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Quantum-mechanical calculations of the reaction rate for dissociative adsorption of N2 on stepped
Rus0001d are presented. Converged six-dimensional quantum calculations for this heavy-atom
reaction have been performed using the multiconfiguration time-dependent Hartree method. A
potential-energy surface for the transition-state region is constructed from density-functional theory
calculations using Shepard interpolation. The quantum results are in very good agreement with the
results of the harmonic transition-state theory. In contrast to the findings of previous model
calculations on similar systems, the tunneling effect is found to be small. ©2005 American Institute
of Physics. fDOI: 10.1063/1.1927513g

I. INTRODUCTION

The reaction rate is the central quantity in reaction dy-
namics. For activated processes it is determined by the quan-
tum dynamics in a well-defined region around the transition
state. Accurate quantum-mechanical calculations of the reac-
tion rate are therefore possible without solving the full scat-
tering problem. Using the flux correlation approach,1–3 the
dynamics can be restricted to the region in the vicinity of the
reaction barrier. This approach has been applied to several
gas-phase systems.4–25 The combination of the flux correla-
tion approach with the multiconfiguration time-dependent
Hartree sMCTDHd scheme for efficient multidimensional
wave-packet propagation made it possible to study the quan-
tum dynamics of 12-dimensional systems.20–25 The previous
studies show that quantum effects are significant in reactions
where hydrogen atoms are transferred. At room temperature
the tunneling effect often increases the reaction rate by one
order of magnitude. Thus, accurate reaction rate calculations
can require a full quantum-mechanical treatment.

While accurate quantum-dynamics calculations for poly-
atomic reactions in the gas phase have become increasingly
available in recent years, reactions on surfaces still pose a
challenge. Accurate quantum-mechanical studies of reactions
on surfaces have so far been restricted to the most simple
examples of surface reactions: dissociative adsorption of H2,
D2, or HD on various metal surfaces.26–51 The initial state-
selected reactive scattering calculations have deepened the
understanding of the reactions of molecules with surfaces.
Comparisons between theoretical and experimental results
showed that potential-energy surfaces based on density-

functional theorysDFTd calculations are sufficiently accurate
to provide a realistic description of the reaction dynamics,
although the accuracy is much lower than the typical accu-
racy achievable for gas-phase systems.

Accurate quantum-dynamics calculations have not yet
been presented for heavy diatomic or polyatomic molecules
on surfaces. However, such calculations are highly desired to
deepen the understanding of heterogenous catalysis. An ex-
ample of a surface reaction that is very important in catalysis
is the dissociative adsorption of N2 on a stepped ruthenium
surface. In this reaction the nitrogen bond is broken and two
Ru–N bonds are formed. It is the rate-limiting step in the
industrial synthesis of ammonia on Ru catalysts.52 Due to its
importance, the N2-Ru system has been extensively studied
experimentally.53–60 Density-functional theory sDFTd
calculations52,61–65explored the electronic structure and the
reaction path.

Several low-dimensional quantum calculations for disso-
ciation of N2 on Ru and related systems, employing model
potential-energy surfaces, have been presented in the
literature.66–72 These calculations show a significant tunnel-
ing effect on the reaction probability. As discussed by Haase
et al.,67 the results suggest that at room temperature the re-
action is completely dominated by a tunneling mechanism,67

which is quite surprising for a heavy-atom system. Conse-
quently, transition-state theorysTSTd could not be used to
estimate the reaction rate.

The present work studies the tunneling effect for N2 on
Ru by performing accurate quantum-mechanical calculations
using a realistic potential-energy surfacesPESd. The flux cor-
relation approach1–3 is employed to calculate the thermal rate
constant and the cumulative reaction probability for dissocia-
tive adsorption of N2 on a stepped Rus0001d surface. All sixadElectronic mail: rob.v.harrevelt@ch.tum.de
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nitrogen degrees of freedom are included in this study, while
the positions of the surface atoms are frozen. The possible
effect of electron–hole pairs59 has not been included in the
present description. In future work the effect of the motion of
the Ru surface will be investigated.73 The six-dimensional
PES in the barrier region is constructed by Shepard
interpolation74,75 of DFT data. As shown in previous
work,25,76 the Shepard interpolation scheme is particularly
efficient for the construction of accurate potential-energy sur-
faces sPESsd in the barrier region. Based on this realistic
PES, the effect of tunneling is examined by comparing the
reaction rate in the exact quantum-dynamics study with the
rate obtained from classical harmonic TST.

II. THEORY

A. Quantum-mechanical calculation
of the reaction rate

The quantum-mechanical approach followed in this
work has been reviewed in Ref. 24. Here, the general ideas
of this approach are briefly summarized. The rate constantk
can be expressed as

k =
1

2p"Qr
E dENsEdexps− bEd, s1d

whereQr is the reactants’ partition function per unit volume,
E is the total energy,NsEd is the cumulative reaction prob-
ability si.e., the sum of the initial state-selected reaction
probabilities for all possible initial statesd, andb=1/kT. An
exact quantum-mechanical expression forNsEd is given by

NsEd = 2p2"2 TracehF̂dsĤ − EdF̂dsĤ − Edj, s2d

whereF̂ is the operator for the flux through a dividing sur-
face separating the reactants and products. In numerical cal-
culations it is more convenient to work with the so-called
thermal flux operator

F̂b0
= exps− 1

2b0ĤdF̂ exps− 1
2b0Ĥd , s3d

where the parameterb0 corresponds to a reference tempera-
ture T0 according tob0=1/kT0. For a finite reference tem-
perature the thermal flux operator is a regular operator, in

contrast to the singular standard flux operatorF̂. Equations2d
can be rewritten as

NsEd = 2p2"2 expsb0EdTracehF̂b0/2dsĤ − EdF̂b0/2dsĤ − Edj.

s4d

When the trace in Eq.s4d is evaluated employing the eigen-

state representation ofF̂b0/2,

F̂b0/2 = o
m

ufmlfmkfmu, s5d

one obtains

NsEd = 2p2"2 expsb0Edo
lm

fmf lukfmldsĤ − Eduf llu2

= 2p2"2 expsb0Edo
lm

fmf luE
−`

`

expsiEt/"dOlmstdu2.

s6d

Here, the overlap matrixOlmstd is given by Olmstd
=kf luexps−iĤt /"dufml. In summary, the procedure followed to

calculateNsEd is to first calculate the eigenstates ofF̂b0/2 by
iterative diagonalization, then propagate them in time, and
finally obtainNsEd according to Eq.s6d.

The cumulative reaction probabilityfEq. s6dg can be
written asNsEd=oi=1

` NisEd,14 whereNisEd can be considered
as the contribution of theith vibrational state of the activated
complex toNsEd. If there are many low-lying vibrationally
excited states of the activated complex, then the number of
states required to converge the thermal rate constant

k =
1

2p"Qr
o
i=1

` E dENisEdexps− bEd s7d

may be prohibitive. As a solution to this problem one can use
a harmonic progression model to enhance the convergence.23

Assuming thatNisEd has been computed fori =1,n, the con-
tributionsNisEd i =n+1. . .̀ are estimated using a harmonic
progression. The best estimate of the rate constant based on
the data for then lowest vibrational states of the activated
complex then reads23

knsTd =
QTS exps− bE1d

2p"Qr

E dEHo
i=1

n

NisEdJexps− bEd

o
i=1

n

exps− bEid

, s8d

whereQTS is the partition function at the transition state in
harmonic approximation andEi is the energy of theith vi-
brational state of the activated complex in harmonic approxi-
mation. Since

lim
n→`

o
i=1

n

exps− bEid = QTS exps− bE1d, s9d

knsTd converges to the exactksTd

lim
n→`

knsTd = ksTd. s10d

If the harmonic approximation is reasonable, then Eq.s8d
converges with a smaller number of thermal flux eigenstates
than Eq.s7d. It should be noted that the first factor on the
right-hand side of Eq.s8d also appears in the harmonic TST.
The thermal rate constant in harmonic TST reads

kTSTsTd =
1

b

QTS exps− bE1d
2p"Qr

. s11d
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B. The multiconfiguration time-dependent
Hartree approach

The MCTDH approach is an efficient scheme to perform
quantum calculations for high-dimensional systems.77–80 In
the MCTDH approach the wave function is represented as

Csx1 . . .xf,td = o
j1=1

n1

. . . o
j f=1

nf

Aj1. . .j f
stdp

k=1

f

f jk
skdsxk,td. s12d

The time-dependent basis functionsfi
skdsqk,td, k=1. . .f are

called single-particle functions. The single-particle functions
are expanded in time-independent basesx j

skdsxkd

fi
skdsxk,td = o

j=1

Nk

cij
skdstdx j

skdsxkd. s13d

The equations of motion for the coefficientsAj1. . .j f
std and

cij
skdstd are derived from the Dirac–Frenkel variational prin-

ciple. The MCTDH wave function converges towards the
exact solution of the wave function ifni →Ni andNi →`, for
i =1. . .f.

In the present work, the MCTDH approach is utilized to
perform all real and imaginary time propagations appearing
in the flux correlation functions. A modified iterative Lanc-
zos scheme as described in Ref. 81 is used to calculate the
eigenstates of the thermal flux operator. For the real- or
imaginary-time propagation a modified version of the con-
stant mean-field integration scheme82 has been employed.
Matrix elements of the potential are calculated using the
correlation-discrete variable representation approach.83

C. Shepard interpolation

An efficient procedure to construct multidimensional
PESs is the Shepard interpolation scheme.74,75 The potential
at a pointZ is given as a weighted average of local second-
order Taylor expansionsVisZd for different reference points
Z i,

VsZd = o
i

wisZdVisZd. s14d

wisZd weighs the contribution of the reference pointZ i and
VisZd is given by

VisZd = VsZ id + sZ − Z idTGZ i
+ sZ − Z idTHZ i

sZ − Z id.

s15d

GZ i
is the gradientsfirst derivatives ofV to the coordinates

Zd and HZ i
is the Hessiansmatrix of second derivatives to

Z id at point Z i. The number of reference points required to
obtain an accurate potential depends on the choice of the
coordinatesZ and the weighing function. The optimal choice
depends on the system.

III. N2 ON A STEPPED Ru „0001… SURFACE

A. Density-functional theory calculations

The density-functional theory calculations presented
here have been performed with theDACAPO code,84 where
the Kohn–Sham equations are solved in a plane-wave basis

restricted by the kinetic-energy cutoff of 25 Ry. We em-
ployed revised Perdew2Burke2ErnzerhofsrPBEd85 general-
ized gradient correction self-consistently, and the core elec-
trons of both the Ru and N atoms were treated with
Vanderbilt nonlocal ultrasoft pseudopotentials.86 The sam-
pling of six specialk points was used together with a Fermi
smearing of 0.1 eV. The Ru steps were modeled by using
Rus0001d and as432d surface cell, where two atom rows
were removed to give a step. The thickness of the slab was
three layers. It has been shown that this gives a good descrip-
tion of N interaction with Rus0001d.52 The transition state of
N2 dissociation was localized by constraining the N–N dis-
tance and relaxing the other nitrogen degrees of freedom. By
varying the N–N distance, we localized the saddle point. We
applied the same structure optimization procedure also for
the other N–N distances on the minimum-energy path. The
Hessian matrices needed for the interpolation of the
potential-energy surface were obtained by displacing one N
atom at a time in the three different Cartesian directions
around the optimized configuration.

B. The Shepard interpolation procedure

Interpolation schemes based on inverse-bond distances75

are favorable for many systems, since it automatically pro-
vides correct asymptotes and a correct description of the
strong atom–atom repulsion at short atom–atom distances. A
procedure to define bond lengths between molecular atoms
and surface atoms in the Shepard interpolation approach is
introduced by Cresposet al.87,88: the distances between the
molecular atoms and the closest surface atoms are defined as
bond lengths. For the present system, the upper and the
lower N atoms have two and three close Ru neighbor atoms,
respectivelyssee Fig. 1d. Following the procedure of Crespos
et al.,87,88 we use these bond lengths in the interpolation
scheme. Since the total number of bondssfive N–Ru bonds

FIG. 1. The transition state for the dissociation of N2. The big and small
balls represent Ru and N atoms, respectively.
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and one N–N bondd is equal to the number of degrees of
freedom, gradients and Hessians in the inverse-bond coordi-
nate system can be calculated straightforwardly from gradi-
ents and Hessians in Cartesian coordinates. A corresponding
choice of the weighing function is used

wisZd =
iZ − Z ii−12

o
i

iZ − Z ii−12
, s16d

whereZ are the inverse-bond distances.
For comparison, we also considered an interpolation pro-

cedure using transition-state normal coordinates for the
second-order Taylor expansionsfVisZd of Eq. s15dg. The two
PESs obtained by the different interpolation schemes are
called PES Asinterpolation in inverse-bond distancesd and
PES Bsinterpolation in transition-state normal coordinatesd.
Contour plots of the PESs as functions of the transition-state
normal modesQ5 andQ6, with optimized coordinate values
for Q1. . .Q4, are shown in Fig. 2 together with the positions
of the reference points.Q6, the reaction coordinate, mainly
involves N–N stretching, andQ5 mainly involves movements
of N2 perpendicular to the surface.Q5 is the mode with the
strongest coupling with the reactive modeQ6. Figure 2
shows that PES A and PES B are very similar close to the
minimum-energy path, but differ substantially further away
from the reaction path.

C. Convergence with the number of reference points

The dominant computational effort in the present study
are the DFT calculations of the Hessians at the reference
points. It is therefore important to use the smallest possible
number of reference points in the Shepard interpolation pro-
cedure. In the present study, only seven reference points on
the minimum-energy pathsMEPd have been considered. The
reference points are obtained by optimizing the nitrogen de-
grees of freedom with the constraint that the N–N distance is
fixed for a series of N–N distancess1.75, 1.85, 1.95, 2.05,

2.15, 2.25, and 2.5 Åd. The positions of these points are
shown graphically in Fig. 2. The point with a N–N distance
of 1.95 Å is closest to the saddle point.

Comparing the results of quantum calculationssfor de-
tails see Sec. III Dd with different sets of reference points,
one can see that even this small set of reference points is
sufficient for accurate reaction-rate calculations. Because the
differences between the calculated rate constantsk are very
small, it is more convenient to discuss the differences in the
ratio k=k/kTST, wherekTST is the thermal rate constant ac-
cording to harmonic TST. Figure 3 presentsk calculated us-
ing the different sets of reference points defined in Table I.
The differences between the results of the sets of two, four,
and seven reference points are negligible. This indicates that
only the reference points in a narrow ranges1.9–2.1 Åd
around the transition state are required. Even the result ob-
tained with a single reference point differs with less than 6%
from the seven-point result. It can therefore be expected that
addition of more reference points on the MEP close to the
transition statesN–N distances between 1.95 and 2.05 Åd
would have a negligible effect on the reaction rate.

Although the potential is accurate close to the MEP, the
potential should not be expected to be accurate in regions far
from the MEP, where no reference points are available. PES
A and PES B, obtained using different interpolation schemes,
clearly differ in the region outside the reaction path. How-
ever, Fig. 4 shows that the difference between the results for
k obtained using PES A and PES B is smallsless than 4%d.
Since the different treatment of anharmonicities in PES A
and PES B does not effect the harmonic TST rate constant,
comparison of the rate constantk yields the same result as
the comparison of thek factors. This suggests that the accu-

TABLE I. Sets of reference points for the interpolation of the potential.

Set N–N distancesÅd

1 point 1.95
2 points 1.95 2.05
4 points 1.85 1.95 2.05 2.15
7 points 1.75 1.85 1.95 2.05 2.15 2.25 2.5

FIG. 2. The PES as a function ofQ5 and Q6 sQ1. . .Q4 are relaxedd. The
equipotential lines are for energies between 0.7 and 1.2 eV, with a spacing
of 0.05 eV. Solid lines: PES Asinterpolation in inverse bond lengthsd. Dot-
ted lines: PES Bsinterpolation in transition-state normal coordinatesd.
Circles: positions of the reference points.

FIG. 3. k=k/kTST calculated using the various sets of reference points as
indicated in Table I.
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racy of the PES in the region outside the reaction path is not
crucial for the accuracy of reaction-rate calculations.

D. Quantum-dynamics calculations

The system is described using the six transition-state
normal coordinatesQ1. . .Q6, which form a convenient coor-
dinate system to describe the dynamics in the vicinity of the
transition state.Q6, the mode with the imaginary frequency,
can be considered as a reaction coordinate. The dividing sur-

face is defined asQ6=0. The HamiltonianĤ in atomic units
is given by

Ĥ = − o
i=1

6
]2

]Qi
2 + VsQ1,Q2, . . . ,Q6d − iWQ6

, s17d

whereVsQ1,Q2, . . . ,Q6d is the PES andWQ6
is a complex-

absorbing potentialsCAPd. The construction of the PES is
discussed in detail in Secs. III A–III C. The CAPsWQ6

d is
given by

WQ6
= 5ksQ6 − Q6

r d2 if Q6 ù Q6
r ,

ksQ6 + Q6
l d2 if Q6 ø Q6

l ,

0 if Q6
l , Q6 , Q6

r .
6 s18d

Q6
l andQ6

r define the barrier regionQ6
l øQ6øQ6

r . The values
of Q1

l andQ6
r have been chosen so that the barrier region has

a sufficient range to yield converged rate constants. The nu-
merical parameters used in the converged quantum calcula-
tions are presented in Tables II and III.

Several convergence tests have been carried out to en-
sure that the quantum-dynamics calculations are converged.
One of these convergence test concerns the convergence with
n, the number of activated states explicitly included in the
calculation ofk fEq. s8dg. Figure 5 comparesk for n=1, 6,
and 21. The differences are negligible and converged results
are already obtained forn=1. This was also found in previ-
ous calculations for gas-phase systems.22,23

The rotational and vibrational partition functions of N2

have been computed within the rigid rotor and the harmonic
oscillator approximations, respectively. Relevant PES data
obtained from DFT calculations are given in Table IV.

IV. RESULTS AND DISCUSSION

The Arrhenius plot of the rate constant obtained from
quantum-mechanical calculations and harmonic TST is pre-
sented in Fig. 6. On the scale of this figure differences are
hardly visible, even at the lowest temperaturess200 Kd. This
figure clearly demonstrates that quantum effects on the reac-
tion rate are small. The ratio between the accurate quantum
rate constantksTd and the harmonic TST approximation
kTSTsTd, ksTd=ksTd /kTSTsTd swhich is often called tunneling
factord, has already been presented in Fig. 5. From this figure
one can find more detailed numbers; the enhancement due to
quantum effects decreases from 40% atT=200 K to 10% at
room temperature. Thus, TST yields an adequate description
at room temperature and gives a good approximation even at
significantly lower temperatures.

More insight on the role of tunneling on the rate constant
is obtained by studying the cumulative reaction probability

TABLE II. Parameters for the MCTDH representation of the wave function.

Coordinate

Number of
single-
particle

functions Grid size Grid type
Grid range

sa.u.d

Q1 3 30 Hermite
DVR

Q2 3 32 Hermite
DVR

Q3 3 33 Hermite
DVR

Q4 3 35 Hermite
DVR

Q5 3 96 FFT −240–320
Q6 4 192 FFT −320–400

TABLE III. Numerical parameters used in the wave-packet propagation.

T0 sReference temp.d 300 K
Propagation time 73 fs
k 1.2310−6 a.u.
Q6

l −80 a.u.
Q6

r 160 a.u.

FIG. 4. k=k/kTST for PES A and PES B.

FIG. 5. ksTd=k/kTST for various numbersn of vibrational states of the
activated complex included in the calculation.
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NsEd. In TST, NsEd is equal to the number of states of the
activated complex with an energy less thanE. Figure 7
shows the harmonic TST result together with the quantum
result, displayed for an energy range relevant at room tem-
perature. Note that the origin of the energy is the minimum
of the potential energy of N2 in the gas phase. The quantum
result is in good overall agreement with the TST result. The
only difference is that the steps are smoothened due to tun-
neling, which is most obviously demonstrated in the inset of
Fig. 7. For most practical purposes, however, the tunneling
can be neglected. At an energy of 0.1 eV below the threshold
energy s1.15 eVd, the reaction probability has already a
value below 10−5. This result is in sharp contrast to the re-
sults of previous model calculations of the dissociation prob-
ability for N2 on various metal surfaces,66–72 where signifi-
cant reaction probabilitiess<10−5d have been found for more
than 0.3 eV below the barrier energy. Note thatNsEd is an
upper bound to the initial state-selected reaction probabilities
since it is the sum of all reaction probabilities.

In order to gain insight into the wave-packet dynamics,
we discuss the time evolution of the thermal flux eigenstate
which corresponds to the ground state of the activated com-
plex with positive flux eigenvalue. This state will be denoted
as uf1l in the following. The wave packet is projected on the
sQ5,Q6d plane.Q6, the reaction coordinate, mainly involves
N–N stretching, andQ5 mainly involves movements of N2
perpendicular to the surface.Q5 is the mode with the stron-

gest coupling with the reactive modeQ6. Negative and posi-
tive values ofQ6 correspond to the reactant and product side,
respectively. Figure 8 presents the probability density
rsQ5,Q6,td. Initially, the wave packet is localized around the
transition-state regionQ5=Q6=0. In the course of time al-
most the complete wave packet moves towards the product

TABLE IV. Potential-energy surface data: The classical barrier height and
harmonic frequencies at the transition statesv1−v6d and of isolated N2 svd.

Transition state

Classical barrier 1.0 eV
v1 578 cm−1

v2 517 cm−1

v3 446 cm−1

v4 423 cm−1

v5 411 cm−1

v6 409i cm−1

Isolated N2

Geometry 2.12a0

v 2492 cm−1

FIG. 6. Arrhenius plot of the thermal rate constants obtained from quantum-
mechanical and TST calculations.

FIG. 7. The cumulative reaction probability as a function of the energy.
Solid line: quantum result. Dashed line: TST result. The inset showsNsEd in
the threshold region.

FIG. 8. Contour plot of the probability densityrsQ5,Q6,td ssee textd at
different times as indicated in the figure. Solid lines: contours of the density.
Dashed line: contour plot of the PES.
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side. Only a tiny part moves towards the reactant side, as
revealed in the probability density fort=12 fs. After about
36 fs the wave packet has left the transition-state region. The
other wave packets behave similarly; wave packets with
positive flux eigenvalue move towards product region, while
wave packets with a negative flux eigenvalue move towards
the reactant region. Only tiny parts of the wave packet move
towards other directions. This behavior can be explained by
the small variations in the PES in the region where the initial
wave packet is localized. In previous rate calculations in-
volving hydrogen atoms,21,24 the initial wave packets have a
much larger extension relative to changes in the PES. Sig-
nificant parts of the wave packets were thus located rela-
tively far from the dividing surface, which explains the
stronger recrossing behavior. The difference between H
transfer reactions and the dissociation of N2 is thus domi-
nantly a mass effect. Because of the higher mass of nitrogen,
the imaginary frequencyv6 is much smaller for the present
system. This results in a smaller relative width of the thermal
flux eigenstates.

The Wigner tunneling correction factor89 gives a direct
relation betweenv6 andk,

kWigner= 1 + 1
24sb"uv6ud2. s19d

Since the Wigner correction factor is derived on the basis of
a one-dimensional harmonic barrier model, it cannot de-
scribe deep tunneling. However, Fig. 9 shows that for the
present case it is accurate even at low temperatures. The
good agreement between the accurate quantum-mechanical
result and the Wigner theory is a clear indication that the
present system is close to the classical limit.

The obstinacy of tunneling theories in the literature for
N2 on a plain metal surfaces66–72is presumably caused by the
experimental observation of significant reaction probabilities
at energies well below the barrier energy. This observation
could be explained by a tunneling mechanism. However, it is
now known63 that at low energies the reaction is dominated
by step sites on the surface, where the barriers for dissocia-
tion are much lower. A tunneling mechanism is no longer
required to explain the experimental findings. The strong
tunneling effect found in the previous model calculations is
presumably caused by an artificially narrow barrier in the

model potential-energy surfaces employed. While the model
calculations concern dissociation on plain surfaces and not
on stepped surfaces as in the present study, there is no reason
to expect a different behavior for dissociation on step sites
than on the plain surface.

Although the present work gives an accurate six-
dimensionals6Dd quantum-dynamics study, the present rate
constants cannot be compared directly with experimental re-
sults. In this work, the Ru surface is treated as a rigid sur-
face. Relaxation of the positions of the ruthenium atoms re-
sults in a significant reduction of the barrier energy.73

However, the ruthenium and nitrogen degrees of freedom are
almost uncoupled in the barrier region. The topology of the
PES in the barrier region is not significantly changed when
the surface atoms are allowed to relax. Thus, the effect of the
surface degrees of freedom is mainly an energy shift. Al-
though this has a large effect on the magnitude of the reac-
tion rate, it does not affect the reaction dynamics. Therefore
the frozen-surface description allows for a reliable evaluation
of quantum effects, which is the aim of the present work.

V. CONCLUSION

Approaches developed for gas-phase reaction-rate calcu-
lations have been applied successfully to a molecule–surface
system: dissociative adsorption of N2 on Ru. A potential-
energy surface is constructed using density-functional theory
calculations and Shepard interpolation. Reaction rates are
then calculated using flux correlation functions and MCTDH
wave-packet dynamics. Using this approach, the full-
dimensional quantum dynamics of a heavy-diatom reaction
on a surface could be described accurately. The effect of
tunneling on the reaction rate is found to be almost negli-
gible, which is in marked contrast to findings of previous
model calculations.66–68,70–72 Harmonic transition-state
theory can be used to reliably predict the rate constant for
dissociative adsorption of nitrogen on Ru and similar pro-
cesses. While the present work has been restricted to a frozen
Ru surface, future work73 will include the effect of surface
motion.
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