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Shape and stability of a viscous thread
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2Optics and Fluid Dynamics Department, Risø National Laboratory, DK-4000 Roskilde, Denmark
sReceived 1 March 2004; revised manuscript received 18 November 2004; published 3 May 2005d

When a viscous fluid, like oil or syrup, streams from a small orifice and falls freely under gravity, it forms
a long slender thread, which can be maintained in a stable, stationary state with lengths up to several meters.
We discuss the shape of such liquid threads and their surprising stability. The stationary shapes are discussed
within the long-wavelength approximation and compared to experiments. It turns out that the strong advection
of the falling fluid can almost outrun the Rayleigh-Plateau instability. The asymptotic shape and stability are
independent of viscosity and small perturbations grow with time as expsCt1/4d, where the constant is indepen-
dent of viscosity. The corresponding spatial growth has the form expfsz/Ld1/8g, wherez is the down stream
distance andL,Q2s−2g and wheres is the surface tension divided by density,g is the gravity, andQ is the
flux. We also show that a slow spatial increase of the gravitational field can make the thread stable.

DOI: 10.1103/PhysRevE.71.056301 PACS numberssd: 47.20.Gv, 47.20.Dr, 47.54.1r

I. INTRODUCTION

When honey or syrup is poured from an outlet, one easily
generates very long threads of flowing fluid of surprising
beauty and stability. A uniform column of fluid is unstable
due to surface tension effects—the famous Rayleigh-Plateau
instability f1g. Viscosity diminishes the strength, but does not
remove the instability, and thus the observation of stable fall-
ing viscous threads of, say, 2 m is surprising—in our local
stairwell, we have seen threads of syrup up to around 10 m.
In the present paper we shall discuss the shape and stability
of such falling viscous jets or threads. We should note from
the outset that we are confining our attention to Newtonian
fluids se.g., syrup or silicone oild.

Our starting point in Sec. II is the long-wave approxima-
tion ssee, e.g.,f2gd, which only takes into account the
leading-order dependence of the velocity field on the radial
variable. In Sec. III we study the stationary solutions and, in
particular, their asymptotic forms. The final asymptoticssfor
large downstream distancezd is always governed solely by
gravity, as in a free fall. We perform a simple experiment
with heavy silicone oil and find that the observed stationary
shape of a thread is in a good agreement with the theoretical
predictionsSec. IIId. Then we proceed with a linear stability
analysis sSec. IVd. After a recapitulation of the classical
Rayleigh-Plateau instability in the long-wavelength limit in
the absence of gravity, we study the full linear stability prob-
lem of a falling thread using a Lagrangian description and
solve it asymptotically.

II. DERIVATION OF THE MODEL

To describe the dynamics of a fluid column falling under
gravity, we assume that the flow is axisymmetric and that the
velocity has only a radial and a vertical component. In the
long-wave approximationf3,4g the velocity is expanded in a

power series in the radial variabler and one findssexpress-
ing mass conservation and thez component of the Navier-
Stokes equation, respectivelyd

sh2dt + swh2dz = 0, s1d

wt + wwz = −
g

r
skdz + g + 3n

swzh
2dz

h2 s2d

fgiven as Eqs.s17d and s18d in f4gg, where wsz,td is the
leading-order term in the expansion of the vertical velocity
field in r, hsz,td is the radius of the jet,g is the surface
tension coefficient,n is the kinematic viscosity, andg is the
gravitational acceleration. The curvature term in Eq.s2d is

k = sÎ1 + hz
2d−1S1

h
−

hzz

1 + hz
2D , s3d

but since we are interested in the asymptotic properties of
thin threads, we neglect the curvature in thesr ,zd plane com-
pared to the one around the axis of the thread and assume
thathz!1. Thus we shall, throughout the paper, use the slen-
der approximation

k <
1

h
. s4d

We now introduce dimensionless variables through

z→ az, t → bt h → ah, w → a

b
v, s5d

where a and b are dimensional coefficients. Thus Eq.s2d
acquires the following formswith s=g /rd:

vt + vvz =
b2

a
g −

b2

a3sS1

h
D

z
+ 3n

b

a2

svzh
2dz

h2 , s6d

whereas Eq.s1d preserves its form since it is homogeneous in
space and time variables.

We choosea andb such that the two first coefficients on
the right-hand sidesRHSd of Eq. s6d are equal to unity: i.e.,*Electronic address: senchen@fysik.dtu.dk
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a = s1/2g−1/2, b = s1/4g−3/4. s7d

This allows us to consider both viscid and inviscid cases by
means of the last coefficient, the dimensionless viscosityG
=3nb /a2=3ns−3/4g1/4. fThe Morton number often used in
the bubble literature issG /3d4 and the Kapitza number used
for falling films is Ka=sG /3d−4/3.g Note that this choice of
rescaling means that lengths are measured in units of the
capillary lengthlc=s1/2g−1/2=a. Thus the nondimensional-
ized model has the following form:

sh2dt + svh2dz = 0, s8d

vt + vvz = − S1

h
D

z
+ 1 +G

svzh
2dz

h2 . s9d

Note that it is possible to eliminate the parameterG from
Eqs.s8d and s9d by the following scaling:

z→ G2/3z, t → G1/3t, h → G−2/3h, v → G1/3v.

s10d

Although the scalings10d allows us to make the system pa-
rameter free, we shall, in the following, retainG and stick to
the scalings5d–s7d, since we want to be able to trace inde-
pendently the effects produced by physical constantsslike
the scaled viscosityGd and experimentally controlled param-
etersslike flux qd. Second, the scalings10d becomes ill de-
fined in the limitG→0, which is the case that we shall deal
with in Sec. IV.

III. STATIONARY SOLUTIONS

The shape of a stationary thread has been studied by sev-
eral authorssseef5–10gd, but since the results are somewhat
scattered and incomplete, we have found it important to de-
scribe the stationary states in some detail. For stationary so-
lutions the nondimensional fluxq=h2v is constant and we
end up with the following equation for the velocity field
only:

vvz = 1 −
vz

2Îqv
+ Gvzz− G

vz
2

v
. s11d

The fluxq is by the scalings7d related to the physical fluxQ
as

q = a−3bQ/p = s−5/4g3/4Q/p. s12d

When Eq.s11d is solved forward inz—i.e., as an “initial-
value problem”—the typical solutions will diverge for large
z. This can be circumvented by integrating backwards noting
that the fixed pointsv ,vzd=s0,0d has a well-defined unstable
manifold sseparating solutions that diverge to plus or minus
infinityd, which upon backward integration becomes a stable
manifold. In Fig. 1 we show typical phase-space trajectories
found by solving Eq.s11d numerically by means of a fourth-
order Runge-Kutta method, starting from “initial conditions”
sv0,vz0d at largez and integrating backwards. It is seen that
the dependence on the particular choice of downflow condi-
tions is very weak since all phase trajectories quickly con-

verge to the well-defined stable manifold. Thus, even for a
thread of moderate length the shape is uniquely determined
irrespective of the precise downstream conditions, just as we
would expect.

The asymptotic behavior of the solution asz→` is easily
seen to be controlled by only the two first terms in Eq.s11d:
i.e.,

vvz = 1, s13d

giving

v = Î2z, s14d

h =Îq

v
= q1/2s2zd−1/4. s15d

This asymptotic solution is shown by the dot-dashed curve in
Fig. 1 smarked “inertial”d.

The behavior of the unstable manifold near the fixed point
sv ,vzd=s0,0d can be found by expanding inz. Clearly we
must takev=Cz2+Osz3d for the RHS of Eq.s11d to remain
finite asz→0. Inserting this expression into Eq.s11d, we see
that the inertial termvvz can be neglected, since it contrib-
utes only asz3, whereas all other terms contribute withz0

terms, and we find

1 −ÎC/q − 2GC = 0, s16d

with the spositived solution

C =
1 + 4Gq − Î1 + 8Gq

8G2q
. s17d

With this choice ofC the solution

v = Cz2, s18d

FIG. 1. The phase plane for Eq.s11d with G=40 andq=1. It is
seen that, upon backward integration, trajectories quickly converge
to a well-defined “unstable manifold”ssolid lined for the fixed point
sv ,vzd=s0,0d. The asymptotic solution for largez, v,Îz, is shown
as the dot-dashed line and is governed by inertia and gravity. The
asymptotic solution for smallz, v,z2, is shown as the dashed line
and is obtained by neglecting inertia.
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h =Î q

C
z−1 s19d

is in fact an exact solution to Eq.s11d, when the inertial term
vvz is neglected. Thisvszd is shown by the dotted curve in
Fig. 1 smarked “viscous”d.

If in Eq. s16d we neglect the surface tension effects—i.e.,
consider theGq@1 for the coefficientC—we get

C <
1

2G
. s20d

The crossover between the viscous and inertial solutions is
roughly given by the valuez* where they become equal: i.e.,

z* < SÎ2

C
D2/3

, G2/3 s21d

for Gq@1. In Fig. 2 we plotvszd for various values ofG.

Experimental observation of a stationary state

We have performed experiments to investigate the form of
falling threads. We shall describe them briefly here to show
that one finds good agreement with the results of the previ-
ous section. More details on the setup and data analysis can
be found inf11g. The experimental setup consists of a cylin-
drical tank filled with an experimental fluid. The outlet at the
bottom of the tank is controlled by a removable plug. When
the liquid exits from the upper tank, the stream is collected in
the lower tank. To avoid disturbances from external air flows
we shelter the installation with the metal sheets. In our ex-
periments we used heavy silicone oil withm=60 Pa s,r
=1 g cm−3, and s=20 cm3 s−2, which corresponds toG
<1000.

The flow was filmed with a video camera and the thread
profile was found from a sequence of separate runs, each
recording a small segment with a length of around 4 mm,
with a distance of 10 cm, made under identical conditions.

Figure 3 shows the upper 8 cm of the thread and Fig. 4
shows one of the 3-mm segments—appearing cylindrical on
this short scale.

Experimental results for two different fluxes are given in
Figs. 5 and 6 where we also compare with numerical solu-

FIG. 2. Plot of the numerical solution of Eq.s11d for different
values ofG andq=1. The viscouss18d and inertials14d asymptotic
are shown, respectively, by the straight lines.

FIG. 3. General view of a viscous thread, 8 cm down from the
outlet.

FIG. 4. Typical segment of a thread, photographed by charge-
coupled-devicesCCDd camera. The thread is seen as the dark black
area. The vertical bands of different shadings are caused by the
illumination. The frame shown is 4 mm high and 5 mm wide. The
edge of the thread is estimated as the contour level with 95% of the
brightness of the background.
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tions. The numerical solutions for the stationary profile were
chosen such that they match the data at the outletfi.e., hsz
=0d=0.46 cmg which is outside of the figure. This might
seem somewhat unphysical, since the long-wavelength ap-
proximation does not apply at the outlet. Alternatively one
can, as seen from the figures, choose to fit atz=10 cmsleft-
most point in the figuresd with similar results. The crossover
lengthz* is comparable with the length of the thread, so we
only see the beginning of the asymptotic regimes14d. With
our setup the thread remains perfectly continuous without
any drop formation under constant flux conditions, even
down to the lowest controllable fluxes, where the thread is as
thin as a spider’s web. The same is true when we increase the
thread length to 3 m.

IV. STABILITY PROPERTIES

A. Stability of a fluid cylinder in the long-wave length
approximation

To set the stage for the stability analysis, we first repro-
duce the classical Rayleigh-Plateau instability in the long-
wave length approximationf1,2g. The starting point is the
sdimensionald set of equationss1d ands2d. In the absence of
gravity sg=0d the stationary state is a cylinder moving with
constant velocity. We thus assume

v = v0 + ṽsz,td,

h = h0 + h̃sz,td,

and obtain the linearized system

ṽt + v0ṽz = s
h̃z

h0
2 + nṽzz,

h̃t + v0h̃z = −
1

2
h0ṽz. s22d

It is convenient to go to the comoving frame

y = z− v0t, t = t, s23d

where

ṽt = s
h̃y

h0
2 + nṽyy, s24d

h̃t = −
1

2
h0ṽy. s25d

Transforming as usual to Fourier modes as

sṽ,h̃d = sC1,C2dexpsiky + std s26d

leads to the dispersion relation

s± =
1

2
F− nk2 ±Î2sk2

h0
+ n2k4G , s27d

which, within the long-wave length regionkh0!1 coincides
with the well-known results for the classical Rayleigh-
Plateau instabilityf1g.

In the long-wave length limitk2!s / sn2h0d the dynamics
is inviscid and given bysfor the unstable mode with positive
sd

s= kÎ s

2h0
. s28d

B. Stability of the thread solution

We are now ready to study the stability of the spatially
varying thread solution—i.e., the stability of the stationary
states ofs8d and s9d:

ht
2 + svh2dz = 0, s29d

vt + vvz = − S1

h
D

z
+ 1 +G

svzh
2dz

h2 . s30d

We linearize around the stationary solution(v0szd ,h0szd),
given in Eqs.s14d and s15d as

FIG. 6. Experimental data pointsswith error barsd vs numerical
solution for a stationary thread,Q=0.32 cm3/s, q=0.45.

FIG. 5. Experimental data pointsswith error barsd vs numerical
solution for a stationary thread,Q=0.46 cm3/s, q=0.65.
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v = v0s1 + ad,

h = h0s1 + bd, s31d

to obtain the linear system

at + azSv0 −
3G

2v0
v0zD + av0

−1v0zS2v0 − Gv0z
−1v0zz+

G

2v0
v0zD

− Gazz− bzsq−1/2v0
−1/2 + Gv0

−1v0zd −
1

2
bq−1/2v0

−3/2v0z = 0,

s32d

bt + v0bz +
v0

2
az = 0. s33d

To get rid of the advection term, we introduce the stretched
spatial variabley as

y =E dz

v0szd
, s34d

so thatv0szd]z=]y. We also define the functionWsyd as

Wsyd = v0„zsyd…, s35d

and these definitions transform Eqs.s32d and s33d into

at + ay + 2W−1Wya = q−1/2W−3/2by +
q−1/2

2
W−5/2Wyb

+ GW−2fayy + 2W−1Wyby

+ sWyy − 2W−2Wy
2dag, s36d

bt + by +
ay

2
= 0. s37d

For the inertial stationary solutionv0szd=Î2z we have ex-
plicitly

z=
y2

2
, Wsyd = y, s38d

and we finally transform Eqs.s36d ands37d into the comov-
ing frame of reference,

y = x + t, t = t, s39d

to obtain

bt +
ax

2
= 0, s40d

at + 2asx + td−1 = q−1/2sx + td−3/2bx +
1

2
q−1/2sx + td−5/2b

+ Gsx + td−2faxx + 2sx + td−1bx

− 2sx + td−2ag. s41d

We now Fourier transfom inx, assuming that the asymptotic
behavior will not be influenced by the slow algebraic varia-
tion with x in the denominators as long ast@x, an assump-

tion which will be verified in the Appendix. Thus we find, in

terms of the Fourier transformsãsk,td and b̃sk,td,

ã =
2i

k
b̃t, s42d

ãt < − 2ãt−1 + ikq−1/2t−3/2b̃ +
1

2
q−1/2t−5/2b̃

+ Gt−2s− k2ã + 2it−1kb̃− 2t−2ãd. s43d

As one can see immediately from the structure of Eq.s43d,
all viscous terms are subdominant with respect to surface
tension terms in the limitt°`. In this limit we obtain the
equations

ã =
2i

k
b̃t, s44d

ãt = − 2ãt−1 + ikq−1/2t−3/2b̃. s45d

Making finally the substitution

b̃ = t−1B, s46d

we find

Btt =
k2q−1/2

2
t−3/2B. s47d

The WKB ansatzf12,13g

Bsk,td = B0 expSEt

Fsk,t8ddt8D s48d

gives

B+std = B0 exps2Î2kq−1/4t1/4d. s49d

The WKB approximates49d is asymptotically valid fort°`
since Fsk,td~ t−3/2, which decays sufficiently rapidlyssee
f12gd.

If we assume that the amplitudeB0skd is localized around
a particular wave vectork0, i.e., as a Gaussian

B0skd = expf− csk − k0d2g, s50d

we find that the maximum of the envelope, in the comoving
frame, grows as

Bsx = 0d , exps2q−1/2t1/2/cd s51d

for sufficiently larget or, equivalently,

Bsz= t2/2d , exps25/4q−1/2z1/4/cd s52d

for the perturbation advected along the thread. Thus the typi-
cal instability time istc,q and from Eqs.s12d and s7d we
can estimate the typicalsdimensionald instability length—in
time and in space, respectively—assuming thatc,Os1d:

Tc , Qs−1, s53d

Zc , gtc
2 , Q2gs−2. s54d

One can understand the main result of this section from
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simple physical considerations: namely, using astretching
argumentf13,14g. A slice of fluid of lengthlstd is advected
by the flow and stretched:dl /dt= l]v /]z. For the inertia-
dominated solutionvszd=Î2z we havedl /dt= l /Î2z. From
the above equation and the free-fall dynamics of the fluid
elementsi.e., z= t2/2d it immediately follows thatdl /dt= l / t
and lstd= l0t / t0. Hence, the fluid element stretches liket, and
the same is true for the wavelength of the initial perturbation:
lstd=l0t / t0. Consequently, the wave vector stretches as
kstd=k0t0/ t. From Eq.s15d we havehstd~q1/2t−1/2 and thus
we find the instability growth rate from Eq.s28d as

sstd ~
kstd
Îhstd

~ k0q
−1/4t−3/4, s55d

allowing us to estimate the amplitude of disturbance as

dhstd ~ expSE sstddtD ~ expsk0q
−1/4t1/4d, s56d

in agreement with Eq.s49d. Note that ifhszd,z−j and thus
vszd,z2j, the thread would be stable if 2 /7,j,1/2. This
could be realized if the gravitational field increased asgszd
,zz with z=4j−1, so the case of constantg sj=1/4d is only
slightly below the limit of stabilitysj=2/7d.

The fact that our asymptotic results are independent of
viscosity is quite counterintuitive. Our everyday experience
tells us that only very viscous fluids form long threads,
whereas low-viscosity fluids like water are very vulnerable to
the Rayleigh-Plateau instability and drop formation. Viscous
effects in Eqs.s36d and s37d asymptotically delay the insta-
bility, but they only seem to produce mild corrections
~exps−Gkt−1/4d and cannot account for the drastic differ-
ences between, say, water and syrup. The proper treatment of
the role of viscosity in the instability of a falling thread goes
beyond our asymptotic analysis, since the drop formation in
less viscous fluids presumably happens before the asymptotic
states14d has had time to form. How this happens remains an
open question which we hope to address in future research.

V. DISCUSSION

The stationary flow of a long falling viscous thread has
the asymptotic shapehszd,z−1/4 depending neither on sur-
face tensions nor viscosityn. Nearer the outlet the station-
ary shape depends on surface tension and viscosity and
hszd,z−1. The crossover length between the viscous and in-
ertial domains scales liken2/3s−1/2. The numerical solution
of the stationary problem fits well the experimentally ob-
served shapes.

The asymptotic shapehszd,z−1/4 is unstable as expected
from the classical results for the stability of a fluid cylinder.
The perturbations grow, however, very slowly, such that the
Fourier components increase asymptotically only as
expsconst3 t1/4d, where the constant isindependent of vis-
cosity. The instability is so weak that if the gravitational field
was increasing slowly—i.e.,gszd,zz, with 1/7,z,1—the
thread would become asymptotically stable.
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APPENDIX

In this appendix we show that the explicit dependence on
x in Eq. s41d can be neglected whent@ uxu. Neglecting this
variation led to the “local” solutions49d:

b̃0sk,td = t−1 exps«kt1/4d, sA1d

ã0 =
2i

k
b̃0t, sA2d

where«=Î8q−1/4 and where we define the direct and inverse
Fourier transforms as

ãsk,td =
1

2p
E asx,tdexps− ikxddx,

asx,td =E ãsk,tdexpsikxddk. sA3d

Let us now include effects of nonlocality by the Fourier
transformation of Eq.s41d:

ãt +
1

2p
E 2a exps− ikxd

x + t
dx= q−1/2 1

2p
E bx exps− ikxd

sx + td3/2 dx

+ q−1/2 1

2p
E b exps− ikxd

2sx + td5/2 dx.

sA4d

We assume thatuxu! t and expand integral kernels in Eq.
sA4d in a power series ofuxu / t. First we consider LHS of Eq.
sA4d:

1

2p
E 2a exps− ikxd

x + t
dx= 2t−1ã + 2o

n=1

`

t−n−1C−1
n 1

2p

3E xna exps− ikxddx. sA5d

We substitute

1

2p
E xna exps− ikxddx= sidnS d

dk
Dn

ã sA6d

and get
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1

2p
E 2a exps− ikxd

x + t
dx= 2t−1ã + 2o

n=1

`

t−n−1C−1
n sidnS d

dk
Dn

ã,

sA7d

whereCm
n is a binomial coefficient. Let us estimate the cor-

rection term in the RHS of Eq.sA7d for the local solution
sA1d and sA2d. After some algebra we obtain

1

2p
E 2a0stdexpsikxd

x + t
dx= 2t−1ã0std + b̃0stdo

n=1

`

t−nC−1
n sidn+1

3o
m=0

n

Cn
msn − md!s− 1dm−1k−1−n+m

3«mtsm−7d/4fk« + sm− 4dt−1/4g.

sA8d

Thus the highest-order term under the inner summation is
proportional totsn−7d/4. Taking into account the general mul-
tiplier t−n−1, we have a leading-order correction proportional
to t−s3n+7d/4t−1 exps«kt1/4d. This should be compared with the
main contribution on the RHS. of Eq.sA4d—i.e.,

t−3/2t−1 exps«kt1/4d. Obviously, for nù1 at t°` we have
t−s3n+7d/4, t−3/2 and we conclude that all terms produced by
LHS of Eq. sA5d are subdominant.

Now we continue with the correction terms on the RHS.
of Eq. sA4d. Applying the same method, we get

1

2p
E bx exps− ikxd

sx + td3/2 dx= t−3/2o
n=0

`

t−nC−3/2
n sidn+1S d

dk
Dn

skb̃d.

sA9d

So the correction termssnù1d are

~ t−3/2o
n=1

`

t−3n/4C−3/2
n sidn+1«n−1fk« + nt−1/4gb̃0. sA10d

Now the leading-order term is proportional tot−3n/4t−3/2b̃0std,
which is dominated by the main term proportional to

t−3/2b̃0std whent→`. As for the last term in the RHS of Eq.
sA4d, it only produces minor corrections to the main solution
even in the leading order. Thus we see that foruxu / t!1 we
can neglect the effects of nonlocality in Eq.sA4d.
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