacles: indoor or outdoor.

The laser scanner positioning and scan rate requirements are discussed first,
and then the data is analyzed for traversable corridors and for obstacles.

The use of the detected road corridor and obstacles are deferred to chapter 5.

3.4 Laser scanner use

To detect the road the laser scanner must be tilted towards the road. This
further allows detection of obstacles up to the road detection distance.

The optimal positioning and tilt of the sensor is a compromise between
laser scanner sensitivity and range, the required obstacle warning distance, the
minimum obstacle size and the required scan rate. The used setup is shown in
Fig. 3.1.

The longer warning distance required the smaller the angle between the
laser beam and the road surface. A small angle reduces the amount of returned
laser light and thus reduces sensitivity. This is especially a problem on a
wet surface, eg pits filled with water and wet asphalt. A small angle and a
high scan rate both results in better obstacle detection capability and longer
obstacle detection range. A higher laser scanner mounting height results in a
longer warning distance. The laser scanner range – 8 m in the used mode –
further sets a limit for the angle of tilt.

46 CHAPTER 3. LASER SCANNER BASED PERCEPTION

Fig. 3.1: The robot used in the experiments has a laser scanner at a height
of 41 cm looking downwards in an angle of θL = 9◦. A flat road is therefore
detected at 2.6 m. The position of the last scan (scan n − 1) is shown to
illustrate the largest undetected obstacle. The unseen object is not detected in
scan n− 1 and is too short to be seen by scan n.

3.4.1 Obstacle detection

The largest obstacle Do that can remain undetected is a function of robot
velocity V , the tilt-angle of the laser scanner ΘL, the scan rate fs and the
distance xj required to separate the obstacle from the road. The obstacle size
Do can be calculates as shown in (3.1), or as a limitation on the scan rate in
(3.2)

Do = (
V

fs
+ xj) tan ΘL (3.1)

fs = V/(
Do

tan ΘL

− xj). (3.2)

This scan rate fs corresponds to a required distance between scans Ds main-
taining the obstacle detection capability

Ds =
V

fs
=

Do

tan ΘL

− xj. (3.3)

For an obstacle size of Do = 5 cm, a detection distance of xj = 15 cm and a
laser scanner tilt-angle of 9◦ the required distance between scans is 16 cm.

Further the obstacle detection distance xj = 15 cm has the consequence that
obstacles down to 2.5 cm (xj tan(9◦)) may be detected as obstacles. This means
that obstacles that can be ignored may trigger an unnecessary manoeuvre.

3.4. LASER SCANNER USE 47

3.4.2 Security distance

The maximum allowable robot velocity Vmax depends on the maximum brake
acceleration ab and the available brake distance Sb as shown in (3.4)

Vmax =
p

2abSb. (3.4)

The available breaking distance Sb is shorter than the road detection dis-
tance Sr by: a guard distance Sg, the distance required to detect the obstacle
xj, the distance travelled in the reaction time tr and the scan rate fs, as shown
in (3.5)

Sb = Sr − Sg − xj − V (tr + f−1
s)

Sr =
hL

tan ΘL

,
(3.5)

where hL is the laser scanner height.

3.4.3 Scan rate requirement

(3.5) and (3.4) can be expressed as a scan rate requirement as shown in (3.6)

fs = V (Sr − Sg − xj − V tr − V 2

2ab
)−1. (3.6)

The scan rate requirements are shown in Fig. 3.2 for three different laser
scanner tilt-angles: 6◦ (a), 9◦ (b) and 11◦ (c), all with a laser scanner height of
41 cm. A breaking acceleration of 2 ms−2 is about the maximum obtainable on
a gravelled surface.

The maximum usable cruise speed for the robot is about 1.5–2 ms−1 (5.4–
7.2 kmh−1). For 1.5 ms−1 the detection range and required scan rate are shown
in table 3.1 for the tree cases shown in Fig. 3.2.

Table 3.1: The scan rate and detection range are a function of the tilt-angle of
the laser scanner and the robot velocity.

1.5 ms−1 2 ms−1

Scanner tilt 6◦ 9◦ 11◦ 6◦ 9◦ 11◦ unit
Obstacle detect 5 9 14 6 12 18 scan/s
Emergency stop 1 1.5 2.5 1 4 57 scan/s
Detect range 3.9 2.6 2.1 3.9 2.6 2.1 m

48 CHAPTER 3. LASER SCANNER BASED PERCEPTION

0 1 2 3
0

2

4

6

8

10

12

14

sc
an

s/
se

c

Acc. 2 m/s2

Obst. 5 cm
Tilt 6°

(a) 0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

sc
an

s/
se

c

Acc. 2 m/s2

Obst. 5 cm
Tilt 9°

(b)velocity ms−1 velocity ms−1

0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

sc
an

s/
se

c

Acc. 2 m/s2

Obst. 5 cm
Tilt 11°

(c)velocity ms−1

Fig. 3.2: The required scan rate is a function of robot speed, tilt angle of
scanner and detected obstacle size. At a tilt-angle of 9◦ (b) and a speed of
1.5 ms−1 a scan rate of 9 Hz is required for obstacle detection, whereas 2 Hz is
sufficient for emergency stop behaviour.

3.4.4 Laser scanner tilt

A tilt of 11◦ provides a good reflection angle for the laser scanner, but will
require a processing scan rate of 57 scans/s at a velocity of 2 ms−1. The laser
scanner can provide up to 72 scans/s, but this high scan rate will be significant
for the on-board processor (classification and obstacle detection take about
4 ms, and with 57 scans/s this is about 23% of the processing time available).

A tilt of 6◦ has a low reflection angle for the laser scanner and will not
detect the road if the road curves have an inclination change of more than 6◦

over the maximum detection range (8 m). Such change of terrain curvature
may be found on parts of the target route.

A tilt of 9◦ may be the right compromise between scan rate requirement,
road detection in wet weather and the terrain curvature found in the target
terrain. Therefore this angle of tilt is analysed further.

In the curved terrain shown in Fig. 3.3 the inclination changes from flat to
−9◦ resulting in a road detection distance of 7 m. Seen from a robot perspec-
tive the detected surface is 70 cm lower than the robot base. A corresponding

3.4. LASER SCANNER USE 49

7 m

0.7m

2.0 m

9°

0.1 m

Fig. 3.3: The road inclination may change from flat and down to about −9◦

in just 7 m, and the road will still be detected. A corresponding increase in
inclination reduces the detection range to about 2 m.

(a) (b)

Fig. 3.4: The wet parking lot (a) seen by the robot camera is detected by the
laser scanner as shown in (b). The small circles and crosses in (b) are the laser
measurements. In some areas left and right the returned laser beam is too week
to be detected. The nonvalid measurements are returned as maximum range
(just above 8 m). The area to the left – where the detections start to fade –
corresponds to the more wet area in image (a). The measurements (crosses)
left and right are parked cars not visible in the camera image (a).

increase in inclination results in a road detection distance of about 2.0 m (com-
pared to 2.6 m for a flat road).

An obstacle with a height of 5 cm below the front or rear wheels will result
in a robot tilt of about ±6.5◦ of the robot. At a nominal laser tilt of 9◦ the
resulting tilt of the laser scanner will be from 2.5◦ to 15.5◦. An otherwise
flat surface will in this case be detected at a distance from 10 m (beyond laser
scanner range) down to 1.5 m. Detection of a road at just 1.5 m corresponds to
a terrain elevation of 17 cm when the laser scanner tilt is assumed to be 9◦.

50 CHAPTER 3. LASER SCANNER BASED PERCEPTION

3.4.5 Wet surface reflection

On a wet surface – especially pits filled with water and wet asphalt – the used
laser scanner has difficulties in detecting the surface at the narrow angles used.
An example is shown in Fig. 3.4(a) from a wet parking lot where there are signs
of blank water in the left side of the image; the laser scanner measurements
fails in parts of this area, as shown in Fig. 3.4(b). Just in front of the robot
and at some areas to the right, the wet surface is detected.

3.4.6 Spurious detections

The laser scanner is seen to return spurious detections, the origin of the spurious
detections may be raindrops, insects, snowflakes or just spurious. Typically
there is only one detection at the particular position and it is not repeated in
the following scan.

A thin fence pole or a chair leg are also often seen by one measurement only,
so to avoid the spurious detections isolated measurements are to be trusted as
obstacles if they persist in more than one scan only.

3.4.7 Summary

A laser scanner tilt of 9◦ is about right, it allows detection of terrain curvature
to the degree found in the target area, it allows a manageable scan rate of
about 9 scans/s for obstacle detection at a velocity of 1.5 m/s, and 2 scans/s for
manoeuvre planning (especially emergency stopping). When the robot climbs
obstacles, the robot tilt will add to the laser scanner tilt temporarily, and
obstacles larger than the allowed size may pass unnoticed at the calculated
scan rate. The calculated scan rate for obstacle detection should therefore be
exceeded to allow such rough conditions. As the tilt variations due to obstacles
are assumed to be temporary, the effect on the required scan rate for manoeuvre
planning is not expected to be influenced significantly.

The wet asphalt problem is not fully solvable, but as shown in Fig. 3.4 the
road just in front of the robot is usually detected and, if the missing range
measurements are ignored, a reasonable road width can be detected.

3.5 Traversability

The assumption is that the measurements can be divided into traversable and
nontraversable based on the measurement range values from one single laser
scan. By looking at the measurements in Fig. 3.5 this assumption seems rea-
sonable. A number of exceptions need to be considered though, like rough
gravelled road surfaces, relative smooth road sides, stones and branches on

3.5. TRAVERSABILITY 51

(a)

(b)

Fig. 3.5: Measurements from the laser scanner from an asphalt road. The mea-
surements are – as expected – more homogeneous from the road surface than
from the grass edges. On the robot top view (b) the circles are measurements
classified as road (traversable), and the crosses as nontraversable. From the
measurements it is clearly seen that the road is about 5 m wide and slightly
curved.

52 CHAPTER 3. LASER SCANNER BASED PERCEPTION

the road, ditches and the road profile, as well as wet reflecting surfaces and
pits filled with water. The traversability classification is therefore a bit more
complicated than might be expected.

The traversability analysis described here is accepted for publication in the
journal paper Andersen et al. (2006). The work was initiated in the master’s
thesis Riisgaard & Blas (2005), improved in the paper Blas et al. (2005) and
now further improved as described here.

3.5.1 Measurements

With laser scan readings given in the plane of the laser sensor, each laser
scan PL(di, φi) comprises a set of range readings di, i ∈ [1, N] and the angles
φi ∈ [−90◦, 90◦] associated with these. A laser scan PL is hence represented in
polar coordinates in the laser scanner frame. A single element of PL is denoted
PLi . A measurement can be transformed to a robot fixed frame by an R2 → R3

mappingMRL(hL, θL) : PL(di, φi)→ P (xi, yi, zi) as shown in (3.7). The robot
frame has body-fixed axes x, y, z pointing forward, left and up, respectively.
Scanner measurement angle φi is zero forward and positive to the left

Pi =

2
4
xi
yi
zi

3
5 =

2
4

di cos ΘL cosφi
di sinφi

hL − di sin ΘL cosφi

3
5 . (3.7)

With a constant laser tilt-angle ΘL the coordinates xi and zi are fully cor-
related as zi = hL − xi tan ΘL, and thus carry the same terrain information.
In the calculations below the xi values are used primarily, as this value is di-
rectly visible in an x–y map projection, but especially if a controlled tilt was
to be implemented, the zi values would be preferable over xi as these are more
independent of the laser scanner tilt.

In the sequel, PL(k) will denote a full set of range measurements from a
single laser scan at time k, and P (k) the scan converted to the robot fixed,
cartesian frame.

3.5.2 Feature membership functions

The description is based on two main assumptions, a classification assumption
and a mapping assumption:

Classification assumption: Each 3D reading can be categorized as belong-
ing to either of three classes, Pi(k) ∈ C, C = {Ct, Cn, CØ} where Ct :
traversable, Cn : nontraversable and CØ : invalid data.

Each Pi(k) ∈ Ct will belong to one traversable segment Sj(k) of the set
of traversable segments S in the scan k.

3.5. TRAVERSABILITY 53

Mapping assumption: Seven main features characterise the natural environ-
ment, : Fh : raw height, Fσ : roughness, Fz : step size, Fc : curvature,
Fw : slope and width, and FØ : invalid data. A unique mapping exists
MCF (F) : F → C that categorisation can be uniquely determined from.

Further a mapping existsMSF (F) : F → S for measurements in category
Ct.

Testing each measurement Pi and associating a membership function with
each feature, the aim is to determine a classification into traversable and non-
traversable segments and let this information navigate the robot. The formal
procedures of feature extraction and test of hypotheses about categorisation
are pursued in the following subsections, starting with a formal statement of
the problem. It is a prerequisite that scan readings PL(k) are transformed to
the appropriate body coordinates P (k). Let Fi ⊆ {Fh,Fσ,Fz,Fc,Fw,FØ} and
Ci ∈ {Ct, Cn, CØ},

problem: Given 2D laser readings P (k), determine membership of a feature
function Fi(Pi(k)) and determine a mapping MCF (F) : F → C to cate-
gorise Pi(k) ∈ Ci, and for Pi ∈ Ct a mapping MSF (F) : F → S.

For the sake of brevity, and because feature extraction and classification
are done on single scans in this context, the scan index k is omitted in the
remainder of this section.

3.5.3 Invalid data

The laser scanner detects the surface at a small angle, but in most cases the
surface is sufficiently rough to get stable range measurements. On smooth
surfaces the laser scanner is often unable to detect the surface, as shown in
section 3.4.5.

In these cases the laser scanner returns maximum range, the same value as
if the reflecting surface was further away than the maximum range (8 m).

The feature extraction for invalid data is

FØ(PLi) = {dinf ≤ di} . (3.8)

The limit is set to the maximum range for the laser scanner dinf = 8 m.

These measurements are now classified and are disregarded from the re-
maining classification process.

54 CHAPTER 3. LASER SCANNER BASED PERCEPTION

3.5.4 Raw height feature

The feature extraction for valid data starts with the raw height of the mea-
surement, h(Pi)

Fh(Pi) = { hinf < h(Pi) < hsup} . (3.9)

The limits hinf and hsup depend on the expected terrain variations as de-
scribed in section 3.4.4 and further on the robot sensitivity to tilt and yaw.

This hsup = 0.2 m threshold will limit erroneous classification of flat surfaces,
eg a wall in front of the robot, and allow true road detection in a reasonable
combination of robot tilt and road curvature. The lower threshold is more
sensitive to road curvature in combination with tilt and yaw of the robot. The
lower limit was set to hinf = −0.7 m in the experiments; this should ensure
road detection in the road curvature situations of the test area – see Fig. 3.3
– but not in all combinations of robot tilt and road curvature. The robot tilt
situation is expected to be of temporary nature, so a situation without road
detection should be temporary and thus recoverable when the robot tilt is back
to normal.

3.5.5 Roughness feature

Roughness of data in a 2D laser scan is defined as the square root of local
variance of distance to reflections along the scan. A general estimation of local
roughness was given in Blas et al. (2005) using a singular value decomposi-
tion approach. However, an alternative and less computationally demanding
algorithm were implemented as described below.

Roughness algorithm

Select a consecutive point set Pn,m from Pn covering a width Wfit = B or wider
to the nearest measurement. B is the wheel base (0.45 m).

Pn,m =

‰
Pi ∈ P

flflflfl
n ≤ i ≤ m
m = mmin

¾

where

mmin = MIN(m)

flflflfl
| Pm − Pn |≥ Wfit

∧ m− n ≥ 3

(3.10)

Calculate the best fitted line Ln in the x, y plane for the points in Pn,m as
shown in (3.11). A least square fit of the deviation in the x-direction is used

3.5. TRAVERSABILITY 55

Fig. 3.6: The laser measurements from Fig. 3.5 are shown in measurement order
(−90◦ to 90◦) in order to show the roughness estimate at each angle.

for simplicity.

Ln =8
>><
>>:
x = an + bny

flflflflflflflfl

an = x− by
bn = σ2

xyσ
−2
yy

σ2
xy =

P
(xi − x)(yi − y)

σ2
yy =

P
(yi − y)2

9
>>=
>>;

(3.11)

Calculate roughness Rn in the Pn,m interval as the average deviation from
the fitted line

Rn =

vuut 1

m− n
mX
i=n

(bnyi − xi + an)2

b2
n + 1

. (3.12)

The length of the fitted line Wfit = B = 0.45 m is selected to emphasise
terrain variation with a spatial period shorter than this distance and wide
enough to allow at least three measurements – in most cases – within this
distance. Soft curves with a spatial period longer than the robot width will
result in a relatively small roughness value. An example of the roughness value
is shown in Fig. 3.6 for the scene from Fig. 3.5. The roughness is the full line at
the bottom, and the corresponding laser scanner measurements xi are shown
above.

56 CHAPTER 3. LASER SCANNER BASED PERCEPTION

Roughness groups

The intention is to group measurement into traversable segments. If there are
more types of traversable segments these should be grouped separately. An
example of traversable segment types could be an asphalt road edged by cut
grass, both segment types are traversable, but it would – in most cases – be
preferable for the robot to keep to the asphalt. This is accomplished in three
steps. First the measurements are divided into homogeneous groups (using
height and roughness). These groups are then combined using the classifiers
for step size Fz and curvature Fc. Finally the resulting groups are filtered
based on slope and width Fw to a set of traversable segments S.

Neighbouring traversable points Pi in Pn to Pm are said to belong to group
Gj if their roughness values Ri are relatively homogeneous – as defined in (3.13)

Gj =8
>><
>>:
Pi ∈ Pn,m

flflflflflflflfl

hinf < zi < hsup
∧Ri < Rsup
∧ E(Pn−1, Ln) < Rlim

j

∧ E(Pm+1, Ln) < Rlim
j

9
>>=
>>;

where

E(Pi, Ln) =

flflflflfl
bnyi − xi + anp

b2
n + 1

flflflflfl
Rlim
j = αMIN(Ri |Pi ∈ Pn,m).

(3.13)

This implement an adaptive threshold based on the point with the minimum
roughness. The interval is then expanded to the point where the distance to
the next measurement is above the adaptive threshold. The distance E(Pi, Ln)
is taken from the next measurement Pm+1 or Pn−1 to the fitted line Ln used to
calculate Rn. The threshold limit Rlim

j is set to α times the minimum roughness
inside the interval.

The value of the roughness threshold Rlim
j was found experimentally to be

α = 4.5 by optimizing for large group size and to avoid combination of different
terrain types.

Finally, association of a point to the feature Fσ is obtained as

∀j : Fσ(Pi) = Pi ∈ Gj (3.14)

Figure 3.6 is an example of the resulting grouping, using data from the
asphalt road with rough grass edges shown in Fig. 3.5. The groupings are
shown below the laser measurements. The groupings include the asphalt area
(from about −50◦ to 20◦), as well as a number of short segments in the rough

3.5. TRAVERSABILITY 57

grass. The asphalt area has a very low roughness (less than 0.01 m), but aligned
measurements, with a roughness below the hard threshold Rsup = 0.1m, are
also found outside the road area.

3.5.6 Step size

The surface of gravelled roads and areas are often a combination of smooth
areas separated by small objects like stones or tracks. The adaptive threshold
typically separates such intervals. Branches, leaves and stones also tend to
break up otherwise smooth roads into separate segments.

The produced groups are therefore inspected and flagged for possible com-
bination if they are likely to be from the same surface and the area between
the groups is traversable.

The step size feature ensures that two segments are not combined if they
are separated by an obstacle, or separated in height, ie a sidewalk should not
be combined with the road.

Included in the step size feature Fz is also a step in roughness, as defined in
(3.15); this prohibits combination of a segment representing a road with a seg-
ment representing a traversable roadside (eg cut grass) into just one traversable
segment.

Further, group Gj (with measurements from Pn to Pm) may be combined
with group Gj+1 (with measurements Pp to Pq) under the following condition

Fz(Pi) =8
>>>>>>>>><
>>>>>>>>>:

Pi ∈ Gj
Pi ∈ Gj+1

p > m

flflflflflflflflflflflflflflfl

p−m ≤ 4

∧R−1
lim <

‡
Rk
Rk+1

·2

< Rlim

∧ |xm − xp| < Dlim

∧ |xd − xg| < Dlim

where
xd ∈ Pm+1,p−1

xg = xm+xp
2

9
>>>>>>>>>=
>>>>>>>>>;

.
(3.15)

This step criterion allows groups to be separated by up to 3 measurements,
as long as the x value of these measurement points Pm+1 to Pp−1 are not too
far away (Dlim = 15 cm) from the average of the two end points. The groups
may not be combined if the roughness Rj and Rj+1, associated with groups Gj

and Gj+1, differ by more than a factor Rlim = 1.8. The x difference between
the near end points of the groups may be separated by no more than 15 cm
(corresponding to a difference in height of 2.5 cm with the sensor tilt chosen).

An example is shown in Fig. 3.7. This is from a rather flat gravelled area.
The area was divided into 6 roughness groups, but all were allowed to be
combined.

58 CHAPTER 3. LASER SCANNER BASED PERCEPTION

(a)

(b)

Fig. 3.7: Measurements from a relatively flat gravelled terrain is shown relative
to the robot in (a). The traversable area is divided into a number of roughness
groups, as shown below the measurement points in (b). These groups are then
combined to one traversable segment (shown above the measurement points).

3.5. TRAVERSABILITY 59

3.5.7 Curvature

A curvature criterion ensures that a road with a high convex profile can be clas-
sified as one traversable segment, whereas concave profiles that often describe
a ditch cannot.

The feature Fc defined in (3.16) checks for curvature and allows combination
of two groups Gj (Pi ∈ Pn,m) and Gj+1 (Pi ∈ Pp,q) based on the vertical angle
between the groups. The vertical angle of the two groups may be concave
with an angle of no more than ∆sup = 3◦. For convex groups, the criterion is
∆inf = −10◦

Fc(Pi) =8
<
:

Pi ∈ Gj
Pi ∈ Gj+1

p > m

flflflflflfl
Aj+1 − Aj < ∆sup

∧ Aj − Aj+1 < ∆inf

9
=
;

where

Aj = tan−1

µ
zm − zn
ym − yn

¶

Aj+1 = tan−1

µ
zq − zp
yq − yp

¶
.

(3.16)

An example of this group combination and prohibited combination can be
seen in Fig. 3.8, where the high profile road is crossed by a bridle path. The
bridle path is separated from the road, but both parts are smooth enough to
be classified traversable.

3.5.8 Slope and width

Consecutive groups formed by points that posses the features Fz (step) and Fc
(curvature) are merged to one group Gj. Each group Gj (with measurements
Pi ∈ Pp,m) must further fulfil a combined slope and width criterion to become
fully qualified traversable segments Sj.

The slope of a traversable segment must be less than ∆yz = 10◦ vertically
(in the y-z plane), and the width of a traversable segment must be wider than
the robot (WR =robot width)

Fw(Pi) =

‰
Pi ∈ Gj

flflflfl
|Pm − Pp| > WR

∧ | Aj |< ∆yz

¾

where

Aj = tan−1

µ
zm − zq
ym − yq

¶
.

(3.17)

60 CHAPTER 3. LASER SCANNER BASED PERCEPTION

(a)

(b)

Fig. 3.8: Data from a gravelled road crossed by a bridle path. The road is
the area with the high profile (about 15 cm higher at the centre). There are
relatively flat areas from the bridle path on both sides. Rough grass on the
path edges before the bridle path is just visible on both sides of the robot
(a). The segmentation algorithm separates the road from the bridle path, and
marks both as traversable (b). The resulting segments are shown above the
measurements.

3.6. ROAD DETECTION 61

The groups that are left out by the criterion Fw are typically originating
from a few aligned measurements in the rough vegetation. In Fig. 3.6 the
groups in the rough edges are all removed with the exception of a relatively
flat – and probably traversable – area at the right roadside. The resulting
traversable segments are shown above the measurement points.

3.5.9 Single scan classification

The classification of points of the single laser scan is finally obtained as

CØ(Pi) =FØ(Pi) (3.18)

Ct(Pi) =Fh(Pi) ∩ Fσ(Pi) ∩ Fz(Pi)∩
Fc(Pi) ∩ Fw(Pi)

Cn(Pi) ={ (Ct(Pi) ∪ CØ(Pi)) ,

and the formation of traversable segments from the defined groups as

Sj = Fw(Pi ∈ Gj) . (3.19)

3.6 Road detection

Road detection is used for two purposes:

• To determine where the robot should be positioned on the road, this could
be on the left side, the right side, at the centre of the road, or at some
distance from these road lines.

• To get road information usable for planning decisions, especially the
width, eg the road width could indicate that the robot has entered a
junction, or has entered a narrow road.

A quality value is associated with the road lines (left, right and centre) as
well as the width; this quality value is indicating the steadiness of the lines.
These quality values can be used as an indication of the fact that the road
edges are valid and not just parked bicycles or other obstacles.

The number of traversable segments in the most recent scan is used as
an indication of the number of possible roads or traversable corridors visible
in front of the robot. More than one segment may be found, it could be: a
sidewalk and a road as shown in Fig. 3.9, a road split, a road with traversable
roadsides or just an error. In any case the road quality and roughness values
will be valuable, when the robot has to determine where to go.

62 CHAPTER 3. LASER SCANNER BASED PERCEPTION

Fig. 3.9: View from the robot camera while driving on a bicycle path with the
road to the left and a sidewalk to the right. The laser scanner measurements
are shown in Fig. 3.10.

The road is detected by correlating traversable segments over a number of
scans from the most recent and some distance back. Each set of correlated
segments is called a corridor. The road lines are then calculated from the left,
right and centre of these corridors.

The corridors – possibly extended by vision-based road detection (see chap-
ter 4) – are further used when determining the best route for the robot to
follow, as described in chapter 5.

3.6.1 Segment correlation

The segments found in laser scan k is Skj | j ∈ [1,m], where m is the number of
traversable segments found in scan k, m may typically range from 1 to 3 with
extremes being 0 (no traversable segment) and up to 4–5.

A segment Skj may correlate with a corresponding segment in the previous
scans to form a corridor

Bi =
'
Skj , S

k−1
j1
, Sk−2

j2
, ..., Sk−njn

“
(3.20)

formed by segments from scan k back to scan k − n.
Each segment is represented by a parameter line segment of length l

Sj = {x + vt | t ∈ [0, l]} , (3.21)

where x = [xx, xy]
T is the (right) end of the segment and v = [vx, vy]

T is a unit
vector in the direction of the line fitted for the segment. The parameter t is
used to represent a position sj(t) on the segment for t ∈ [0, l].

The correlation of two line segments is accepted if there is an overlap of
at least the robot width WR between the segments. The overlap is tested by
projecting t0 → t1, where t0 is a position on segment Skj and t1 the projected

3.6. ROAD DETECTION 63

position on segment Sk−1
j1

; this projected point or the reversely projected point
t1 → t0 should overlap with at least the robot width.

The projected position t1(t0) = t0 → t1 of the point sj(t0) from segment Skj
on segment Sk−1

j1
is

t1(t0) = vT · (sj(t0)− x). (3.22)

The overlap is tested by projecting both the end point ta = 0 and a robot
width into segment ta = WR, both projected positions should be inside the
other segment, or alternatively from ta = la to ta = la −WR should be inside
the other segment. The complete test function Fo(Sja , Sjb) for overlap between
segment Sja and Sjb is shown in (3.23)

Fo(Sja , Sjb) =8
>><
>>:
{Sja , Sjb} ∈ Bi

flflflflflflflfl

(tb(0) ∈ [0, lb] ∧ tb(WR)) ∈ [0, lb])
∨(tb(la) ∈ [0, lb] ∧ tb(la −WR)) ∈ [0, lb])
∨(ta(0) ∈ [0, la] ∧ ta(WR)) ∈ [0, la])
∨(ta(lb) ∈ [0, la] ∧ ta(lb −WR)) ∈ [0, la])

9
>>=
>>;
.

(3.23)

3.6.2 Corridor generation

On every new scan the found traversable segments are linked to the traversable
segments in the previous scan where the Fo(Skj , Sk−1

j1
) ((3.23)) is fulfilled.

The desired result is that corridors are formed for each traversable road
type visible. An example is shown in Fig. 3.10 where a sidewalk, a bicycle path
and a road are visible.

A set of corridors Bi ∈ B are therefore found by following a unique set of
links, as described in (3.24)

Bj =
'
Skj , S

k−1
j1
, ..., Sk−njn

“

flflflflflflflflflflflfl

Fo(Sk−aja
, S

k−(a+1)
ja+1

)

ja ∈ [1..ma]
ja+1 ∈ [1..ma+1]
a ∈ [0..n− 1]
∧ age(Sk−n) < Tfade

∧ |Sk−n − Probot|s > Dr

(3.24)

where ma and ma+1 are the numbers of traversable segments found in scan a
and a+ 1. The links are followed back until the segment has reached the robot
position Probot within a (signed) distance Dr ≤ 0.5 m, or the oldest scan has
reached a time limit Tfade = 4.5 s.

There may be more than one possible corridor originating from the same
traversable segment Sk1 , eg one segment in scan k could correlate with two
segments in scan k− 1, and further each of these could correlate with multiple
segments in the previous scan.

64 CHAPTER 3. LASER SCANNER BASED PERCEPTION

S3
k

S2
k

S2
k-1

S2
k-2

S2
k-3

S2
k-4

S2
k-5

S2
k-6

S2
k-7

S2
k-8

S2
k-9

S1
k

S1
k-1

S1
k-2

S3
k-1

S3
k-2

S3
k-3

S3
k-7

S3
k-4

S3
k-5

S3
k-6

S3
k-8

S3
k-9

Road

Bicycle path

Sidewalk

Fig. 3.10: Traversable segments from the most recent 10 scans. The mea-
surements are shown below the lines, as circles (traversable) and crosses (non-
traversable) for the most recent scan, and as dots for older scans. The scene is
shown in figure 3.9 as seen by the robot camera.

In Fig. 3.10 a corridor is formed for each of the three road types. But the
segments Sk−7

2 and Sk−8
3 are extra wide and have an overlap that fulfils the

criterion, this adds a fourth corridor that switches from the bicycle path to the
road at this point.

The situation in Fig. 3.10 will therefore produce the corridors shown in
(3.25), where B2,a and B2,b are equal except for the last two scans

B1,a =
'
Sk1 , S

k−1
1 , Sk−2

1 , Sk−3
1 , Sk−4

1 , Sk−5
1 , Sk−6

1 , Sk−7
1 , Sk−8

1 , Sk−9
1

“

B2,a =
'
Sk2 , S

k−1
2 , Sk−2

2 , Sk−3
2 , Sk−4

2 , Sk−5
2 , Sk−6

2 , Sk−7
2 , Sk−8

2 , Sk−9
2

“

B2,b =
'
Sk2 , S

k−1
2 , Sk−2

2 , Sk−3
2 , Sk−4

2 , Sk−5
2 , Sk−6

2 , Sk−7
2 , Sk−8

3 , Sk−9
3

“

B3,a =
'
Sk3 , S

k−1
3 , Sk−2

3 , Sk−3
3 , Sk−4

3 , Sk−5
3 , Sk−6

3 , Sk−7
3 , Sk−8

3 , Sk−9
3

“
.

(3.25)

When there are multiple corridors from the same segment (as B2,a and B2,b

in (3.25)), the best qualified corridor will be maintained only.

The qualification has two parameters: stability in roughness and stabil-
ity in width. Every traversable segment has a minimum roughness value
min(Rn) ∈ Sj (see section 3.5.5), the standard deviation σB of this value for
all the segments in a corridor B generates a roughness quality Qr ∈]0, 1]

Qr(B) = (1 + σB · wσ)−1 , (3.26)

3.6. ROAD DETECTION 65

where wσ = 1/0.05 to scale the quality relative to the minimum obstacle size
to get a reasonable quality interval.

If the traversable segments start on a smooth road and then switches to a
rough bridle path alongside the road, then the corridor with the switch will
have a lower quality than a the corridor following either the bridle path all the
way or the smooth road all the way.

The road width quality Qw ∈]0, 1] is formed by the standard deviation of
the width of the n segments in the corridor

Qw(B) =

ˆ
1 + w−1

B

r
1

n
Σn
i=1(w 2

B)− w 2
B

!−1

, (3.27)

where wB is the average width of the corridor B.

The available road corridors are then

Bj = {Bj,i |min(Qr(Bj,i) +Qw(Bj,i)), i ∈ [1, N]} (3.28)

3.6.3 Road lines

The road lines include the left, the right and the centre road line. These lines are
estimated from the laser scanner based road corridor described in the previous
section.

The end point of the segments in a corridor S is fitted to a straight line.
This line is taken as the road edge line (Ll or Lr) and the deviation of the
segment end points from these lines is used as a measure of the edge detection
quality LQ ∈]0, 1] as shown in (3.29)

LQ = (1 +
σr
σmax

)−1, (3.29)

where σmax = 0.8 m is a scale value.

Road lines with a road edge quality LQ < 0.5 are discarded, and a quality of
LQ > 0.8 indicates a stable, reliable road line. A road edge quality is calculated
for the left and the right edge individually. The road edge lines are used as
reference when the robot is to follow a specific position on the road. Two
examples are shown in Fig. 3.11 where the high quality (LQ > 0.8) road edge
lines are shown as solid lines, and edges with less quality (0.7 < LQ < 0.8) are
shown as dots.

The centre of the road is often the best place to drive on narrow gravelled
roads. The road centre line Lc is defined as the highest point on the road.
The highest point is calculated, relative to the traversable segment, as the
measurement with the longest signed distance (longer in the z-direction, shorter

66 CHAPTER 3. LASER SCANNER BASED PERCEPTION

(a) (b)

Fig. 3.11: Detected road lines – left, right and road centre. The robot drives
from right to left following the thin (red) line in (a) and the centre line in (b).
Image (a) shows a narrow asphalt road with a side-road to the right. Image
(b) is a gravelled road where the right road edge is hard to detect.

in the x-direction) to the traversable segment S, as shown in (3.30)

Pc =

8
><
>:
Pi ∈ Pn,m

flflflflflflfl

i∈[n,m]

min (APi,x +BPi,y + C)
where
A = vy, B = −vx, C = xxvy − xyvx

9
>=
>;

(3.30)

where v and x are segment parameters from (3.21).

Road width

The road width is the average distance between the road edge lines, if these
are both valid. If one or both road edges are not valid, then the road width
is estimated from the average width of the segments in corridor B. Only the
y-coordinate of the measurements is used.

The road width estimate is associated with a quality from (3.27).

3.6.4 Road type

The road type is estimated from the roughness of the traversable segments
in the used corridor. The roughness in a traversable segment is relatively
homogeneous but may include areas with minor obstacles and may cover parts
of the road with some curvature. The roughness is estimated over a road
distance of 0.45 m (the robot wheel base) and the roughness used for road type
estimation is the minimum roughness Rm over the used traversable segment in
the corridor

Rm = min
n∈Sj

(Rn). (3.31)

3.6. ROAD DETECTION 67

Fig. 3.12: Roughness estimate for the smoothest part of the used traversable
segments. From 1100–1770 m and again from 1860–2190 m the road surface is
asphalt (blue), the rest has a gravel surface (red). A Gauss distribution with
the same mean and variance is shown to the right.

Table 3.2: Roughness estimation of asphalt and gravel road types based on
laser scanner measurements.

Road type Average Deviation Unit
Asphalt µa = 0.0025 σa = 0.00059 m
Gravel µg = 0.0045 σg = 0.0015 m

This roughness estimate Rm is shown in Fig. 3.12 for a distance where the
robot starts on an asphalt road, crosses a gravelled square, drives on to a narrow
asphalt road for some 400 m and then continues on a gravelled road.

The roughness value clearly changes with the road type, but the variation of
the roughness is larger than the change in mean value. The laser scanner reso-
lution is 1 mm and the accuracy about 10 mm, so quantisation error and sensor
noise are expected to be significant parts of the asphalt roughness especially.

The average roughness and standard deviation of the two road types are for
the data in Fig. 3.12 as shown in Table 3.6.4.

Assuming a Gaussian distribution of the roughness for both the asphalt
and the gravel road, the distribution is as shown to the right in Fig. 3.12. The
point with equal probability for the two road types can then be found by solving

68 CHAPTER 3. LASER SCANNER BASED PERCEPTION

(3.32)

N(µa, σa) = N(µg, σg)

1√
2πσa

exp

µ
−(req − µa)2

2σ2
a

¶
=

1√
2πσg

exp

µ
−(req − µg)2

2σ2
g

¶

req = 0.0034 m .

(3.32)

Determination of road type clearly requires averaging over some measure-
ments to maintain a stable road type estimate. A cumulative sum (CUSUM)
algorithm may be used to determine state change between such two probability
distribution functions Blanke et al. (2003), and this algorithm seems applicable
for the problem.

The CUSUM algorithm sums the log likelihood ratio for a series of mea-
surements (r(i) for i ∈ [1, k]) of a stochastic variable, as shown in (3.33)

s(k) =
kX
i=1

s(r(i)) =
kX
i=1

ln
pg(r(i))

pa(r(i))
. (3.33)

This function value s(k) is expected to decrease if the measurement r(i)
belongs to the asphalt probability pa and to increase if it belongs to the gravel
probability pg. When the probability density functions are Gaussian and with
equal variance, the expression can be simplified as in (3.34) (from Blanke et al.
(2003))

s(k) =
kX
i=1

µg − µa
σ2
a

(r(i)− req). (3.34)

The gravel distribution adapted with the same variance as the asphalt road,
positioned symmetrically on the other side of the equal probability line req gives
an µ′g = req + (rex − µa) = 0.0043 and σ′g = σa = 0.00059.

When the sum s(k) increases (from a minimum value) by a value hg the
estimate is that the measurements belong to probability function pg. The value
hg determines the time to detect a change and the false alarm ratio. These
values can be determined by the runlength function L(µs, σs, h) as shown in
(3.35) (from Blanke et al. (2003)

3.6. ROAD DETECTION 69

Table 3.3: Average ’false alarm rate’ and ’time to detect’ for the estimation
of road type. Both values are in measurement counts. The h value associated
with the CUSUM threshold.

Transition h false alarm time to
rate detect

asphalt→gravel 7 38700 2.4
gravel→asphalt 10 1700 6.0

L(µs, σs, h) =

µ
e
−2(µsh

σ2
s

+µs
σs

1.166) − 1 + 2(
µsh

σ2
s

+
µs
σs

1.166)

¶
σ2
s

2µ2
s

(3.35)

where

µs = −(µg − µa)2

2σ2
a

false alarm rate (3.36)

µs =
(µg − µa)2

2σ2
a

time to detect (3.37)

σs =

flflflfl
µg − µa
σa

flflflfl . (3.38)

The same calculations can be performed for the change from gravel to as-
phalt; there the variance σ2

g = 0.00142 is used for both probability functions.
The hg and ha values have been selected to provide for a reasonable detection
time and false alarm rate for both transitions. The result is shown in Table 3.3

With h = 7 the average time to detect is 2.5 measurements and the average
false alarm rate is one in 38700 measurements, all assuming that the measured
values follow the used distribution functions.

The state change from asphalt to gravel is determined from the function in
(3.39), following the CUSUM function in (3.34) but is limiting the minimum
value to zero. The state change detection from gravel to asphalt is shown in
(3.40)

state:
asphalt→ gravel

flflflflflfl

state = asphalt
b(k) = max{0, r(k)− req + b(k − 1)}
∧ µg−µa

σ2
a
b(k) >= hg

(3.39)

state:
gravel→ asphalt

flflflflflfl

state = gravel
b(k) = min{0, r(k)− req + b(k − 1)}
∧ µg−µa

σ2
g
b(k) <= −ha

. (3.40)

The resulting road type estimation can be seen in Fig. 3.13. The change

70 CHAPTER 3. LASER SCANNER BASED PERCEPTION

Gravel
(rougher)

Asphalt
(smooth)

True

Estimated

Fig. 3.13: The CUSUM value s(k) used to estimate a change from asphalt
(smooth) to gravel (rough) road type. The data is a subset of the data shown
in Fig. 3.12. At the bottom is shown the estimated road type compared with
the true value.

from asphalt (smooth and homogeneous surface) to gravel (rougher and less
homogeneous) is fast, whereas the change back to asphalt takes longer time –
as expected. There are two false gravel estimations around the 2050 m distance
and at about 2400 m a false asphalt estimate.

The result is not perfect but useful for the purpose, which is to increase
edge detection on smooth roads and to allow the road type estimate to be used
in behaviour generation.

3.6.5 Results

The classification algorithm has been tested on a set of available paths in the
test area. A distance of 3 km has been traversed autonomously using this
classification as the main tool to stay on the roads and avoid obstacles.

A few typical classification results are shown in figures 3.6–3.8.

Figure 3.5 shows a smooth asphalt road, with roughness values as shown
in Fig. 3.6, where the initial grouping of measurements into homogeneous seg-
ments classifies the road in one go.

Figure 3.7 shows an area where the robot is crossing a gravelled road. Here
the laser scanner can see only the road surface. Therefore all laser returns
should be classified as traversable. The figure shows that the surface is rela-
tively flat. The roughness grouping has divided the area into 6 groups (shown
below the measurements in Fig. 3.7), but all of these are recombined into one

3.6. ROAD DETECTION 71

Fig. 3.14: The robot leaves the asphalt road – at bottom left – and enters an
open gravelled area, following the left edge at first and then straight towards
the exit road. The straight lines (blue) show traversable segments, the (orange)
dots and solid area are measurements classified as nontraversable.

traversable segment (shown above the measurements).

Figure 3.8 shows data from a gravelled road with a bridle path crossing.
The laser scanner sees the path edges (left and right of the robot in Fig. 3.8)
before the bridle path, and sees the bridle path itself as flat areas left and right
of the profiled road. The centre of the road is about 15 cm higher than its
edges. The algorithm separates the road from the bridle path, and marks both
as traversable. The main criterion here, preventing combination of the path
with the bridle path, is Fc (curvature) that prevents concave segments (where
the road meets the bridle path) from being combined.

If the transition from the path to the bridle path had been smoother, the
segmentation would be more likely to combine the path and the bridle path
into one traversable segment.

A longer sequence of road classifications is shown in Fig. 3.14 where the
robot leaves an asphalt road and enters a gravelled area in front of the building
shown in Fig. 3.15. The segments selected by the navigation process are shown
as solid (blue) lines. The laser measurements classified as nontraversable are
shown as (orange) dots merging into solid areas.

72 CHAPTER 3. LASER SCANNER BASED PERCEPTION

Table 3.4: The terrain classification, using all extracted features, has been
manually evaluated based on representative parts of the autonomous tests.
The main road was always classified as traversable in each laser scan; a few
percentages of the classifications were too short or too long. On the asphalt
road, additional traversable segments were often found in the roadsides left and
right, resulting in about three traversable segments in each scan.

road too too trav.
Type found narrow wide segm.
Asphalt road 100% 2.7% 2.0% 3.1
Gravelled area 100% 6% 1% 1.5
Gravelled road 100% 8% 0.7% 1.8

3.6.6 Quality

A representative part of the three main types of the traversable terrain were
analyzed manually, to assess the quality of autonomous categorisations. Results
are shown in Table 3.4.

On the asphalt road – in Fig. 3.5 and 3.15 – the classification process found
the road in 100% of all cases, 2% were too short (shorter than 4.4 m on a 4.8 m
wide road), and 2.7% too long (extended into the roadside), but none gave rise
to unnecessary manoeuvres. On average about two extra traversable segments
were found in each scan, these are mostly found in parts of the grass near the
road. These extra segments are however discarded by the navigation layer due
to their position and roughness. 300 laser scans were analysed covering about
100 m.

On the gravelled area on the used route (the upper part of Fig. 3.14) a
traversable area was always found, but 6% of the scans were too short – defined
as less than 4 m from the robot – of which two gave rise to minor unnecessary
manoeuvres. 120 laser scans were analysed covering about 40 m.

The gravelled road was about 4 m wide and its edges were rougher than
the asphalt edges. The gravelled road could always be found, but sometimes
(8%) split into smaller segments, of which two gave rise to minor unnecessary
manouvres. 300 laser scans were analysed covering about 100 m.

3.7 Obstacle detection

Laser scanner measurements classified as nontraversable are in general used to
form obstacles if they are near a traversable segment. Figure 3.16 shows two
examples.

3.7. OBSTACLE DETECTION 73

Fig. 3.15: The transition from asphalt road to gravelled area used in Fig. 3.14.
The roadsides left and right are often sufficiently smooth to allow formation of
additional traversable segments.

An obstacle Oc based on measurement classification is a set of consecutive
measurements Pi ∈ Pn,m that fulfils the criteria in (3.41)

Oc =

8
<
:Pi ∈ Pn,m

flflflflflfl

Pi ∈ Cn
∧ |Pi − Pi−1| < dmax

∧ di < dt + dadd

9
=
; , (3.41)

where Cn is the class of nontraversable measurements, and dmax = 0.4 m is the
maximum separation of neighbouring measurements within one obstacle. The
laser range di of measurement i must be less than the maximum range dt, of
any measurement classified traversable, plus a distance dadd = 0.5 m.

In this way obstacles are generated near traversable areas and at any dis-
tance closer to the robot than these. This limits the number of obstacles that
need to be handled and includes all the obstacles that need to be avoided in
the short term obstacle avoidance behaviour generation.

When a traversable segment extends to a ditch or a negative level shift,
there may not be a measurement classified as nontraversable at the edge. Ditch
obstacles Od are therefore added where a traversable segment ends in a ditch
as defined in (3.42)

Od =

‰
Pi−1,i

flflflfl
(Pi ∈ Ct ∧ di−1 − di > dditch)
∨(Pi−1 ∈ Ct ∧ di − di−1 > dditch)

¾
, (3.42)

where Ct is the class of traversable measurements and dditch = 0.4 m is the
minimum range separation to declare a ditch or level shift.

The edges of traversable segments are not automatically classified as ob-
stacles, as the full extend of the traversable segment may be hidden behind
an obstacle or be out of sight due to the curvature of the road. Road edges
are though, when they are detected with a sufficiently high quality, added as
OL obstacles as defined in (3.43). This prevents the behaviour planning from

74 CHAPTER 3. LASER SCANNER BASED PERCEPTION

Main
road

Bicycle
road

Sidewalk

Level-shift
obstacle

Classified
obstacles

Robot
Corridor
lines

Classified
obstacles
(pedestrians)

Road-side
obstacle

Classified
obstacles

(a) (b)

Fig. 3.16: Detection of obstacles. The laser measurements classified as non-
traversable are divided into obstacle polygons. Additionally if a traversable
segment ends with a level shift to a lower level the positions around the level
shift are marked as obstacles as shown in (a) where the level goes down to the
main road. In (b) the road edge has a high quality (the residual from the line
fitting is low) and is included as an obstacle.

crossing road boundaries even if the area on the other side of the road boundary
is classified as traversable (deliberate crossing of a road boundary is therefore
not supported)

OL = {L ∈ {Lr, Ll} |LQ > Qmin} , (3.43)

where Qmin = 0.9 is the required quality limit for addition of road edge lines as
obstacles.

The measurements in an obstacle are reduced to a convex polygon. This
reduces the amount of data needed to describe the obstacle and simplifies cal-
culations. Further, the amount of vertices needed to describe the obstacle is
reduced, so that close vertices are removed (reduction limit set to 0.03 m).

The obstacles will be further processed when merged with obstacles from
previous scans as described in chapter 5.

3.7.1 Wall detect

When the robot drives directly towards a wall the first detection of the wall
will look like a flat road surface – only slightly elevated. When the robot moves
the elevation increases until the height threshold hsup = 0.2 is passed, the wall
is now about 1.3 m from the robot.

A wall detection function is therefore added that invalidates a corridor if
it ends in a wall. The wall test compares the position and orientation of two

3.8. SUMMARY 75

consecutive traversable segments while the robot has moved (at least 0.05 m).
The two segments must be within 0.04 m of each other and their orientation
must be within 2.3◦.

When the wall in this way is detected twice (using three consecutive scans)
the corridor is assumed to end in a wall, and thus invalidated as a traversable
corridor.

In a rough outdoor environment it happens that the road detection gets
closer – due to robot tilt – at the same speed as the robot movement, there is
thus a possibility that the corridor is mistaken to be a wall. A few instances of
this type have been recorded, typically resulting in an erroneous stop.

If a corridor flagged to be a wall continues to correlate without further
triggering of the wall detector, the wall flagging is removed after four non-wall
scans.

3.8 Summary

This chapter has described a comprehensive set of features extracted from
the laser scanner measurements. These should form a solid base for obstacle
avoidance and behaviour generation. The features extracted include:

Traversable segments describing parts of the surface that is evaluated to be
traversable. Each segment is further qualified with a roughness estimate.

Traversable corridors generated from a set of correlated traversable seg-
ments. The corridors describe a part of the road – primarily in front of
the robot – that is traversable; there may be multiple of such corridors,
eg describing a road fork or multiple lanes originating from eg a road and
a sidewalk.

Road lines are generated as a by-product of the corridors. The road lines are
calculated from the left, right and centre of the corridor. A quality value
is associated with each line to allow discrimination of lines influenced by
obstacles or partially out of laser scanner range.

Road type estimate based on roughness. The tested road types include as-
phalt (smooth) and gravelled (rough) roads, and the road type is esti-
mated reasonably well.

Obstacles describing areas that should be avoided by the behaviour genera-
tion function.

Requirements for laser scanner positioning and scan rate are further eval-
uated to allow sufficient obstacle detection ability and sufficient warning time
for manoeuvring.

76 CHAPTER 3. LASER SCANNER BASED PERCEPTION

The limitations of the laser scanner are primarily the limited range (the
road is detected at a distance of about 2.6 m in front of the robot) and in the
limited ability to discriminate a road from its sides in the cases where the sides
are rather flat and smooth.

3.9 Further improvements

Further improvements are expected to be obtainable especially in the following
areas:

Road line detection is not continued from one scan to the next, but calcu-
lated anew using the most recent corridor only. A method of estimating
the road edge continuously using eg a Kalman filter is expected to pro-
duce superior results and may enable continued road edge detection when
passing obstacles. Such road edges would be valuable, especially if the
robot was to perform mapping.

A Roll and pitch sensors would allow for slightly better estimation of road
curvature, and this could allow for better qualification of a number of the
used thresholds in the classification process.

Obstacle detection at times detect obstacles near maximum range in open
areas or when passing a side road, this could probably be avoided by
usage of some of the partial results from the filtering.

Chapter 4

Vision based perception

4.1 Introduction

The objective for any sensor is to extract useful information.

A vision sensor has the potential to extract any visible feature inside the
camera view, but especially two limitations make vision-based sensors difficult
to use for navigation purposes:

A camera sensor is an angle-only sensor. This first limitation necessitates
that the sensor must have additional information to be able to deliver 3D
positions of the features. This additional information could be knowledge of the
size of a feature, the distance from camera to the feature, or angle information
from a sensor at another position, eg another vision sensor.

The second limitation is the use of illumination of opportunity. An image of
a stationary scene looks different in different illuminations, the shadows change,
the colour changes with the colour of the illumination, bright illumination of
some features and week illumination of objects in the shadows make it difficult
for the camera to get sufficient detail in both situations.

When the illumination is controlled and the scene has known features, eg
an orange ball of a known size on a horizontal green surface, then the detection
is simplified, but parts of the ball may not seem orange as part of the surface –
the highlight area – just reflects the illumination and thus has the same colour
as the illumination.

In an outdoor environment the illumination is changing and the size of the
seen objects is mostly unknown. The use of vision for navigation in such an
environment poses a significant challenge. This chapter presents vision-based
solutions and discusses the obtained results.

77

78 CHAPTER 4. VISION BASED PERCEPTION

4.2 Related work

The use of cameras to aid robot navigation has been described in a number of
papers using a large number of different approaches.

Stereo vision is one of the fundamental methods to create a 3D model of the
angle-only measurements from the camera. The basic method is to recognise
the same features in two or more images, and from accurate knowledge of
the camera position and orientation to calculate the triangulation points to
reconstruct the distance to the feature. One project described in Loäıza et
al. (1999) and Loäıza et al. (2001) uses two cameras mounted on top of each
other and does stereoscopic calculation on contrast straight lines found in the
images, the Loäıza et al. (2001) project puts emphasis in colour on each side
of the extracted lines to improve correlation. The project Se et al. (2001)
uses three cameras in a right angle triangular configuration to remove false
correlations. The project also extracts a number of (scale invariant) features
before stereo calculation and then stores these points (about 3000 for one room)
for the ongoing navigation.

A camera with fish-eye lenses that cover 360◦ around and above the robot
can be very useful for localisation, especially in an indoor environment. Shah
& Aggarwal (1997) use this configuration to find significant lines ending in
geometric vanishing points and from these and vertical lines build a model of
the traversed corridor.

In vision solutions Bertozzi & Broggi (1997) argue that this problem can
be divided into two subproblems: lane following and obstacle detection, and
describe a stereo-vision based solution for both. The lane following depend
on the bright lane markings and a stereo-based solution to detect the angle to
moving obstacles (cars).

Edge detection in vision systems is one of the possibilities to identify road
borders and had some success already in 1986, as described in Wallace et al.
(1986).

A method for road following using vision and neural network to estimate the
main road direction was developed by Jochem et al. (1993) for lane following,
and in Jochem et al. (1995) expanded to detect side roads and ’Y’ junctions.

A simple method – with the same basic principle as used in this project –
is described in Horswill (1994), where the edges of a homogenous structureless
area in front of the robot is taken as obstacle free area for navigation.

Lane following using single camera solution is also described in Liatsis et
al. (2003), where edges are detected and tracked from one frame to the next
using edge magnitude and orientation in the area of the image, where the road
edge is expected.

The DARPA Grand Challenge 2004 race demonstrated great difficulties in
road following and obstacle avoidance for autonomous vehicles as described in

4.3. LIMITATIONS AND POSSIBILITIES 79

eg Behringer et al. (2005).

4.3 Limitations and possibilities

Vision depends on ambient light and provides a 2D colour and texture view of
parts of the surroundings.

The image colour depends on the illumination (eg sunlight and shadows),
the time of year (eg trees are green in the summer, red or yellow in the fall
and partially transparent in the winter) and weather conditions (eg roads are
often black when it rains, grey when they are dry and possibly white during the
winter). The camera may lack dynamic range to detect colours in both sunny
and shaded parts of an image. Limited illumination at night and weather
conditions like fog, rain or snow will further limit the results of vision-based
solutions.

Some of these factors may have little or no influence on some vision sensors
or solutions may be available to avoid or compensate for the effects.

A vision sensor is an angle-only sensor, and the 3D reconstruction of the
scene therefore requires additional information, typically in the form of multiple
images from different locations, assistance from other sensors, or assumptions
related to the features seen in the image.

The possibilities of using vision are – despite the limitations mentioned
above – almost endles. Evolution has proved the success of vision, as large
groups of the living creatures on earth use vision as one of their main sensors.

The solutions can be divided into two groups, one group uses images from
more locations to place the objects seen in a 3D environment eg stereovision
and structure from motion; the other group makes assumptions on the seen
features, being objects of a known size or an assumption of the layout of the
scene, eg roads are predominantly flat and has mostly parallel edges.

Stereovision was initially evaluated for this project, but the tested solution
was temporarily discarded due to experienced problems during robot move-
ment (the solution is described in appendix A). Stereovision units for robot
navigation are becoming commercially available and may in time replace the
need for laser scanner based obstacle detection – especially at short ranges.

For this project the near obstacle detection and the road detection are
handled by a laser scanner. The prime purpose for a vision system is therefore
to assist where the laser scanner comes short, ie at longer ranges and where
there are ambiguities in the laser scanner detections.

The two vision sensor methods presented here are both based on presump-
tions of the viewed features to reconstruct a 3D world model: a road outline
sensor that assumes the road seen by the camera to be flat and in the same
plane as the robot base and a guidemark recognition solution that requires the

80 CHAPTER 4. VISION BASED PERCEPTION

physical size of the recognized artificial guidemark to be known in advance.
The first solution should supplement the laser scanner sensor and the second
uniquely identify the robot position, once a guidemark is recognised.

4.4 Road outline

The assumption is that it is possible to estimate the outline of the road by
analysing the image, based on an appropriate seed area. Such a seed area may
be provided by the laser scanner.

The main features describing the road are its homogeneity. But there may
be variation in the visual expression due to eg shadows, sunlight, specular
reflections, surface granularity, flaws, partially wet or dry surface and minor
obstacles like leaves on the road.

The road detection is therefore based on two features: the chromaticity C
and the intensity gradient ∇I.

The chromaticity is colour stripped from intensity as shown in (4.1) based
on a RGB (Red, Green, Blue) image

c =

•
cred

cgreen

‚
=

•
r/(r + g + b)
g/(r + g + b)

‚
. (4.1)

Each pixel position Hi,j is classifiable into class R ={road, not road}. The
Rroad classification is defined as in (4.2) and the Rnot road = {Rroad holds the
remaining pixels

Rroad(Hi,j) =

8
<
:Hi,j

flflflflflfl

(1−Kbal)Pc(C(Hi,j))+
KbalPe(∇I(Hi,j))
> Klim

9
=
; , (4.2)

where Kbal = 0.43 gives the balance between chromaticity and edge sensitivity,
andKlim = 0.65 the detection sensitivity. Both values are found experimentally.
A sample filtering is shown in Fig. 4.1 for each of the two components as well
as combined.

Pc(·) is a probability function based on the Mahalanobi distance of the
chromaticity relative to the seed area

Pc(i, j) =
‡

1 + wc(c
′
i,j − c)TQ−1(c

′
i,j − c)

·−1

, (4.3)

where Q is the chromaticity covariance for the seed area, c is the average
chromaticity in the seed area, and wc = 0.022 ensures appropriate numerical
values for the result.

4.4. ROAD OUTLINE 81

(a) (b)

(c)

Fig. 4.1: Road outline extraction based on chromaticity (a), on gradient de-
tection (b) and combined (c). In the top left corner there is a stone fence;
this is not distinguished from the gravel road surface using the chromaticity
filter in (a). The gradient filter (b) makes a border to the pit (bottom left).
The combined filter (c) outlines the traversable area as desired. The seed area
classified by the laser scanner is shown as a (thin) rectangle. The part of the
image below the seed area is not analysed.

Pe(·) is a function based on the intensity gradient ∇I(Hi,j)

Pe(i, j) =

ˆ
1 + we

"flflflfl
∂I(i, j)

∂i

flflflfl
2

+

flflflfl
∂I(i, j)

∂j

flflflfl
2
#!−1

, (4.4)

where we = 0.067 is a weight factor (the image intensity has the value range
[0,255]).

The intensity gradient is calculated using a Sobel operator. The Sobel
kernel size is selected as appropriate for the position in the image, ie the lower
in the image (closer and more detailed) the larger the kernel (5 × 5 pixels at
the bottom and 3× 3 at the top for the used 320× 240 image resolution).

The pixels at the road contour are evaluated only, ie from the seed area

82 CHAPTER 4. VISION BASED PERCEPTION

pixels are tested towards the image edge or road border, the road border is
then followed (clockwise) back to the seed area. This is a very computationally
efficient analysis method as only a subset of the pixels in the image are anal-
ysed and no filtering is needed on the full image. A disadvantage is that small
obstacles (lower than the camera height) in the middle of the road may remain
undetected, when all surrounding pixels indicate traversable road. This disad-
vantage could be avoided by testing pixels inside the road outline at appropriate
intervals.

4.4.1 Shadows

Shadows are a problem as the colour information in the shade is more bluish
from the blue sky whereas the colour in the sun is more reddish – and thus may
not match the seed area. In full sunshine and full shadow the automatic white
balance of the camera will compensate for this, but when both are present
in the same image it needs to be considered. The white balance in sun and
shadows influences the balance between red and blue chromaticity values only,
whereas the green is relatively unaffected. The intensity in the shade is lower
than in the sun, and the intensity is therefore a first choice for a correlated
value that could be used to compensate for the shift in white balance.

In Fig. 4.2(b) the blue and red chromaticity is shown as a function of inten-
sity for a part of the road area in the image shown in Fig. 4.2(a) with mixed
shade and sun (on the asphalt road part of the image).

The figure shows that darker areas have an increased blue and decreased
red component – as expected. The difference in colour balance is a function of
the used camera and the colour of the sky, but the tendency shown in Fig. 4.2
is taken to be representative for this camera. The chromaticity value uses the
red and green values only, therefore the red chromaticity value cred is adjusted
as defined in (4.5)

c
′

=

•
cred + (I − I)gred

cgreen

‚
, (4.5)

where I = (r + g + b) is the intensity, I = 1.5 × 256 is the average intensity
(the linearization point) and gred = 0.066 is the linearized gradient of the red
chromaticity as a function of intensity – derived from Fig. 4.2.

This shade-compensated c
′

is used as the basis for calculation of c and the
covariance matrix Q.

The seed area is taken from the most recent laser scan, and the traversable
segment with the least roughness is used. The seed area is taken as the central
third of this segment; this will in most cases avoid the areas near the road
borders, which may not be representative for the road. This central part is
projected into the image and used as a seed area.

4.4. ROAD OUTLINE 83

(a) (b)

(c) (d)

Fig. 4.2: A part of the mixed shade and sunshine on the asphalt road in (a) is
analysed for white balance in (b). The x-axis is intensity and the y-axis is blue
(upper) and red (lower) chromaticity. The curves show that the darker areas
are more bluish than the brighter areas. The chromaticity of (a) is shown in
(c), here the shadows are clearly more blue than the areas in the sun. Image
(d) shows the effect of shadow compensation, the effect of shadows is reduced
significantly (both on the road and in the grass area).

4.4.2 Road-outline polygon

The road outline is found as a sequence of neighbouring pixels that fulfils the
road criteria in (4.2). From the seed area (centre top) a limitation line is drawn
down to the bottom of the image, and further a limitation line is drawn across
the image below the seed area to limit the polygon size (the area closer to the
robot than the seed area is covered by the laser scanner).

The series of pixels found describe a polygon. The number of vertices in this
polygon is reduced using a modified version of a method described by Douglas
& Peucker (1973). The method finds the most distant vertex from the edge line
between a start vertex and an end vertex. The most distant vertex is added
and the search is continued until the distance to the most distant vertex is
less than a given threshold. The accuracy needed for the road-outline polygon

84 CHAPTER 4. VISION BASED PERCEPTION

changes with the position in the image: one pixel covers a larger road area at
the top of the image than at the bottom, on the other hand pixels at the bottom
describe positions that are closer to the robot and are thus more relevant for
obstacle avoidance. The threshold used is one pixel at the top of the image
and 4.5 pixels at the bottom with a linear scaling between these values.

4.4.3 Projection to robot plane

The pixel coordinates in the reduced polygon needs to be projected to the robot
plane to be comparable with the laser scanner solution. This is done in three
steps: compensation for radial lens error, finding a vector in the pixel direction
and finally finding the position where this vector crosses the robot base plane.

• The pixel position pe = [pex, p
e
y]
T found in the image is adjusted for radial

lens error to p = [px, py]
T using the two major radial error parameters K1

and K2 for the lens (values are found in section 2.4.5). The adjustment
is performed as in (4.6) – from Carstensen (2001)

r2 = (pe − h)T (pe − h)

dr = K1r
2 +K2r

4

p = pe + (pe − h)dr ,

(4.6)

where h = [hx, hy] is the head point in the image (the geometric image
centre is used).

• A 3D line a = [xa+ tva] from the projection centre in the direction of the
pixel coordinate p is found (in camera-oriented coordinates) ac = [0+tvca]
as in (4.7)

vca =

2
4
vcx
vcy
vcz

3
5 =

2
4

1
−(px − hx)/c
−(py − hy)/c

3
5 , (4.7)

where c is the focal length, and the vector end position is taken at an
arbitrary fixed x-distance of 1 m.

The line origin and orientation vector are then coordinate converted to
robot-oriented coordinates as in (4.8)

a = [xc + t(va)]

va = Rcvca ,
(4.8)

where xc == [xx, xy, xz] = [0.43, 0, 0.86] is the camera position, Rc =
RκRϕRΩ is the camera rotation matrix where primarily Rϕ has a value
different from unity, as the camera is rotated along the y-axis by ϕ = 22◦

as from section 2.4.5.

4.4. ROAD OUTLINE 85

• The line from the camera to the pixel position is crossing the robot plane
in the searched position b (unless parallel with robot plane), and b is
found as in (4.9) utilising that the robot plane is the x, y plane

b = [xc + tbva]

tb = −xz |va|
vz

,
(4.9)

where va = [vx, vy, vz].

If vz is positive or zero then there is no crossing (at least not in front of
the robot), such results are replaced with a position close to the horizon
in order to get a proper polygon in robot-oriented coordinates. Positions
above the horizon of the robot plane may be classified as road when the
robot tilt (or roll) places parts of the real horizon above the robot plane
or if objects in the horizon (erroneously) are taken as road.

The road-outline polygon is now in robot-oriented coordinates and is ready
for use by the navigation and obstacle avoidance functions.

4.4.4 Road outline results

The road width estimate and the road width stability can be taken as a perfor-
mance measure of the vision and laser scanner sensors. The method is tested
primarily on a 3 km route in the test area. The navigation is guided by a script
specifying how to follow the roads and for how long. Parts of this route are
analysed.

An analysis is shown in Fig. 4.3 for an asphalt road and in Fig. 4.4 for a
gravelled road. The weather conditions were overcast with mild showers. The
road width is estimated in front of the robot based on the available data at
the time of manoeuvre decision. The vision-based road width is taken as the
average distance between the road lines, where both road lines are inside the
image (see next chapter for more details).

The road width data in Fig. 4.3 covers a distance of about 500 m, and shows
a stable road detection both by the laser scanner sensor and by the vision
senor, the vision with a slightly higher uncertainty, but with good correlation
between the two sensors. The road-outline estimate in Fig. 4.3(b) shows an
almost perfect correlation with the road edges. There is a slight tendency that
the vision estimate shows a narrower road width than the laser scanner.

The gravelled road in Fig. 4.4 shows data from a distance of about 300 m
with a side road about halfway. The road width seen by the vision sensor is
clearly narrower than the width from the laser scanner. The reason is twofold:
the vision estimate is too narrow and the laser scanner estimate is too wide.

86 CHAPTER 4. VISION BASED PERCEPTION

0 100 200 300 400 500
3.5

4

4.5

5

5.5

R
oa

d
w

id
th

 [m
]

(a) (b)

Fig. 4.3: Road width estimation (a) based on laser scanner (solid black) and
vision-based (red with dots). A 500 m section of an about 5 m wide asphalt
road. The vision-based outline for the first part of the road is shown in (b).

The width seen by the vision system is projected to a plane at the robot
base, and as the road profile is convex, the true road width is slightly wider.
Typically the road is 10 cm higher at the centre, and with a true road width
of 3.5 m (as it is most of the way), the projection would show a road width of
3.13 m. This corresponds nicely with the measured value.

The laser scanner estimated a road width of typically 3.5 to 4 m with only
little correlation with the vision-based road width. The reason is mostly that
the road roughness is not much lower than the roughness of the near part of the
roadsides. Figure 4.5 shows a set of measurements from the early part of the
data series in Fig. 4.4. The blue lines (in Fig. 4.5(a)) between the robot and the
laser scanner measurements are the traversable segments used for calculating
the road width. Especially the right roadside shows variations in the segment
width, none is too short, but some are too wide. The thin green lines show the
estimated road lines. This effect is mostly significant where the roadside is in
the same plane as the road (especially in the early part of the data series in
Fig. 4.4).

Seasonal variation

An about 600 m section of the route are shown in Fig. 4.6(a) and (c) taken in
the spring (early May) in sunshine and in Fig. 4.6(b) and (d) the same road
section in midsummer (late July) during an overcast weather condition. The
first part of the section is a narrow asphalt road (up to about 300 m) and then

4.4. ROAD OUTLINE 87

550 600 650 700 750

2

3

4

5

6

7

R
oa

d
w

id
th

 [m
]

Fig. 4.4: Road width estimation based on laser scanner (solid black) and vision-
based (red). A section from an about 3.5 m wide gravelled road (a). At about
675 m a side road makes the road estimate wider.

a gravelled road for the remaining part. Two side roads are passed at about
100 m and 500 m.

The width of the asphalt road (about 3 m) is detected equally well in spring
and in summer. The gravelled road appears wider in early spring than mid-
summer, and the uncertainty seems much higher, both for the laser scanner
based width and the vision-based width.

The laser scanner estimate is wider as the grass is still relative flat after
a long winter, so the roughness difference between the road and the roadside
is marginal. In midsummer the grass is higher and the border thus easier to
distinguish.

For the vision sensor the partially gray grass (from the winter) is much
harder to distinguish from the road than at midsummer. An example can be
seen in Fig. 4.7(h), where especially the right roadside is problematic.

Another issue is sunshine and shadows. Below open trees in sunshine, like
in Fig. 4.7(c) and in Fig. 4.6(c) – both from the early part of the data series –
the road width estimation is more difficult resulting in a more insecure estimate
(visible at about 50 m in Fig. 4.6(a)).

Summary

The road width estimates are summarised in table 4.1 for the laser scanner and
vision sensor, respectively. The first two rows are from the same test but at
different road types – asphalt and gravel, respectively. The last two rows in

88 CHAPTER 4. VISION BASED PERCEPTION

(a) (b)

Fig. 4.5: A set of measurements at the early part of the data series used in
Fig. 4.4. Both laser scanner data and the vision road outline is shown in (a).
The vision-based outline is shown in (b).

Table 4.1 are from a narrow asphalt road segment that is partially below large
trees and here the road outline estimates failed in 16% of the measurements on a
day with sunshine, compared to just 2% under gray and wet weather condition.
Failed measurements are counted as a too wide or too narrow estimate (> 20%
of true value).

The conclusion is that the vision sensor performs reasonably well, and some-
times better than the laser scanner. The performance is slightly better on as-
phalt roads than on gravelled roads. Gray grass and scattered shadows reduce
the performance.

Shadows

Most road outline situations are handled reasonably well, the shadows from
overhanging trees in Fig. 4.7(a), (b) and (c) and from the lightpole in (d)
produce usable results. The partially wet asphalt in (e) is handled. The tiled
sidewalk in (f) is only partially solved, especially the sunny spots in a rather
dark image as in (c) and (f) are difficult. The gravel road in (h) and (i) are
basically fine, but the sharp shadow in (i) is taken as an obstacle. In (h) the
side road to the left is partially found, but part of the right roadside is taken
as road. Painted road markings are normally taken as obstacles.

All the shown images in Fig. 4.7 are produced with the same algorithm and
the same weight and threshold settings.

4.4. ROAD OUTLINE 89

0 200 400 600
0

2

4

6

8

R
oa

d
w

id
th

 [m
]

(a) 0 200 400 600
1

2

3

4

5

6

R
oa

d
w

id
th

 [m
]

(b)

(c) (d)

Fig. 4.6: Road width data from a 3–4 m narrow asphalt up to 320 m where the
road surface changes to gravel; there are side roads at 100 m and 500 m. Figures
(a) and (c) are from early may in sunshine with shadows from the overhanging
trees; whereas (b) and (d) are from late july in gray/wet weather. The image
(c) from just before the side road at 100 m showing a transition from shade
to sun, and that the detected road outline covers the part in the shade only.
The image (d) from about the same spot three months later. The vision data
is affected by the sunshine to shade transitions, resulting in too narrow road
width estimates at places (especially at around 50 m).

Road outline limitations

The seed area may include part of roadside if the laser scanner classifier fails
to separate a flat roadside from the road. In these cases the vision sensor fails
a proper solution.

Small obstacles in the middle of the road with insufficient height to cross
the visual road outline will not be detected. The unseen obstacle could be of
the same height as the camera and would remain unseen if the outline search
finds visual evidence of the road left, right, above and below the obstacle in
the image. Such obstacles could potentially remain undetected until seen by
the laser scanner.

Road coloured obstacles or part of obstacles that visually are too similar to
the road will remain undetected.

90 CHAPTER 4. VISION BASED PERCEPTION

Table 4.1: Road width estimate summary from the data shown in Fig. 4.4
and Fig. 4.3 is in the first two rows. The last two rows are from the narrow
asphalt road segment in the early part of Fig. 4.6 both in the early spring, the
first under overcast (wet) weather and the last under clear sunshine. The ’w/n’
column is the too wide or too narrow count as a percentage of the measurement
count N.

Road True Laser based Vision based
segment width mean σ N mean σ w/n N ref
Asphalt 4.9 4.7 0.17 1200 4.5 0.24 1% 474 4.3
Gravelled 3.5 3.7 0.48 600 3.2 0.32 3% 245 4.4
Asphalt 3–4 3.5 0.63 890 2.8 0.36 2% 224 wet
Asphalt 3–4 3.3 0.46 482 2.8 0.53 16% 79 sun

Road paintings will typically be detected as obstacles (not part of the road).

Sharp shadows may trigger the edge detector sufficiently to be taken as an
obstacle.

Change in road surface type, eg change from asphalt to gravel, may limit
the road outline.

Sensor saturation may occur, especially in sunny spots in an otherwise dom-
inantly shady area.

4.5 Guidemark recognition

Landmark navigation is based on the assumption that the robot from recog-
nising a landmark can get a localisation reference. The landmark could be
artificial and placed to be recognised by the robot, ie for indoor applications
a method is to place unique landmarks on the ceiling and let a robot camera
look for these landmarks, and further place the landmarks at so short intervals
that the robot could navigate from one landmark to the next with sufficient
accuracy to be able to find the next guidemark.

The guidemark itself could be at a known position, or just act as a unique
reference position so that any ambiguity or accumulating errors could be re-
solved or reduced when recognising the guidemark.

The initial position of the robot could be resolved by recognition of a unique
artificial landmark. This landmark could refer to an entry in the robot database
with knowledge of that specific area. One or more landmarks could be placed
close to a charging station that may require accurate navigation.

For these purposes a camera-based landmark system has been designed to
explore the possibilities.

4.5. GUIDEMARK RECOGNITION 91

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.7: Examples of the described road outline detector, the green line is the
found outline and the red square is the seed area.

4.5.1 The landmark

The landmark must be detectable at different distances and at different angles.
One of the easy and stable detectable shapes are checkerboard corners, they
are scale invariant, and to some extent viewing angle invariant. The guidemark
should be simple to reproduce, and thus printable on a sheet of paper would
be preferable.

The final design was selected as shown in Fig. 4.8(a), with a double checker-
board frame and a central area for a unique code.

The centre code holds 9 square areas; each can be filled with a 4 bit code.
Two of the top left squares are used as orientation marks, leaving 7 for codes.
A few code combinations can be confused with the orientation mark and must
thus be avoided, leaving some 24 usable bits except for 216 unusable code com-
binations, or in total 16711680 code possibilities. A smaller frame with just
4 squares in the centre would be sufficient in most cases, with one corner as

92 CHAPTER 4. VISION BASED PERCEPTION

y1

y2 y4

y3 y1

y2

y4

y3

(a) (b) (c)

Fig. 4.8: The guidemark in consist of a checkerboard frame and a central code.
The camera view of the lower left part is shown in (b) and (c). The corner
filter uses four 3× 3 areas to detect a corner at the centre position.

orientation mark, and at maximum 3 bits used in the remaining a total of 9
bits or 512 codes would be available.

The guidemark in Fig. 4.8(a) has two black bits set in each of the two least
significant squares – bottom right inside the frame – corresponding to the value
9Chex or 156 decimal.

The guidemark is detected in four steps: corner detection, frame detection,
code detection and frame localisation, each of these steps are described in the
following.

4.5.2 Corner detection

The corner detection is done by performing a comparison of four areas in the
image expected to match two black areas and two white areas.

The full image is first filtered using a 3× 3 pixel Gaussian kernel, summing
the pixels inside the kernel area – in a G(i, j) function – to the centre pixel
position (i, j) (eg the y1 area in Fig. 4.8(b)). The summation uses a Gaussian
distribution for weights with a σ = 0.95. This yields the central pixel a weight
of about as much as the sum of weights of the remaining 8 pixels.

A set of corner pixels C1 at pixel positions a = [r, c] ∈ C1 are found in the
image as defined in (4.10)

4.5. GUIDEMARK RECOGNITION 93

C1 =

8
>><
>>:

a = [r, c], w
r, c ∈ image

w = y1 + y4 − y2 − y3

flflflflflflflfl

y1 − y2 > kc
∧ y1 − y3 > kc
∧ y4 − y2 > kc
∧ y4 − y3 > kc

9
>>=
>>;
, (4.10)

where

y1 = G(r − 2, c− 2) (4.11)

y2 = G(r + 2, c− 2) (4.12)

y3 = G(r − 2, c+ 2) (4.13)

y4 = G(r + 2, c+ 2) (4.14)

kc =
1

3
[max(y1, y2, y3, y4)−min(y1, y2, y3, y4)] + kI . (4.15)

An intensity difference is thus required from all bright corners to all black
corners. This difference kc is increased with the intensity difference from the
brightest to the darkest block as in (4.15) and includes a fixed minimum thresh-
old kI = 7 (the intensity coding is 255 for white and 0 for black). This ensures
that a guidemark in both bright areas and darker areas are detectable.

The filter will detect a corner that is bright in the upper-left and lower-right
part. Intensity-reversed corners are found in the same way by exchanging the
calculation of {y1, y4} with {y2, y3} in (4.11) to (4.14) for the second corner set
C2.

The guidemark may however be observed at different orientations depending
on the positioning of the guidemark and the camera. By adding a guard band
of one pixel between the 4 corner areas, the filter will be relatively insensitive
to viewing angle rotation of the guidemark relative to the camera, the corner
detection sensitivity will be reduced as the angle increases, and at 45◦ the
sensitivity will be zero.

To be able to detect guidemarks at any rotation angle a second set of filter
masks (rotated 45◦) is added as shown in Fig. 4.8(c), using the same filter
function as in (4.10), except that the relative positioning of the four areas
y1, y2, y3, y4, is replaced with (4.16) to (4.19) producing a third corner set C3

y1 = G(r − 3, c) (4.16)

y2 = G(r, c− 3) (4.17)

y3 = G(r, c+ 3) (4.18)

y4 = G(r + 3, c) . (4.19)

Again replacing the calculation of {y1, y4} with {y2, y3} in (4.16) to (4.19)
yields the fourth corner set C4.

94 CHAPTER 4. VISION BASED PERCEPTION

The distance between the four summed areas is in the 45◦ version 4.2 pixels
and in the not rotated version 4 pixels. When the block size in the image is less
than four pixels (or 4.2 when rotated) the detection probability will decrease.
A not rotated guidemark can thus be detected at slightly longer distances
compared to a rotated guidemark.

The corner pixels in {C1, C2, C3, C4} are then enumerated individually using
8-connectivity into the total set of corner groups Hn. The centre of each corner
group hn(Hn) is found as shown in (4.20)

hn(Hn) =
1P

i∈Hn
(wi)

X
i∈Hn

(aiwi) , (4.20)

where the accuracy improvement by using the intensity weight wi derived in
(4.10) is not quantified nor optimised.

In Fig. 4.8(b) and (c) the detected corner pixels are shown as bright squares
in yellow and green, where green marks the pixel closest to found corner posi-
tion.

When a guidemark is rotated approximately 22.5◦ it happens that the same
corner is detected by two filters, ie one of {C1, C2} and one of {C3, C4}, such
corners are combined to one if the distance between the centres ha − hb <
2.9 pixels.

4.5.3 Frame detection

The corner positions have to match the frame of the guidemark, ie from a
frame corner there should be two sets of 6 corners each describing a straight
line following a frame edge, and further the corners should have almost the same
separation. Figure 4.9 shows an example with three guidemarks – rotated at
different angles. The original image is shown faintly in the background. The
corner pixels are colour coded, each colour corresponds to one of the four filters.
The pixel closest to the detected corner is shown in a darker colour.

From all corner positions the up to eight closest neighbours are found within
a maximum distance – of 1

5
image height – allowing a guidemark to fill the whole

image. A frame edge corner set fj is therefore described as six corners on an
approximately straight line fulfilling the requirements in (4.21)

fj =

8
>>>>>>><
>>>>>>>:

{hi}
i ∈ [1, 2, .., 6]
hi ∈ hn

flflflflflflflflflflflflfl

v2 = h2 − h1

ĥ2 = h2

ĥi+1 = ĥi + vi
vi+1 = vi + kg(hi − ĥi)

|hi − ĥi| < klim|vi|
i ∈ [2, 5]

9
>>>>>>>=
>>>>>>>;

, (4.21)

4.5. GUIDEMARK RECOGNITION 95

Fig. 4.9: The corner pixels from three guidemarks are shown. The different
colours correspond to the four used corner filters.

where klim = 0.37 and kg = 0.5.

A frame corner should be the end point of at least two frame edges. In this
way a full frame F is a set of four frame edges as described in (4.22) with the
corners in each edge ordered as described in frame conditions

F =

8
>>>>>>>><
>>>>>>>>:

{f1, f2, f3, f4}

flflflflflflflflflflflflflfl

Fn,m = hm ∈ fn
F1,1 = F2,1

F2,6 = F3,1

F1,6 = F4,1

vn = Fn,6 − Fn,1

|v1 − v3| < kp|v1|
|v2 − v4| < kp|v2|

9
>>>>>>>>=
>>>>>>>>;

, (4.22)

where the frame is described counter-clockwise, so that f1 is the topmost edge
and f2 is the leftmost edge. The edges of a frame should in pairs be approx-
imately parallel and of equal lengths, ie f1 ‖ f3 and f2 ‖ f4 with the limits
kp = 0.5.

The six corners h1 to h6 are fitted to a straight line, and the crossing of
this line with the line from one of the adjacent edges is used as the true frame
corner. The frame can then alternatively be described by these four frame
corners as defined in (4.23), describing the frame counter-clockwise with h

′
1 as

96 CHAPTER 4. VISION BASED PERCEPTION

the topmost corner

F =
n

h
′
1,h

′
2,h

′
3,h

′
4

o
. (4.23)

4.5.4 Code detection

The code in the guidemark requires detection of black and white areas in the
centre of the frame, and each of the code bits cover an area of only a quarter
of the blocks in the frame. The intensity level that separates a black bit from
a white bit must further be determined.

The size of the code bits are selected so that the probability of detection
for the frame and the code vanishes at about the same distance. At the dis-
tance where the frame is detected with a 95% probability, the code is correctly
detected with a probability of about 95% (of the instances where the frame is
detected).

A frame grid is constructed by dividing the distance between two adjacent
corners on every frame edge in two. The corners are projected to the fitted
line edge, but the distance between the corners are not equalised. The correct
distance between the corners may change over the frame if the guidemark is
seen in perspective, but this effect is mostly significant if part of the guidemark
is very close to the camera, and being close to the camera the code detection is
usually easy, as a high number of pixels are available for each code bit. At longer
distances all cells in the grid will be very close to the same size, and here the
grid accuracy is more important for code recognition. A minor improvement in
code detection may therefore be obtainable if the grid spacing along the edges
was made equal.

Figure 4.10 shows an example of some detected guidemarks. The code grid
is painted in green and includes the inner part of the frame blocks as well as
the code area itself. All pixels inside the green area are evaluated as belonging
to one of the cells, and the average intensity of the pixels inside the cell is used
to estimate its value.

Half of the cells covering the frame blocks are always white, the other half
black. The average intensity for these cells is used as a threshold value when
classifying bits as black or white in the code area. The histograms in the
bottomleft corner of Fig. 4.10 show the distribution of intensity values for each
of the three detected guidemarks. Left is black, right is white on the histogram
line. The histogram colour should match the grid colour painted on top of the
guidemark.

The two all black code areas for the orientation mark are located, and the
code values in the remaining code area are ordered accordingly. The two FFhex

squares mark the top left corner of the code area, and in this orientation the
four bits in each block are coded as follows:

4.5. GUIDEMARK RECOGNITION 97

Fig. 4.10: Three guidemarks are visible in the same scene to demonstrate the
limitations. All guidemarks have a frame width of 17.5 cm. The near is at
0.46 m and the far at 3.2 m, the one on the floor is tilted 79◦ – all relative to
the camera position. The image resolution is 640× 480 pixels.

1 2
4 8

The ordering of the code blocks from the most significant to the least sig-
nificant is located as follows:

∗ ∗ 1
2 3 4
5 6 7

(4.24)

The code in the large guidemark in Fig. 4.10 is therefore 75BCD15hex, or in
decimal 123456789.

4.5.5 Guidemark position

The guidemark position relative to the camera can be estimated when the size
of the guidemark is known and the camera geometry is available.

The guidemark corner positions are known with a relatively high accuracy,
as these are averaged from the line fitting of the frame edge. The perspective
described by the positioning of the guidemark corners should therefore allow a
reasonably accurate estimate of the orientation too.

98 CHAPTER 4. VISION BASED PERCEPTION

The guidemark position and orientation is estimated using least square pa-
rameter estimation. From the frame extraction algorithm above the position
in the image of the frame corners are known h′i = (hr, hc). The position of the
corners on the guidemark surface is known from the guidemark design as four
coordinate pairs.

The coordinates on the guidemark is selected as being seen in the same way
as a robot, that is x being forward (in front of the guidemark), z being up, and
when looking in the direction of x (from behind the guidemark) y is to the left.
When looking at the guidemark on a wall, then z is up and y is right.

The centre of the guidemark is taken as the reference position, ie the top
right frame corner has the frame coordinate B = [0, by, bz]

T with positive values
for both by and bz.

A guidemark may be at any position gt = [x, y, z]T relative to the robot and
rotated following the normal convention: first turned κ around the vertical z
axis with positive being counter-clockwise, then tilted Φ around the y axis with
positive being a down tilt and finally roll Ω around the x axis with positive
being a roll to the right.

When a point on the guidemark surface B = [0, by, bz]
T is being seen at

the 3D position A = [ax, ay, az, 1]T in robot coordinates, then A and B are
related with the guidemarks orientation and position (x, y, z,Ω,Φ, κ) (also in
robot coordinates) as in (4.25)

2
664

0
byw
bzw
w

3
775 = RΩRΦRκTA , (4.25)

where RΩ, RΦ and Rκ are rotation matrices in homogeneous coordinates and
T is a translation matrix as shown below:

RΩ =

2
664

1 0 0 0
0 cos(Ω) sin(Ω) 0
0 − sin(Ω) cos(Ω) 0
0 0 0 1

3
775 (4.26)

RΦ =

2
664

cos(Φ) 0 − sin(Φ) 0
0 1 0 0

sin(Φ) 0 cos(Ω) 0
0 0 0 1

3
775 (4.27)

Rκ =

2
664

cos(κ) sin(κ) 0 0
− sin(κ) cos(κ) 0 0

0 0 1 0
0 0 0 1

3
775 (4.28)

4.5. GUIDEMARK RECOGNITION 99

T =

2
664

1 0 0 −x
0 1 0 −y
0 0 1 −z
0 0 0 1

3
775 . (4.29)

The conversion between image coordinates and the 3D position A of the
point on the guidemark are – except for lens distortion – as defined in (4.30)

2
4
hrw
hcw
w

3
5 =

2
4
−1 0 hx
0 1 hy
0 0 1

3
5

2
4

0 0 1 0
0 −1 0 0

1/c 0 0 0

3
5

2
664

ax
ay
az
1

3
775

I = bPA ,

(4.30)

where I = [hrw, hcw,w]T holds the row hr and column hc of the corresponding
pixel position of A = [ax, ay, az, 1]T in the image. The b matrix offsets the
position to get positive row and column values by adding the (optical) image
centre (hx, hy) and changing the direction of the row axis to get down as posi-
tive. The P matrix adds the perspective by scaling the row and column values
by 1/c into w proportional to the distance from the camera ax. The ay direc-
tion corresponds to columns in the image with changed sign, and the height az
corresponds to image rows.

When the camera is positioned at the centre of the robot coordinates, then
the two equations (4.30) and (4.25) can be combined as shown in (4.31)

2
4
hrw
hcw
w

3
5 = bPT−1RT

κRT
ΦRT

Ω

2
664

0
by
bz
1

3
775 . (4.31)

The right side of this equation can be evaluated to three functions of the
unknown v = [x, y, z,Ω,Φ, κ]T and the known position (by, bz) as in (4.32)

2
4
hrw
hcw
w

3
5 =

2
4
fr(x, y, z,Ω,Φ, κ, by, bz)
fc(x, y, z,Ω,Φ, κ, by, bz)
fw(x, y, z,Ω,Φ, κ, by, bz)

3
5 . (4.32)

The last w equation can be inserted into the first two as in (4.33) where the
six unknowns are replaced by the vector v

•
hrfw(v, by, bz)− fr(v, by, bz)
hcfw(v, by, bz)− fc(v, by, bz)

‚
=

•
0
0

‚
. (4.33)

100 CHAPTER 4. VISION BASED PERCEPTION

To solve for the six unknowns at least six equations are needed, so the four
corners of the guidemark frame yield eight equations by substituting by, bz, hr
and hc in (4.33) with the values from the remaining three corners. The problem
may then be solvable. The eight functions on the left side of (4.33) should all
evaluate to zero with the correct value of the six unknowns

F = 0 . (4.34)

As the functions are nonlinear the six unknown parameters are estimated
using Newton’s iteration method.

With an initial guess of the vector v̂ the equations will (probably) not be
zero, but assuming that the errors are small and the equations are approxi-
mately linear at the guessed position, the error can be compensated for by a
linear adjustment ∆v as shown in (4.35)

F(v̂) + J(v̂)∆v = 0 . (4.35)

where F(v̂) is the value of the eight equations evaluated with the guessed set
of parameters v̂ and J(v̂) is the Jacobian of F with respect to the unknowns
in v taken at v̂, finally ∆v is the adjustment to the guess needed to get the
required zero result.

A better guess of v would therefore be v̂2 as shown in (4.36)

v̂2 = v̂ + ∆v . (4.36)

The estimated adjustment ∆v is found by solving (4.35) as:

∆v = −(JTJ)−1JTF . (4.37)

Equations (4.35), (4.36) and (4.37) are then repeated, setting v̂ = v̂2 for
the next iteration, until the estimated parameters have converged sufficiently.

The pixel position in the image is adjusted for radial lens error (as in (4.6))
prior to insertion into the functions in F.

The iteration is terminated when the parameter change ∆vn in iteration n
is significantly small according to the stop criteria in (4.38)

stop criteria =

flflflflflflflfl

h
x̂, ŷ, ẑ, Ω̂, Φ̂, κ̂

i

| [x̂, ŷ, ẑ] | < Pinf ∧flflfl
h
Ω̂, Φ̂, κ̂

i flflfl < Rinf

. (4.38)

When looking at a guidemark that is tilted slightly forward or backward it
may be difficult to see the difference, this could indicate local optimum that
could trap the parameter estimation. Figure 4.11 shows the pixel error as a
function of a combination of turn (κ) and tilt (Φ). This shows the correct value

4.6. GUIDEMARK RESULTS 101

Fig. 4.11: Parameter estimation for the position and orientation of a guidemark
has (often) local minimum. The pixel error is shown as a function of turn (κ)
and tilt (Φ) of the guidemark (limited to a maximum error of seven pixels).
The remaining parameters (x, y, z,Ω) are kept at the correct value.

for these parameters (Φ = 5◦) and (κ = −22◦), but also a local minimum at
about (Φ = −13◦) and (κ = 35◦).

The rotation (Ω) of the guidemark will have four equally accurate solutions,
as there is no discrimination of the four frame corners. But the position of the
code index is known and is used to get the correct Ω value.

The position has a local minimum at the same distance behind the camera,
but this is easily avoided by selecting an initial guess in front of the camera (a
positive x value).

To avoid the (κ,Φ) local minimum, four initial positions in the four quad-
rants in the κ,Φ coordinate system are tested, and after a few iterations the
parameter set with the least pixel error is continued to get a final estimate.
The iteration error progress is shown in Fig. 4.11 as four black lines, of which
two ends in the local minimum at Φ = −13◦ and κ = 35◦ with a minimum pixel
error of 2.5 pixels, compared to 0.12 pixels at the global minimum in Φ = 5.0◦

and κ = −22.8◦.

4.6 Guidemark results

The estimation accuracy of a guidemark position is dependent on the viewing
angle of the guidemark as shown in Table 4.2.

The position estimation error in (x, y) is about 0.2 cm and is partially cor-

102 CHAPTER 4. VISION BASED PERCEPTION

Table 4.2: Relative estimation accuracy of a sequence of 100 position requests
of a guidemark at 2.2 m at different turn angles of the guidemark. All source
images are of size 640 × 320 pixels, the guidemark has a frame block size of
2.5 cm, and each frame block is covered by at least the stated number of pixels.
The used USB camera has a focal length of 1050 pixels.

Viewing Position Orientation Block N
angle κ σ|x,y| σΩ (roll) σΦ (tilt) σκ (turn) pixels samples

0◦ 1.7 mm 0.04◦ 1.55◦ 0.61◦ 11.9 100
10◦ 1.3 mm 0.06◦ 0.72◦ 0.27◦ 11.7 100
30◦ 2.2 mm 0.12◦ 0.21◦ 0.12◦ 10.3 100
60◦ 2.5 mm 0.10◦ 0.11◦ 0.06◦ 5.9 24

related with an estimation error in the guidemark orientation; typically a small
tilt combined with a slight turn makes the guidemark seem slightly smaller
and thus further away. When the turn angle is zero (guidemark is facing the
camera) the relative estimation error in roll (σΩ) is uncorrelated with the other
errors and thus small, at larger turn angles the roll error increases and the error
value is now correlated with the other estimated parameters.

The obtainable absolute position accuracy is dependent on the mounting
accuracy of the camera, the focal length of the lens and the accuracy of the
estimated lens (radial) errors. With the used USB camera an absolute position
accuracy of less than 5 cm and an angle accuracy of less than 5◦ are obtained
within the camera coverage area.

When a guidemark is viewed with a rotation of 22.5◦ – just in between the
two sets of corner filters (C1,2 and C3,4) – the sensitivity is slightly reduced. The
effect is a reduction of the distance at which the guidemark can be detected.

The number of pixels needed for each of the squares in the frame to be able
to detect the guidemark is shown in table 4.3 as ’block pixels’.

Table 4.3: The number of pixels needed for each frame block to detect guide-
marks at different rotation angles relative to camera. The distance in metre is
for a camera with a focal length of 525 pixels and an image size of 320 × 240
pixels.

Orientation pd = 0.5 pd = 0.95
of grid pixels metre pixels metre

0◦ 3.8 3.4 3.9 3.3
22.5◦ 4.6 2.8 4.8 2.7
45◦ 4.2 3.1 4.3 3.0

When the probability of detection (pd) is about 0.95 the code is evaluated
correctly with a probability of about 0.95 too (for the detected guidemarks).

4.7. SUMMARY 103

Stable guidemark detection requires that each of the blocks in the guidemark
frame should be covered by at least five pixels. When the guidemark is not at
the distance with the optimal focus the detection distance will decrease further.

The used camera has a configurable contour enhancement feature intended
to compensate for limited bandwidth in an analogue video signal and to en-
hance the image sharpness visually. This feature is turned off to improve the
guidemark detection capability.

4.7 Summary

Two vision sensors are presented in this chapter: a road outline sensor and a
guidemark sensor.

The road outline sensor is able to extend a sample area to cover the visible
area with the same properties as the sample area. The visual appearance of
a road changes with the illumination and the surface type, but the presented
sensor that combines a colour (chromaticity) analysis with edge detection is able
to detect the road outline in many surface type and illumination combinations:
gravelled roads, wet and dry asphalt roads with a range of sunshine and shadow
illumination. The method is fast, simple and efficient as long as the seed area
is representative for the road.

The sensor fails if the seed area is not representative for the road and
additionally very sharp shadows are excluded from the road outline, and thus
both false positives (non-road included) and false negatives (road excluded)
may occur. For these reasons the sensor is not recommendable as a stand alone
sensor for detection of obstacles and traversable terrain. The sensor is however
an excellent supplement to the laser scanner based road detector described in
chapter 3, and provides supplementary road classification, obstacle and junction
detection beyond the laser scanner range.

The guidemark detection capability is primarily a supplement intended to
improve the robot localisation and may solve positional ambiguities. In the
initial phase for the robot, the start posture may be determined from a guide-
mark. Where accurate localisation is needed – eg when approaching a dogging
station – a guidemark may provide the needed accuracy.

4.8 Further improvements

Further cameras and possibly manoeuvrable cameras may further improve the
ability to detect side roads and interesting objects like natural or artificial
guidemarks.

The vision-based perception process could include is much more then the
two sensor types presented in this chapter. Further segmentation of the camera

104 CHAPTER 4. VISION BASED PERCEPTION

image may provide additional information valuable for the navigation process.
A combination with ’structure from motion’ or stereovision techniques the po-
sitioning of the seen objects may be improved, and thus qualitatively improve
the perception.

Chapter 5

Obstacle avoidance

5.1 Introduction

Obstacles are from the definition something that hinders progress, and in this
project obstacles are primarily maintained for the purpose of obstacle avoid-
ance.

The obstacle avoidance behaviour decisions should obey to overall behaviour
requirements – eg follow left side of road – while avoiding detected obstacles.
The data source is a number of possible corridors based on laser scanner tra-
versable segments wide enough to allow passage by the robot, a vision-based
road outline, and a number of detected obstacles that should be avoided. The
result of obstacle avoidance should be a path within the area covered by the
sensors that avoids the detected obstacles and brings the robot closer to the
desired destination.

5.2 Obstacle avoidance methods

A number of methods for path planning to avoid obstacles are described in the
literature and is adequately summarized by Siegwart & Nourbakhsh (2004).
The methods describe different methods to calculate a route from current posi-
tion to an exit position, the exit position being either the destination position
or a position that would bring the robot closer to the desired destination.

The obstacle avoidance methods are divided into four groups:

• Road map: identify a route in the identified traversable area to a target
position. Two basic methods are described: the direct visibility graph
method and a Veroni diagram method.

The visibility graph method connects all vertices of the obstacles with
all visible vertices of all other obstacles including the current position

105

106 CHAPTER 5. OBSTACLE AVOIDANCE

and the exit position. The shortest graph from the current position and
the exit position is then the optimal route. If the number of obstacles is
sparse the method is efficient, but the computation time grows fast with
the number of obstacles.

The Veroni diagram makes a path from current position to the exit po-
sition following lines where there is equal distance to the two closest
obstacles. If there is a route to the destination the method will find it,
but the distance is not optimal, and especially in sparse environments,
the solution is far from optimal.

• Cell decomposition: divide the area that includes the current and the
exit position into obstacle cells and traversable cells. Two basic methods
are described: exact cell decomposition and approximated cell decompo-
sition.

The exact cell decomposition divides the area between obstacles into ar-
eas, each cell has three or four sides, each cell is either traversable or
an obstacle, and thus each side of a traversable cell is shared with an-
other traversable cell or an obstacle. A graph can then connect the cell
with the current position to the cell with the exit position, and an op-
timal sequence of cells be found. The method is efficient in large sparse
environments, but rarely used due to implementation complexity.

The approximate cell decomposition method uses square cells, where a cell
is declared nontraversable if parts of the cell is occupied by an obstacle.
The traversable cells are then searched from current position in a breast
first search until the destination cell is found. The cell size should be
small, so that narrow passages are not lost due to the cell approximation,
but the cell count should be kept low to reduce the memory and processing
time is needed. The implementation is simple and the method is popular.

The cell size of the approximate cell decomposition method may be se-
lected to be variable. Large free areas are then represented by one large
square cell, and if obstacles are found inside this area then the area is
split into four smaller cells. This cell splitting can be continued until the
desired accuracy is obtained. The number of required cells is in this way
reduced at the expense of implementation complexity.

• Potential field: using mathematical functions describing a field where
the destination is attractive and the obstacles are repulsive. The current
position is then a particle in this field, and the steepest decent is then the
optimal route to the destination. Concave obstacles or obstacle groups
may introduce local minima and thus trap the robot.

5.3. OBSTACLE DETECTION 107

• Bug navigation: aiming for the destination and dealing with one obstacle
at a time as they come. These methods may get to the exit position, but
the route may be far from optimal.

5.2.1 Design decisions

The selected method is based on the visible graph method. The method is
modified to ignore obstacles too far away and to start the path search with the
direct route. The search may end here if no obstacles are found, or may be
extended when the direct route crosses or gets too near an obstacle. The path
is further including robot dynamics during the search.

The reasoning is that the method is intuitive simple, based on a graph of
visible segments from current position to the exit position. The environment
used by the robot is – apart from the road sides – a sparse environment, and
thus a method favouring sparse environments could be selected. The method
is scalable and allows the exit position to be far away from current position
without increased performance penalty – as long as the obstacle density remains
low.

The force field method may experience trapping by local minima, and
should be combined with another method to recover from those situations.
This method is therefore not further investigated.

The cell decomposition method using fixed sized cells may be relative simple
to implement, but a high number of cells is needed. A coverage area of 15×15 m
with a 5 cm resolution would require 300×300 = 90000 grid cells of which most
need recalculation for each iteration. The method is not easily scalable is the
exit position is far away. An improved scalability could be obtained by a
variable cell size, but at the cost of complexity. The found route is further not
easily modified to account for robot dynamics.

The accurate cell decomposition method could be a tempting compromise
between the approximate cell decomposition method and the visibility graph,
as it easily provides prioritised alternative routes if the shortest route is un-
desirable due to robot dynamics requirements. The method is however not
further investigated.

5.3 Obstacle detection

On the experimental platform both the vision sensor and the laser scanner are
capable of obstacles detection.

The implemented feature detection for the vision sensor is limited to road
outline sensing. The identification of a road limitation – a transition from road
to non-road – could be used as a detected obstacle, the accuracy of which is

108 CHAPTER 5. OBSTACLE AVOIDANCE

limited primarily by the projection errors. The road outline is projected to a
virtual flat surface in the same plane as the robot base. The projection therefore
includes errors when the robot tilt and roll are different from zero and when
the road surface is not flat. The camera is looking forward with a horizontal
view angle of 58◦, and as the main view area extends from the end of the laser
scanner range – 2.6 m in front of the robot on a flat road – to the horizon,
the main projection error is expected to be in the x-direction (forward). A tilt
error ϕe of the robot probagates to an x-distance error xe as shown in (5.1)

xe =
h

sin(sin−1(h
r
) + ϕe)

− r , (5.1)

where the robot tilt ϕe is approximated as camera tilt and xe is approximated
as error in distance along the camera axis. This is justifiable as the distance
from the camera r is much larger than the camera height h = 0.86 m.

For an obstacle detected at r = 10 m and a tilt error ϕe = −1.3◦ (corre-
sponding to the front wheel being lifted 1 cm) is thus approximately 3.7 m.

An error of this magnitude makes it difficult to track and correlate obstacles
based on the vision road outline sensor. Improvements in the robot posture
sensing to include tilt could improve the situation.

Obstacles are further assumed to be flat and the (possible) road behind
obstacles is not detected as traversable, this further complicates tracking and
usage of obstacles based on the road outline detection.

The laser scanner based road classifier divides the measurements into tra-
versable, nontraversable and invalid data, and further group measurements
classified nontraversable into spatially separated polygon-shaped (convex) ob-
stacles as described in section 3.7.

The projection error from the laser scanner measurements due to unknown
robot tilt and roll is much less than for the vision sensor, as the laser scanner
is a 3D sensor.

5.4 Integration of vision data

The obstacle avoidance solution needs a desired exit position and a set of
obstacles. A combined corridor is found using both vision and laser scanner
data. The exit position is found in the vision part of the corridor, so that any
obstacle areas detected by the vision sensor are avoided. The visible graph
method is used to find the optimal route to this exit position.

5.4.1 Extended road corridor

The laser scanner based road corridors may be extended into the vision sensor
road outline. This may disqualify some of the corridors found by the laser

5.4. INTEGRATION OF VISION DATA 109

Laser scanner
based

corridor lines

Vision-based
corridor lines Vision-based

road outline

(a) (b)

Fig. 5.1: The corridor lines (blue in (a)) are based on laser scanner data up
to the most recent laser scan, and from here extended into the vision-based
road-outline polygon. The road-outline polygon is further shown in the camera
image (b).

scanner, eg if a corridor was found in the cut grass on the roadside, then this
is unlikely to correlate with the vision-based road outline.

The extension is calculated by creating a number of corridor line segments
inside the vision polygon and correlates these with the laser scanner based
corridor. The two sets of corridor lines are shown in Fig. 5.1.

The vision corridor consists of a number of traversable line segments Svr
crossing the road-outline polygon at range r. The segments are generated as
shown in (5.2)

Svr =

8
>>>>>><
>>>>>>:

Svr,j
j = [1..N/2]
m = 2j

flflflflflflflflflflflfl

Svr,j = (x + vt)
x = Um+1

Um = [r, ym]T

v = [0, 1]T

t = ym − ym+1

|ym − ym+1| > Wmin

9
>>>>>>=
>>>>>>;

, (5.2)

where [r, ym]T is the mth of N crossings of the road-outline polygon at range
r from the robot. The crossing line at r is perpendicular to the current robot
heading. U is the set of crossings at r, and these are ordered after decreasing
y value. Each line segment Svr,j is described in robot coordinates. The segment
must be wider than Wmin = WR (robot width), except if one of the positions
ym or ym+1 is at the image border, in which case Wmin = WR/2 to allow for the
possibility that the rest is outside the image.

110 CHAPTER 5. OBSTACLE AVOIDANCE

The segments are generated at the range intervals

r =

8
>><
>>:
ri

flflflflflflflfl

r1 = rseed + rsep

ri = ri−1dsep

ri < rmax

i ∈ [1, imax]

9
>>=
>>;
, (5.3)

where rseed is the distance from the seed area used for the road outline (typically
about 2.6 m), and rsep = 2.0 m is a fixed distance to the first vision-based
segment, the segments are separated by a factor dsep = 1.2 until a maximum
range rmax = 14 m is reached or there are no more crossings of the outline
polygon.

If there are no polygon crossings at r1, then no intervals are generated and
the vision data are ignored.

If the destination position is closer than 14 m, then rmax is reduced accord-
ingly. The value rmax = 14 m gives the maximum reaction distance to obstacles,
ie the distance where an obstacle avoidance manoeuvre may be initiated as the
earliest. The distance is also the longest distance at which vision road outline
can assist in junction resolutions.

The segment interval corresponds to a constant obstacle height Dv
o as shown

in (5.4)

Dv
o = hcam

dsep − 1

dsep

= 0.15 m, (5.4)

where hcam is the camera height. This is more than used by the laser scanner
obstacle detection, and should probably be reduced if the road outline detection
was modified to test for obstacles along these line segments. Such – rather
simple – modification to the road outline detector would improve the obstacle
detection capabilities to about the same level as the laser scanner (but is not
implemented).

The corridor consists of segments from (5.2) correlated as in (3.23) and
continued into the laser scanner corridor (3.28). The full corridor Bj consists
of line segments as in (5.5)

Bj = {S1, S2, . . . , Sn, Sn+1, . . . , Sn+m} ; j ∈ [1, b], (5.5)

where S1 = Svr1,j
from (5.2) to reduce the notation complexity, and n is the

number of vision-based segments. Similarly Sn+1 = Ski from (3.28), and m is
the number of laser scanner based segments in the corridor.

The forward most vision range line may be broken into more segments
resulting in b available corridors. The segments can also be described as pa-
rameter lines:

Si = si(t) = {x + tv | t ∈ [0, li]}
x = [xxs, xys]

T

v = [vxs, vys]
T ,

(5.6)

5.5. EXIT POSTURE 111

where li is the length of segment i.

5.5 Exit posture

The exit posture (exit position and desired exit heading) is the foremost usable
aiming point inside the currently detected obstacle-free area. This posture is
determined by the current navigation objectives and the navigation corridor.
Two main types of navigation objectives are relevant here: following a road
line and aiming for a specific position. A third type – direct to destination –
is available too, especially for tight manoeuvres; the exit posture for this type
is taken directly from the destination posture.

When the objectives are to follow a road line, the relevant road line r(tr) =
[xr + trvr] is extended to its crossing with the segments si(ts) from the corridor
Bj found in (5.5) and (5.6).

The crossing of these lines is expressed as a parameter value ts on the
segment si as in (5.7) and (5.8)

r(tr) = s(ts) ⇒ [vr, −vs]

•
tr
ts

‚
= [xs − xr] , (5.7)

and solved for the parameter value ts for the crossing of the segment yields:

ts = cross(r, s) =
vxr(xyr − xys) + vyr(xxs − xxr)

vxrvys − vyrvxs , (5.8)

where xr = [xxr, xyr] and vr = [vxr, vyr].
The exit point candidate ci is then

ci = si(tsi + dr), (5.9)

where tsi is the ts value for segment i and dr is the desired position on the road
relative to the road edge.

If ci is inside all segments in the vision parts of the corridor, then the exit
position p = c1. If one of the crossings is outside the vision segment or closer
to its end points than a security distance dsec = 0.3 m, then the candidate
exit position ci is adjusted to be inside the segment before the next candidate
position is tested - as shown in (5.10)

p = cn

flflflflflflflflflflflflflflflfl

c0 = c1

for i ∈ [1, n] :
rcc = [xc + tc(ci−1 − xc)]
tsi = cross(rcc, si)

ci =

8
>><
>>:

ci−1 for

‰
tsi > dsec

∧ tsi < l − dsec

si(dsec) for tsi < dsec

si(li − dsec) for tsi > li − dsec

, (5.10)

112 CHAPTER 5. OBSTACLE AVOIDANCE

(a) (b)

Fig. 5.2: Two available corridors are generated form this scene. The exit posi-
tion in the right alternative (yellow in (a)) is moved to the segment just next
to the obstacle. The left corridor follows the left edge of the road and is not
sufficiently close to the obstacle to move the exit position. The corresponding
camera image is shown in (b).

where xc is the current robot position.
When the objective is to aim at a position rather than following a road line

the exit position is found using (5.10) with the initial candidate position being
c1 = s1(cross(rcd, si)) where rcd is the line from the current robot position to
the destination.

The exit posture also includes a desired exit heading. When the objective
is to follow a road line then the road direction is used as the exit heading. If
the objective is a position then the exit heading is set to the direction from the
exit position to the destination position.

5.5.1 Exit posture results

In Fig. 5.1(a) the path line (bold red) extends to the exit position, in this
case the c1 position. The robot is following the left road edge at a distance
dr = 0.85 m. Figure 5.2 shows two available corridors where the exit position
to the right is adjusted to a position just to the right of the obstacle.

5.6 Obstacle maintenance

Obstacles found by the vision system are now avoided by adjusting the exit
position as described in the previous section.

5.6. OBSTACLE MAINTENANCE 113

Fig. 5.3: Single scan obstacles detected while passing two pedestrians on an
asphalt road (A little further ahead than the scene in Fig. 5.1). Single mea-
surement obstacles are shown as circles. Two groups of obstacles are shown in
slightly different colours.

The obstacles detected by the laser scanner are combined into polygons
describing obstacles and other nontraversable areas – as described in section 3.7.
In addition to these obstacles the left and right road edge lines – as described
in section 3.6.3 – are added as obstacles if the line is detected with a sufficiently
high quality Lq > 0.9.

The obstacles from especially the rough grass are often seen as isolated
patches, and at every new scan different grass patches are detected as shown
in Fig. 5.3. The high number of obstacles shown in the image could be reduced
by combining near obstacles detected in different scans. This would reduce
the number of obstacles that need to be handled and would combine the non-
traversable rough grass areas into larger obstacle areas more in line with the
intuitive perception of the area.

The obstacles need to be maintained until these are no longer relevant for
obstacle avoidance. The accumulating errors from the robot posture estimation
make the detected obstacle positions gradually more imprecise as a function of
the distance driven since detection. As a consequence the obstacle positions
should either be corrected or the obstacles ignored before the accumulating
errors prevent progress.

The obstacles detected over a limited robot travelling distance dlim = 7 m
or a limited detection time tlim = 7 s are grouped. Obstacles detected – within
this group – are attempted correlated with new obstacles.

114 CHAPTER 5. OBSTACLE AVOIDANCE

A new obstacle polygon D is tested for correlation with an established
obstacle polygon E using a proximity function F(D,E) as shown in (5.11).
This function evaluates the distance from the closest vertex in D to any edge
in E. The distance is signed so that a positive value is evaluated if the nearest
vertex in D is outside the polygon E. The polygons are all convex and vertices
are ordered counter-clockwise

F(W,G) =
j∈[1,m]

min

•
i∈[1,n]
max (Aiwj,x +Biwj,y + Ci)

‚

where

W = {w1,w2, . . . ,wn}; wi = [wi,x, wi,y]
T

G = {g1,g2, . . . ,gm}; gi = [gi,x, gi,y]
T

L = {l1, l2, . . . , lm}

li = [Ai, Bi, Ci]

flflflflflflflfl

Aix+Biy + Ci = 0
d = [dx, dy]

T = gi − gi−1; g0 = gm
Ai = −dy

|d| ; Bi = dx
|d| ; Ci =

dy∗gi,x−dx∗gi,y
|d|

i ∈ [1,m]

.

(5.11)

A correlation is said to exist if dlimit > min[F(D,E),F(E,D)]. The rough
road edges are predominantly flat, and in many cases obstacles representing
the same rough area do not overlap. The distance between obstacle detection
in such areas depends on the distance between scans. If the area was a homo-
geneous area of single (nontraversable) straws the distance between obstacles
in successive scans would be equal to the robot movement (of this position)
between the scans. To allow for correlation between scans the parameter dlimit

could be set to the maximum movement, but as the movement is known a dif-
ferent approach is taken. A point is added to the new polygon, at a position
where this obstacle would have been detected in the last scan had the obsta-
cle been a homogeneous nontraversable rough area. The back-most point in
the candidate polygon (in robot local coordinates) is therefore added at the
position it would have had if detected in the previous scan (the extra point is
removed after the correlation process).

In addition to this extra point the limit dlimit = 0.3 m is found experimen-
tally to get a reasonable reduction in obstacle count while keeping other types
of distinct obstacle separate.

The resulting set of obstacles after correlation is shown in Fig. 5.4 for the
scene in Fig. 5.3.

Similar results are obtained on a gravelled road as shown in Fig. 5.5. The
scene is a gravelled road with rough edges just before it opens for a side road
to the left. The road edge lines are mostly of poor quality. The obstacles are
again combined to almost solid areas on both roadsides.

5.6. OBSTACLE MAINTENANCE 115

Fig. 5.4: The correlated and merged obstacles shown represent the same obsta-
cles as shown in Fig. 5.3. Two obstacle groups are shown (in slightly different
colours).

(a) (b)

Fig. 5.5: The scene is a gravelled road with rough road edges. The raw obstacles
in (a) are combined into nontraversable obstacle areas in (b).

The decision to use convex polygons to describe obstacles was to ease the
computation, the drawback is that the obstacle may be concave by nature and
the area in this concavity may be needed for navigation. An example could be
that the obstacle extends alongside the robot and an obstacle at the roadside
in front of the robot is detected, this obstacle is merged with the one at the side
of the robot to one convex obstacle, now including the robot position. This
situation would trigger unnecessary abrupt robot manoeuvres to get the robot
out of the obstacle.

There is presently no provision for removal of obstacles nor to reduce the
obstacle size, this would be needed if the obstacles were to be retained for
a revisit of the area. Moving obstacles – like humans – are not tracked and
may thus produce a series of obstacles. Such obstacles could block the robot

116 CHAPTER 5. OBSTACLE AVOIDANCE

progress, but will eventually be too old to be considered.

5.7 Obstacle avoidance routes

The exit posture of the current manoeuvre is determined by the route objectives
as described in section 5.5. The obstacle avoidance route is then planned from
current position to the desired exit posture.

The obstacle avoidance route is determined as an iterative calculation, start-
ing with the expected position a fixed time ahead of current position and ending
at the desired exit position. The calculated route may be impossible due to
detected obstacles; when this is the case the route is recalculated avoiding one
obstacle (the most critical) at a time until a route is found that avoids all
detected obstacles.

Obstacles are initially avoided at the expected shortest path – left or right
– around the obstacle (based on the obstacle centre of gravity). The most
offending part of the obstacle is found and a new mid-posture for the route is
calculated, ie a posture that would be safe for the robot to pass, as shown in
Fig. 5.6.

x

y

cg
obstacle

new
mid-posture

obstacle

Exit posture

Current
posture

Fig. 5.6: Obstacle avoidance starts by planning a route to the exit that ignores
obstacles and then avoiding obstacles on the planned route in a safe distance,
introducing new mid-postures on the route.

If there is another obstacle close to the most offending position, and the dis-
tance between the obstacles do not allow passage, then this obstacle is avoided
too.

If the distance between the obstacles just allows passage, then the new mid-
posture is planned just between the obstacles at a heading that should give the

5.7. OBSTACLE AVOIDANCE ROUTES 117

floor

door

ferniture

Fig. 5.7: Obstacle avoidance path planning in an indoor scene. The path
planner has found a path out of an open doorway avoiding the known obstacles
at the time. The door is erroneously classified as traversable.

safest passage, ie the new mid-posture is the centre of a line connecting the
obstacles, and the heading is in the direction of the mid-normal.

The less obvious side of the obstacle is evaluated too, as this may be the
best overall guess.

The new mid-posture splits the path from the robot to the desired exit
posture in two. Each of these are then recursively tested for free passage and
recalculated as needed.

An example of path planning is shown in Fig. 5.7. The robot has planned
a route through a door opening in an indoor scene. The outdoor obstacle
avoidance routes are usually less complicated. The setup is not intended for
indoor use, but the indoor scene is handled reasonably well after introduction of
two minor exceptions: obstacles are not generated for ditches and the obstacle
correlation distance dlimit is reduced to 0.03 m to reduce the likelihood of two
walls in a corner are correlated into one convex obstacle, as this potentially
could limit the free area for the robot significantly.

A number of exceptions are introduced to maintain a smooth path and a fast
calculation. The number of alternative paths (the other way around obstacles)
is limited (to 6). The number of iterations finding new mid-postures is limited
too (to 6). This means that a path may be rejected if the calculation is too
complicated (but a path may exist). When a new mid-posture is generated close

118 CHAPTER 5. OBSTACLE AVOIDANCE

to an existing one, the old mid-posture is probably not optimal for passage and
is replaced by the new.

5.8 Posture to posture manoeuvre

Obstacle avoidance manoeuvres are planned using a combination of straight
and curved paths. The manoeuvres from one posture to another will always
be planned using a combination of an arc, a straight part and a final arc. The
arcs can either form a left or a right turn. The arc radius is – when possible –
planned to limit the centripetal acceleration.

Both the centripetal and the lateral acceleration are limited in order to get
smooth manoeuvring.

The basic calculation of a posture to posture manoeuvre can be evaluated
as one of two cases: both arcs are in the same direction or the arcs are in
different directions. That is, right-straight-right or right-straight-left. The
same manoeuvres starting with a left turn are calculated as a mirror image of
the corresponding manoeuvre starting with a right turn. The manoeuvres are
calculated in a reference coordinate system aligned with the start posture. The
end posture is then (x2, y2, θ2) as shown in Fig. 5.8 and Fig. 5.9.

The turn radius r is selected not to exceed a desired centripetal acceleration
ac, for normal manoeuvring as shown in (5.12) for the actual robot velocity v

r =
v2

ac
. (5.12)

The arcs φ1, φ2 and the line d are found as described below.

5.8.1 Right, straight and then right

The manoeuvre consists of an arc φ1 with a turn radius of r1, a straight part d
and a second turn (to the right) of φ2 at a turn radius r2, as shown in Fig. 5.8(a).

The solution is found by shifting the line d a distance r2 (into d′ in Fig. 5.8),
so that it starts at the circle centre C2 and ends at the tangent point to a circle
with centre at C1 and radius r1 − r2. The right angled triangle with this line

(d′) and the radius r1 − r2 as the two smaller sides and the line
−−−→
C2C1 between

the circle centres C1 and C2 as the longer side is solved, and from that finding

5.8. POSTURE TO POSTURE MANOEUVRE 119

x

y

r2

r1

r -r1 2

d

q2
x ,y2 2

f 2

f 1

C2

C1

d’

T1

T2

x

y

r2

q2
x ,y2 2

f 1

C2

C1

T1

r1

T2

a b

Fig. 5.8: Calculation of right-straight-right manoeuvre (a) and the same ma-
noeuvre with the largest possible entry turn radius (b). The manoeuvres start
at (0, 0) heading 0◦. The exit point is at (x2, y2) heading θ2. The first arc stops
at T1, then straight until T2 where the second arc starts.

the arc sizes φ1 and φ2 as shown in (5.13)

\(
−−→
C1T1 = \(

−−−→
C2C1)− sin−1 r1 − r2

|−−−→C2C1|
− π

2

φ1 =
π

2
− \(

−−→
C1T1)

\(
−−→
C2T2 = \(

−−→
C1T1

φ2 = \(
−−→
C2T2)− (θ2 +

π

2
).

(5.13)

The limitations for this manoeuvre are twofold: The first limitation is a
construction limitation: the turn radius must be so small that the exit position
is not within the first circle and vice versa. The second limitation is more
practical, the exit angle θ2 should be smaller than the tangent angle \(

−−→
C2T2),

otherwise the second arc could be up to a full circle. In such cases another

manoeuvre should be selected. At the same time the tangent angle \(
−−→
C1T1)

should be smaller than π
2

to avoid too large arcs at the start of the manoeuvre.
The last limitation corresponds to the situation where the second circle

crosses the x-axis.

5.8.2 Right, straight and then left

The calculation of the manoeuvre starting with a right turn followed by a
straight part ending in a left turn is very similar to the right-straight-right

120 CHAPTER 5. OBSTACLE AVOIDANCE

x

y

r2

r1

r +r1 2

d

q2

x ,y2 2f 2

f 1

d’
C2

C1

T2T1

T’1

Fig. 5.9: Calculation of right-straight-left manoeuvre. The manoeuvre starts
at (0, 0) at heading 0◦, and ends at position (x, y) heading θ2. The maximum
turn radius is when the two circles with radii r1 and r2 meet.

manoeuvre, except that the support line d′ is now shifted away from the C1

centre.

The revised calculations are shown in (5.14)

\(
−−→
C1T

′
1 = \(

−−−→
C2C1)− sin−1 r1 + r2

|−−−→C2C1|
− π

2

φ1 =
π

2
− \(

−−→
C1T

′
1)

\(
−−→
C2T2 = \(

−−→
C1T

′
1 − π

φ2 = θ2 − π
2
− (\(

−−→
C2T2)).

(5.14)

The manoeuvre turning radius r1 and r2 must not be so large that the two
circles overlap.

The calculated posture to posture manoeuvre can now be used for calcula-
tion of proximity to obstacles as described in the previous section.

5.9 Route selection

The obstacle avoidance planner may provide a number of possible obstacle
avoidance routes, as there may be more alternative corridors and thus more
than one possible exit posture. Each exit posture may further result in a num-
ber of different obstacle avoidance routes. The available routes are therefore

5.9. ROUTE SELECTION 121

rated using a quality Rw calculated as

Rw =

PN
i=1wiqiPN
i=1wi

, (5.15)

where qi ∈ Qr and Qr = {qσ, qϕ1, q1–5, qe, qw, qd, qm} is the set of road qualifiers
and wi is the corresponding weight factor for qi. Each value is described below.

Corridor roughness is used as a qualifier qσ to prefer smoother corridors.
The value is based on the average of the minimum of the roughness values
Rn found in each of the laser scanner based traversable segments Bj in
the corridor

qσ =

ˆ
1 +

sσ
N

NX
j=1

(min(Rn ∈ Bj))

!−1

; wσ1 = 3 , (5.16)

where sσ = 20 to scale the roughness for a reasonable quality interval.

The start manoeuvre is preferred as straight as possible; the angle to the
first manoeuvre mid-posture (Φ1) is used as a source for the start ma-
noeuvre quality

qϕ1 = (1 + Φ1 − ϕd)−1; wϕ1 = 1 , (5.17)

where ϕd is an offset used to prefer some directions. If the robot is to
follow left or right side of the road the offset is set to ϕd = +10◦ or
ϕd = −10◦, correspondingly. If the exit posture is behind the robot the
offset is set to prefer ϕd+70◦ or ϕd−70◦ in the most appropriate direction.

The historic heading is calculated from the general direction ϕh travelled 1–
5 m back from the current position. The ϕh is calculated as the direction
of the best fit line for the robot positions recorded for this interval and
the qualifier as

q1–5 = (1 + Φe − ϕh)−1; w1–5 = 2 , (5.18)

where Φe is the direction from the robot to the exit posture.

The road edge quality is used when the robot is following a road edge and
is based on the relevant road edge quality LQ (from section 3.6.3) as

qe =

8
>><
>>:

LQ,left when following left road line
LQ,right when following right road line
LQ,top when following road centre line
1 otherwise

; we = 1.5 . (5.19)

122 CHAPTER 5. OBSTACLE AVOIDANCE

The corridor width is used as a qualifier based on the road width Rw from
the laser scanner based corridor. It is used to prefer wider corridors (up
to 5 m) and calculated as

qw = (6−min(5, Rw))−1; ww = 0.3 . (5.20)

The path distance is used as a qualifier to prefer routes with a distance equal
to the direct distance to the expected target position dd using

qd =

‰
(1 + dm − dd)−1 for dm = dd
(1 + dm − dd)−2 for dm < dd

; wd = 1 , (5.21)

where dm is the path distance. The desired distance dd is the distance
to the exit posture, except if no vision solution is available and the ma-
noeuvre is not for a direct destination. In these cases the exit posture is
on a laser scanner traversable segment, and the preferred distance is the
distance at which the laser scanner is expected to see the road (typically
2.6 m). A shorter distance is thus possible, but this is disfavoured as it –
as an example – may be the lower part of a newly detected wall.

The manoeuvre deviation σm from the straight line to the destination is
used to calculate the manoeuvre qualifier

qm =

0
@1 +

vuut 1

K

KX
i=1

M2
i

1
A
−1

; wm = 1 , (5.22)

where Mi is the distance from the mid-posture i to the straight line
from the robot to the exit posture. This qualifier favours straight path
solutions.

The route having the highest quality is selected. In Fig. 5.10 four routes
are generated to three exit postures. The short route (in red) is selected.

5.10 Drive commands

The drive scheduler takes a sequence of drive commands and transforms these
into wheel speed commands in real time. The best of the paths created by
the obstacle avoidance planner therefore needs to be translated into the set of
commands used by the drive scheduler.

The first metre of the planned route is transferred to the drive scheduler
(or less if the route is shorter). At a maximum speed of 1.5 ms−1 and a path
calculation rate of 2 Hz the robot will travel 0.75 m at maximum before a new
route is available.

Two types of drive commands are used to control the robot:

5.10. DRIVE COMMANDS 123

road

exit postures

cycle track sidewalk

alternative
routes

Fig. 5.10: The robot is driving on a cycle path with no vision support. Each
of the road types (road, cycle path and sidewalk) generates an exit position
relative to the objectives (a waypoint some 25 m (almost) straight ahead). Four
routes are generated towards these points and the shortest (in red) is selected
as the best.

Turn with a given radius is used directly as planned if the turn radius is less
than 3 m (turnr r a, where r is the radius and a is the angle to turn).

Following a target line, where the robot aims at following a provided line
(drive x y th, where x and y is a position on the line and th is the
direction of the line).

Turns with a turn radius larger than 3 m is divided into a sequence of
line follow commands. Each command may include options for speed and
acceleration. A stop criterion that – when fulfilled – makes the drive scheduler
continue to the next command are used to limit the distance for each drive
command.

The drive sequencer can execute a sequence of these (and other) commands,
and supports that they are replaced by a new sequence when needed.

The obstacle avoidance route calculation takes a variable amount of time
(but less than 0.3 s), and the robot posture used in the route calculation are
therefore predicted 0.3 s along the last ordered path.

Before the path is sent to the drive scheduler the first part of the route (up
to the first mid-posture) is recalculated using the most recent robot posture.

124 CHAPTER 5. OBSTACLE AVOIDANCE

(a) (b)

Fig. 5.11: A fork is seen by the vision sensor (a) and included in the road
outline shown on the feature map (b). The navigation process provides two
main alternatives and selects the fork to the right.

Fig. 5.12: A pedestrian blocks the vision-based road outline and an exit-posture
next to the pedestrian triggers an early obstacle avoidance manoeuvre.

5.11 Summary

In junctions and transitions from open areas to a narrower road the vision will
often be able to see the exit road or the road alternatives. This can assist the
navigation system in planning a route towards the right road at an early stage.
In Fig. 5.11 the vision-based road outline clearly show the road alternatives.

When the road outline is limited by obstacles as in the situation shown in
Fig. 5.12, the route possibilities will be limited correspondingly, and the result
is an obstacle avoidance route initiated at an early stage. The pedestrian can
follow the robot intentions as soon as the obstacle avoidance route is initiated,
and thus limits potential conflict situations.

The calculation of the obstacle avoidance route turned out to be more de-
manding than the simplicity of the approach suggested. The number of alter-

5.11. SUMMARY 125

natives and exceptions make the implementation more difficult to test, and –
unfortunately – the last error is not found in that piece of code.

The obstacle management ensures a reasonably low number of obstacles,
and the history of obstacles aligns nicely with the road.

In the majority of the tested situations the obstacle generation and the
obstacle avoidance route planning behave sensibly and produce the optimal
result from the available data.

126 CHAPTER 5. OBSTACLE AVOIDANCE

Chapter 6

Mission planning and execution

6.1 Introduction

This chapter deals with the mission preparation and navigation scheduling.
In the previous chapters the sensors are described extracting obstacles and
traversable areas, and how these obstacles and areas are used to generate a
route that avoids the obstacles in search of a higher level goal. All that is
missing is a scheduler that can break a long navigation mission into a sequence
of short term navigation goals needed by the obstacle avoidance function.

A language is needed both when assigning a mission to a robot and when
this mission is decomposed into a navigation sequence.

A language to implement missions using a language with a high abstraction
level is described in Simmons & Apfelbaum (1998). This language supports
job sequencing supports as well as parallel jobs. The parallel jobs are used for
example when driving and speaking simultaneously, or for event monitoring.
This and a number of other languages like Brooks (1990) has been defined
over the years, but these are primarily used to implement a desired complete
behaviour of the robot, ie the mission is compiled and loaded to the robot in
executable form.

A language for the overall task allocation is described in Mizoguchi et al.
(1999) where multiple robot agents in an office environment exchange and ne-
gotiate missions or tasks – the described case is handling and distribution of
printouts from the office printer.

The language described in this chapter is somewhere in between, it is in-
tended to control a navigation task for the current part of a mission. The
current mission part may then be replaced by a new script, where the new
script may be modified based on new planning information.

This chapter first discusses the situations that need to be handled and then
continues describing the selected solution.

The selected solution is a navigation script language that can handle the

127

128 CHAPTER 6. MISSION PLANNING AND EXECUTION

situations foreseen in the test area utilising drive system and the information
provided by the sensors.

6.2 Mission

A mission is a task, a job, something you can send someone to do. It sounds
simple, but there may be a number of subtasks that is implied by the mission.
If the mission is to fetch some coffee, then the subtasks could be ’find coffee
machine’, ’find jug’, ’pour coffee’, ’return coffee’, but it could also imply ’make
coffee’, if the machine is empty or ’buy more coffee beans’ if need be.

Such tasks could be handled sequentially with a number if ’if’ statements
like ’if coffee machine is empty: make coffee’ and ’if out of coffee beans: go
get some’. But something may occur during execution of some subtasks, the
route may be blocked, the battery condition may require a recharge or another
mission may be assigned with higher priority.

The mission controller is assumed to be able to handle the overall division
of the mission into tasks and to handle events that may change the mission
priority. The tasks may be for different parts of the robot where for example
navigation (motion) may be handled as one task, and separate from a ma-
nipulation task or a voice and voice recognition task – if such systems were
available.

The navigation part of a mission – getting from A to B – may in the same
way be divided into subtasks and be able to handle isolated event types related
to navigation. Such events could be: the wheels is getting stuck, the robot is
trapped in a dead end situation or a change in weather condition affecting the
navigation abilities. Some of these may be handled by the navigation function
and some may be reported to the mission level for possible re-evaluation of the
mission.

This chapter deals with the navigation part of a mission and the preparation
of navigation missions.

6.3 Navigation scheduler

The implemented navigation scheduler takes a navigation script with a com-
bination of drive commands and other commands. The drive commands are
mostly fed to the obstacle avoidance function, but may – if needed – be fed
directly to the drive scheduler if the obstacle avoidance function needs to be
bypassed. The other commands may be a setting change, a calculation, a status
checking or a conditional jump in the script.

The navigation scheduler maintains a set of global parameters that all parts
of the behaviour server may use (and maintain). These parameters include

6.3. NAVIGATION SCHEDULER 129

desired speed, current position, drive mode, road width, laser tilt-angle etc.
A small script that follows a road until the road width is above 6.5 m and

then stops could look like

speed = 1.2

fwd left 200 :((roadWidth > 6.5) and (roadQual > 0.85))

speed = 0.3

fwd direct 1

turn 180

smrcl idle

The script sets the maximum speed to 1.2 ms−1 and then moves the robot
forward following the left side of a road for maximum 200 m, and shorter if
the two explicit stop conditions are fulfilled. After the forward command is
finished the speed is reduced to 0.3 ms−1 while driving one metre. Finally the
robot turns 180◦ and stops.

6.3.1 Drive commands and stop conditions

The drive commands use three coordinate systems

Relative coordinates r = [xr, yr] or posture [xr, yr, θr] are centred at the cur-
rent robot position with xr, yr being forward and right, respectively. The
direction θr is relative to robot heading with positive counter-clockwise.

Odometry coordinate O = [xo, yo] or posture [xo, yo, θo] with reference to
the position and orientation where the robot started (was turned on), and
subsequently as maintained by the drive server. The coordinate system
will include all the position and heading (odometry) errors accumulated
since the start.

GPS coordinates in UTM coordinates U = [E,N] (Easting, Northing) are
available as position only, when a GPS heading θu is needed this heading
can be obtained using a reference position some distance d back from
current position.

A drive command can be specified in either relative or odometry coordinates
towards a desired position or posture, as

frd direct xr, yr, θr
frd odo xr, yr, θr
gotowaypoint direct xo, yo, θo
gotowaypoint odo xo, yo, θo,

130 CHAPTER 6. MISSION PLANNING AND EXECUTION

(a) (b)

Fig. 6.1: The forward relative command fwd direct plans a route that avoids
obstacles but ignores the generated corridor (a). The gotowaypoint odo uses
odometry coordinates and is in this case not direct and therefore follows
the best available corridor (b). The red circle with a heading vector is the
destination posture.

where fwd uses relative coordinates and gotowaypoint uses odometry coordi-
nates. The direct qualifier is used primarily for close navigation, where the
current corridor is ignored and the target posture is used directly as exit pos-
ture. An example is shown in Fig. 6.1(a). The vision support is not used with
the direct qualifier. The odo qualifier forces the use of a corridor and finds an
exit posture within the best suited corridor rather than aiming for the point
directly (as in Fig. 6.1(b)), this is primarily used when the target position is
some distance away and it is thus relevant to use the vision system to assist
path planning.

The main command for topological navigation is to drive relative to one of
the road lines. Three commands are available for this purpose

frd left d
frd right d
frd top d,

where d is the maximum distance to follow the road edge. The distance from
the road edge is determined by a system variable controllable by the script.

The top qualifier makes the robot follow the centre of the road; the top is
the detected highest point of the road. An example is shown in Fig. 6.2.

A number of drive commands are available that bypasses the obstacle avoid-
ance path planning, as

idle t

6.3. NAVIGATION SCHEDULER 131

Road lines
left,

centre,
right

Fig. 6.2: The fwd top aims for the centre of the road. The centre is defined
as the highest point of the road. The estimated road lines are shown as green
lines, of which the central is used by this command.

smrcl ’turn ’ ϕ
smrcl ’fwd ’ 1.2 ’@v-0.5’

The first command just idle the robot (and the navigation script) for t
seconds. The smrcl commands are sent directly to the drive scheduler and
follow the command syntax for this server. The first is a turn on the spot, the
second is a reverse drive for 1.2 m at 0.5 ms−1.

6.3.2 Stop conditions

Each of the above drive commands may additionally have an explicit stop
condition to finish the command. A few examples are:

idle 6.0 : (v gmkget)

fwd left dist :(25 > distToGps(347716.7, 6183490.1))

gotowaypoint direct fwdx, fwdy, fwdh :(endPoseDist < 0.5),

where the first idle command waits for at most 6 s or shorter if the v gmkget

gets true earlier.
The fwd left command may continue for dist metres or finish when the

distance to a given GPS position (in UTM coordinates) gets below 25 m. This
illustrates the use of GPS, as the command will finish at the right spot within
the accuracy limitation of the GPS (5 m in areas with good coverage), whereas
the distance dist driven may be influenced by the number of obstacle avoidance
manoeuvres needed.

132 CHAPTER 6. MISSION PLANNING AND EXECUTION

The gotowaypoint direct command will drive for the given position, but
as the robot may not move exactly as ordered and may pass the desired point
at a distance, which further could trigger some undesired tight manoeuvres in
an attempt to correct the (small) error. To avoid this situation it is often better
to stop slightly – in this case 0.5 m – before the destination is reached.

The expression to the right of the ’:’ is evaluated as either true or false

and will finish the command when evaluated to true. A number of variables
and support functions are available when creating stop conditions.

The stop conditions (implicit or explicit) are evaluated at a 5 Hz rate.

6.3.3 Sensor control

The sensors – and here especially the vision sensor – may be controlled inside
the script, using a server token in front of the command as

vision ’gmkget gmkref=true extra=false device=’ dev

vision ’camget device=’ dev ’ pos rot focalLength’,

where the command for the vision server is the remainder of the line after the
vision keyword. The characters in apostrophes are sent directly to the vision
server, whereas expressions outside the apostrophes are evaluated and replaced
by a value.

The first command gmkget requests a guidemark analyses from the camera
device dev. The second command camget requests the position (pos), rotation
(rot) and focal length (focalLength) of the same camera device.

The commands do not wait for a reply – some image analysis may take more
seconds – but when a reply is available a variable that includes the command
name will be set eg v gmkget = true when a gmkget reply is received. The
returned values are in the same way available as variables; the reply to the
camget command may thus generate and assign the following values:

v camget = 1.0

v camget posX = 0.44

v camget posY = 0.0

v camget posZ = 0.86

v camget rotOmega = 0.0

v camget rotPhi = 0.392

v camget posKappa = 0.0

v camget focalLength = 297.5 ,

where v camget = 1.0 indicates that the reply is received; the value 1.0 is
equivalent with true. All variable values are floating point numbers.

6.3. NAVIGATION SCHEDULER 133

6.3.4 Control decisions

A control sequence alternative may be needed if the values obtained on the
route may influence the actions needed. The following example uses the vision
server to analyse for a guidemark, and dependent on the received code takes a
different approach

try_gmk_again:

v_gmkget = false

t = time

dev = 0

vision ’gmkget gmkref=true extra=false device=’ dev

//# wait for reply

idle 6.0 :(v_gmkget)

if (gmkNewCnt(t) < 1) goto got_no_gmk

if (gmkNewID(t, 13)) goto got_gmk13

if (gmkNewID(t, 11)) goto got_gmk11

got_no_gmk:

n = n + 1

if (n > 6) goto the_end

goto try_gmk_again

//

got_gmk11:

//# got gmk by right door -- enter

calcMapToPose(-2.0, 1.0, -3.14, gmkx, gmky, gmkk)

fwd direct calcx calcy calch :(endposedist < 0.3)

goto try_gmk_again

//

got_gmk13:

...

the_end:

print "Terminated"

The first lines request a guidemark analysis from the vision server, and
then a bit down the command if (gmkNewID(t, 11)) goto got gmk11 an if
statement that fetches the guidemark 11 from the guidemark database, if this
is newer than the time t. If the guidemark is available then the next line to
execute is after the label got gmk11: found further down. There the guidemark
position is used to calculate a position relative to the guidemark – in this case
used to enter a door. After the next drive command a goto try gmk again

sends the execution back to the beginning (to look for guidemark 13, that will
do something else and terminate the script).

134 CHAPTER 6. MISSION PLANNING AND EXECUTION

6.3.5 Watch functions

There may be a need to evaluate a condition that requires some calculation
before a stop condition can be evaluated. One such condition could be to
monitor the progress of the robot, and if it persistently gets further and further
away from the target (eg while following a road edge) it may have taken a
wrong turn and thus it could be time for a recovery action, or to inform the
mission controller.

To enable such situation monitoring a watch function is implemented. The
following example demonstrates the watch function to monitor for open doors
while driving down a corridor. The intension is to make a pause at every open
door.

speed = 1

door = true

doorNow = false

// define watch function

function look_for_door(direc)

ld = laserRange(direc)

doorNow = (ld > 2.5)

if (not door and doorNow and (distSoFar > 1))

skipcall doWait(5)

if (door != doorNow) print "laser dist " ld

door = doorNow

return door

//

function doWait(waitTime)

dd = dd + distSoFar

idle waitTime

return

// start watch for doors to the right

watch doors look_for_door(-90)

//

dist = 25

dd = 0

fwd left dist :((dd + distSoFar) > dist)

unwatch doors

print "Terminated"

A function is defined by the lines from a function to a return. The first
function look for door(direc) tests a laser scanner range in the direction of
the doors (−90◦) and determines that there is an open door (or rather a lack
of wall) if the measured distance is above 2.5 m. If a (new) door is detected

6.3. NAVIGATION SCHEDULER 135

then the if (. . .) skipcall doWait(5) executes a skipcall. The skipcall

terminates the current drive command temporarily and executes the specified
function (in this case a doWait(5)) this function is defined just below and waits
for 5 s.

The watch function is started by a watch doors look for door(-90) spec-
ifying the function to watch and gives the watch a name doors.

The drive command fwd left dist :((dd + distSoFar) > dist) is fo-
und near the end of the script. This drive command may be interrupted by the
skipcall, and as the variables in the stop criteria distSoFar (distance driven
within this drive command) are not maintained between the calls the variable
dd holds the distance driven from before the last interruption.

Before the end the watch is closed by the unwatch doors command.
This functionality should enable some error recovery, like backing off if the

robot is stuck in obstacles. A number of the tests have been run with a simple
speed monitor, that – if speed is zero for 6 seconds – would try a reverse drive
to a position visited a few metres back. The function did not succeed in the
few cases where it was activated for two reasons: when the robot is stuck in the
high grass the laser scanner detects the grass as near obstacles and shuts off
the drive control (a security measure). In other situations the robot simply was
stuck (unable to move by own power). In both situations a manual assistance
was needed.

Another possibility is progress monitoring to allow a change in strategy
if the primary fails. Such behaviour is not tested and the used scripts have
therefore been of the type: succeed or die.

6.3.6 Support functions

A number of support functions are available in the script language. These
include many of the normal math functions like sin(a), atan2(y,x), min(a,b)

and sqrt(v) and a number of functions that relates to robot navigation. Many
of these support functions just reduce the number of lines in the script while
others provide access to more complex data structures. A few of the support
functions related to robot navigation are described below (the full set of support
functions is listed in appendix B.

Tail rope

The odometry position for the last about 100 m are stored as a sort of tail
rope. It marks positions that (once) were traversable and describes the route
taken. This tail rope is already used to maintain a system variable histH for
the ’historic’ heading of the last 5 m excluding the most current 1 m. This
heading is used when evaluating alternative routes in the obstacle avoidance

136 CHAPTER 6. MISSION PLANNING AND EXECUTION

planning.
A more general set of functions are available to use these historic data as

listed below

calcPoseAtTime(time)

calcPoseAtDist(near)

calcPoseFitAtDist(near, far),

where calcPoseAtTime(time) returns the historic posture a specific number
of seconds ago, the returned posture is – as for all functions starting with calc

– stored in the variables calcX, calcY and calcH, respectively. The function
itself returns true if such a posture is available.

The calcPoseAtDist(near) returns the tail rope posture at this (direct)
distance from the current position.

The calcPoseFitAtDist(near, far) uses all the historic positions from
near to far from the current robot position. These positions are fitted to
a straight line. The closest position on this line to the posture at the near

distance is returned in the three posture variables. The function itself returns
the residual variance from the line fitting.

One of the uses of this functionality is when the robot reaches a side road
or a junction and needs a position and direction where the road ends before
the junction. This position and direction may be needed when calculating a
direction out of the junction.

An example of this use is shown below

...

// get general direction of road now

calcPoseFitAtDist(0, 25)

// follow left side into junction

fwd left 75 :(7.0 < abs(

distToPoseLineSigned(poseX, poseY, calcX, calcY, calcH)))

// get reference close to end of road

calcPoseFitAtDist(20, 40)

// add a vector in the right direction

calcAddRel(75.0, 150.0)

...,

an example of this manoeuvre is shown in Fig. 6.3.
While on the road and at some (less than 75 m) distance before the junction

a call to calcPoseFitAtDist (0, 25) is made (at (1)) to mark a line in the
road direction. The next drive command using the stop condition (7.0 <

abs(distToPoseLineSigned(...))) takes the robot into the junction and
until 7 m from the road direction line (at (2)). This is a rather fixated position

6.3. NAVIGATION SCHEDULER 137

7m

robot

2

3
1

Fig. 6.3: Determination of where a road ends and a junction starts may be a
bit tricky. At (1) the road direction line is stored. The left road edge is then
followed until the robot is 7 m away from the stored road line (at (2)), this is
a known position a short distance into the junction, and a road end posture is
then estimated from odometry history 20 m back as an on-road reference point
(at (3)). From this a relative position is calculated towards the exit road.

relative to the junction, and from here a position and direction of the road just
before the junction is calculated by calcPoseFitAtDist(20, 40), Then this
position 20 m back (at (3)) is used to calculate a direction towards the right
exit road in the junction.

GPS heading

The position accuracy of the GPS is about 5 m at the best, so a historic position
about 20 m from current position may be usable to get a reasonable GPS head-
ing. A distance of up to more than 50 m may be usable if the odometry errors
can be assumed to be small. The heading is calculates from UTM coordinates
as

θu = \(U−Ud) + θo − \(O−Od), (6.1)

where U = [E,N]T is the current UTM coordinate and Ud is the UTM coordi-
nate at an appropriate distance d. Similarly O = [x, y]T is the current odometry
position and Od the odometry position at distance d. θo is the current heading
in odometry coordinates.

The angle θu is oriented with East as zero and positive angles counter-

138 CHAPTER 6. MISSION PLANNING AND EXECUTION

clockwise. This angle may be transformed to a compass angle (in radians)
by

θcompass =
π

2
− θu. (6.2)

6.4 Mission assignment - operator interface

Conceptually an operator interface is needed to provide the robot with a mis-
sion, and depending on the mission there may be a need for a more complex
dialog between the operator (or user) and the robot. In a real world situation
with one or more robots deployed, a mission monitoring function would be
needed to monitor the robot progress for efficient allocation of new missions.

For the end user and especially for the more technical fault finding and de-
bugging purposes an operator interface and monitoring ability is needed for all
parts of the robot. Especially for research experiments an operator interface is
needed to allow easy change of parameters and intensive monitoring of perfor-
mance. A comprehensive operator interface is therefore available that supports
interface to all servers developed for this project. The interfaces are all text
(XML) based especially to ease test and debugging.

The mission assignment to the navigation scheduler is an online operator
function, replacing the mission decision functionality.

A mission is normally loaded as a full script file using an online command
like

<planSet load="scripr.mmr"/>

where planSet is the command identifier to make changes in the navigation
sequencer, and scripr.mmr is the filename of the file with the mission script.

The mission can alternatively be added line by line using the operator in-
terface command

<planSet add="command"/>

where command is the command line to be added.
The robot can thus be controlled by adding one line at a time. A separate

function allows the newly added line to be executed immediately, like

<planSet goto="command"/>

that adds the command, skips the current command and proceeds with the
added command.

The shown user interface commands are packed in XML brackets, as they
describe the command message format to the behaviour server.

6.5. MISSION PLANNING 139

start

Hunting lodge

end

5-road
junction

Fig. 6.4: The primary test route. The start position is on a rather long
asphalt road. The total route is about 3 km. The map background is from
Google Earth.

6.5 Mission planning

The mission planning is primarily prepared from a topological map of the area
in which to navigate, supplemented by a more metric-based crossing of the
junctions. The primary test route is shown in Fig. 6.4. It starts on a rather
long asphalt road with almost no side roads. After this, in front of the hunting
lodge, the asphalt road ends and the robot has to cross a gravelled area, and
subsequently a number of forks and junctions need to be passed before the end
position is reached.

The navigation mission planning is first to select which roads can be handled
by following one side of the road. Then the detection of junctions may be
needed, and finally a method must be found to get from one road to the next
across the junction.

The major part of the script can be prepared from this map, as

fwd left 1740 (asphalt road towards hunting lodge),
detect road end,
cross open square,
fwd left 300 (Keep left while passing two sideroads to the right),
fwd right 280 (keep right until the 5-road junction),
detect junction,
cross junction,
fwd left 280 (to get to the final destination).

All the roads are assumed to be handled by following one of the road lines.
The two junctions that can not be crossed by following a road edge left or right
need further planning.

140 CHAPTER 6. MISSION PLANNING AND EXECUTION

Hunting lodge

5 road
junction

bridle
path

1

2

3

Fig. 6.5: The primary test route detail from the hunting lodge to the end. The
difficult areas are the rough roads starting at (2) and the junctions (1) and (3).
The background image is from Google Earth.

A slightly more detailed map is shown in Fig. 6.5. In the first junction (1)
the exit road is the second to the left, and it may be possible just to follow
the left side until the first road is detected and then return to the square and
follow the left edge to second road. This method may work, but it is not the
optimal solution. Therefore the plan is to detect when the first road ends and
aim from here towards the exit road (the red arrow on Fig. 6.5.

The detection of the road end could be from a GPS position (obtainable
directly from the Google map) this would most likely be found with an accuracy
of about 5 m as it is in an open area. The road width could be used, but as
the road width reduces in quality when the distance to the road edge is more
than about 5 m away from the robot, a consistent detection would be rather
doubtful.

A more precise road end could be found using the method from Fig. 6.3,
where a road direction line is used to detect when the robot has departed from
the road. When the road end is detected a new direction is calculated based on
the road end. A position in the right direction is then followed until the new
road is detected. This last method has proved to be a reliable way to cross the

6.5. MISSION PLANNING 141

junction.

At the second junction (3) it may be possible to follow the direction of the
road before the junction and cross both the junction and the following bridle
path. A GPS point is set to trigger a road direction line generation using a
calcPoseFitAtDist(0, 20) from position history 20 m back. A further 100 m
along this line a position is found, and the robot is set to aim for this point.
The road sensing should ensure that the robot follows the road, even if the
aiming point is a bit off the road. After crossing the junction (and the bridle
path) a road edge can be followed all the way to the goal point.

The potential script could then be prepared as

fwd left 1740 :(25 > distToGps(347716.7, 6183490.1),
calcPoseFitAtDist(0, 25) (to get direction line of road),
fwd left 75 :(7.0 < abs(distToPoseLineSigned(

poseX, poseY, calcX, calcY, calcH))),
calcPoseFitAtDist(12, 25) (gets better road direction line),
calcAddRel(75.0, 150.0) (in direction of exit road),
gotowaypoint odo calcx calcy :((roadLeftQual > 0.78) and

(roadLeftDist < 2.7) and

(distsofar > 10)) (until road edge is detected),
fwd left 300 (Keep left passing two sideroads to the right),
fwd right 280 :(25 > distToGps(348223.0, 6183901.0)),
calcPoseFitAtDist(0, 20),
calcAddRel(100, 0), (across the second junction)
gotowaypoint odo calcx calcy :(endPoseDist < 45),
fwd left 350 : (30 > distToGps(348485.0, 6184198.0)

The script fails at two points, as the map did not tell the full story. The
most severe error was the five road junction (at (3) in Fig. 6.5), where the
crossing road is at a higher level than the followed road. While climbing onto
the crossing road the laser scanner detects parts of the road at a very small
angle, as a consequence parts of the road are seen as obstacles resulting in
a failure to find the road (the entry is partially blocked by the erroneously
detected obstacles). It turns out that following the road to the left onto the
crossing road, followed by a turn in the direction of the other road produces
less false obstacles and the road is crossed more successfully.

The rough, gravelled road starting at (2) in Fig. 6.5 has rough edges, that
produces low quality road edges. The vision sensor improves the situation, but
the driving is very irregular, and the mission fails occasionally when following
the left or right road edges. However the gravelled road has a road profile that
is detected with high quality by the centre road line, and the route is traversed
more smoothly when following this line.

142 CHAPTER 6. MISSION PLANNING AND EXECUTION

Additionally the drive speed and other values need to be initialized in the
script. The full script used for the route can be seen at the end of appendix B.

The result is that a navigation script is not likely to succeed unrehearsed.
After a first rehearsal the difficult parts of the road may need an adjusted
navigation script to succeed.

6.6 Summary

In many situations the mission planning will not allow unrehearsed scripting
for a navigation path. Especially at rough roads and junctions, that at places
may challenge the capabilities of the robot, may need careful scripting.

The set of command provided is capable of implementing the needed com-
mand script.

The implemented watch functionality has the potential of detecting more
complicated situations, these could include detection of side roads and mission
threatening situations. Mission threatening situations could be: getting stuck
in the rough grass or taking a wrong turn. A detection of such a situation could
then trigger a skip to a recovery manoeuvre. The usefulness of this functionality
has not yet been proved.

The navigation script functionality has been tested comprehensively and is
able to implement navigation missions successfully.

Chapter 7

Software architecture

7.1 Introduction

The amount of software needed for a functional autonomous robot is significant,
at least if the robot should be capable of working at a level, where experiments
with navigation and mission management are relevant subjects.

Software reuse is an obvious solution and when looking at the internet a
large number of open software solutions are available for e.g. motor control,
stereo vision, GPS interface and extended Kalman filter. Some of the solutions
may include reusable parts, but the work needed to understand and adapt the
solutions may be almost as extensive as a recreation from theory.

When reusing software efficiently it should neither be required to under-
stand the programming structure nor the coding details, the functionality and
the interface requirements should be sufficient. For this to work a common
structure or infrastructure is needed.

The software structure needed for navigating mobile robots is the subject
of this chapter. The chapter discusses the available solutions and proposes yet
another. The purposed software architecture fits the requirements of a research
platform, which allows easy incorporation of new solutions, as well as separate
maintenance of the individual components.

7.2 Related work

The three best known component-based mobile robot oriented solutions are the
Player by Vaughan et al. (27-31 Oct. 2003), Carnegie Melon Robot Naviga-
tion Toolkit (CARMEN) by Montemerlo et al. (2003), and Orca by Brooks et
al. (2005). All are based on open source and is available for download from
’http://sourceforge.net’.

The component structure in Orca implements clients and servers and lets

143

http://sourceforge.net�

144 CHAPTER 7. SOFTWARE ARCHITECTURE

these communicate in modes like client pull and server push. The communi-
cation subject on each connection is well defined. The implementation builds
on software reuse, partially by using a series of available libraries and partially
by allowing reuse of the produced components. It is not widely used and the
number of components is small.

The Player solution is not strictly component based as all sensors and con-
trols are integrated into one server, this server then allows plugins and commu-
nication with external components. Much of the bulk and real-time demanding
communication is thus embedded in the server and shared to the plugins, in-
creasing the performance of these issues.

The CARMEN toolkit is component-based and communicates using an
IPC1 (Simmons (2005)) centralised communication that supports the appli-
cable communication modes between components. Separate components are
available for a number of existing robot platforms and sensors (including laser
scanner and webcam). The sensor components are typically hardware abstrac-
tion components that adapt the sensor data flow to the IPC communication
framework.

7.3 Software architecture requirements

University research projects are often divided into individual projects or pro-
jects in small groups. Each project has a limited, and often very short, time
frame in which results have to be produced. Especially in robotics projects a
maintained software base is needed if projects are to be undertaken at more
than the lowest levels (like sensor data extraction and drive controlled directly
from one sensor). Testing a complicated sensor, an alternative behaviour algo-
rithm, a SLAM2 solution or other advanced functionality requires either a large
project – where most of the resources are spent on the basic functionality – or
an established high-level infrastructure on which the new functionality can be
built.

The new functionalities built in university projects are mostly discarded
after the reports have been evaluated, some of them for good reasons, but others
should have been added to the available infrastructure for new projects. To
make this possible – without a major software maintenance effort – the software
architecture must support such an incremental development. Preferably the
software should be sharable among universities and other interested parties, for
increased functionality and reliability (the more people that use the software
the more reliable it gets).

The main requirements to robot software architecture are thus:

1IPC: Inter Process Communication
2SLAM: Simultaneous Mapping and Localization

7.4. DESIGN DECISIONS 145

• Maintainable in separate units. It should be possible to develop and
maintain a unit of the robot software independent of other software units.
The development and maintenance of a unit should not require more than
a functional knowledge of the other units to which it is to be connected.

• The communication between units must be open, simple and extensible.
Open to allow others to continue maintenance when needed. Simple to
simplify development and debugging as most software developed for re-
search are prototypes and thus makes ease of debugging a vital theme.
Extensible to allow addition of new features without affecting communi-
cation partners that do not need the extension.

• Each component that fulfils an exclusive function on the robot should be
expandable. An exclusive component occupies a vital resource or func-
tion in the system; this could be a sensor (eg laser scanner or camera),
a manipulator or actuator, a behaviour server or a mapping function.
When a new extension is to be tested for such a component it should be
possible to do so without a need of a total replacement of the compo-
nent and without overtaking the maintenance responsibility of the basic
component.

• Data communication with high bandwidth devices (like cameras or laser
scanners) should be considered. Data analyses of data from such devices
should be possible close to the data source.

7.4 Design decisions

The component structure in Orca was investigated but was not adopted, pri-
marily for three reasons. The communication structure seemed too complicated
(too much overhead for high data rate connections and too limited in data con-
tent for each connection – resulting in too many connections). The extensive
library dependency gave implementation difficulties in our Linux distribution.
The available components were not sufficiently attractive to overcome the other
limitations.

The Player structure was too monolithic and the work involved to adapt to
our platform seemed discouraging.

The CARMEN robot toolkit has the benefit and the disadvantage of the
centralised communication structure. The communication with high bandwidth
devices has to pass this communication system, and there is no possibility
(within the toolkit limits) to reduce the data rate at the source by attaching
the data analysis to the data source. Faster hardware is a solution, but the
faster hardware may be better spent on increased functionality.

146 CHAPTER 7. SOFTWARE ARCHITECTURE

The decision was therefore to design yet another robot framework, the ben-
efits being that the available software for our robot platform could be incorpo-
rated as is. The available software includes a robot hardware abstraction layer
and a drive scheduler. The software architecture could be shaped to the needs
as envisaged in the above requirements.

The proposed software architecture is illustrated in Fig. 7.1.

Camera(s)

GPS

Camera
server

Laser
scanner

Laser
server

Gyro
Odometry

Drive
system

Drive
server

Mission
assignment

Telnet

Mission
server

Operator
interface

Operator
interface

GPS
server

Behaviour
server

Fig. 7.1: The software architecture is based on a number of server functions
that allows connection from clients at points marked with a circle. The message
format is text (XML) based and allows thus simple monitoring and control of
all servers from tools like eg TELNET

The architecture is based on a number of servers where client connections
can be attached. This architecture, as well as the basic communication meth-
ods – server-push and client-pull – is taken from the Orca terminology. The
communication media is selected to be socket-based TCP/IP without a central
communication manager. A server occupies one port number only and all the
services provided by the server are communicated through this port. The server
may be attached to other servers through client connections.

The communication data formatting is selected to follow a subset of the
XML (Extensible Markup Language) defined in the World Wide Web Consor-
dium (2004) recommendation. The interface standard between a client and
a server is therefore primarily based on an agreement between a client and a
server on the used tags and attributes in the XML formatted communication.
XML is selected as it is well defined, and it remains compatible even if ex-
tended, it is text based allowing for interface debugging by use of simple tools
– like TELNET. Additionally a number of parsers and coders exist in different
programming languages.

Transfer of large data structures (eg a camera image) over a socket con-
nection is relatively slow – XML coded or not – compared to data transfer
internally in one application or by using shared memory. An internal data
transfer rate may be up to 4 bytes for each CPU clock cycle (on a 32 bit pro-

7.5. COMMUNICATION 147

cessor). Transfer of the same data on a socket connection is often at least 10–40
times slower.

A server handling large data structures – like a camera server or a laser
scanner server – should therefore include as much data reduction processing as
possible before delivering data to a client. That is, the server should hold the
data analysis functionality so that only the result is transferred to the client.
Much of the new data analysis functionality should therefore preferably be built
into the server directly. To do this without sacrificing separate maintenance of
reused code and new functionality, the new functionality should be added to
the server on a plugin basis.

The software architecture is therefore, to some degree, a mixture of the
three candidate software architectures discussed above: a component structure
like in CARMEN, a plugin capability like in Player and a direct communication
structure like in Orca.

7.5 Communication

The data transfer is illustrated in Fig. 7.2, where posture data in the drive
server is to be transferred to the behaviour server. The data structure is coded

Behaviour
server

Drive
server

struct{
double x, y;
double th;
double vel;

}

<pose x=”34.22” y=”0.33” h=”-0.571” vel=”1.03”/>

struct{
double x, y;
double th;

}

Fig. 7.2: A data structure is converted to XML-based text format on the com-
munication line and converted back at the client end.

as an XML tag pose with the data values as attributes. In the behaviour server
the posture is transferred back to a similar data structure. The extra velocity
field vel may be an extension to the data structure in the drive server, but
the behaviour server may not need to be modified to understand this extended
data structure.

The data flow is always controlled from the client. A client can request data
from a server as a one time service, a client pull data transfer like

<gmkGet device="1" width="0.025"/>,

148 CHAPTER 7. SOFTWARE ARCHITECTURE

which is a request to the camera server to analyse an image from camera device
one for standard guidemarks with a block width of 2.5 cm. The reply from the
camera server could be

<gmkGet gmkCnt="1">

<gmk code="0007533" cam="left" device="1">

<timeofday tod="1154682383.782351"/>

<pos3d name="gmkPosition" x="2.0302" y="0.5201" z="-0.1500"/>

<rot3d name="gmkRotation" Omega="1.56235" Phi="-0.22109"

Kappa="-2.92682"/>

</gmk>

</gmkGet>.

An alternative communication method is server push, where the client re-
quests the server to repeatedly send a data series, like

<push t=0.5 cmd=’gmkGet device="1" width="0.025"’/>,

which when sent to the camera server will trigger a guidemark analysis every
0.5 s from camera device 1, and the data found is returned in the same format
as before.

An alternative server push method is to transfer data every time an event
happens, eg every time there is a new image from a camera, then perform some
operation and return the result, eg

<camPush i=3 cmd=’gmkGet device="1" width="0.025"’/>,

where every third image (i=3) is analysed and the data returned to the client
as before.

The servers may return data to an operator interface and may even be used
as a stand-alone application for some interface, and operated from a text-based
interface to the server socket.

7.6 Component structure

All components basically have the same structure, a server port, some resources
and a set of function adding modules. The modules may include connections
to devices or to other servers.

The server itself holds the basic server functionality. The basic functionality
includes a server port and the ability to load modules. The server port handles
client connections and a few commands like name and time. The module loader
is used to add the specific functionality to the server. One or more of these
modules provide the basic resource needed for the specific functionality of the

7.6. COMPONENT STRUCTURE 149

Camera
server

Image pool

Resource
modules

Camera
devices

Device pool
Image

Road outline
Guidemark

Function
modules

Fig. 7.3: A camera server with a number of attached modules. One module
handles the interface to camera devices in a device pool, additionally an image
pool module with reusable image buffers is available; both are made available
to other modules in the server as server resources. The additional function
modules then utilise these resources.

server. These resources are then provided as server resources available to all
other modules.

The basic construction is illustrated in Fig. 7.3 for the camera server. Each
module adds some functionality and makes its services available for the clients,
and the resource modules further makes the resource functionality available
directly to other modules. The functionality is accessed through a unique
keyword or a set of keywords. The server directs an XML tag with a matching
keyword to the module handling that keyword, and provides information about
the client requesting the function.

The modules can be added as permanent modules linked into the server
code or be added as plugin modules. Resource modules are added as perma-
nent modules to provide common resources of the server. Plugin modules can
presently be added when starting the server application only, but should be
extended with online module load and unload functionality, in order to allow
testing without restarting the server component.

As the components are applications in their own right and controllable from
a text-based interface, an online help system is made available. The server can
provide a list of modules and the keywords handled by each module. The list
in table 7.1 is a list of modules and the handled keywords, which is returned
by the camera server using the function <sysGet functions/>

Table 7.1: An example of modules and function keywords loaded by the camera
server.

Module Function keywords (name and version)
server push q sysGet name time help (camera server-1.25)

camera pool camGet camSet camPush camsGet (camControl-1.22)

image imageGet (image-1.22)

image pool poolGet poolList poolSet poolPush (imagePool-1.2)

road outline pathGet (imagePathFinder-1.25) and
guidemark gmkGet gmkSet (imageGuidemarkFinder-1.25),

150 CHAPTER 7. SOFTWARE ARCHITECTURE

The first line in table 7.1 (including sysGet) is the function keywords han-
dled by the server directly, the rest of the lines are the loaded modules including
the technical name of the module and its version number.

The available parameters for each function may be listed using an online
help function, like <gmkget help/>.

7.6.1 Client connections

A server module may include a client connection to some other server compo-
nent. Client modules are available for the most common data structures. Each
client module receives and unpacks one or more XML formatted data struc-
tures into a C++ structure usable by the server module. The client module
includes trigger functions that are called when a full data structure is received.

7.6.2 Mission monitoring

The operator interface component is the only non-server component. The pur-
pose is to be able to monitor the activity in each of the server components and
present the information in an appropriate form.

The most simple operator interface is the text-based network tool called
TELNET, from this tool it is possible to query any of the servers for function-
ality, but the reply may be too voluminous to be meaningful. A camera image
provided in text form will in most cases be difficult to interpret.

An operator interface that provides a graphical interpretation of most of
the more complex data structures is therefore needed. The purpose is both to
monitor the progress of the primary functionality and to make adjustments to
the available parameters, eg to load a mission for the robot.

Many of the illustrations used in this thesis are directly produced by the
operator interface.

Each server is a stand-alone application with communication to the relevant
other servers and resources, there is thus no central function that provides an
overview of the entire network, nor the amount of inter-component communi-
cation. Each server must be monitored separately.

7.7 Simulation

Simulation is an important function for any robot research project. In the
available set of components simulation is handled by creating a simulated device
or interface in the appropriate server. This simulated device then gets its data
from a common simulator system. At present a simulator is available which
may simulate the robot in a 2D environment and from this provide data for
most of the robot sensors, including odometry and laser scanner.

7.8. FULL COMPONENT STRUCTURE 151

Camera
server

Camera
devices

Road outline
Guidemark

Laser
server

Laser
scanner

Traversable
Obstacle detect

Emergency
Stop

Odometry posture

Emergency stop

UTM
server

GPS

World pose

Drive
server

Gyro, odom.
Drive system

Drive
scheduler

Drive mode

Navigation
scheduler

Map
server

Scheduler

SLAM

Odo calibrate

Obstacle map
Pose history
drive control

Trav. corridor

Mission
decision

Event detect
Mission

Navigate DB

Fig. 7.4: A complete component based robot software structure based on the
task breakdown in Fig. 2.2. The servers are the rounded squares. The squares
below are server modules. Client connections are attached to a server at the
small circles.

For this navigation project the simulation is primarily performed by replay
using log-files from real experiments, replacing the drive scheduler server, the
laser scanner server and the camera sensor. The camera server supports sim-
ulated camera devices where the images are loaded as if the source was the
simulated device.

7.8 Full component structure

The work breakdown presented in chapter 2 and shown in Fig. 2.2 could be
implemented in the presented software structure as shown in Fig. 7.4.

The main information flow between the components is described in the
following.

The drive scheduler server produces an odometry-based posture, which is
used by the UTM server to produce a world posture in combination with the
GPS.

In the map server the global map is maintained based on traversable corridor
and possibly obstacles from the navigation scheduler server.

The navigation database in the map server is used by the mission decision
server to select the appropriate navigation path for the top priority mission.
The selected navigation path sequence is sent to the navigation scheduler.

152 CHAPTER 7. SOFTWARE ARCHITECTURE

Camera
server

Camera
devices

Road outline
Guidemark

Laser
server

Laser
scanner

UTM
server

GPS

Drive
server

Gyro, odom.
Drive system

Drive
scheduler

Navigation
scheduler
Scheduler

Obstacle map
Pose history
drive control

Trav. corridor

Mission

Fig. 7.5: The implemented structure does not follow the described software
architecture for all components – compare with the desired structure in Fig. 7.4.
The camera server and the navigation scheduler use the component structure
only.

The navigation scheduler plans a desired short term exit posture based on a
traversable corridor. The traversable corridor is obtained from a sensor fusion
of road outline from the camera server and the traversable segments from the
laser scanner server. The navigation scheduler then plans a path to the desired
short term destination and transfers a sequence of drive commands to the drive
scheduler.

The drive scheduler server executes the desired drive commands by control-
ling the drive system.

This component structure is only partially implemented as described in the
next section.

7.9 Results

The component structure of the implemented and tested system is not expanded
to the level shown in Fig. 7.4 for a number of reasons. The actually implemented
structure is as shown in Fig. 7.5. The drive server and the drive scheduler are
existing components, they are well-proved socked-based servers, but they do
not comply with the described architecture.

A laser scanner component is available but is not yet implemented in the
tested system; the laser scanner functionality is therefore transferred to the
navigation scheduler.

The camera server is implemented following the described architecture. The
navigation scheduler is partially implemented as described, except for the mod-

7.10. SUMMARY 153

ule structure where the module separation into resource modules and function
modules is missing.

The GPS server is not component based as described and has no world
posture functionality.

The map server and the mission decision components are not implemented.
The concept of having an established infrastructure that is divided into

functional components is a concept that divides the complex functionality into
manageable entities. Adding the text-based interface makes the components
easy to grasp, and with the functional plugin modules makes the effort required
for functional extensions relatively simple to implement.

The implementation of resource modules are not sufficiently standardised
for easy implementation.

The separated maintenance concept works for the components, as the use
of XML makes new and old components compatible over many extensions.
The same is not true for the plugin modules. A few updates to a shared
resource may have fatal consequences when attempting to load a module with
a different expectation of the shared resource. This is a foreseeable shortcoming
and imposes a stronger requirement of the stability of shared resources.

7.10 Summary

A software architecture is proposed that emphasises software reuse and the
ability to introduce new functionality with only a short introduction to the
architecture and components. The built components – especially the camera
and laser scanner components – have proved these design objectives in a number
of projects.

The implemented communication protocol based on XML is flexible, exten-
sible and easy to understand and allows components to be written in many
programming languages and on different platforms. The interface protocol re-
laxes the need for strict version dependency across components.

The component structure is not fully implemented and especially the re-
source sharing plugin modules have not yet found their final form. It is believed
however that the architecture is well suited for the task, it suggests a flexible
but strict structure, and is sufficiently pragmatic and flexible to allow interface
to components that do not follow the same structure.

154 CHAPTER 7. SOFTWARE ARCHITECTURE

Chapter 8

Results and discussion

8.1 Introduction

This chapter presents some of the results obtained in the test area not already
covered in the previous chapters.

The results presented in this chapter is from a test drive performed 28
July 2006, where the results elsewhere cover a test period of almost a year
– from October 2005 to July 2006. The early data being without the vision
functionality, as this was not implemented at the time.

8.1.1 Test route

GPS is used at a few locations only, but the GPS position is logged at all
times. The interesting part of the test trail from 28 July 2006 is shown in
Fig. 8.1 based on this GPS log-file.

N1
2

Hunting Lodge

5-road
junction

3 5 6

4

Fig. 8.1: Part of the test route plotted from the GPS log-file. The GPS is
almost sufficiently accurate to show the track inside the visible road on this
satellite image (the robot actually stayed on the road all the way).

155

156 CHAPTER 8. RESULTS AND DISCUSSION

8.2 Road line quality

The road edge line quality is shown in Fig. 8.2 for a part of the route shown in
Fig. 8.1.

0 100 200 300 400 500 600 700
0.6
0.8

1

0 100 200 300 400 500 600 700
0.6
0.8

1

0 100 200 300 400 500 600 700
0.6
0.8

1

0 100 200 300 400 500 600 700

5
10
15

(d)

(c)

(b)

(a)

Width

Centre

Right

Left

Fig. 8.2: The curves show the estimation quality for the left (a), right (b) and
centre (c) road line, respectively. The estimated road width is shown in (d).
The x-axis is the travelled distance in metre and the road edge quality is in the
range [0,1]. The distance is – with reference to Fig. 8.1 – from just before the
hunting lodge (1) to just past the fork at (5).

The first 45 m is on the main asphalt road where the robot drives at the
left side of the road, the left road quality is high (almost 1.0 – top graph), the
right road line quality is lower (about 0.9 – graph (b)) as it is further away, the
road centre line quality (graph (c)) is well defined on the asphalt road with a
high quality.

After the 45 m the robot enters the open area in front of the hunting lodge.
The quality drops for all three lines. When the road width is estimated at
its widest (about 15 m) the road line quality is rather high (about 0.85). The
quality is the residual from the line fitting, and as the road width estimate
constantly is as wide as the laser scanner range permits, the residual from the
line fitting is low. The road edge line quality can thus not alone be taken as an
evidence of a road line being detected; the road line quality must be combined
with the detection distance from the robot.

At 100 m the estimated road width is narrowing as the robot regains contact
with the road edges. The road edge quality stays low until about 150 m. The
area (at (2) in Fig. 8.1) is very flat and the roadside is difficult to classify by

8.3. EXCESSIVE ROLL 157

the laser scanner.
At about 150 m the road changes to asphalt and especially the centre of the

road is now tracked with a high quality. At 275 m (at (3) in Fig. 8.1) the side
road to the right makes the right and centre road qualities drop, but the left
road edge quality level is maintained.

After another 200 m at about 350 m the road type changes back to gravel.
The road profile stays rather convex and the road centre line quality remains
high for the rest of the route – until the last junction (5) at 650 m.

8.3 Excessive roll

Excessive roll makes the road detection in one side of the robot much closer.
Occasionally such close detections may violate the obstacle detection assump-
tions. Figure 8.3 shows a situation where the robot enters a small pit resulting
in a roll to the right. The laser scanner detection from the road is thus much
closer on the right side.

(b)

(a)

Fig. 8.3: When entering the open area in front of the hunting lodge at (1) in
Fig. 8.1 there is a pit filled with water on the route as shown in (b). When
the robot enters this pit the robot makes a roll (about 8◦) to the right, and
thus the laser scanner detects the right side of the road at a shorter range – as
shown in (a). The traversable laser scanner measurements are in green whereas
the nontraversable are in a darker brown.

Where the detections are closer than 1.2 m in the x-direction the hsup crite-
rion in the raw height feature extraction in section 3.5.4 is triggered, assuming
that the detected object is 0.2 m or more above ground level.

158 CHAPTER 8. RESULTS AND DISCUSSION

As a consequence this part of the road is classified as nontraversable and
included as an obstacle as shown in Figure 8.3(a).

The erroneous classification of the road does not affect the classification
ahead, and thus the continued drive is unaffected. This generation of erroneous
obstacles may be a problem if they are to be used for mapping purposes.

The situation may have been be resolved correctly if the robot were equipped
with a roll sensor. Alternatively the height criterion could be enhanced to allow
some degree of roll, eg to allow 10◦ roll as is more than the 8◦ experienced in
Fig. 8.3.

8.4 Excessive tilt

When the robot enters a pit this may result in an excessive roll as described in
the previous section, when the robot is leaving the pit an excessive tilt may be
the result. This situation is illustrated in Fig. 8.4(a).

(a) (b)

Fig. 8.4: When entering and leaving a pit the robot tilt may influence the
measurements excessively. In this image – a few scans after the situation in
Fig. 8.3(a) – the tilt is so high that the laser scanner does not detect the road
before maximum range, and hence no measurements are classified as traversable
(a). In (b) the robot has stopped as no navigation corridor is available.

The figure shows that the laser scanner does not detect the road surface at
all; all measurements – apart from the obstacles to the left – are at maximum
range (8 m). The tilt of the robot must therefore be more than 5.5◦ when
leaving the pit.

The situation produces no traversable road segments, and thus a navigation
corridor is not established. The robot continues to follow the remaining part
of the last planned route, ie less than 1 m, after this distance the robot stops
at the position shown in Fig. 8.4(b). After a few seconds the scans with no

8.5. OPEN AREAS 159

traversable segments are timed out (as of section 3.6.2 Tfade = 4.5 s) and the
robot continues.

The vision road outline shows (as expected) a free path, but this is not
trusted if no corridor is generated based on laser scanner data. The situation is
not critical unless the robot stops in a situation where no traversable segment
is found (robot tilt above 5.5◦), in such cases the robot is stuck. A situation
where the robot reaches a cliff edge or a steep downhill edge would show similar
detections. A tilt sensor could have been used to resolve this situation.

8.5 Open areas

When driving in open traversable areas the road edge lines are estimated close
to the maximum range of the laser scanner as shown in Fig. 8.5.

Obstacle from
road line

Estimated
road lines

(b)

(a)

Fig. 8.5: The open gravelled area in front of the hunting lodge. The full
detection range of the laser scanner is classified as traversable (green dots and
circles in (a)). The camera view can be seen in (b).

The estimated road edges left and right, are both at maximum range of the
laser scanner. The residual error from the line fit of the left and right road
lines is small and hence the detection quality is high. The quality of the right
edge line is sufficiently high (Lq > 0.9 as from section 5.6) to be added as an
obstacle. Both the high quality and the obstacles are undesirable and could
be avoided if road edges close to the maximum range of the laser scanner were
prohibited from being used in the road edge calculation.

160 CHAPTER 8. RESULTS AND DISCUSSION

8.6 Flat roadsides

The road leaving the open area at the hunting lodge (at point (2) in Fig. 8.1)
constitutes a problem for the laser scanner classifier as illustrated in Fig. 8.6.

Approximately
real road edge

Vision based
road outline Corridor

segments

(b)

(a)

Fig. 8.6: Data from the area marked (2) in Fig. 8.1. The blue lines in front of
the robot are the traversable segments in the used corridor. The closest part
of the vision-based road outline is shown at the top of the image. The vision
source image is shown in (b) with the estimated road outline.

At areas where the roadsides are flat and almost in the same plane as
the road, the laser scanner classifier tends to include parts of the roadside
as traversable road. In Fig. 8.6 the traversable segments (the blue lines) are
extended up to 1 m into the left roadside, compared with the vision-based road
outline.

The ragged edge detection gives a poor edge line quality, and when the end
points of the traversable segments are fitted to a straight line, this line may be
estimated at some distance into the roadside.

The right road edge is in Fig. 8.6(a) often detected as traversable with only
a few measurements marked as nontraversable. The traversable segments in
the corridor are mostly terminated at the road edge, but many (about 40%)
extend into the right roadside in this area.

In this area the vision-based road outline is superior to the laser scanner
based corridor.

Many of the roadside areas along the gravelled roads suffer from this effect
resulting in a low quality of the corresponding road edge line. Compare in
Fig. 8.2 the left and right road edge line qualities at the shown situation –

8.7. SIDE ROADS 161

about 120 m – with the road edge line quality of the gravelled road area from
about 400 m and onwards.

8.7 Side roads

Detection of presence of side roads while passing may be a useful functional-
ity for confirmation of own position or when searching for unexplored route
alternatives. A situation with a side road is shown in Fig. 8.7.

(a)

(b)

Fig. 8.7: The side road to the right is visible in the road outline, as seen from
the robot camera in (a) and projected into planar view in (b).

The road outline shows a widening of the road, but this can be taken as a
weak evidence only of the presence of a side road, the vision-based road outline
may in other situations falsely detect a wider road – eg as in Fig. 4.7(h), where
the right road edge is seen as road. When the side road gets closer it will be
out of sight of the camera.

The laser scanner will detect parts of the side road while passing as shown
in Fig. 8.8(a). The side road is visible as an opening in the line of obstacles,
wide enough for the robot to pass; in this case an opening of about 5 m is found.

When going back in history to explore yet undiscovered territory such an
opening would be adequate. To make a flag available for the navigation sched-
uler may be possible, but this could be sensitive to false detections during robot
manoeuvring.

The road edge detection is a part of the laser scanner road edge detection
and the combination of distance to the edge and the edge line quality may be
usable as side road detection. The road lines for this side road are shown in
Fig. 3.11(a).

162 CHAPTER 8. RESULTS AND DISCUSSION

Robot
path

Vision based
road outline

Laser based
non-traversable

traversable

Side road

Side road

Road side
obstacles

(a) (b)

Fig. 8.8: The side road in (a) to the right as detected by the laser scanner.
This leaves an open area to the right with no obstacles. The side road to the
left in (b) is equally well detected.

The side road to the right, marked (5) in Fig. 8.1, is detected by the laser
scanner as shown in Fig. 8.8(b). The edge lines for this side road are shown in
Fig. 3.11(b).

These two side roads are detectable from the data, but this is not always
the case. At Fig. 8.1 the side roads just before and after the position marked
(4) are not detected. The one to the left is no longer in use and is overgrown
with grass. The other to the right is in use, but the surface of the side road is
gravel whereas the main road is surfaced with asphalt. The result is that the
road edge line follows the change in surface type as does the vision-based road
outline.

8.8 Convex obstacles

Obstacles are stored as convex polygon areas with a size limitation. The as-
sumption is that the error introduced using a convex polygon description is
small compared to the calculation benefits obtained. Figure 8.9 shows a situa-
tion where parts of the area classified as traversable are included in an obstacle
polygon.

In the situation in Fig. 8.9(a) the robot follows a rough left edge at some
distance (1 m) and the obstacles generated cover the rough area on both sides
of the road leaving about 3 m obstacle free road width; this is close to the
optimal situation.

In Fig. 8.9(b) – four scans later – parts of the road have been classified
as nontraversable. The obstacles on both sides are expanded to include the
newly detected nontraversable areas. The expansion makes the convex-shaped

8.9. ROAD RIDGE 163

Vision based
road outline

Convex
obstacle
polygon

Traversable
area inside

obstacle
Convex
obstacle
polygons

Planned path

(a) (b)

Fig. 8.9: The situation in (a) produces obstacles to the left and to the right
that cover the nontraversable area reasonably well. The situation in (b) is
taken four scans later where part of the road is classified as nontraversable and
the obstacles are expanded to include the newly detected obstacles.

obstacles include parts of the road, previously classified as traversable. The
robot could potentially have been partially within one of these areas, which in
turn could trigger unnecessary manoeuvres.

This situation is not critical in this case, but could be if narrower and
more curved roads were to be passed. The solution could be to make the
obstacle polygons smaller or to allow concave polygons, at the expense of the
computational complexity.

8.9 Road ridge

At roads with a very high profile, where the laser scanner cannot see the other
side of the road, the results may be undesired as shown in Fig. 8.10.

The robot is entering from a side road on to a crossing gravelled road (at
(6) in Fig. 8.1). The crossing road has a higher level than the side road, and a
combination of the road profile and the difference in level make the right side
of the road surface beyond the horizon when seen from the laser scanner. At
the ’ridge’ the visible road edge may produce a road edge line with sufficient
high quality to be used as an obstacle as shown in the figure.

At about this time the robot is supposed to cross the road to enter the
side road on the other side. The road edge obstacles make the transition more
difficult than intended (and in this case the robot had great difficulties in getting
across).

The situation could question the benefit of using road side lines as obstacles,
or indicate that the laser scanner height is insufficient for this type of road

164 CHAPTER 8. RESULTS AND DISCUSSION

Approximate
position of
road edges

‘Invisible’
road area

Edge line
obstacles

Fig. 8.10: The robot is entering from a side road to a higher crossing road.
While climbing to the crossing road the full extent of the road is not visible to
the laser scanner, and might at time produce road edge obstacles at the ’ridge’.

crossing (or both).

8.10 Odometry navigation

The open area in front of the hunting lodge is crossed using odometry based
navigation. The area has a gravel surface and some accumulating odometry
errors are expected. Figure 8.11 shows the odometry based robot path overlaid
a satellite image of the area.

The overlaid image is aligned with the entry road and the distance from the
entry road to the exit road is approximately 50 m. The misalignment of the
detection of the exit road is small and presents no problem for the navigation
script.

8.11 Discussion

The results are primarily obtained within the selected test area, but the desired
abilities of the robot should be to be able to cope with more general real world
situations. The focus on the test area is therefore to be seen as a subset of
the desired navigation abilities. The ability to navigate within the test area
should therefore not prohibit the ability to cope with other types of outdoor
environments. The focus has thus been on the general abilities – detection
traversable areas – and the ability to recognise topological features to assist
navigation, eg along roads and in junctions.

8.11. DISCUSSION 165

Fig. 8.11: Crossing of the hunting lodge area. The satellite image is overlaid
with the odometry path of the robot. The distance across the open area is
approximately 50 m.

The detection of road lines is valuable as it allows the robot to follow one of
these lines. Most of the route is traversed following a road line. At the asphalt
road leading to the hunting lodge (about 1.8 km) the left edge is followed all
the way. The quality of the detection of the road lines is dependent on the
distance to the line. Where the road profile has a clear peak at the centre of
the road – and this is especially the case for the gravelled roads – the centre
road line is easy to follow, and on most of the gravelled roads the robot follows
this line.

The road lines are implemented as a calculation based on the most recent
set of traversable segments; but it is not a continuous calculation. It is expected
that a continuous calculation of the road lines – eg using a Kalman filter – could
produce superior results in most situations.

The used robot is not equipped with tilt and roll sensors, and this makes
it difficult to interpret measurements in situations with excessive tilt or roll.
On this test route – while traversing pits or climbing to a higher level – a few
situations produced an undesired behaviour in some of the tests. An alternative
to a tilt sensor could be a closed loop servo that adapts the laser scanner tilt
to a desired road detection distance; such a solution is expected to be able to
solve some of the tilt related issues.

In open areas the navigation relies primarily on the ability to navigate on
odometry. The only open area on the test route requires odometry navigation
over a distance of about 50 m to hit an about 5 m wide exit road; this is not

166 CHAPTER 8. RESULTS AND DISCUSSION

problematic for the used robot.
The ability to classify the traversable road is adequate for the creation of

traversable corridors that keep the robot on the road in almost all cases. In the
few cases where the laser scanner based data would allow the robot to enter
the roadside the vision-based road outline will limit the available route to the
road.

The obstacles produced from the nontraversable measurements of the laser
scanner mark the road edges and other obstacles satisfactory.

In some situations the produced obstacles are too restrictive. This is the
case where road edge lines with high quality are used to form obstacles. The
use of road edge lines as obstacles seem to create more problems than they
solve. At the situations when they represent true road lines the obstacles are
generated adequately without the use of road lines.

Chapter 9

Conclusion

Navigation of an autonomous robot is concerned with the ability of the robot
to direct itself from the current position to a desired destination.

The thesis has successfully demonstrated a set of functionalities for mobile
robot navigation. The combined system is primarily tested in an outdoor test
area with a mixture of different road types and junctions. The robot has
autonomously completed a 3 km test route in this environment.

The research has been concentrated on three areas: perception of the en-
vironment, transformation of the perceived information into behaviour and
construction of a modular architecture.

9.1 Perception

Two main sensor types have been investigated for this environment: a laser
scanner based road classifier and a vision-based road outline detector. The
combined perception of these sensors has been demonstrated to be sufficient to
direct the robot along the roads and across the junction in the test area.

9.1.1 Laser scanner perception

The used laser scanner is oriented towards the road at an angle of 9◦ from
horizontal. This orientation is found to be about optimal for simultaneous
detection of road and obstacles. The road is detected at a distance of about
2.6 m in front of the robot.

Road corridor

The measured range data from the laser scanner is classified into traversable
and nontraversable measurements using a set of seven features extracted from

167

168 CHAPTER 9. CONCLUSION

the data: raw height, roughness, step size, curvature, slope, width, and invalid
data.

The traversable measurements of one laser scan are further grouped into
traversable segments. Traversable segments from a number of scans are used
to generate traversable corridors. The corridors describe traversable areas in
which the robot should be able to navigate. The generated corridors are made
available for the behaviour generation.

More than one corridor may be generated, eg: a corridor following the left
and right side of an obstacle, road alternatives exist or one corridor for a cycle
path and one for the main road. Sometimes a traversable part of the roadside
generates an alternative corridor. Which corridor to follow is determined by
the behaviour generation.

The corridor is used to extract further information from the traversed road.

Road lines

Road edge lines are estimated for the left and right limitations of the traversed
road. A further road line is estimated for the road centre representing the
highest point of the road. The road lines are used as reference lines in the
behaviour generation.

The road lines include an estimation quality, and when this quality is high
and the road edge is inside the laser scanner range, the road line represents
accurately the true road edge.

Road type

The road type is estimated based on the corridor roughness. The road type is
evaluated into the two types found in the test area: asphalt and gravel. The
estimated road type is used to increase the edge detection sensitivity on smooth
asphalt roads and is made available for the behaviour generation.

In most cases the road type is estimated correctly, but in a few cases a
smooth gravelled road is estimated as asphalt. During the performed tests the
road type has not been used to determine transition from one road segment to
the next in the navigation script.

Obstacles

The nontraversable measurements are filtered into areas to be treated as ob-
stacles. These obstacle areas are combined into convex shaped polygon areas.
These areas represent roadsides which are nontraversable as well as other obsta-
cle types – like pedestrians. The obstacles are made available for the behaviour
generation.

9.1. PERCEPTION 169

The obstacles generated have reliably been used to avoid stationary obsta-
cles.

9.1.2 Vision-based perception

The robot camera is viewing the area in front of the robot – from about 1 m
to the horizon. Two data types are extracted from the camera images: road
outline and artificial guidemark positions.

Road outline

The camera image is segmented into road and not road based on a seed area
that is known to be road. A balanced combination of chromaticity and edge
detection is used to determine the transition from road to non-road. The result
is a road outline polygon encapsulating the seed area. The image chromaticity
is compensated (based on pixel intensity) to reduce the effect of shadows. The
road outline is made available for the behaviour generation.

In most cases the road outline represents the true road limitations, but is
less reliable in a number of situations: when the seed area partially includes a
roadside area and when the colour of obstacles or roadsides is too close to the
road colour. Hard shadows and road paintings are further often estimated as
obstacles.

The estimated road outline is able to detect an obstacle that crosses the
road outline only. Obstacles encircled by the road outline are not detected and
typically remain undetected until inside coverage of the laser scanner.

The road outline is projected to robot coordinates under the assumption
that the road is in the plane of the robot base, when this assumption is violated,
eg during robot roll and tilt, the accuracy of the road outline is reduced. The
road outline covers the area beyond the laser scanner range.

Artificial guidemark

A guidemark sensor function is investigated; this function allows identification
of guidemarks and estimates the position and orientation of the guidemark in
3D.

The guidemark is a flat checkerboard type frame with a coded identification
pattern at the centre. The frame is square and is well suited for position
estimation. The code in the centre can be used to make uniquely identifiable
guidemarks.

The frame consists of alternating black and white squares. Each square must
be covered by at least about 4 pixels in the camera image to allow detection
and position estimation. The 3D position and orientation of the guidemark can

170 CHAPTER 9. CONCLUSION

be estimated with an absolute accuracy better than 5 cm and 5◦, respectively
(at the conditions described in chapter 4).

The guidemark ID and the 3D guidemark posture is made available for
behaviour generation.

9.2 Behaviour generation

The behaviour generation utilises the perceived sensor information to avoid
obstacles and to make progress in the mission.

The cognitive skills are limited to the utilisation of the perceived data for
obstacle avoidance. The remaining high level cognitive skills – determining how
the robot should position itself on the road and how to cross junctions – are
left to a navigation script.

Navigation script

The navigation script describes how the robot is to behave when following a
road, how to detect junctions and how to cross the junction to the next road.
The navigation script interpreter has a number of drive modes available, each
drive mode has a number of options affecting the behaviour. The drive modes
include: following a road edge line at a given distance and aiming for a position
(in robot or odometry coordinates).

The script further allows calculation and branching based on the available
data. The available data includes – in addition to the perceived sensor informa-
tion – the historic posture and the robot status. A watch function is available,
and this could – as an example – be used to monitor the current heading to
detect when the robot has entered into a side road or a junction.

Sensor fusion

The vision-based road outline is fused with the laser scanner based corridors
to a corridor based on both sensors.

If the vision-based road outline fails for some reason, the navigation con-
tinues based on the laser scanner data only.

The combined corridor allows steady road following, both in the situations
where the laser scanner has difficulties in separation of the road from the road-
side, and in situations where the road outline fails (when both fails simultane-
ously the performance is degraded). The vision-based road outline allows the
robot to start an obstacle avoidance manoeuvre at an early stage. When a per-
son is avoided in this way, the intensions of the robot will be visible sufficiently
early to limit potential conflicts.

9.3. ARCHITECTURE 171

Obstacle avoidance

The obstacle avoidance behaviour is the planning of a short-term route from
current position to a destination position – also called the exit posture – inside
the coverage of the sensors.

The exit posture is typically selected inside an available corridor, and the
exit posture is selected for the best possible fulfilment of the current objectives
in the navigation script.

A route is planned from the current posture to the exit posture using a
visible graph method. The method starts by testing the direct route from
current position to the exit position, if an obstacle is too close, an avoidance
route is created, as well as the most likely alternatives. The curvature of the
route is limited to impose restrictions on the dynamic behaviour of the robot.
The path is constructed using a combination of straight and curved elements,
where the turning radius in the curved part is selected to limit the centripetal
acceleration.

More than one obstacle avoidance route may be possible and the most
optimal of the available routes are selected based on a set of criteria including:
route roughness, required manoeuvres and distance.

The path calculation method is fast when there is few obstacles only, but
the processing time increases exponentially with the number of obstacles found
on the path. In the test area the obstacle count is small and thus no real
challenge to the selected method.

Moving obstacles are not considered.

9.3 Architecture

A new software architecture is proposed as the available open source architec-
tures were found to be too restrictive.

The proposed architecture is selected to allow the functionality to be im-
plemented in components. The components communicate in a client server
architecture using XML formatted messages. Each of the components further
allows plugins to facilitate enhanced or supplementary functionality without
replacement of a full component.

Three components are built using this architecture: a laser scanner server,
a camera server and a behaviour server.

The laser scanner and vision sensors have high bandwidth requirements.
This high bandwidth data is usually reduced significantly during the feature
extraction from the sensor data. This sensor processing is therefore best per-
formed as a plugin function in the server component for the sensor. The per-
ceived data can then be transferred to other components as needed.

172 CHAPTER 9. CONCLUSION

The plugin and the component structures encourage a division of complex
functionality into manageable sizes. The system knowledge needed to be able to
create a plugin or use a server component is small, and thus new functionalities
can be coded and tested within a short time frame. This is especially significant
in a university environment, where students at a single course can create and
test advanced functionalities. The architecture is believed to be advantageous
where distributed development and maintenance are essential.

The maintenance of the components and – to some extent – the plugins are
independent. The use of XML formatted communication enables extension of
the data structure from one server without the need for clients to be updated
concurrently (if they do not need the extended information).

The architecture is not fully developed, but the camera server and the laser
scanner server have already proved their value in a number of projects.

9.4 Results

Test results have been obtained over a period of almost one year and in a
number of weather conditions including sunshine, overcast and wet weather,
but excluding snow and heavy rain.

The road following is mostly unproblematic; especially asphalt roads where
the roughness difference between the road surface and the roadsides is con-
stantly high. On gravelled roads the difference in roughness of the road and
parts of the roadside is sometimes small. The corridor edges are here more
ragged than on asphalt, the consequence is a lower estimation quality for the
left and right road lines. The road centre line is usually estimated with high
quality on the gravelled roads and is easy to follow.

Fork junctions are mostly passed by following the left or right road lines
into the desired road. More complicated junctions are detected when entering
into the junction and from here the behaviour script directs the robot towards
the desired exit road.

The navigation script is manually prepared using a map of the area and sub-
sequently adjusted after tests in the area. It has not been possible to complete
an unrehearsed test mission successfully; especially the crossing of junctions
needs script adjustments.

There are season and weather variations in the performance of the robot.
In sunshine the hard shadows from obstacles (eg pedestrians) are taken as
obstacles by the vision-based road outline sensor. The slightly more scattered
shadows from trees are less of a problem. During the winter and early spring the
vegetation on the roadsides may be more flat and having a more greyish colour,
this is slightly more problematic for both the laser scanner and vision-based
sensors – resulting in less smooth road following. Wet weather and partially

9.5. FUTURE WORK 173

wet roads are handled reasonably well. Snow and heavy rain conditions are
not tested, and the sensors are not expected to produce usable results in these
cases.

The required update rates for laser scanner, vision and obstacle avoidance
are speed dependent and is selected to be as low as possible. The laser scanner
update rate is about 6 Hz at a robot speed of 1 ms−1 to allow detection of
obstacles larger than 5 cm. The vision-based road outline is detected at a
slower 1 Hz rate, as this is the long range road detection (from about 2.6 m).
The obstacle avoidance path planning was running at a 2 Hz rate, as this should
be sufficient for obstacle avoidance manoeuvring in the available speed range
(up to 1.5 ms−1).

9.5 Future work

For the presented solutions there are a number of enhancements that is expected
to improve the obtained results. These include the following subjects.

• Improvements of the calculation of road lines. The calculation could
probably be improved by using a continuous calculation, eg a Kalman
filter. The road lines should neither use measurements close to the laser
scanner maximum range nor measurements close to a visible horizon.

• A permanent watch function should be included to detect if the robot has
entered a side road or the road has made a sharp turn. Such a function
could be based on deviation from a previously stable course. This is the
used method to detect junctions and would simplify the navigation script.

• The vision-based road outline could be searched for encircled obstacles.
This is a rather simple enhancement and would remove an undesired
feature from the presented solution, where obstacles with a height up to
the height of the camera may remain undetected.

• A roll and tilt sensor could improve the coordinate conversion of mea-
surements, resulting in improved performance in a number of situations.

• An improved GPS handling could allow a drive mode aiming at a GPS
position directly. Such a solution would not improve the results directly,
but could potentially simplify the navigation script in some situations.

• In the implemented software architecture the resource-providing plug-
ins do not use a standardised method. Such a standardised method for
resource sharing should be provided to facilitate a more decentralised
maintenance structure.

174 CHAPTER 9. CONCLUSION

For the long perspective of navigation autonomy, the following list of subjets
shows the areas, which would have been investigated had time been available:

• Vision-based perception with classification of the seen objects in classes
like: trees, signposts, cars, pedestrians and buildings. This is envisaged
as a combination of image segmentation and 3D reconstruction using eg
the ’structure from motion’ method. This is a complicated perception
sensor, of wich the road outline sensor described in this thesis is seen as
a small initial step.

• A mapping function where the road outline and other identified objects
create and update a map while moving. The map elements are assumed
to be positioned primarily based on GPS positions, with an allowance
for correction of errors using one of the methods seen in the SLAM com-
munity, eg the ’consistent pose estimation’ method described in Konolige
(2005) for example or Folkesson et al. (2005).

• With a map in place with some experienced navigation information, the
cognitive abilities may be enhanced to increase the autonomy, eg while
following roads or crossing junctions, where experience could determine
the drive mode rather than an operator produced script.

The research is not expected to lead to autonomous robots capable of cop-
ing with public traffic during the rush hour initially. The robot autonomy will
probably develop in isolated areas where the rules of behaviour are less de-
manding, like in private houses, on agricultural farmland or on the military
battlefields.

Bibliography

Albus, J. S. (1992), A reference model architecture for intelligent systems de-
sign, in P. J. Antsaklis & K. M. Passino, eds, ‘An Introduction to Intelli-
gent and Autonomous Control’, Kluwer Academic Publishers, Boston, MA,
pp. 57–64.

Albus, J. S., Lumia, R. & McCain, H. G. (1986), Nasa/nbs standard reference
model for telerobot control systems architecture, Technical Report NBS Tec-
nical note #1235 or NASA document SS-GSFC-0027, National Bureau of
Standards (USA).

Andersen, J. C., Andersen, N. & Ravn, O. (2004), Trinocular stereo vision for
intelligent robot navigation, in ‘5th IFAC/EURON Symposium on Intelligent
Autonomous Vehicles’, Lisboa, Portugal.

Andersen, J. C., Blas, M. R., Andersen, N., Ravn, O. & Blanke, M. (2006),
‘Traversable terrain classification for outdoor autonomous robots using single
2D laser scans’, Integrated Computer-Aided Engineering.

Aufrere, R., Gowdy, J., Mertz, C., Thorpe, C., Wang, C.-C. & Yata, T. (2003),
‘Perception for collision avoidance and autonomous driving’, Mechatronics
Vol. 13 Issue. 10, 1149–1161.

Babuška, R. (1998), Fuzzy Modeling for Control, Kluwer Academic Publishers.

Barontini, G., Segurini, G., Breemen, A. v., Brodtman, T., Buckingham, R.,
Christensen, H. I., Ikonomopoulos, S., Gelin, R., Fournier, R., Gu, C.-Y.,
Guettier, C., Hgele, M., Isasi, L., Koeppe, R., Bischoff, R., Patin, B. &
Pegman, G. (2005), ‘Building europ, the european robotics platform, the
high level view’, http://www.robotics-platform.eu.com.

Behringer, R., Travis, W., Daily, R., Bevly, D., Kubinger, W., Herzner, W. &
Fehlberg, V. (2005), Rascal - an autonomous ground vehicle for desert driving
in the darpa grand challenge 2005, in ‘Intelligent Transportation Systems,
2005. Proceedings. 2005 IEEE’, IEEE, pp. 644–649.

175

http://www.robotics-platform.eu.com/pdf/Europ-report%20Issue%201.pdf�

176 BIBLIOGRAPHY

Bertozzi, M. & Broggi, A. (1997), ‘Vision-based vehicle guidance’, Computer
Vol. 30 Issue. 7, 49–55.

Blanke, M., Kinnaert, M., Lunze, J. & Staroswiecki, M. (2003), Diagnosis and
Fault-tolerant Control, Springer Verlag.

Blas, M. R., Riisgaard, S., Ravn, O., Andersen, N., Blanke, M. & Andersen,
J. C. (2005), Terrain classification for outdoor autonomous robots using 2D
laser scans., in ‘2nd int. Conf. on Informatics in Control, Automation and
Robotics, ICINCO-2005.’, Barcelona, 14-17 September, pp. 347–351.

Brooks, A., Kaupp, T., Makarenko, A., Williams, S. & Oreback, A. (2005), To-
wards component-based robotics, in ‘Intelligent Robots and Systems, 2005.
(IROS 2005).’, IEEE/RSJ, pp. 163–168.

Brooks, R. A., ed. (1990), The Behavior Language; User’s Guide, MIT Press.

Carstensen, J. M., ed. (2001), Image analysis, vision, and computer graphics,
Informatics and Mathematical Modelling, Technical University of Denmark,
DTU.

Douglas, D. & Peucker, T. (1973), ‘Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature’, Canadian
Cartographer pp. 112–122.

Fergus, R., Perona, P. & Zisserman, A. (2003), Object class recognition by
unsupervised scale-invariant learning, in ‘Proceedings. 2003 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition’, IEEE
Comput. Soc, pp. II–264.

Folkesson, J., Jensfelt, P. & Christensen, H. (2005), Graphical slam using vision
and the measurement subspace, in ‘Proceedings of International Conference
on Intelligent Robots and Systems 2005’, IEEE, pp. 325–330.

Guivant, J. E., Masson, F. R. & Nebot, E. M. (2001), ‘Optimization of the
simultaneous localization and map-building algorithm for real-time imple-
mentation’, IEEE Transaction on Robotics and Automation 17(3), 242–257.
The University of Sidney, Australia.

Henriksen, L. & Krotkov, E. (1997), Natural terrain hazard detection with a
laser rangefinder, in ‘IEEE International Conference on Robotics and Au-
tomation’, Vol. 2, pp. 968–973.

Horswill, I. (1994), Visual collision avoidance by segmentation, in ‘Proceedings
of the IEEE/RSJ/GI International Conference on Intelligent Robots and
Systems ’94. ’Advanced Robotic Systems and the Real World’, IROS ’94.’,
IEEE, pp. 902–909.

BIBLIOGRAPHY 177

Jochem, T., Pomereau, D. & Thorpe, C. (1993), Maniac: a next generation neu-
rally based autonomous road follower, in F. Groen, S. Hirose & C. Thorpe,
eds, ‘Intelligent Autonomous Systems. IAS-3. Proceedings of the Interna-
tional Conference’, IOS Press, pp. 592–601.

Jochem, T., Pomerleau, D. & Thorpe, C. (1995), Vision-based neural net-
work road and intersection detection and traversal, in ‘Intelligent Robots
and Systems 95. ’Human Robot Interaction and Cooperative Robots”, IEEE
Comput. Soc. Press, pp. 344–349 vol.3.

Kadir, T. & Brady, M. (2001), ‘Saliency, scale and image description’, Inter-
national Journal of Computer Vision Vol. 45 Issue. 2, 83–105.

Kim, D. & Nevatia, R. (1999), ‘Symbolic navigation with a generic map’, Au-
tonomous Robota Vol. 6, 69–88. Soongsil University, Korea and University
of Southern California, USA.

Klöör, P. L., Lundquist, P., Ohlsson, P., Nyg̊ards, J. & Wernersson, A. (1993),
Change detection in natural scenes using laser range measurements from a
mobile robot, in ‘Proceedings of 1st IFAC International Workshop on Intel-
ligent Autonomous Vehicles’, IFAC, University of Southampton, pp. 71–76.

Konolige, K. (2005), Slam via variable reduction from constraint maps, in
‘Proceedings of the International Conference on Robotics and Automation,
2005’, IEEE, pp. 667–672.

Kragic, D.; Christensen, H. (2005), ‘Advances in robot vision’, Robotics and
Autonomous Systems Vol. 52 Issue. 1, 1–3.

Liatsis, P., Goulermas, J. & Katsande, P. (2003), A novel lane support frame-
work for vision-based vehicle guidance, in ‘Proceedings of the Industrial Tech-
nology, 2003 IEEE International Conference’, IEEE, pp. 936–941 Vol.2.

Loäıza, H., Triboulet, J., Lelandais, S. & Barat, C. (2001), ‘Matching segments
in stereoscopic vision’, IEEE Instrumentation and Measurement Magazine
pp. 37–42.

Loäıza, H., Triboulet, J., Lelandais, S., Chavand, F. & Artigue, F. (1999),
A multi-configuration stereoscopic vision system for domistic mobile robot
localization, in ‘Robot Motion and Control, 1999. RoMoCo ’99. Proceedings
of the First Workshop on’, IEEE, pp. 207–212.

Macedo, J., Matthies, L. & Manduchi, R. (2000), Ladar-based discrimination of
grass from obstacles for autonomous navigation, in ‘Experimental Robotics
VII, Proceedings ISER 2000, Waikiki, Hawaii’, Springer, pp. 111–120.

178 BIBLIOGRAPHY

Mejnertsen, A. & Reske-Nielsen, A. (2006), Control of autonomous tractor,
Master’s thesis, Ørsted•DTU, Technical University of Denmark, DK-2800
Kgs. Lyngby.

Mizoguchi, F., Nishiyama, H., Ohwada, H. & Hiraishi, H. (1999), ‘Smart office
robot collaboration based on multi-agent programming’, Artificial Intelli-
gence Vol. 114 Issue. 1–2, 57–94.

Montemerlo, M. & Thrun, S. (2004), A multi-resolution pyramid for outdoor
robot terrain perception, in ‘Proceedings - Nineteenth National Conference
on Artificial Intelligence (AAAI-04)’, compendex, pp. 464–469.

Montemerlo, M., Roy, N. & Thrun, S. (2003), Perspectives on standardiza-
tion in mobile robot programming: the carnegie mellon navigation (carmen)
toolkit, in ‘Proceedings. 2003 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, 2003. (IROS 2003)’, IEEE, pp. 2436–2441 vol.3.

Murray, D. & Little, J. J. (2000), Using real time stereo vision for mobile
robot navigation, in ‘Autonomous Robots’, Kluwer Academic Publishers,
The Netherlands, University of British Columbia, Canada, pp. 161–171.

Nielsen, A. & Breiting, M. (2004), Design and implementation of outdoor mo-
bile robot, Master’s thesis, Technical University of Denmark, Ørsted•DTU,
Automation.

Ponweiser, W., Vincze, M. & Zillich, M. (2005), ‘A software framework to inte-
grate vision and reasoning components for cognitive vision systems’, Robotics
and Autonomous Systems Vol. 52 Issue. 1, 101–114.

Riisgaard, S. & Blas, M. R. (2005), Navigation for outdoor mobile robot, Mas-
ter’s thesis, Ørsted•DTU, Technical University of Denmark, DK-2800 Kgs.
Lyngby.

Robowatch (2006), ‘Ofro surveillance robot by robowatch technologies gmbh’,
http://www.robowatch.de.

Se, S., Lowe, D. & Little, J. (2001), Vision-based mobile robot localization and
mapping using scale-invariant features, in ‘IEEE International Conference
on Robotics and Automation, Seoul, Korea’, IEEE, pp. 2051–2058.

Shah, S. & Aggarwal, J. K. (1997), ‘Mobile robot navigation and scene mod-
elling using stereo fish-eye lens system’, Machine Vision and Application
10, 159–173.

Siegwart, R. & Nourbakhsh, I. R., eds (2004), Introduction to Autonomous
Mobile Robots, MIT Press.

http://www.robowatch.de/index.php?id=138�

BIBLIOGRAPHY 179

Simmons, R. (2005), ‘Inter process communication (ipc)’, http://www.cs.
cmu.edu/afs/cs/project/TCA/www/ipc/index.html.

Simmons, R. & Apfelbaum, D. (1998), A task description language for robot
control, in ‘Proceedings Conference on Intelligent Robotics and Systems’.

Thorpe, C., Jochem, T. & Pomerleau, D. (1997), The 1997 automated high-
way free agent demonstration, in ‘Proceedings of Conference on Intelligent
Transportation Systems, 1997. ITSC ’97.’, IEEE, pp. 496–501.

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel,
J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C.,
Palatucci, M., Pratt, V. & Pascal, S. (2006), ‘Stanley: The robot that won
the darpa grand challenge’, http://cs.stanford.edu/group/roadrunner/.

Trepagnier, P. G., Kinney, P. M., Nagel, J. E., Doner, M. T. & Pearce, J. S.
(2005), Team gray techical paper, Technical report, Gray & Company Inc.

Urmson, C., Anhalt, J., Clark, M., Galatali, T., Gonzalez, J. P., J., G., Gutier-
rez, A., Harbaugh, S., Johnson-Roberson, M., Kato, H., Koon, P. L., Pe-
terson, K., Smith, B. K., Spiker, S., Tryzelaar, E. & Whittaker, W. R. L.
(2004), High speed navigation of unrehearsed terrain: Red team technology
for grand challenge 2004, Technical Report CMU-RI-TR-04-37, Robotics In-
stitute, Carnegie Mellon University, Pittsburgh, PA.

Vandapel, N., Huber, D., Kapuria, A. & Hebert, M. (2004), Natural ter-
rain classification using 3-d ladar data, in ‘Robotics and Automation, 2004.
Proceedings. ICRA ’04. 2004 IEEE International Conference on’, IEEE,
pp. 5117–5122.

Vaughan, R., Gerkey, B. & Howard, A. (27-31 Oct. 2003), On device abstrac-
tions for portable, reusable robot code, in ‘Proceedings. 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2003. (IROS
2003)’, IEEE, pp. 2421–2427 vol.3.

Wallace, R., Matsuzaki, K., Goto, Y., Crisman, J., Webb, J. & Kanade, T.
(1986), Progress in robot road-following, in ‘Proceedings 1986 IEEE Inter-
national Conference on Robotics and Automation (Cat. No.86CH2282-2)’,
IEEE Comput. Soc. Press, pp. 1615–21 vol 3.

Wijesoma, W., Kodagoda, K. & Balasuriya, A. (2004), ‘Road-boundary de-
tection and tracking using ladar sensing’, Robotics and Automation, IEEE
Transactions on pp. 456–464.

http://www.cs.cmu.edu/afs/cs/project/TCA/www/ipc/index.html�
http://www.cs.cmu.edu/afs/cs/project/TCA/www/ipc/index.html�
http://cs.stanford.edu/group/roadrunner/�

180 BIBLIOGRAPHY

World Wide Web Consordium, . (2004), Extensible markup language (xml) 1.1,
Technical Report http://www.w3.org/TR/xml11/, W3C.
World Robotics

World Robotics (2005), United Nations Economic Commission for Europe
(UNECE) and International Federation of Robotics (IFR).

Xiang, Z. & Ozguner, U. (2005), Environmental perception and multi-sensor
data fusion for off-road autonomous vehicles, in ‘Intelligent Transportation
Systems, 2005. Proceedings. 2005 IEEE’, IEEE, pp. 584–589.

http://www.w3.org/TR/xml11/�

Appendix A

Trinocular stereovision

This article was presented at 5th IFAC/EURON Symposium on Intelligent
Autonomous Vehicles (Andersen et al. (2004)).

Abstract

This paper describes a vision sensor that extracts visible features of objects
using a set of on-board robot cameras. The purpose of the sensor is to be able
to classify the seen objects into abstract object types like tables, chairs, walls
and doors using these features. The results show that the vision sensor is able
to extract a filtered set of features suitable for the purpose. The method used is
stereoscopic scanning followed by a filtering process in 3D space. The method
is insensitive to the shape of the objects and the structure of the background.

A.1 Introduction

The research project behind this paper is focused on autonomous robot nav-
igation in an indoor human environment, where the robot is able to find and
recognize some basic types of objects. The robot sensors include camera vision
as the primary sensor for this task.

Mobile robot navigation is the discipline of locating own position and to
find a path to the destination. Finding a path involves in this case recognition
and classification of observed objects, so that the destination can be described
in terms of the classified objects, e.g. as ”go to the third table in the first room
to the left”.

The stereoscopic vision sensor provides the majority of the data needed for
object classification. The extracted data should allow for classification into
classes like chair, table, wall, door or human, without prior knowledge of where
to expect what type of objects.

181

182 APPENDIX A. TRINOCULAR STEREOVISION

Stereoscopic vision systems have been described in a number of papers over
the resent years. Most of these systems extract linear features in the images
from single cameras and then correlate these to get the 3D information like in
Loäıza et al. (2001), Loäıza et al. (1999), Kim & Nevatia (1999) and Shah &
Aggarwal (1997). In Se et al. (2001), the images are searched for scale invariant
features — e.g. line ends — before correlation and 3D calculation.

Most of the stereoscopic camera solutions use three cameras achieve better
immunity to false correlations. Image processing for stereo calculation is pro-
cessing power intensive and only a few papers document image processing times
of less than one second. For obstacle mapping Murray & Little (2000) expect
3 updates per second, and, for robot position estimating Se et al. (2001), two
estimates per second were obtained from the camera images using a 700 MHz
PC. Faster is better, but processing-times in excess of one second is acceptable
when the resulting data is to be used for route planning and not directly in the
motion control loop.

This paper describes a method where images are scanned for 3D points first
and the filtering is done subsequently in 3D space.

A.2 Objectives and Overview

When looking at an image as in Figure A.1 it is easy to see that it shows a chair,
a golf-ball on the floor, and some closets in the background. If a robot is to
get to the same conclusion, there is a fair bit of processing is to be performed,
some of which is described in the following.

To find out that the nearest object is a chair, a number of tasks must be
performed. The object must be separated from the rest of the image, and it
must be analyzed for properties that indicate it is a chair. The properties could
be that it has a surface, the seat, of an appropriate size (e.g. 40x40 cm) at an
appropriate height (approximately 50 cm), and that it has an open structure
below the surface to support it. These properties would make it distinguishable
from other objects like a box or a table.

From one images set the visible features can be extracted. The visible
features of a chair could be the front edge of the seat, the chair bag or parts
of the support structure. The idea is that a set of such features is sufficient to
perform the needed object classification.

This paper describes a vision sensor and the processing behind the feature
extraction.

The sensor has three major parts, the feature filtering, the stereo scanning
and the camera calibration. Each of these parts are described below.

A.3. FEATURE FILTERING 183

Top image

Fig. A.1: An image like this is easily decoded by a human, but requires explicit
processing for a robot.

A.3 Feature filtering

The data from the stereo correlation is 3D positions reconstructed from corre-
sponding points in a set of stereoscopic images. About 1000 3D positions are
produced in a full stereoscopic image scanning. These positions are grouped
into spatially separated clusters.

The feature filtering function must ensure that clusters represent one object
only. As different objects often is seen close together — e.g. a table and a wall
— they may not be separable on distance alone.

To separate these clusters into features from just one object, two primary
methods are used. The first is to extract horizontal and vertically oriented
features, and the second is to split combined features based on similar positional
and color properties.

In an indoor environment, horizontal and vertical features are often found
in especially empty rooms. These features are extracted first based a density
histogram along the vertical axis for the horizontal lines. This will typically
produce a peak in the histogram when the cluster contains a major feature

184 APPENDIX A. TRINOCULAR STEREOVISION

Axis split

3D cluster

Split
groups

Split Split

Outlier and
size filter

(< 4 points)

Dump

Fuzzy
split

Vm > limit

Not Not Rest

Split

Feature

Fig. A.2: The input clusters are groups of isolated 3D detections, these gets
divided into features of just one object by splitting.

perpendicular to the vertical axis. The peak is then isolated to a new cluster.
The same method is used across the image, and this isolates primarily vertical
lines.

Fig. A.3: The images show the features extracted from the scene in Figure A.1.
The left image is top view, and the right image is side view. The three camera
positions are shown as triangles. Each feature is represented with a colored
group of 3D detections.

A fuzzy c-means classifier from Babuška (1998) is able to separate 3D po-
sitions in a cluster of into two or more sub-clusters. The ellipsoid shape of the
sub-clusters may differ, e.g. a cluster representing a chair seat in combination
with one of its legs, may be divided into a narrow ellipsoid formed cluster from
the leg and a more ball formed for the seat. The fuzzy c-means method needs to
know the number of sub-clusters, and the computation afford increases rapidly
with the number of clusters. A computational affordable method is to split
clusters into two subclusters until the cluster statistics are reasonable, or the

A.4. STEREOSCOPIC SCANNING 185

clusters are too small to split. This is the method used, and it produces slightly
more clusters than is strictly necessary, as the only drawback.

The cluster statistics is calculated based on the best-fit 3D line. The 3D
line is the major axis of the ellipsoid that best describes the cluster, i.e. where
the sum of the squared distance from the line to the 3D positions is minimum.
The line is found by finding the best fit line in two dimensions twice. First in
the horizontal plane and then in the 2D plane spanned by the vertical axis and
one of the horizontal axes. The used axis combinations are selected so that
singularities are best avoided.

A number of statistics are calculated along this 3D line with the endpoints
E1 and E2. One of them is the mass distribution or inertial moment Vm for a
unified line length, as shown in Equation A.1.

Vm =
1
n

Pn
j=1

¡
t(Xj)− t(Xg)

¢2

|E2 − E1|2
(A.1)

Where Xg is the center of gravity and t(Xj) is the position on the line
closest to the 3D point Xj, all 3D points are given equal weight. For a uniform
distribution along the 3D line, this value Vm would be 1/12. Clusters are split if
the mass distribution is above a value comparable with the uniform distribution.

Clusters are furthermore tested for outliers and for splits. Splits are clusters
that are no longer continuous, i.e. there is an opening along the major cluster
axis. Split clusters are divided into continuous subclusters.

The full feature extraction process is shown in Figure A.2, and an example
of the extracted features is shown in Figure A.3.

The resulting clusters are assumed object features and are shown on top of
one of the images in Figure A.4.

A.4 Stereoscopic scanning

The use of cameras to aid robot navigation has been described in a number of
papers using a number of different approaches. A two camera solutions with
fish-eye lenses is used for navigation in Shah & Aggarwal (1997) by finding
significant lines ending in the geometric vanishing points, and from these and
vertical lines build a model of the traversed corridor. Another project Loäıza
et al. (1999) and Loäıza et al. (2001) uses two cameras mounted on top of each
other and does stereoscopic calculation on contrast straight lines found in the
images, the Loäıza et al. (2001) project puts emphasis in color on each side of
the extracted lines to improve matching. The project Se et al. (2001) uses three
cameras in a right angle triangular configuration to remove false correlations.
The project also pre-extracts a number of (scale invariant) features before stereo

186 APPENDIX A. TRINOCULAR STEREOVISION

Right image

Fig. A.4: The resulting clusters after filtering is shown on top of one of the
original images. In total 848 3D detections are shown in 36 clusters.

calculation, and then stores these points (about 3000 for one room) for the
ongoing navigation.

These projects all put a great deal of effort into extracting data from the
two-dimensional images prior to the stereo calculation. This will reduce the
stereo calculation effort, but objects are limited to the extracted types, typically
linear features only. The method selected here does not extract features in
the two-dimensional images but only edges. This ensures that no object gets
discarded based on its shape.

The camera configuration is as shown in Figure A.5. The cameras are
standard web cameras connected to the robot motherboard using a Universal
Serial Bus (USB) interface. The robot main processor is using a Linux operating
system (Redhat standard distribution).

The stereo scanning is performed using two camera images at a time. The
reference image is divided into a number of scanning lines and for each of these
the corresponding epipolar line is found in the other image. Both images are
then resampled along these lines in 3 pixel wide bands. Contrast edges are
found in the resampled reference image, and for each of these, a match is found

A.4. STEREOSCOPIC SCANNING 187

Fig. A.5: The robot platform used for the experiments with the trinocular
camera mount on top. The distance between any two cameras are 15 cm.

in the other image. The cross-correlation coefficient ρ in range [−1, 1] is found
over a small mask area. The size of this correlation mask area depends of the
resolution, and is 3x17 pixels at a 120x160 image resolution and 3x31 pixels for
a 240x320 image resolution. The image is scanned in the part of the image that
would result in a 3D distances from 0.5 meter to 20 meter from the cameras.
To reduce processing the correlation is calculated for every pixel position is the
last correlation was a close match — i.e. a ρ value above 0.2. For ρ below this
value, from 1 to 6 pixels gets skipped before another correlation is attempted.

Figure A.6 shows an example on a top and bottom-right image set. One of
the edges on the floor line in the left image is found in the search area in the
right image. The correlation coefficient is shown in the box in the right image,

188 APPENDIX A. TRINOCULAR STEREOVISION

Mask

Top image

Search area

Near

Far

Correlation

Near Far

+1

- 1

Found point

Right image

Fig. A.6: The left and right image shows the epipolar lines used in the scanning
process. The left image is the reference image (top camera) with one edge
marked in the mask-sized box. The area marked in the right image is scanned
for the same pattern. The correlation quotient is shown in the curve. The gray
dots show the points where correlation is attempted — darker gray is further
away.

with the best correlation marked with a circle. The used image resolution is
320x240 pixels.

Each set of two images is scanned in this way, both with the first and the
second image as the reference image. In total six scannings are thus performed
for each set of three images.

The resultant set of 3D positions (about 1200 for the chair motif) are
grouped into clusters, so that the 3D positions in a cluster are not separated
by more than could be expected with the used epipolar line distance (9 pixels).

Each cluster should have 3D positions from at least four of the six scannings,
otherwise the cluster is assumed false and dropped. This criterion removes
almost all the false correlations. The remaining clusters are split and filtered
as described above.

A.5 Camera calibration

The camera orientation is very important for a correct stereoscopic conversion.
The used Web camera could not be mounted in a predetermined orientation
with a reasonable accuracy, so the orientation must be determined after the
cameras are mounted on the robot.

The general idea is that the camera position on the robot can be estab-
lished reasonably accurate by measurement, whereas the rotation is difficult
to establish by direct measurement. By placing a known calibration chart at

A.6. RESULTS 189

some distance directly in front of the robot at a known height, it is possible to
calculate a sufficient exact rotation around all three axes for each camera on
the camera mount.

The calibration chart consists of a number of black squares on a white back-
ground, arranged as a checkerboard as shown behind the robot in Figure A.5.
The corner where two black squares touch is scale invariant and easily detected.
Two of the black squares in the calibration chart are omitted and the position
of these are used to determine the center of the calibration chart and from that
the pixel position of all corners.

The pixel position Xp [xp, yp] corresponding to each corner position Xc

[xc, yc, 0] on the flat calibration chart can be calculated as a function of chart po-
sition relative to the camera [xt, yt, zt] and the camera rotation [Ω,Φ, κ] around
the three axis. The pixel position Xp and the corresponding point Xc on the
calibration chart are known for up to 100 positions. The camera position and
rotation form this equation is then estimated using a least-square parameter
adjustment method.

This method can determine the orientation of the cameras to about 0.01◦

for both the left-right orientation Φ and the up-down orientation Ω, and to
about 0.03◦ for the rotation κ around the camera optical axis.

When using identical cameras with USB interfaces there is no guarantee
that the cameras will be detected in the same order as last time they were
plugged into the robot. The calibration method described can estimate the
camera position to within 1–2 cm, which is sufficiently accurate to determine
which camera device is at top, left and right position.

The used camera (Philips PCVC 740K) has a focus length of about 1055 pix-
els with an image resolution of 640x480 pixels. The radial distortion is esti-
mated to about 1.4 ·10−7 proportional to r3 and 8.5 ·10−13 proportional with r5,
where r is radius from image center in pixels. These internal camera parameters
are estimated off-line using a series of images of the calibration chart.

One image pixel corresponds to an angle of about 0.1◦ at a 320x240 resolu-
tion (The camera opening horizontally is 33.5◦). A one-pixel error corresponds
to about a 10 cm range error at 2 meter distance from the camera with the
used camera configuration. Practical results shows an about 5 cm (standard
deviation) distance error from the stereo calculation using a 320x240 image
resolution.

A.6 Results

The processing time from image capture to extracted features is shown in Ta-
ble A.1 for the three available camera resolutions.

The long capture time for 640x480 resolution is due to an interface limita-

190 APPENDIX A. TRINOCULAR STEREOVISION

Top image

Fig. A.7: The same chair and golf ball as in Figure A.3, but with more complex
background. The chair and ball is still extracted. Center image is top view
and right image is side view.

Right Image

1 m
-1 m

1 m 2 m 3 m

Toy jeep

Round
table

Closets 1 m 2 m 3 m

Floor level

Table

Toy jeep
1 m

2 m

Fig. A.8: The same method now used on a toy jeep and a round table. The
objects are extracted to a level where the table should be recognizable as a
table.

160x120 320x240 640x480
Image delay 0.24 0.24 0.24 sec
Image capture 0.01 0.06 5.8 sec
Epipolar dist. 6 9 12 pix
Stereo scan. 0.53 1.71 4.35 sec
3D detections 487 744 1145
Feature filt. 0.15 0.11 0.29 sec
Features 19 21 26
Total time 0.94 2.03 10.68 sec

Table A.1: Vision sensor timing.

tion, where cameras have to be closed between images. All timings are from a
700 MHz PC and for a slightly simpler scene than in Figure A.3.

The main processing time is used for the stereoscopic scanning as would be
expected. At the 160x120 resolution, the epipolar distance is six pixels, and as
the scanning mask is three pixels wide there is an almost full usage of all pixels

A.7. CONCLUSION 191

in the image. The result is available after about one second. The 320x240
resolution produces slightly better data, but takes 2 seconds to complete.

In most scenes, the sensor produce from 15 to 40 clusters, where each cluster
represents a visible feature from one of the objects in the scene.

The delay in camera and interface limits the accuracy of image time stamp-
ing, and thereby the accuracy of the position and orientation of the camera,
especially if the images was taken during a maneuver. This, in turn, limits the
accuracy of the stereo extraction.

The method is rather insensitive to background structure, as can be seen
in Figure A.7, where the closed doors have been opened. The method extracts
readily more complex shaped objects as the toy Jeep in Figure A.8.

Isolation of features from reasonably sized objects — e.g. the table and the
chair — seems adequate for a reasonably safe classification. The 3D extension
of objects may be used to get further data from the source images, e.g. addi-
tional color or texture information, which can be used to further distinguish
objects and object classes. The additional color and texture extraction is not
implemented yet; neither is the object classification.

A.7 Conclusion

The vision sensor described in this paper combines stereo vision methods used
in e.g. land mapping from aerial photographs, and 3D filtering methods that
in total ensures a robust extraction of all — reasonably sized — objects within
sight of the robot. The processing time for the purposed method is not pro-
hibitive, and will be even less so in the future.

The extracted objects seem to be adequate for classification of objects in
classes like chairs, tables, walls and doors.

The process is designed for an in-door environment, but should also be
applicable for out-door use, as there is no dependence on the shape of the seen
features.

A.7.1 Next step

The next step is expected to be grouping of detected clusters to isolate non-
transparent surfaces, e.g. walls, chair and table surfaces. The image color and
texture of these surfaces can then be determined within the surface, to enhance
the correlation and classification process.

192 APPENDIX A. TRINOCULAR STEREOVISION

Appendix B

Navigation script definition

B.1 Introduction

This is a (syntax) description of the implemented control language of the nav-
igation sequencer.

The functionality is controlled by a sequence of statements as defined below:

statements ::= statement [←↩ statement]*

statement ::= (assignment statement | execute statement |
function definition | flow control | label | watch call | print | remark |
preprocessor statement)

←↩ ::= ’\n’ (newline)

assignment statement ::= variable name ’=’ expression

expression ::= value [operator value]

value ::= (expression | ’(’expression’)’ | numeric constant | variable value |
function)

operator ::= (’+’ | ’-’ | ’*’ | ’/’ | ’>’ | ’<’ | ’==’ | ’!=’ | ’>=’ | ’<=’ | ’&’ | ’|’ |
’and’ | ’or’ | ’not’ | ’&&’ | ’||’ | ’<<’ | ’>>’)

variable value ::= [unary operator] variable name

unary operator ::= (’not’ | ’!’ | ’-’ | ’+’)

variable name ::= alpha [(alphanum | ’ ’)]* maximum length 32 characters

function ::= function name ’(’ function params ’)’

193

194 APPENDIX B. NAVIGATION SCRIPT DEFINITION

function params ::= [expression [, expression]*] number of parameters de-
pend on function.

function name ::=(library functions | additional functions |
defined functions)

library functions ::= mainly C library functions (see list below).

additional functions ::= functions written in C (see list below).

defined functions ::= as defined in script ? see function definition

numeric constant ::= ([-] [digit]+[’.’[digit]+] [’e’[-] [digit]+]) |
(’0x’ [digit]+)

B.2 Assignments

An assignment statement could be:

dist = hypot(dx, dy) + d*cos(25*pi/180) ? d*sin(25*pi/180)

isok = not ((dist < -2.5) or (dist >= 250))

bit4to8 = (flags \& 0xf8) >> 3

The first evaluates a double value and the second a boolean value and the
third an integer. All are implemented as double variables and can be mixed.
Boolean operators return exact 1.0 (true) or 0.0 (false). Operator precedence is
not implemented, except for ’*’ and ’/’, that will be evaluated from left to right
before any other operators (+, -, and, or, >=, == etc), that will be evaluated
from right to left.

B.3 Execute statement

execute statement ::= exe identifier exe params [: stopcondition]

exe identifier ::= (drive command | support command)

drive command ::= (drive fwd | drive turn | drive gotowaypoint |
drive idle | drive smrcl)

drive fwd ::= ’fwd’ ((’direct’ x dist [, y dist [, end h]]) | (’odo’ x dist) | (’left’
x dist) | (’right’ x dist) | (’top’ x dist))

x dist ::= value (distance (in current or selected direction))

y dist ::= value (left distance relative to current pose (default is 0.0))

B.3. EXECUTE STATEMENT 195

end h ::= value (end pose heading (default is 0.0))

drive turn ::= ’turn’ angle (angle (value) to turn ? same as ’smrcl turn angle’)

drive gotowaypoint ::= ’gotowaypoint’ x pos y pos

x pos ::= value (x coordinate in selected coordinate system).

y pos ::= value (y coordinate in selected coordinate system).

drive idle ::= ’idle’ idle time (idle time (value) is a value in seconds)

drive smrcl ::= ’smrcl’ smrcl command

smrcl command ::= (as defined for smrdemo, implicit stop criteria is when
smrdemo reports command completed).

support command ::= (vision | arm | talk | listen | ...) (vision is implemented
only)

exe params ::= depend on exe identifier.

stopcondition ::= (boolean) expression. (execution continues to next line,
when expression is true).

B.3.1 Drive command FWD

The fwd orders the robot to drive forward in one of four methods: left, right,
top or direct, e.g.:

fwd left 20

Follow left side of road (in wpfEdgeDist distance) for 20 m.

fwd right 30

Follow right side of road (in wpfEdgeDist distance) for 30 m.

fwd top 50

Follow top (centre) of road for 50 m. The variable wpfTopDist determines
the position of the robot relative to the centre line.
If wpfTopDist > 0.0, then drive this distance to the left of the centre
line. If wpfTopDist is negative, then to the right.

fwd direct 3.5, -1, 1.57

Drive to the relative position 3.5 m in front of robot, 1 m to the right,
and stop in a posture 1.57 (90 deg) counter clockwise relative to current
heading. NB! Use comma separated parameters if space separated values
could be evaluated (ie ’3 -1’ is 2 and one parameter only, but ’3, -1’ is
two parameters). Y and H parameters may be omitted, default is 0.0.

196 APPENDIX B. NAVIGATION SCRIPT DEFINITION

fwd direct gmkX-1.2, gmkY, gmkH-pi :(laserRange(0) < 0.5)

This command should get the robot to a position 1.2 m in front of a
detected guide mark, in a heading facing the guide mark. In this case,
the stop criteria tests if the laserscanner gets closer than 0.5 m from an
obstacle.

B.3.2 Drive command GOTOWAYPOINT

Drives to a specific coordinate position.

gotowaypoint odo 652.5, 30.0, 0.0

This should direct the robot to odometry (x,y) coordinates (652.5, 30.0)
and aim for an end heading aligned with the x-axis. The obstacle avoid-
ance route is planned through the best suited corridor for the destination.

gotowaypoint direct 652.5, 30.0, 0.0

This directs the robot to odometry (x,y) coordinates (652.5, 30.0) and
aim for an end heading aligned with the x-axis. Obstacles are avoided.

gotowaypoint gps 367986.1, 6235457.4, 0.25 (NOT VALID p.t.)
This should direct the robot towards the GPS coordinates (367986.1 E,
6235457.4 N) and aim for a end heading east (a bit (15 degrees) to the
north). NB! This function uses GPS heading, which is badly calculated.
If end heading is not specified, then current heading is used.

B.3.3 Drive command IDLE

This command just idles the drive system and waits for a specific number of
seconds.

idle 10

This command idles the script for 10 seconds.

B.4 Drive command SMRCL

smrcl ’turnd ’ 1 (angle*180/pi) ’ :($odoth >= ’ calcH ’)’

This is a SMRCL command for smrdemo, the mmr will try to evaluate all
values (that is not in apostrophes), then the expression will be replaced
by the evaluated value. Needed white space in the resulting command
must be added where needed (except between two evaluated numbers).
A syntax error will be the result if parameters can not be evaluated.

The smrcl command shown could be evaluated to: smrcl turnd 1.0

140.7 :($odoth >= 1.57). - NB! The explicit stop criteria is evaluated

B.5. FUNCTION DEFINITION 197

by smrdemo and not by the mmr, so - the values (here $odoth) must be
known by smrdemo.

B.5 Function definition

function definition ::= ’function’ function identifier ’(’ function params ’)’
[statements] ’return’ [expression]

function identifier ::= variable name

label ::= label identifier ’:’

label identifier ::= variable name

function params ::= [variable name [’,’ variable name]*]

B.6 Flow control

flow control ::= (if expr | goto expr | call expr | skip drive)

goto expr ::= ’goto’ label identifier

call expr ::= [’call’] defined function

defined function ::= function identifier ’(’ [expression [’,’ expression]*] ’)’
if expr ::= ’if’ ’(’ (boolean) expression ’)’ then expr

then expr ::= flow control | assignment statement

Flow control statements could be:

if (not defined(doorNum)) doorNum = 0

if (doorNum < 7) goto end_label

call waitAWhile(10)

An if statement has one conditional statement only, so a ’goto’ or ’call’
construction must be used if more statements are to be conditional.

198 APPENDIX B. NAVIGATION SCRIPT DEFINITION

B.7 Skip statement

A skip statement is an extended stop-condition for an executable statement.
Skip statements can therefore only be used in watch-functions. It will interrupt
the main program flow, as either a jump or a function call. The watch function
flow continues unaffected.

skip drive ::= (skip to label | skip function call)

skip to label ::= ’skip’ [label identifier] (if no label, then skip to next line)

skip to function ::= ’skipcall’ defined function

In a watch function a skip line could be:
if (doorNum > 25) skip to end

watch call ::= ’watch’ watch name [’every’ value] (call expr |
assignment statement | print) ’unwatch’ watch name

Watch statements starts evaluation of a watch function (or statement)
at regular intervals (as defined by the ’every’ art) or at sample rate (p.t.
3Hz), until an ’unwatch’ statement is executed. Examples could be:
watch max speed maxSpeed = max(speed, maxSpeed)

watch look4door()

The first executes an assignment statement at every sample time, the
second calls a ’look4door()’ function, and uses the short form, where
the watch name is the same as the function call.

print ::=’print’ [print text | expression]+

print text ::= ’’’ text ’’’ | ’"’ text ’"’

Print statements are simple statements, that sends a string and a value
to the client. The expression evaluates to a double. An example could
be:
print ’Found door number ’ doorNum ’ but expected ’ doorCnt

print ’Finished’

this text and the evaluated values will be send to all connected clients as
an XML tag, eg:
<help info="Found door number 6 but expected 5"/>\n>.

B.8 Remarks

Remark ::= (’%’ | ’//’ | ’;’) [any non control character]*

The rest of the line is disregarded in the statement evaluation.

B.9. LIBRARY FUNCTIONS 199

B.9 Library functions

The following standard math library functions are pt implemented: sin(a),
cos(a), asin(a), acos(a), tan(a), atan(a), atan2(y, x), hypot(a, b),
sqrt(a), sqr(a), abs(a), min(a, b), max(a, b).

B.10 Special functions

The following robot or navigation specific functions are pt implemented.

limitToPi()

Returns a value in the [-pi..pi] range.

defined(varname)

Returns true if ’varname’ is defined.

calcPoseAtTime(time)

Returns posture (in calcX -Y -H) at time ’time’.

calcPoseAtDist(near)

Returns the time and the posture at distance near from current position.

calcPoseFitAtDist(near, far)

Calculates a line fitting of the positions in this interval and returns the
result as posture (x,y,h) on line close to the ’near’ position.

calcAddRel(x, y)

Adds this offset relative to the calculated posture in calcX -Y -H.

distToOdoEnd()

Returns the distance from current position to odometry destination end
position.

distTo(odox, odoy)

Returns the distance to the specified position.

distToGps(utmE, utmN)

Returns the distance to a GPS (UTM) position.

distToPoseLine(pose x, pose y, pose h, x, y)

Returns distance from (x,y) position to the posture line defined by pose x,
y, h.

distToPoseLineSigned(pose x, pose y, pose h, x, y)

Returns the distance from road direction line signed, left is positive.

200 APPENDIX B. NAVIGATION SCRIPT DEFINITION

headingGps(dist)

Returns current heading ’u’ (radians) based on odometry and GPS(UTM)
position now and at ’dist’ back from current position. (East is zero CCV,
to get compas radians use: (pi/2 - u).

laserRange(angle)

Returns laser range measurement closest to this angle (angle 0.0 deg is
font).

B.10.1 Guidemark functions

Guidemark functions work on data returned by camera server following a
’gmkget’ command to the camera server, e.g. by statement: ’vision gmkget

extra=true’.

The functions are:

gmkCnt() returns count of guidemark positions available.

gmkNewCnt(t) returns number of stored guidemarks since ’t’. The ’time’ is
stored and is used by the ’gmkNewNum(N)’ call.

gmkNewNum(t, N) returns index to guidemark N of the new guidemarks

gmkNum(idx) returns true if guidemark with index idx is found, and sets
the guidemark values (from ’cam getgmk’) in variables: gmkX, gmkY,
gmkZ, x, y and z position gmkO, gmkP, gmkK, rotation on x,y and z
axis gmkTime, gmkID detection time and guidemark ID code.

gmkNewID(t, ID) returns true if a guide mark newer than t is available with
this ID, the guidemark values are set as for the ’gmkNum(idx)’ call.

gmkID(ID) returns true if a guide mark is stored with this ID, and the guide-
mark values are set as for the ’gmkNum(idx)’ call.

B.11 System defined variables

The following variables are available in the system. The values shown are
mostly just examples. The values can be queried or changed from a script or
from a client.

The values are formatted under the following headings:
(index) value ’variable name’ remark.

B.11. SYSTEM DEFINED VARIABLES 201

Constants

#000 0.0000 ’false’.
#001 1.0000 ’true’

#002 3.1416 ’pi’.

Road data

#003 0.0000 ’roadValid’ is road (width) data valid.
#004 0.7812 ’roadWidth’ estimated road width [m].
#005 0.0000 ’roadQual’ road width quality [0..1].
#006 1.0000 ’roadTypeLaser’ estimated road type.
#007 0.0044 ’roadRoughness’ current road roughness.
#008 0.0000 ’roadLeftValid’ left side of road valid.
#009 100.0000 ’roadLeftDist’ from robot to left side [m].
#010 0.0000 ’roadLeftQual’ road side quality [0..1].
#011 0.0000 ’roadRightValid’ right side of road valid.
#012 100.0000 ’roadRightDist’ from robot to right side [m].
#013 0.0000 ’roadRightQual’ road side quality [0..1].
#014 0.0000 ’roadTopValid’ top of road valid.
#015 100.0000 ’roadTopDist’ to top-line from robot left is pos.
#016 0.0000 ’roadTopQual’ road top quality [0..1].
#017 2.3416 ’roadCenterX’ road centre (top) odometry X [m].
#018 -0.7940 ’roadCenterY’ road centre (top) odometry Y [m].
#019 0.0863 ’roadCenterZ’ road centre (top) odometry Z [m].

Current pose

#020 0.0000 ’posex’ odometry pose X [m].
#021 0.0000 ’posey’ odometry pose Y [m].
#022 0.0000 ’poseh’ odometry pose Z [m].
#023 0.0000 ’odoSpeed’ current robot velocity [m/s].
#024 1141403388.6506 ’time’ odometry pose update time [sec].
#025 0.0000 ’distOdo’ total odometry based distance driven.

GPS position (in UTM for current zone)

#026 0.0000 ’ekfE’ Easting.
#027 0.0000 ’ekfN’ Northing.
#028 0.0000 ’ekfh’ Heading, p.t. not reliable (East = 0.0, rad).
#029 1141403388.6506 ’ekftime’ latest GPS update time [sec].

202 APPENDIX B. NAVIGATION SCRIPT DEFINITION

Execute statement status

#030 0.0000 ’startPosex’ pose at start of current drive
command.
#031 0.0000 ’startPosey’.
#032 0.0000 ’startPoseh’.
#033 0.0000 ’startTime’.

Drive command stop condition variables

Most variables are only updated when used in a stop-condition in the current
(drive) command.

#034 0.0000 ’distSoFar’ distance since start of drive command.
#035 0.0000 ’distTotal’ distance since start of server.
#036 0.0000 ’endPoseX’ current destination position X.
#037 0.0000 ’endPoseY’.
#038 0.0000 ’endPoseH’.
#039 0.0000 ’endPoseDist’ Distance remaining to destination.
#040 1141403388.6506 ’endPoseTime’.
#041 0.0000 ’endPoseSpeed’.
#042 0.0000 ’endEkfE’.
#043 0.0000 ’endEkfN’.
#044 0.0000 ’endEkfH’.
#045 0.0000 ’endEkfDist’.
#046 0.0000 ’timeout’.

Drive command parameters

#047 0.7000 ’speed’ current target speed (max).
#048 0.4000 ’acc’ allowed acc (lateral) [m/s2].
#049 0.4500 ’accTurn’ allowed centripetal acc [m/s2].
#050 0.0000 ’driveMode’ 0=idle, 1=smrcl, 2=Laser/vision.
#051 0.0000 ’driveState’ 0=idle, 1=smrcl, 2=Laser/vision.
#052 0.7100 ’wpfEdgeDist’ Dist. to edge of road, when ’fwd
left’ or ’right’.
#053 0.0000 ’wpfTopDist’ Dist to top of road, when ’drive top’
pos=left.

Result values of pose calculations

#054 0.0000 ’calcX’

#055 0.0000 ’calcY’

B.11. SYSTEM DEFINED VARIABLES 203

#056 0.0000 ’calcH’

Historic heading

Historic heading based on the last 5 m, excluding the last 1 m.

#057 0.0000 ’histH’ [radians]
#058 3600.0000 ’histHAge’ age of estimate (3600 is invalid) [sec]
#059 1.0000 ’histW’ Weight of hist heading, when selection best
route

Used angle of laser scanner relative to horizontal

#060 -0.1683 ’laserTilt’ positive is UP [radians]

Parameters for laser scanner based road detection

These variables are mostly for debugging and parameter experiments.

#061 0.1000 ’wpfDevLimit’

#062 0.0075 ’wpfConvex’

#063 0.0250 ’wpfDevOffset’

#064 4.5000 ’wpfEndDev’

#065 1.0000 ’wpfSmooth’

#066 1.0000 ’wpfSmoothAuto’ uses roadTypeLaser
#067 0.0000 ’wpfMode’

#068 0.0000 ’wpfIgnoreObstacles’ debug flag
#069 1.0000 ’wpfUseIntervalCombiner’

#070 1.0000 ’wpfOutdoorObstacles’

Obstacle maintenance and use

#071 2.0000 ’obstUseCnt’ obstacle groups in obstacle avoid.
#072 7.0000 ’obstGrpDist’ obstacle grouping max distance.
#073 7.0000 ’obstGrpTime’ obstacle grouping max time.

Guide mark data for selected guide mark

#074 0.0000 ’gmkX’

#075 0.0000 ’gmkY’

#076 0.0000 ’gmkZ’

#077 0.0000 ’gmkO’ - rotation on x-axis (roll) positive clockwise
#078 0.0000 ’gmkP’ - rotation on y-axis (pitch) down is positive

204 APPENDIX B. NAVIGATION SCRIPT DEFINITION

#079 0.0000 ’gmkK’ - rotation on z-axis (yaw) left is positive, zero
is front
#080 0.0000 ’gmkTime’ - guide mark update time
#081 0.0000 ’gmkId’ - ID code in guide mark (decimal)

Vision items

#082 1.0000 ’visPathUse’

#083 0.4300 ’visPathBal’

#084 0.6500 ’visPathLim’

#085 1.0000 ’visPathInterval’

#086 0.0000 ’visCamTiltErr’

#087 0.0030 ’visCamTiltGain’

Simulation

Simulation flag and time, used during replay of logdata.
#088 0.0000 ’simulated’

#089 1141403388.6689 ’simTime’

B.12 Examples

B.12.1 A 4 m square

A 4 m square script.

// function for one leg ? drive to position and turn

function drive_and_turn(x, y, ang)

gotowaypoint odo, x, y

smrcl turn ang

return

//

// drive on odometry (not gyro) (optional)

odo = 0

gyro = 1

smrcl ’set odocontrol’ odo

// set drive speed to be used

speed = 0.6

// set angle and distance variables

angle = 90

d = 4

if (angle < 0) y = -d

B.12. EXAMPLES 205

drive_and_turn(d, 0, angle)

drive_and_turn(d, d, angle)

drive_and_turn(0, d, angle)

drive_and_turn(0, 0, angle)

// stop

smrcl idle

B.12.2 Up and down the hallway

A script that follows the walls up and down a corridor.

// follow left wall and stop where started

speed = 0.5

// drive distance

dist = 25

fwd left dist

// turn right to avoid wall

smrcl turn -175

// go back

fwd right dist

smrcl turn 179

// stop

smrcl idle

B.12.3 Up and down the hallway with stops

The same as the previous script, but extended to check for open doors and
makes a pause at every open door to the right

//# use watch function to look for doors

//# use gyro for heading

smrcl ’set "odocontrol" 1’

smrcl ’set "$gyro1off" 0.32’

speed=1

door = true

doorNow = false

function look_for_door(direc)

ld = laserRange(direc)

doorNow = (ld > 2.5)

if (not door and doorNow and (distSoFar > 1))

skipcall doWait(5)

if (door != doorNow) print "laser distance " ld

door = doorNow

206 APPENDIX B. NAVIGATION SCRIPT DEFINITION

print "At open door number " door

return door

//#

function doWait(waitTime)

dd = dd + distSoFar

print "Dist so far is now " dd " m"

smrcl ’fwd ’ 0.3 ’ @a 0.3’

smrcl ’idle’

idle waitTime

return

//#

//# make variables for left and right direction

left = 90

right = -90

//# start watch for doors to the right

watch doors look_for_door(right)

//#

//# start drive

dist = 25

dd = 0

fwd left dist :((dd + distSoFar) > dist)

//# stop watch before turning

unwatch doors

//# turn right to avoid wall

smrcl ’turn -175’

//# go back

dd = 0

watch doors look_for_door(left)

fwd right dist :((dd + distSoFar) > dist)

unwatch doors

smrcl ’turn 179’

//# stop

smrcl ’idle’

B.12. EXAMPLES 207

B.12.4 Test area navigation script

//# Dyrehaven full route

//# run on gyro (1), (odo is 0)

smrcl ’set "odocontrol" 1’

//# gyro offset 0.445 19 aug, 0.32 24 aug,

//# 0.19 12 sep, 0.25 17 okt 2005

smrcl ’set "$gyro1off" 0.25’

//#

//# shortcut jump if about 50 m before 5-vej

// goto lbl5Vej

// goto bagslot

///////////////// Hjortekaervej /////////////////////////

//# get going from anywhere on hjortekaervej - if GPS works

acc = 0.4

accturn=0.9

vispathlim=0.65

vispathbal=0.43

vispathuse=true

//# start slow

wpfedgedist = 0.85

speed = 0.7

fwd left 5

//# high speed to just before castle (should be ~1660 m)

//# stop ~20m before end of road

print "To cruse speed"

speed = 1.4

dist = 1740

fwd left dist :(25 > distToGps(347716.7, 6183490.1))

//

/////////// Royal hunting lodge square ////////////////

print "Close to Royal hunting lodge"

//# change to gyro heading for crossing

// of gravelled square (and rest of the way)

smrcl ’set "odocontrol" 1’

//# reduce speed - close to open area

speed = 0.9

//# calculate direction of hjortekrvej

calcPoseFitAtDist(0, 25)

//# add to a waypoint inside castle square

speed = 0.85

//# follow left side into square -

208 APPENDIX B. NAVIGATION SCRIPT DEFINITION

//# until fair distance to hjortekrvej line

fwd left 75 :(7.0 < abs(distToPoseLineSigned(

poseX, poseY, calcX, calcY, calcH)))

//# get better reference close to end of hjrtekrvej

calcPoseFitAtDist(12, 25)

//# add to a point far away in Ndr. Eremitagevej direction

//# - relative to hjortekrvej ref point (GPS-based)

calcAddRel(75.0, 150.0)

//# go towards that point - first just avoid obstacles

//# gotowaypoint odo calcx calcy :(distsofar > 10)

//# then look for road edge

gotowaypoint odo calcx calcy :((roadLeftQual > 0.78) and

(roadLeftDist < 2.7) and (distsofar > 10))

//

///////////////// Behind lodge ///////////////////////////

//# assume left edge is found - continue close to left edge

wpfEdgeDist = 0.85

fwd left 40

//# now we are on asphalt, so get closer to edge and speed up

wpfEdgeDist = 0.65

speed = 1.3

bagslot:

//# continue until just before end of asphalt

fwd left 290 :(30 > distToGps(348053.0, 6183676.0))

print "close to end of asphalt - going top step 1 (for 5m)"

//# switch to top of road (in 2 steps to be smooth)

td = roadTopDist / 2

wpfTopDist = td

fwd top 5

print "close to end of asphalt - going top step 2 (280m)"

//# drive on road centerline - until (25) before junction

lbl5Vej:

wpfTopDist = 0

speed = 1.0

fwd top 280 :(25 > distToGps(348223.0, 6183901.0))

//

///////////////////// 5 vej /////////////////////////////

//# reduce speed

speed = 0.8

calcPoseFitAtDist(0, 20);

//# Follow road to the left, up Chausseen (north)

wpfEdgeDist = 1.1

B.12. EXAMPLES 209

fwd left 100 :(7.0 < abs(distToPoseLineSigned(

poseX, poseY, calcX, calcY, calcH)))

print "Found Chausseen - at distSoFar=" distSoFar

//# turn to springforbi road

turn -58

smrcl ’fwd 2.5 @v0.8’

//# head for 15 more meter in direction of Eremitvej

frX = poseX - calcX

frY = poseY - calcY

frd = hypot(frX, frY)

calcAddRel(frd + 20, 0)

//# goto entry of right road

gotowaypoint odo calcx calcy :(endPoseDist < 7)

//# advance waypoint up the road, and

//# go that way until top is found

calcAddRel(100, 0)

gotowaypoint odo calcx calcy :(roadTopQual > 0.85)

print "Found top of road - Q=" roadTopQual

//# follow top until just before horsetrack

dist = 7

fwd top dist

calcposefitatdist(0, 6)

calcaddrel(100,0)

//# go direction to waypoint until passed the horsetrack

gotowaypoint odo calcx calcy :(distSoFar > 12)

//

///////////////// Springforbi ///////////////////////////////

//# increase to crouse speed and continue to goal

speed = 0.9

fwd top 350 :(30 > distToGps(348485.0, 6184198.0))

print "Found the end - distTotal=" distTotal

//

//# stop

speed = 0.0

smrcl fwd 0.5 @v0.3 @a0.3

smrcl idle

print "The end."

//# fin

210 APPENDIX B. NAVIGATION SCRIPT DEFINITION

.

www.oersted.dtu.dk

Ørsted•DTU
Automation
Technical University of Denmark
Building 348
DK-2800 Kgs. Lyngby
Denmark
Tel: (+45) 45 25 38 00
Fax: (+45) 45 93 16 34
E-mail: info@oersted.dtu.dk

ISBN 87-91184-64-9

