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Shape and stability of a viscous thread

Sergey Senchenké* and Tomas Botr
1Physics Department, Danish Technical University, DK-2800 Lyngby, Denmark
2Optics and Fluid Dynamics Department, Risg National Laboratory, DK-4000 Roskilde, Denmark
(Received 1 March 2004; revised manuscript received 18 November 2004; published 3 May 2005

When a viscous fluid, like oil or syrup, streams from a small orifice and falls freely under gravity, it forms
a long slender thread, which can be maintained in a stable, stationary state with lengths up to several meters.
We discuss the shape of such liquid threads and their surprising stability. The stationary shapes are discussed
within the long-wavelength approximation and compared to experiments. It turns out that the strong advection
of the falling fluid can almost outrun the Rayleigh-Plateau instability. The asymptotic shape and stability are
independent of viscosity and small perturbations grow with time aé@Xf), where the constant is indepen-
dent of viscosity. The corresponding spatial growth has the forni(edp /8], wherez is the down stream
distance and. ~ Q%029 and wherer is the surface tension divided by densigyis the gravity, andQ is the
flux. We also show that a slow spatial increase of the gravitational field can make the thread stable.

DOI: 10.1103/PhysRevE.71.056301 PACS nuni)erd7.20.Gv, 47.20.Dr, 47.54r

I. INTRODUCTION power series in the radial variabfeand one findgexpress-

. . ing mass conservation and tzecomponent of the Navier-
When honey or syrup is poured from an outlet, one eaS|IyStokes equation, respectively

generates very long threads of flowing fluid of surprising
beauty and stability. A uniform column of fluid is unstable (M), + (wh?),=0, (1)
due to surface tension effects—the famous Rayleigh-Plateau

instability [1]. Viscosity diminishes the strength, but does not y (w,h?),

remove the instability, and thus the observation of stable fall- W+ WW, == (k) + g+ 3VT 2

ing viscous threads of, say, 2 m is surprising—in our local P

stairwell, we have seen threads of syrup up to around 10 nigiven as Eqgs(17) and (18) in [4]], wherew(z,t) is the

In the present paper we shall discuss the shape and stabilityading-order term in the expansion of the vertical velocity
of such falling viscous jets or threads. We should note fronfield in r, h(z,t) is the radius of the jety is the surface
the outset that we are confining our attention to Newtonianension coefficienty is the kinematic viscosity, ang is the

fluids (e.g., syrup or silicone 9il gravitational acceleration. The curvature term in E.is
Our starting point in Sec. Il is the long-wave approxima-

tion (see, e.g.[2]), which only takes into account the k=1 +h2)‘1<} _ s ) (3)

leading-order dependence of the velocity field on the radial ‘ h 1 +h§

variable. In Sec. Il we study the stationary solutions and, i
particular, their asymptotic forms. The final asymptotics

large downstream distana is always governed solely b .
gragvity, as in a free fall. We perforym g simple expe%mgntpared to the one around the axis of the thread and assume

with heavy silicone oil and find that the observed stationar)}hathz<l' Thus we shall, throughout the paper, use the slen-

shape of a thread is in a good agreement with the theoreticgler approximation

prediction(Sec. lll). Then we proceed with a linear stability 1

analysis (Sec. I\V). After a recapitulation of the classical = (4)
Rayleigh-Plateau instability in the long-wavelength limit in

the absence of gravity, we study the full linear stability prob- We now introduce dimensionless variables through
lem of a falling thread using a Lagrangian description and

"but since we are interested in the asymptotic properties of
thin threads, we neglect the curvature in thez) plane com-

solve it asymptotically. z—az, t—pt h—ah, w— %v, (5)
Il. DERIVATION OE THE MODEL where « and B are dimensional coefficients. Thus E®)
acquires the following fornfwith o=/ p):
To describe the dynamics of a fluid column falling under 5 2 (1 (v,h?)
gravity, we assume that the flow is axisymmetric and that the v +ov,= —g- '8—(7(-) + 3,,% Uz z (6)
velocity has only a radial and a vertical component. In the a a*"\h/, o

long-wave approximatiof3,4] the velocity is expanded in @\ hereas Eq(1) preserves its form since it is homogeneous in

space and time variables.
We choosex and B such that the two first coefficients on
*Electronic address: senchen@fysik.dtu.dk the right-hand sidéRHS) of Eqg. (6) are equal to unity: i.e.,
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a=ol2g2  g=glagsi4 ) 25
This allows us to consider both viscid and inviscid cases by ” , o o
means of the last coefficient, the dimensionless viscdsity I i sta ® koous ——
=3vB/ a?=3ve~%“g!4, [The Morton number often used in inertial -
the bubble literature i¢I'/3)* and the Kapitza number used 13 A

for falling films is Ka=(I'/3)"*3] Note that this choice of N
rescaling means that lengths are measured in units of the
capillary lengthl.=o?g™?=a. Thus the nondimensional-
ized model has the following form:

(h?) + (vh?),=0, (8
0 1 1 1 1 1
1 (vh?), 0 50 100 150 200 250 300
vt+vvz——<ﬁ)z+l+r o (9) v

Note that it is possible to eliminate the paramefefrom FIG. 1. The phase plane for E(L1) with '=40 andq=1. Itis
Egs.(8) and(9) by the following scaling: seen that, upon backward integration, trajectories quickly converge

to a well-defined “unstable manifold$olid line) for the fixed point

212z, t—=T%, h—T72Pn, T, (v,v,)=(0,0). The asymptotic solution for large v ~ vz, is shown
(10 as the dot-dashed line and is governed by inertia and gravity. The

asymptotic solution for smali, v ~ 72, is shown as the dashed line
Although the scaling10) allows us to make the system pa- and is obtained by neglecting inertia.
rameter free, we shall, in the following, retdinand stick to
the scaling(5)—7), since we want to be able to trace inde- verge to the well-defined stable manifold. Thus, even for a

pendently the effects produced by physical constdlit®  read of moderate length the shape is uniquely determined

the scz_;lled viscosity') and experime_ntally controlled param- jrrespective of the precise downstream conditions, just as we
eters(like flux g). Second, the scalinl0) becomes ill de-  \yould expect.

fined in the limitI’— 0, which is the case that we shall deal  1pe asymptotic behavior of the solutionas: = is easily

with in Sec. IV. seen to be controlled by only the two first terms in ELj):
ie.,

Ill. STATIONARY SOLUTIONS vu,=1, (13

The shape of a stationary thread has been studied by se

ivin
eral authorgsee[5-10)), but since the results are somewhatg g

scattered and incomplete, we have found it important to de- v=12z, (14)
scribe the stationary states in some detail. For stationary so-
lutions the nondimensional flug=h% is constant and we
end up with the following equation for the velocity field h= \/§:q1’2(22)'1’4. (15)
only:
v, v2 This asymptotic solution is shown by the dot-dashed curve in
vo,=1- v + Tz~ F;- (12) Fig. 1 (marked “inertial).

The behavior of the unstable manifold near the fixed point

The fluxq is by the scalind?) related to the physical flu®  (v,v,)=(0,0) can be found by expanding in Clearly we

as must takev =CZ+0(Z%) for the RHS of Eq.(11) to remain

o o finite asz— 0. Inserting this expression into E@.1), we see
q=a*pQlm =0~ g* QU (12) " ihat the inertial termzz?Z can bg neglected, sigg:e it contrib-

When Eq.(11) is solved forward ire—i.e., as an “initial- ~ utes only asz®, whereas all other terms contribute with

value problem”—the typical solutions will diverge for large terms, and we find

z. This can be circumvented by integrating backwards noting —

that the fixed pointv,v,)=(0,0) has a well-defined unstable 1-VClg-2IC=0, (16)

manifold (separating solutions that diverge to plus or minus

infinity), which upon backward integration becomes a stablélvlth the (positive) solution

manifold. In Fig. 1 we show typical phase-space trajectories 1+4Iq- \1+—81“q

found by solving Eq(11) numerically by means of a fourth- C= 2 a7
order Runge-Kutta method, starting from “initial conditions” 8I'q

(vg,vy) at largez and integrating backwards. It is seen that\wjith this choice ofC the solution

the dependence on the particular choice of downflow condi-

tions is very weak since all phase trajectories quickly con- v=CZ, (18

056301-2
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In(v)

6 1 2 3 4 5 & 7 8 9
In(z)

FIG. 2. Plot of the numerical solution of E(l1) for different
values ofl" andg=1. The viscoug18) and inertial(14) asymptotic
are shown, respectively, by the straight lines.

h= \/gz‘l (19

is in fact an exact solution to E@L1), when the inertial term
vv, is neglected. Thi®(z) is shown by the dotted curve in
Fig. 1 (marked “viscous).

If in Eq. (16) we neglect the surface tension effects—i.e.,

PHYSICAL REVIEW Er1, 056301(2005
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FIG. 3. General view of a viscous thread, 8 cm down from the

consider thd q> 1 for the coefficientC—we get outlet.
1 Figure 3 shows the upper 8 cm of the thread and Fig. 4
C= o (20 shows one of the 3-mm segments—appearing cylindrical on

The crossover between the viscous and inertial solutions i
roughly given by the valug” where they become equal: i.e.,

\5 2/3
Z~ (—) ~ 23 (21)
C

for I'q> 1. In Fig. 2 we plotv(z) for various values of".

Experimental observation of a stationary state

We have performed experiments to investigate the form of
falling threads. We shall describe them briefly here to show
that one finds good agreement with the results of the previ-
ous section. More details on the setup and data analysis can
be found in[11]. The experimental setup consists of a cylin-
drical tank filled with an experimental fluid. The outlet at the
bottom of the tank is controlled by a removable plug. When
the liquid exits from the upper tank, the stream is collected in
the lower tank. To avoid disturbances from external air flows
we shelter the installation with the metal sheets. In our ex-
periments we used heavy silicone oil wiflh=60 Pas,p
=1 gcm?, and =20 cn?s?, which corresponds td’
~1000.

this short scale.

Experimental results for two different fluxes are given in

Eigs. 5 and 6 where we also compare with nhumerical solu-

1007

80r

s0f

40t

20}

0 20 40 60 80 100 120 140

FIG. 4. Typical segment of a thread, photographed by charge-

coupled-devicé CCD) camera. The thread is seen as the dark black

The flow was filmed with a video camera and the threadarea. The vertical bands of different shadings are caused by the
profile was found from a sequence of separate runs, eaghumination. The frame shown is 4 mm high and 5 mm wide. The
recording a small segment with a length of around 4 mmedge of the thread is estimated as the contour level with 95% of the
with a distance of 10 cm, made under identical conditionsbrightness of the background.
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FIG. 5. Experimental data poinfsith error bar$ vs numerical FIG. 6. Experimental data points/ith error bar$ vs numerical
solution for a stationary threa@=0.46 cni/s, q=0.65. solution for a stationary threa@=0.32 cni/s, q=0.45.
tions. The numerical solutions for the stationary profile were y=z-vot, 7=t, (23

chosen such that they match the data at the olitket h(z

=0)=0.46 cn] which is outside of the figure. This might where

seem somewhat unphysical, since the long-wavelength ap- f

proximation does not apply at the outlet. Alternatively one v,= (,——§ + w0 (24)
can, as seen from the figures, choose to fit=at0 cm(left- ho
most point in the figur@swith similar results. The crossover
lengthz" is comparable with the length of the thread, so we
only see the beginning of the asymptotic regifid). With ™™ o
our setup the thread remains perfectly continuous without

any drop formation under constant flux conditions, evenlransforming as usual to Fourier modes as

down to the lowest controllable fluxes, where the thread is as ~ )

thin as a spider’s web. The same is true when we increase the (©,h) = (Cy,Cy)expliky +s7) (26)

thread length to 3 m. leads to the dispersion relation

IV. STABILITY PROPERTIES 1 2 206
. S = E - ket h + v k4 , (27)
0

A. Stability of a fluid cylinder in the long-wave length
approximation which, within the long-wave length regidd,<1 coincides

. : . with the well-known results for the classical Rayleigh-
To set the stage for the stability analysis, we first réprop|teau instability 1]

duce the classical Rayleigh-Plateau instability in the long- In the long-wave length limik?< o/ (12h,) the dynamics

wave length approximatiopl,2]. The starting point is the . . . : ) .
(dimensiogna)l sgtpof equatioﬁn$1]) and(2). In tk?e F;bsence of |s): inviscid and given byfor the unstable mode with positive
S

gravity (g=0) the stationary state is a cylinder moving with
constant velocity. We thus assume P
s=ky/—. (28)
2hg

v=v9+7(z1),

heDy- (25)

h=h, +F1(z,t), B. Stability of the thread solution

. . ] We are now ready to study the stability of the spatially
and obtain the linearized system varying thread solution—i.e., the stability of the stationary
states of(8) and(9):

T+ g0, = ah—§ + 10,y h? + (vh?),=0, (29
0
1 h?
-~ 1 vt+vvz=—<—> +1+F(UZ—2)Z. (30
e+ voh, = = > Ml (22) h/, h
We linearize around the stationary soluti¢g(z),hy(2)),
It is convenient to go to the comoving frame given in Egs.(14) and(15) as

056301-4
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v=vo(l+a),

h=hy(1 +b),

to obtain the linear system

(31)
ar . LT
A+ ay| Vo= 5oz | T A Voy| 200~ TV, Vozrt S V0,
21)0 ZUO
1o - _ 1 .-
- l_‘azz_ bz(q l/2001/2+ l_‘UOlUOZ) - qu l/2003/21)02: 0,

(32)

b+ v, + %af 0. (33)

To get rid of the advection term, we introduce the stretched

spatial variabley as

y= f dz (34)
vo(2) ’
so thatvy(2)d,=d,. We also define the functiom(y) as
WI(y) = vo(2(y)), (39
and these definitions transform E¢82) and(33) into
q—l/2
a+ay+2W 'Wa=q W32, + e WSAN b
+TW qay, + 2W W, b,
+(Wyy — 2WAWf)al, (36)
a
bt+by+—2Y:0. (37)

For the inertial stationary solutiono(z):\e"z_z we have ex-
plicitly

2

=%

2 (38)

W(y) =Yy,

and we finally transform Eq$36) and(37) into the comov-
ing frame of reference,

y=x+t, t=t, (39
to obtain
a
by + EX =0, (40)

1
a + 2a(x+ t)—l - q—l/Z(X + t)—3/2bx + Eq—1/2(x + t)—5/2b

+ (X + 1) @, + 2(x+ 1) b,

- 2(x+1t)2al. (41)

We now Fourier transfom ix, assuming that the asymptotic
behavior will not be influenced by the slow algebraic varia-
tion with x in the denominators as long &% X, an assump-

PHYSICAL REVIEW Er71, 056301(2005

tion which will be verified in the Appendix. Thus we find, in
terms of the Fourier transforn&k,t) andb(k,t),

2i~

a= ?bt, (42
= -1 i1, ~-1/24-312)1 1 ~1/2¢-5/2
a ~—2Zat - +ikq 4 b+5q 1™
+ Tt 72(- KZ& + 2it Kb - 2t723). (43)

As one can see immediately from the structure of &),

all viscous terms are subdominant with respect to surface
tension terms in the limit—-oc. In this limit we obtain the
equations

2i~
5 = Ebt, (44)
3 =- Zat 1+ ikq Va3, (45)
Making finally the substitution
b=t"B, (46)
we find
k2 -1/2
By = 9 -omp, (47
The WKB ansat412,13
t
B(k,t) =By exp(f cp(k,t’)dt’) (48)
gives
B.(t) = By exp(242kq Y414, (49)

The WKB approximate&49) is asymptotically valid fot— o
since ®(k,t)=t32, which decays sufficiently rapidlysee
[12]).

If we assume that the amplitudig(k) is localized around
a particular wave vectdr, i.e., as a Gaussian

Bo(k) = ex - c(k — ko)?], (50)

we find that the maximum of the envelope, in the comoving
frame, grows as

B(x=0) ~ exp(2q Y4*?/c) (51)
for sufficiently larget or, equivalently,
B(z=1%2) ~ exp(2>“q~Y?2“/c) (52)

for the perturbation advected along the thread. Thus the typi-
cal instability time ist.~q and from Eqgs(12) and (7) we
can estimate the typicd&tlimensional instability length—in
time and in space, respectively—assuming thatO(1):
Te~Qot, (53)
Z;~ gt~ Q’go>. (54)

One can understand the main result of this section from

056301-5
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simple physical considerations: namely, usingteetching ACKNOWLEDGMENTS
argument13,14). A slice of fluid of lengthl(t) is advected
by the flow and stretcheddl/dt=Idv/dz. For the inertia-
dominated solutiorv(z) =2z we haved!/dt=1/+2z. From
the above equation and the free-fall dynamics of the flui

: ooy i . -
element(i.e., z=1%/2) it immediately follows thaull/dt=1/1 Research Council for support. After the submission of this

?hndl(t):lqt/tto. H(:ncti’ the flu:d eltehmefr::]st_re_tt_chles Ii:«agdt_ manuscript, we became aware of a manuscript before publi-
€ Same IS true for the wavelength of the initial perturbation:. ., , by U. S. Sauter and H. W. Buggisch, where some of
A({t)=\gt/ty. Consequently, the wave vector stretches a

Ihe results in Sec. Il were obtained independently. We thank
k(D) =koto/t. From Eq.(15) we haveh(t) =" ™2 and thus e authors for providing us with this manuscript.
we find the instability growth rate from E@28) as

We would like to thank Jens Eggers for helpful advice and
several important discussions. We are grateful to Sid Nagel
ior several inspiring discussions and to Christophe Clanet for
elpful comments. T.B. thanks the Danish Natural Science

k(t) _A/4i-3/ APPENDIX
S(t) o« == o koq 44, (55)
vh(t) In this appendix we show that the explicit dependence on

) ) , ) x in Eq. (41) can be neglected wher |x|. Neglecting this
allowing us to estimate the amplitude of disturbance as  ariation led to the “local” solutiort49):

Sh(t) = exp( f s(t)dt) « expkod 44, (56) bo(k,t) =t explektt), (A1)
in agreement with Eq(49). Note that ifh(z) ~z ¢ and thus o= Z_iB (A2)
v(2) ~ 7%, the thread would be stable if 2£7£<1/2. This koo

could be realized if the gravitational field increasedgé® — _ _ _
~Z with ¢=4é-1, so the case of constag(¢=1/4) is only ~ Wheree=18q""* and where we define the direct and inverse

slightly below the limit of stability(¢=2/7). Fourier transforms as

The fact that our asymptotic results are independent of
viscosity is quite counterintuitive. Our everyday experience ak,t) = S f a(x,tyexp(— ikx)dx,
tells us that only very viscous fluids form long threads,

whereas low-viscosity fluids like water are very vulnerable to

the Rayleigh-Plateau instability and drop formation. Viscous

effects in Eqs(36) and (37) asymptotically delay the insta- a(x,t) = j ack, t)explikx)dk. (A3)
bility, but they only seem to produce mild corrections

=exp(-Tkt™™) ‘and cannot account for the drastic differ- Let us now include effects of nonlocality by the Fourier
ences between, say, water and syrup. The proper treatment of | - ation of Eq(41):

the role of viscosity in the instability of a falling thread goes
beyond our asymptotic analysis, since the drop formation in i i
less viscous fluids presumably happens before the asymptoti@, + 1 J Md =q¥? ! j %;,EX)
state(14) has had time to form. How this happens remains an (x+1)
open question which we hope to address in future research. R 1 f b exp(— ikx)

— 55, 00X
27 ) 2(x+t)%?
V. DISCUSSION (A4)

X+t 21

The Stationary ﬂOW Of a |0ng fal“ng ViSCOUS thl’ead haS We assume thdk|<t and expand integra| kernels in Eq

the asymptotic shapk(z) ~z*** depending neither on sur- (a4) in a power series di|/t. First we consider LHS of Eq.
face tensiorr nor viscosityr. Nearer the outlet the station- (a4):

ary shape depends on surface tension and viscosity and
h(z) ~ z'1. The crossover length between the viscous and in- 1 f 2a expl(— ikx)

T
dx=2t"a+2>, t"ch, —

ertial domains scales like?30"12 The numerical solution —
X+t n=1 277

of the stationary problem fits well the experimentally ob- 2m
served shapes.

The asymptotic shapl(z) ~z 1" is unstable as expected X f x"aexp(- ikx)dx. (A5)
from the classical results for the stability of a fluid cylinder.
The perturbations grow, however, very slowly, such that the We substitute
Fourier components increase asymptotically only as
exp(constx tY4), where the constant imdependent of vis- 1 N i ol A%
cosity. The instability is so weak that if the gravitational field o f x"a expl- ikxydx= (i) dk a (AB)
was increasing slowly—i.eg(z) ~ z5, with 1/7<{<1—the
thread would become asymptotically stable. and get

n

056301-6
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o =-3/2-1 1/4 i
1 [ 2aexp—ikx ~ ' n t™'4" exp(ekt”?). Obviously, forn=1 at t—« we have
Z_J #dx: 2@+ 2> t‘“‘1CTl(|)“<d—k) a, =G 7/4< 1732 and we conclude that all terms produced by
m X n=1 LHS of Eq. (A5) are subdominant.
(A7) Now we continue with the correction terms on the RHS.

N ) ) . . of Eq. (A4). Applying the same method, we get
whereC, is a binomial coefficient. Let us estimate the cor-

rection term in the RHS of EqA7) for the local solution if by exp(— ikx)

. . d\" -~
(A1) and(A2). After some algebra we obtain - de: t‘3’220 t‘”CE3,2(i)“+1< d_k) (kby).
-

dx = 20 %(t) + bo(t) 2 tCl (i)™ (A9)

X+t n=1

1 f 2a,(t)exp(ikx)
21

. So the correction term@=1) are

X >, CM(n— m)! (- 1)™ - Ltmm i -
rrFO( ! / o r3’221 t734C (1) e ke + nt Y 4]by.  (A10)
X MM ke + (m— 4)t™14]. "=

(A8)  Now the leading-order term is proportional ti"43/%,(t),
Thus the highest-order term under the inner summation i¥hich is dominated by the main term proportional to
proportional tot™ 7’4, Taking into account the general mul- t~3/2b,(t) whent— c. As for the last term in the RHS of Eq.
tiplier "%, we have a leading-order correction proportional (A4), it only produces minor corrections to the main solution
to tE™ 7M1 exp(ekt!/). This should be compared with the even in the leading order. Thus we see that|fbit<1 we
main contribution on the RHS. of Eq.(A4)—i.e., can neglect the effects of nonlocality in Ed\4).
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