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Screened Coulomb interactions in metallic alloys.
I. Universal screening in the atomic-sphere approximation

A. V. Ruban and H. L. Skriver
Center for Atomic-scale Materials Physics and Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Den

~Received 18 June 2001; revised manuscript received 23 April 2002; published 26 June 2002!

We have used the locally self-consistent Green’s-function~LSGF! method in supercell calculations to es-
tablish the distribution of the net charges assigned to the atomic spheres of the alloy components in metallic
alloys with different compositions and degrees of order. This allows us to determine the Madelung potential
energy of a random alloy in the single-site, mean-field approximation. The Madelung potential makes density-
functional calculations by the conventional single-site, coherent potential approximation practically identical to
the more rigorous LSGF supercell results obtained with a single-site local interaction zone. We demonstrate
that the basic mechanism that governs the charge distribution is the screening of the net charges of the alloy
components that makes the direct Coulomb interactions short ranged. In the atomic-sphere approximation, this
screening appears to be almost independent of the alloy composition, lattice spacing, and crystal structure. A
formalism which allows a consistent treatment of the screened Coulomb interactions within the single-site
mean-field approximation is outlined. We also derive the contribution of the screened Coulomb interactions to
the S(2) formalism and the generalized perturbation method.

DOI: 10.1103/PhysRevB.66.024201 PACS number~s!: 71.23.2k
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I. INTRODUCTION

The coherent potential approximation~CPA!,1–3 as imple-
mented on the basis of multiple-scattering theory4,5 and com-
bined with density-functional theory~DFT!,6–9 constitutes
the basis forab inito calculations of the electronic structur
and physical properties of random metallic alloys. This co
bination of the CPA with DFT, or, in most cases, with th
local-density approximation~LDA !, seems to be quite
transparent8,9 leading to expressions for the one-electron p
tential and total energy which are very similar to those
ordered systems. However, there is, by now, a w
recognized problem10–13 with this description related to th
fact that the atomic or ‘‘muffin-tin’’ spheres, whichartifi-
cially divide the crystal into regions associated with partic
lar alloy components, may possess nonzero net charges

The problem stems from the fact that the conventio
single-site~SS! DFT-CPA method is based on the effectiv
medium model of a random alloy which considers only co
ditionally averaged quantities and leads to the use of
single-site approximation not only in the electronic structu
part of the problem during the solution of the CPA equatio
but also in the DFT self-consistent loop in the calculations
the electrostatic contributions to the one-electron poten
and energy. The single-site approximation provides no in
mation as to the charge distribution beyond the atom
sphere of each alloy component and, since the surroun
effective medium is electroneutral, Poisson’s equation can
be solved properly if the atomic spheres have nonzero
charges. Hence to find the correct solution to Poisson’s eq
tion one must somehow describe the effect of the miss
charge. Since the electron density inside each atomic sp
is well defined, any such description may be associated w
a modification of the effective medium specifically foreach
alloy component. This may be regarded as an inconsiste
since, in that case, the CPA and the electrostatic part of
DFT are based on different effective media.
0163-1829/2002/66~2!/024201~15!/$20.00 66 0242
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One obvious solution to the problem is to use electron
tral spheres~see, for instance, Ref. 13!. However, in the
methods based on the atomic sphere approximation~ASA!
this frequently leads to large sphere overlaps and a quite p
description of the electronic structure, especially in the c
of inhomogeneous systems, such as partially ordered al
or surfaces with an inhomogeneous concentration profile

A more general solution can be found, however, in wh
the electrostatic potential is modified without making effe
tive media for each alloy component in contradiction to t
assumptions of the CPA. The way to do this is to introdu
an additional shift of the one-electron potential due to
electrostatic interaction of the electrons inside each ato
sphere with the missing charge distributed outside of
sphere and postulate that the interaction comes from
boundary between the atomic sphere and the effective
dium. Such a shift may be associated with anintrasite inter-
action, which has no connection at all to the effective m
dium.

This is exactly what is done in the locally self-consiste
Green’s-function~LSGF! method14 where one goes beyon
the single-site approximation for Poisson’s equation
means of a supercell which models the spatial distribution
the atoms in a random alloy while a CPA effective medium
used in the electronic structure calculations beyond a lo
interaction zone~LIZ !. If the LIZ consists of only one atom
the LSGF method becomes equivalent to the CPA met
with a properly defined electrostatic potential and energ14

In this case, however, each atom in the supercell has its
electrostatic shift given by the Madelung potential from
the other atoms in the supercell while the effective medi
is the same for all atoms. It is clear that such an additio
shift for each alloy component does not interfere with t
CPA because the CPA effective medium is determined on
basis of the one-electron potentials including these shifts
because the CPA itself does not impose any restriction on
one-electron potentials of the alloy components.
©2002 The American Physical Society01-1
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A. V. RUBAN AND H. L. SKRIVER PHYSICAL REVIEW B 66, 024201 ~2002!
Following the above arguments two groups have propo
an ad hocexpression for the electrostatic shift of the on
electron potential due to nonzero net charges in the ato
spheres of the alloy.11,12,15 Although the basic models ar
seemingly different and based on different observations,
ther ~i! the net charge of an impurity in a metal is screen
beyond the first coordination shell,16,17 or ~ii ! the net charge
of an alloy component is proportional to the number of t
nearest neighbors of the opposite type,10 they lead to exactly
the same expression for the one-electron potential, i.e.,

Vi52
e2qi

R1
, ~1!

where Vi is the additional electrostatic shift of the on
electron potential of thei th alloy component of net chargeqi
andR1 is the radius of the first coordination shell.

In fact, the models described above are practically ide
cal to the model proposed more than three decades ago18,19to
account for charge-transfer effects in the self-consistent H
tree scheme based on the tight-binding CPA. In this sche
the variation of thei th atom energy levelde i is proportional
to the corresponding charge transferqi , i.e., de i5Iqi ,
where I is some averageintra-atomic Coulomb interaction.
The non-self-consistent limit corresponds toI 50, while I
5` provides local neutrality.19 In the present context on
may identify de i with Vi and it therefore follows tha
2e2/R1 may be considered an intrasite Coulomb interacti

Although there is at least some consensus concerning
definition of the additional electrostatic shift~1!, which gives
charge transfers quite close to the values obtained in su
cell calculations,20 different workers do not agree on the co
responding electrostatic contribution to the total energy
the random alloy. Some completely deny even the possib
of having such a term in a ‘‘consistent’’ SS-DFT-CP
theory21,22 while others argue about the details of how th
term should be defined.10,12,23,24It would seem that the pres
ently suggested models of charge-transfer effects in
single-site approximation to the electrostatic problem, exc
the trivial elimination of the net charges by adjusting t
radii of the atomic spheres of the alloy components, may
considered neither exact nor even ‘‘a consistent theory.’’ I
the main purpose of the present paper to shown that a
sistent SS-DFT-CPA theory including a correct description
the charge-transfer effects does indeed exist.

Here, we define the electrostatic shift of the one-elect
potential and the corresponding contribution to the total
ergy in a form which is very similar to that proposed b
Korzhavyi et al.11,15 as well as by Johnson and Pinski12 and
which provides a rigorous solution to the electrostatic pr
lem in the single-site approximation. The actual express
for the electrostatic shift in the single-site model for Po
son’s equation includes one adjustable parameter, the v
of which is to be obtained in supercell calculations by t
LSGF method in which the Madelung problem is solved e
actly. It turns out that, as long as the ASA is used, the va
of the adjustable parameter is practically independent of
tice structure, volume, and alloy composition due to the f
that the screening of the electrostatic part of the problem
the ASA at least, is almost universal.
02420
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The paper is organized as follows. In Sec. II we outli
the main concepts behind the LSGF used in this work a
the details of the calculations. In Sec. III we present a pr
matic solution to the problem of finding the Madelung sh
in SS-DFT calculations on the basis of the average value
the net charges and Coulomb shifts,^qi& and ^Vi&, from
supercell calculations. We also demonstrate that the lin
relation between the net chargesqi and the corresponding
Coulomb shiftsVi of the alloy components discovered fo
metallic alloys by Faulkneret al.25 is practically universal in
the effective-medium approach for the Green’s function. T
means that the response of the electron system to the C
lomb field is linear and universal in such systems, and t
the screening must be universal too. That this is indeed
case is demonstrated in Sec. IV where we calculate the
tribution of the screening charge in several systems and s
that it is almost independent of the crystal structure, the a
constituents, and the composition.

In Sec. V we present a formalism for the screened C
lomb interactions in the single-site, mean-field approach
the electrostatic potential and energy and demonstrate
the conventional assumption of a vanishing Madelung pot
tial and energy is not valid in general. Instead, one m
include an additional term due tointrasite interactions which
are, in fact, exactly the screened Coulomb interactions.
also discuss the ordering contribution to the Madelung
ergy and show why the screening contribution may be
tained in supercell calculations for ordered structures. T
contribution from the screened Coulomb interaction to
generalized perturbation method and theS(2) formalism is
also determined. Finally, in Sec. VI, we demonstrate that
total energy of a random alloy may be reproduced exactly
single-site CPA-DFT calculations with corrections due to t
screening intrasite interaction.

II. METHODOLOGY

A. Spatial ergodicity and cluster expansion

In this paper we will consider only such alloy systems th
on an underlying crystal lattice with perfect translation
symmetry satisfy two conditions:~i! spatial homogeneity and
~ii ! no correlations between the one-electron potentials
sufficiently large distances. For the Coulomb interactions
a random alloy both conditions may be formulated explici
in terms of the average monopole electrostatic potentialVi in
the atomic sphere around sitei due to the charge distribution
in all of the remaining systems. In an ordered alloy this p
tential is the Madelung potential. Specifically, the first co
dition means that any real-space average values of prod
of potentials must be translationally invariant, i.e.,

^ViVj•••Vk&5^Ta~ViVj•••Vk!&, ~2!

where Ta is the translation operatorTaf (r )5 f (r 1a), and
the second condition is

^ViVj•••VkTa~VlVm•••Vn!&5^ViVj•••Vk&^VlVm•••Vn&,
~3!

for a→`.
1-2



e

-
th
io
c

al
ial

le
ity
nt
n

he

of
th
nc

on
a

r
te

r

l-
w
l
e

-

in

co
su
th

a
all

th
oy
rt

ed
the
LIZ
ile

ive
e-

ell.
the
to
ds,

ic

r-

es

in
ted

ch,

s

is
f
d
or
ure
S-
as
ois-
a-

ns
s
ic

the
-
id-

s
l a

s
an

ro-

nic
e-
an

SCREENED COULOMB INTERACTIONS . . . I. . . . PHYSICAL REVIEW B 66, 024201 ~2002!
According to Lifshitz et al.26 the space formed by th
complete set of distinct realizations of the potentialVi on the
lattice, the operatorTa , and the property of spatial homoge
neity plays the same role in the theory of disorder as
phase space, the operator of dynamical evolution, and L
ville’s theorem do in statistical mechanics. Moreover, a
cording to Birkhoff’s ergodic theorem, for any function
f @Vi #, whereVi is some random realization of the potent
on the lattice we have

lim
V→`

1

VE
V

f @TaVi #dV5^ f @Vi #&, ~4!

i.e., phase-space and real-space averages are equiva26

This equation constitutes the principle of spatial ergodic
according to which all possible finite atomic arrangeme
may be realized in a single infinite sample if the conditio
~2! and ~3! are satisfied.

What makes the above principle work in practice is t
fact that forself-averagingor ‘‘measurable’’ quantities which
per definition have well-defined limits when the volume
the system approaches infinity all the correlations of
atomic distribution become unimportant at some dista
and hence the sample may be chosen finite. This may
formulated explicitly by means of the cluster expansi
theorem27 which defines the corresponding measurable qu
tity in terms of the site occupation correlation functions,

P5p01(
f

p fj f , ~5!

wherepq are the coefficients or interaction parameters,j f
5^dcid j•••dck& the correlation function of the figure o
clusterf which corresponds to a specific position of the si
i, j, andk in the lattice, anddci5ci2^ci& is the fluctuation
of the site occupation numbersci taking on values 0 and 1
depending on whether sitei is occupied by one or the othe
component.

According to Eq.~5! there are two practical ways of ca
culating the properties of a random system for which
havej f50 and thusP rand5p0: ~i! the cluster or supercel
approach, wherej f50 is satisfied on average only for thos
clustersf for which p fÞ0, or ~ii ! the effective-medium ap
proach, which directly givesp0 from some knowledge of the
alloy components. The first approach is realized, for
stance, in the so-called special quasirandom structure~SQS!
method28 while the second approach is realized by the
herent potential approximation where the real atoms are
stituted by a specifically chosen effective medium on
lattice.

B. LSGF method: A combined
supercell–effective-medium approach

The supercell and the effective-medium approaches
combined into a single computational scheme in the loc
self-consistent Green’s-function~LSGF! method.14,29 In the
LSGF method the supercell approach is used to provide
correct solution to the Madelung problem for a given all
modeled by an appropriate supercell. It is also used in pa
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the electronic structure calculations, which are perform
separately for every atom in the supercell by means of
local interaction zone centered at each atom. Inside the
the multiple-scattering equations are solved properly, wh
the region outside the LIZ is represented by the effect
medium, which is usually taken to be the CPA effective m
dium built on all the one-electron potentials in the superc
This means that every atom of the supercell ‘‘sees’’ only
CPA effective medium outside the LIZ, which according
the CPA definition represents a random alloy. In other wor
the one-electron Green’s function of the supercell~sc! ob-
tained in LSGF calculations may be presented as14,29

Gsc5(
i

FGi
01(

f
DGi f j i f

LIZG , ~6!

whereGi
0 is the Green’ function of thei th atom in the su-

percell embedded in the CPA effective medium,DGi f the
contribution toGi

0 due to the presence of the specific atom
arrangements on the figuref in the LIZ as specified by the
correlation functionj i f

LIZ , which is equal to that of the supe
cell j i f

sc if the figuref is circumscribed by the LIZ, i.e., it can
be put inside the LIZ in such a way that one of its vertic
coincides with the central atom of the LIZ, otherwisej i f

LIZ

50.
Equation~6! clearly shows how the LSGF works, and

particular, how the effective-medium approach, represen
by Gi

0 , is combined with the cluster or supercell approa
represented by the second term. It follows from Eq.~6! that
the LIZ allows one effectively to cut off the contribution
from the clusters which are not circumscribed by the LIZ~an
equivalent formulation in terms of effective interactions
given in Ref. 29!. If the LIZ is single site, i.e., it consists o
only one atom (LIZ51), the contributions from the secon
term in Eq.~6! vanish and we are left with the usual CPA
pure effective-medium approach to the electronic struct
problem. It is this single-site approach, referred to as S
LSGF, which will be used in most of the present paper. It h
the advantage over the usual SS-DFT-CPA method that P
son’s equation is solved exactly within a given approxim
tion for the form of the electron density.

Note, however, that the LSGF method is by no mea
restricted to the single-site approximation. In fact, it allow
us to include local environment effects in the electron
structure calculations for the figures circumscribed by
LIZ if on averagej f

^LIZ&5j f
sc50 which is the case in a ran

dom alloy. In this respect the LSGF method may be cons
ered aself-consistentembedded-cluster method~ECM! of
the kind proposed by Goniset al.30 more than two decade
ago. With a proper choice of the supercell used to mode
given random alloy29 the LSGF solves two major problem
of the ECM: ~i! it provides a set of clusters to represent
alloy with a given short-range order and~ii ! it allows one to
close the DFT loop with the correct treatment of the elect
statics.

There is one important point concerning the electro
structure obtained in the LSGF with the CPA effective m
dium which should be mentioned: Despite the fact that it c
be quantitatively accurate, it isqualitatively different from
1-3
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A. V. RUBAN AND H. L. SKRIVER PHYSICAL REVIEW B 66, 024201 ~2002!
the electronic structure which would result from direct sup
cell calculations with periodic boundary conditions. That
the electronic spectrum in the LSGF-CPA method is alw
complex, unless all the atoms are equivalent in the supe
~pure metal! or the size of the LIZ is infinite. Thus in the
LSGF-CPA the electronic structure of anordered alloy is
never correct, although it may be calculated with arbitrar
high accuracy. On the other hand, since Blochs’ theorem
not applied to the supercell during the electronic struct
calculations, the LSGF method is a perfect tool for calcu
ing SQS as opposed to the ordinary band-structure meth
which in this case lead to a real, i.e., qualitatively incorre
electronic structure of the random alloys.

C. Choice of the supercell in the LSGF
and details of the calculations

It is possible to obtain the Madelung potential and ene
by a combined supercell~cluster! and effective-medium ap
proach similar to that used in the Green’s-function appro
to the electronic structure problem within the LSGF meth
However, this requires some knowledge of the charge-ch
correlations or the screening in the alloy. Hence the only w
to solve the problem is to use a supercell model with
Madelung potential and energy determined exactly from
bare electrostatic interactions, as it is usually done. He
another problem arises: The supercell should be constru
such as to provide zero correlation functions up to the d
tance where the net charges of the alloy components bec
uncorrelated or completely screened.

In the calculations presented below we assume at the
set the existence of a short-range screening which oc
over the distance of the first several coordination shells. T
assumption is based on results obtained by the cha
correlated model,10 on single-impurity calculations,16,17 as
well as on the most recent LSGF calculations by Ujfalus
et al.22 The latter authors demonstrated that a 16-atom su
cell for an fcc equiatomic random alloy, in which the SR
parameter at the eighth coordination shell must be equal
due to the translation symmetry, i.e., all the atoms in
eighth coordination shell are the same as that at the ce
site, yields practically the same average charge transfer
total energy as a 250-atom supercell, in which the SRO
rameter at the eighth coordination shell corresponding t
random number generator distribution of the alloy comp
nents on the lattice should be!1 ~see also Ref. 31!.

Thus in all the random alloys considered below the dis
bution of the atoms in the supercell was chosen such tha
SRO parameters~or pair-correlation functions,j f

(2)) were ex-
actly zero at least in the first six coordination shells a
small ~not greater than 0.01 in absolute value! up to the
eighth coordination shell. Although the multisite correlati
functions have not been optimized, they should not pla
significant role in the ASA where only monopole inters
Coulomb interactions are taken into account.

The electronic structure calculations were in all cases p
formed in the scalar relativistic approximation by th
Korringa-Kohn-Rostoker~KKR!-ASA technique32 with ans,
p, andd basis in the framework of either the usual SS-DF
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CPA or the LSGF methods with a CPA effective-mediu
The ASA ~no multipole corrections to the Madelung pote
tial and energy! has been used in the electrostatic part of
problem. The integration of the Green’s function over ene
was performed in the complex plane over 16–20 ene
points on a semicircular contour. The local-density appro
mation was used in the DFT part with the Perdew a
Zunger33 parametrization of the results by Ceperly a
Alder.34

III. NET CHARGE AND MADELUNG POTENTIAL
IN METALLIC ALLOYS

Here we discuss a pragmatic solution to the followi
problem: Can one devise a Madelung potential for the al
components to be used in SS-DFT-CPA calculations s
that the charge-transfer effects, i.e., the net charges of
alloy components, are consistent with those obtained in
LSGF calculations where charge-transfer effects are tre
properly? The fact that such a potential can be found m
seem surprising in view of the principal differences betwe
the LSGF and the SS-DFT-CPA methods. In the LSG
approach all the atoms in the supercell are different due
their different local environment while in the usual SS-DF
CPA approach one deals only with average quantities,
in the terminology of Ref. 35, the LSGF supercell approa
is equivalent to thepolymorphousmodel of the alloy while
the effective-medium approach is equivalent to theisomor-
phousmodel. However, it is obvious that this can be doneon
average.

It was discovered by Faulkneret al.25 from supercell cal-
culations that the net charges on different sitesi, qi , and the
corresponding Madelung potentialsVi obey a linear relation-
ship. In Fig. 1 we show such aqV relation for a 512-atom
supercell which models a random Al50Li50 alloy on an un-
derlying fcc lattice. For comparison we also show the cha
and Madelung shift for AlLi in the orderedL10 structure. All
results are obtained by LSGF calculations with the C
effective medium in~i! the single-site approximation for th
electronic part of the problem, SS-LSGF, i.e., LIZ51, ~upper
panel! and ~ii ! with the perturbation in the electronic struc
ture caused by the local environment up to the second c
dination shell, i.e., embedded cluster~EC!-LSGF, LIZ53
~lower panel!, included in the Green’s function. For rando
alloys the inclusion of more distant coordination shells
not affect the results significantly and thus the LIZ53 results
may be considered to be converged in the LIZ size.

The most striking feature of theqV relation obtained in
the SS-LSGF calculations is the perfect alignment of theqV
points along two almost straight lines, one for each al
component. This is, in fact, very similar to what has be
observed by Pinski36 in model calculations using the
Thomas-Fermi approximation. Furthermore, a change of
ratio of the atomic sphere radii of the alloy componentsr
5SAl /SLi , leads to a rescaling of theqV points. Hence for a
specific ratio,r 51.12 in the present case, theqV relation
collapses into the single point: (q,V)5(0,0). The existence
of this point in the SS-LSGF is a consequence of the fact
all Al atoms as well as all Li atoms become indistinguisha
1-4
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SCREENED COULOMB INTERACTIONS . . . I. . . . PHYSICAL REVIEW B 66, 024201 ~2002!
if the net charges of the alloy components are zero: T
difference between the atoms caused by local environm
effects is solely due to the Madelung shift, which is zero
this case. Thus for this particular choice ofr the polymor-
phous model is identical to the usual isomorphous mode
the SS-LSGF method is identical to the SS-DFT-C
method.

On the other hand, it is clear that the two models are
equivalent when local environment effects are included
the electronic structure part of the LSGF method, i.e,
LIZ.1. This is demonstrated in the lower panel of Fig.
where the local environment effects are clearly seen to
stroy the strict alignment of theqV points and, as conse
quence, the possibility of choosing electroneutral atom
spheres by a singler value. However, even if this were pos
sible, all the atoms, or the corresponding one-electron po
tials, would still be different.

The discussion of local environment effects is beyond
scope of the present paper, and the results are included
to demonstrate thequalitativedifference between the correc
results and those obtained by the LSGF method in the sin
site approximation: Inclusion of intersite correlations in t
electronic structure calculations leads to a real polymorph
description of random alloys which cannot be mimicked b
single-site LIZ. As a consequence, as we will show later
SS-DFT-CPA method can reproduce the results of the
LSGF exactly, but will, in general, reproduce only appro

FIG. 1. The distribution of the net chargesqi and corresponding
Madelung potentialsVi in the 512-atom supercell, modeling a ra
dom Al50Li 50 alloy, orderedL10 alloy, and in the single-site CPA
DFT calculations obtained by varyinga.
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mately the correct solution to the supercell or polymorpho
model of a random alloy.

The twoqV points for the orderedL10 structure are seen
to fall on theqV lines for the random alloy as already note
in Ref. 25!, and, in fact, all the points on theqV relation
obtained by the SS-LSGF method may be reproduced b
series of ordinary SS-DFT-CPA calculations, by using t
shift of the one-electron potential defined in a way similar
Eq. ~1!, i.e.,

Vi52a
e2qi

S
, ~7!

where qi is the net charge of the alloy components,S the
Wigner-Seitz radius, anda a parameter which may be varie
arbitrarily in the SS-DFT-CPA calculations without specif
ing its physical meaning. However, it is important to no
that a52` corresponds to the electroneutral case (qi50)
and a50 to the limit where there is no response of t
system to charge-transfer effects. As we will see later,
values of the net chargesq0i obtained in the SS-DFT-CPA
calculations witha50 are important scaling parameters. It
also useful to note that for theL10 structure aL10

50.881 157 5,37 and in the screened impurity model~1!
aSIM50.552 669 and 0.568 542 for the fcc and bcc crys
structures, respectively.

Figure 1 shows theqV relation, indicated by the black
line, obtained in the SS-DFT-CPA calculations including E
~7! with a varying from 21.5 to 5 together with the SS
LSGF results, gray circles. It is clearly seen that theisomor-
phousandpolymorphous qVrelations coincide, and this al
lows one to make an isomorphous model consistent with
polymorphous results. The point is that all the net char
and corresponding Coulomb shifts in the polymorpho
model have significance only in terms of the average val
they produce. This is so, because every supercell has its
set of net charges and Madelung shifts and, in the case o
infinite system, there is an infinite number of differentqV
points. Their average values,^qi& and^Vi&, however, have a
well-defined physical meaning as conditional averages
self-averaging quantities, and thus it is the average^qV&
point which must be reproduced by the isomorphous mo
Hence for a random alloya is given by

a rand52
S

e2

^Vi&

^qi&
. ~8!

Note that in a binary AB alloy, it clearly does not matter, f
which alloy componenti 5A,B, a rand is determined, since
^VA&/^qA&5^VB&/^qB&.25 The same is true for multicompo
nent alloys, but in this case, rather than being a trivial c
sequence of the charge neutrality condition, it follows fro
the physical origin ofa rand , which will be discussed in the
next two sections. For an fcc Al50Li 50 alloy at S52.954 a.u.
we find from the LSGF calculationsa rand50.60716.

Of course, the coincidence of (^qi&,^Vi&) is a necessary
but not sufficient condition for the equivalence of the is
morphous and polymorphous models. The two models m
be called equivalent only if the electronic structure of t
1-5
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A. V. RUBAN AND H. L. SKRIVER PHYSICAL REVIEW B 66, 024201 ~2002!
random alloy and its conditional averages agree. In Fig. 2
show that this is indeed the case: The local densities of st
~DOS! for the Al and Li atoms in Al50Li 50 calculated by the
SS-DFT-CPA method coincide with the corresponding c
ditional average state densities obtained in the SS-LSGF
culations for the 512-atom supercell. For comparison we a
show the DOS obtained witha50 corresponding to the
‘‘conventional’’ CPA. Although the latter differs from the
correct state density, it is obvious that neglecting the elec
static shift~7! has only a minor effect on the DOS.

The reason why the average state densities coincide is
following: In the SS-LSGF method the difference betwe
the atoms of the same type comes only through the co
sponding Madelung shift. A shift in potential leads to
change in the charge transfer through askewingof the local
DOS as seen in Fig. 3. Therefore, when the conditiona
averaged DOS is obtained, the skewing contributions fr
the individual atomic sites caused byVi will cancel and leave
only the DOS given by the average^Vi&. Of course, this is
true only in the SS-LSGF method (LIZ51). In fact, the local
environment effects in concentrated random alloys may
fluence quite strongly the electronic structure of the cen
site of the LIZ.

To investigate how theqV relation depends on the syste
we show in Fig. 4qV relations for five different system
including a Cu impurity in Pt (S53 a.u.! and four random
alloys: fcc Cu50Pt50 (S53 a.u.!, fcc Al50Li 50 (S52.954 a.u.!,
bcc Cu50Zn50 (S52.7 a.u.!, and ternary fcc Cu50Ni25Zn50
(S52.65 a.u.!. In the plot all charges have been normaliz
by q0i obtained in the no response limit, i.e.,a50 or Vi
50, and all Madelung shifts have been normalized byq0i /S.
To partly simplify the plot we have useduq0i u in the normal-
izations, thereby separating theqV relations into two lines
rather than one.

The results presented in Fig. 4 show the existence o

FIG. 2. The local density of states in the Al50Li 50 obtained by
the LSGF method with LIZ51 and by the single-site CPA-DFT
with different values ofa rand .
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universalqV relation. Or in other words, the linear-respon
function x which gives the change in the net charge relat
to q0i caused byVi , i.e., qi2q0i51/e2xViS, is a universal
constant in metallic alloys in the ASA. From the results p
sented in the figure we find thatx'20.63. This unavoidably
leads to the existence of a single, uniquea rand as witnessed
by the coincidence of all thêqV& points in Fig. 4. Strictly
speaking, the slopes of theqV lines are not exactly identica
and, in fact, a rand varies from 0.6 in Cu50Zn50 and
Cu50Ni25Zn50 to 0.615 in LiMg alloys, not included in the
figure. However, for most practical purposes the cho
a rand50.607 provides a sufficiently accurate description
the electronic structure of random alloys in the SS-DFT-C
method in the ASA for the electrostatic part.

IV. SCREENING CHARGE IN METALLIC ALLOYS

In the previous section we have, in effect, defined a p
cedure whereby SS-DFT-CPA calculations may provide
rigorous solution to the electrostatic problem in random
loys. The only requirements are that the Madelung shift~7! is
included and that the constanta rand is obtained from Eq.~8!
with the average Madelung potential and net charges of
alloy components determined in supercell calculations by
SS-LSGF method. In the derivation of the procedure
have used some general arguments which do not clarify
physical origin of the universal value ofa rand . However, it

FIG. 3. The site- andl-projected density of states for Al atoms i
Al50Li 50 having different Madeulng potentials due to different num
bers of nearest-neighbor Li atoms.
1-6
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SCREENED COULOMB INTERACTIONS . . . I. . . . PHYSICAL REVIEW B 66, 024201 ~2002!
is clear that Eq.~7! accounts for the missing charge2qi in
the single-site Poisson equation for thei th atomic sphere.
Thusa rand must be connected to the screening.

The linear character of theqV relation indicates that the
screening in the impurity case as well as in the case o
random alloy may be very well described by linear-respo
theory. Owing to enhanced electron scattering at oppo
regions of the Fermi-surface linear response predicts in
case of a free-electron gas the existence of long-range F
del oscillations, which, however, decrease relatively f
(;r 23) with the distance. In a random alloy, on the oth
hand, the screening is much more efficient due to the fi
lifetime of the Bloch states for the underlying crystal latti
and the spatial distribution of the screening density dec
exponentially. In this respect the charge correlated~cc!
model10,31 adopted by Johnson and Pinski12 in the cc- and
screened-CPA method or the equivalent screened impu
model11,23,24may be viewed as the first approximations to
description of the screening.

Based on the fact that a single impurity in a metallic h
is a particular case of a dilute random alloy, one would
pect, and the results for a single Cu impurity in Pt presen
in the previous section unambiguously indicate this, that
screening effects in the two cases are similar. It is there
surprising that Faulkneret al.35 and Ujfalussyet al.22 claim
that the screening in a random alloy isqualitativelydifferent
from that found in a single impurity system. In fact, the

FIG. 4. qV relation scaled byq0i , and the Wigner-Seits
radiusS.
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authors found extremely long-range correlations between
Madelung potential at some particular site and the
charges at the other sites. Since the Madelung shift on a
is proportional to the net charge on the site, this may hap
only if there are extremely long-ranged correlations betwe
net charges or, in other words, there is no screening. H
ever, these results were obtained on the basis of summa
of the direct orbare Coulomb interactions which is, at bes
an ill-defined procedure, even mathematically.

To clarify the issue of screening we will perform the fo
lowing computer experiment which will allow us to establis
the range of the net-charge correlations or the screenin
random alloys for one particular site. We set up a 512-at
supercell which represents an fcc Cu50Pt50 random alloy~all
SRO parameters are equal to zero up to the sixth coord
tion shell and;0 for at least the next ten coordination shel!
and perform self-consistent SS-LSGF~LIZ51! and EC-
LSGF ~LIZ53! calculations. We then substitute one Pt ato
with one Cu atom in some site which, in general, may
chosen arbitrarily. However, to keep the atomic distributi
as close as possible to the random distribution we chos
site the local environment of which corresponds to the r
dom alloy~having equal number of Cu and Pt atoms! for the
first three coordination shells. We then repeat the s
consistent LSGF calculations for the supercell with the s
stituted atom and find new values for the net charges in
supercell. It is clear that, when LIZ51, the difference be-
tween the net charges in the two calculations,Dqi , gives the
charges induced by the change of the net charge at the
stitution site ~in the case of LIZ53 the local environment
effects also effect the charge transfer!. This charge is simply
the screening charge.

In the upper panel of Fig. 5 we have plotted the norm
ized, induced charges,

Qi5
Dqi

Dq0
, ~9!

at the first eight coordination shells around the substitut
site i 50 for Cu-Pt substitution in a Cu50Pt50 random alloy
and for Cu-Pt substitution in pure Pt (S53 a.u.! obtained in
the single-site approximation for the electronic structu
~LIZ51! as well as with local environment effects include
~LIZ53!. One may see that, while the local environment in
pure metal hardly affects the distribution of the net charg
it does introduce a dispersion in the distribution of the n
charges in the random alloy, which is quite substantial at
first coordination shell but which practically disappears b
yond the fifth coordination shell where, in fact, all the i
duced charges almost vanish.

To demonstrate that the net charge of the Cu ‘‘impurit
indeed becomes screened we show in the lower panel of
5 the total normalized induced charge in thei th shell,

Qtot
i 5(

j 50

i

zjQj , ~10!

where zj is the coordination number of thej th shell. It is
seen thatQi vanishes beyond the seventh coordination sh
1-7
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A. V. RUBAN AND H. L. SKRIVER PHYSICAL REVIEW B 66, 024201 ~2002!
in all cases, and we conclude that the screening in a ran
alloy in the single-site approximation is practically the sa
as the screening in the case of a single impurity in a p
metal. There are neither qualitative nor quantitative diff
ences between the impurity and the alloy cases.

In the upper panel of Fig. 6 we show the distribution
the screening charge~not to be confused with the screenin
density: the screening charge is, in fact, the screening den
integrated in the corresponding atomic sphere! for a Cu im-
purity in fcc, bcc, and bct Pt plotted as a function of t
distance from the impurity site in units of the Wigner-Se
radiusS. It is clear that the screening charge follows a sing
common curve which does not depend on the structure
fact, by changing thec/a ratio in the bct structure one ma
completely fill the remaining gaps in the calculated curve.
the lower panel of the figure we have collected the results
the distribution of the screening charges in seven differ
systems including such hosts as Pt, Al, Cu, V, Na, and K
appears that the screening in metallic alloys depends ne
on the crystal structure nor on the nature of the alloy co
ponents, at least, when described within the ASA.

The universal picture of the screening in alloy syste
found above is partly destroyed when the electrostatic
treated more correctly, for instance by including multipo
moment contributions to the one electron Madelung poten
and energy. However, the ASA still gives a qualitatively co
rect picture and catches the main physics behind the p

FIG. 5. The distribution of the screening charge in the rand
Cu50Pt50 alloy and in Pt due to substitution of a Cu atom.
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nomenon. Hence it is worthwhile to discuss the origin
such a universality in both the screening and the respo
function.

First of all, it was understood a long time ago that the n
charges in the atomic spheres of the alloy components h
very little in common with the charger transfer in terms
the redistribution of the electron charge between the a
components~see, for instance Ref. 38!. Even in the case of
the so-called ionic solids the self-consistent charge distri
tion is very close to that obtained from a linear superposit
of the free-atom electron-densities39 and this is the reason fo
the success of the charge-correlated model,10 in which the
net charge is proportional to the number of nearest neighb
of the opposite type~see also Ref. 31!.

What we are seeing is basically a size effect: The
charges originate from the redistribution of the electron d
sity in theinterstitial region between the atomic spheres. T
electron density in metals and their alloys in this region
very smooth and may be well described by a free-elect
model, even for transition-metal alloys. The interstitial de
sity is much easier to perturb than the density closer to
atomic nuclei and it participates in the screening. On t
basis one may, in fact, develop a model based on line
response theory which leads to a semianalytical descrip
of the universal screening. However, this is beyond the sc
of the present paper.

FIG. 6. The distribution of the screening charge in differe
metals having different crystal structure and lattice parameter.
1-8
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SCREENED COULOMB INTERACTIONS . . . I. . . . PHYSICAL REVIEW B 66, 024201 ~2002!
The calculated distribution of the screening net cha
may be used to obtain the screening contribution to the o
electron potential in the single-site model for the Poiss
equation given by Eq.~7! with a equal to

ascr5
S

e2 (
i

zi

Qi

Ri
, ~11!

where Ri is the radius of thei th shell with coordination
numberzi . Using the results for the screening chargeQi in
the case of Cu-Pt substitution for one particular site~not on
average! in the Cu50Pt50 random alloy we find from Eq.~11!
after summation up to the eighth coordination shell t
ascr50.605 72. At the same time, the average values of
net charges and the Madelung potentials,^q& and ^V&, in
conjunction with Eq.~8! gives a rand50.605 30. That is,
a rand5ascr . Since there is only one effective medium in th
supercell SS-LSGF calculations, it is obvious that the scre
ing is the same for all the sites and thus should not depen
the alloy component, that is, the ratiôVi&/^qi& does not
depend on the alloy components.

The important point here is the fact that, sinceascr is
given by the electrostatic interactions of the net charge ins
a sphere with its own screening~or missing! charge, it has an
on-siteor intrasite nature. Such an intrasite screening in
action depends almost entirely on the type of the system
effective medium and very little on the structure. In contra
the parameteraL10

~see the previous section! which allows
one to perform SS-DFT-CPA calculationsidentical to those
of the SS-LSGF for theL10 structure depends solely on th
geometry of theL10 structure.

That is, there is no connection between the Madelu
constant for an ordered structure andascr : The former de-
scribes thebare electrostatic interactions between the n
charges on different sites, while the latter arises due to
screening in the system and describes the real response o
electronic subsystem to the perturbation, which ‘‘dress
the intersite Coulomb interactions making them short ran
The reason why it is possible to obtainascr from supercell
calculations for the completely ordered structures is the
that at the large distances, where the atomic-distribution
relation functions are not zero anymore due to the tran
tional symmetry of the supercell, the real net charges h
become screened or uncorrelated. We will return to this p
in the next section, but here we would like to comment
the use of the single-site approximation in the Green’s fu
tion calculations.

Our LSGF calculations of impurities in different meta
indicate that the problems observed in the single-site Gre
function impurity calculations by Stefanou17 and Drittler
et al.40 do not originate from the single-site approximatio
for the Dyson equation, but from Poisson’s equation, wh
these authors also solve in the single-site approximation.
use of the screening electrostatic shift for the one-elec
potential allows one to solve the impurity problem in t
single-site Green’s function formalism in the ASA or in th
muffin-tin ~MT! approximation almost exactly. This is s
because the impurity case corresponds to the dilute limit
random alloy where the concentration of one of the al
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components approaches zero. In this case, the contributio
the electronic structure due to the local environment effe
becomes negligible, and the electronic structure of the im
rity obtained by the single-site or the cluster Dyson equati
become almost identical. Such an effect may be seen,
instance, in Fig. 5: The dispersion of the screening net cha
found in the concentrated alloy case, i.e., Cu50Pt50 ~LIZ53!,
vanishes in the case of a Cu impurity in Pt. The effect is,
fact, the origin of the increasing accuracy of the CPA w
decreasing concentration of one of the alloy components

V. FORMALISM FOR THE SCREENED COULOMB
INTERACTIONS

A. Madelung energy of a random alloy in the single-site
mean-field approximation „effective-medium approach…

The existence of on-site or intrasite interactions of t
kind discussed in connection with Eq.~11! must lead to a
modified description of the electrostatics of random alloys
the single-site mean-field approximation, where all theA and
all the B atoms are represented only by the appropriate c
ditional averages. It has been shown by Krasko41 that in a
system with randomly distributedA andB ions of chargeZA
andZB , respectively, embedded in a medium of compens
ing charges, the electrostatic energy is

EMad
rand2ss5

e2

2

aM

S
Z̃2, ~12!

whereaM is the Madelung constant of the underlying lattic
S the radius of the Wigner-Seitz sphere, andZ̃ the average
charge equal tocZA1(12c)ZB .

It is obvious that Eq.~12! is valid also in the CPA-DFT if
one substitutes the ion chargesZi by the net chargesqi of the
atomic spheres. In the ASA the average chargecqA1(1
2c)qB is zero, and in this particular approximation th
Madelung energy vanishes. Note, however, that it vanis
neither in inhomogeneous systems24,32 nor in the MT
approximation.9

We will now reformulate the above description by inclu
ing the on-site screened Coulomb interactions. However,
stead of simply adding the appropriate on-site term to
~12!, we will use concentration wave theory to clarify th
effective-medium approach to the Madelung energy in
dered alloys. Assuming that only on-site and pairwise int
actions are important the Hamiltonian of a binaryAcB12c
alloy may be written as

H5(
R

@e0
AcR1e0

B~12cR!#

1
1

2 (
RÞR8

@vRR8
AA cRcR81vRR8

AB
~12cR!cR8

1vRR8
AB cR~12cR8!1vRR8

BB
~12cR!~12cR8!#, ~13!

wheree0
X are on-site or intrasite interactions, which we w

assume depend only on the type of atom on siteR, vRR8
XY are

pair potentials acting betweenX and Y atoms at siteR and
1-9
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A. V. RUBAN AND H. L. SKRIVER PHYSICAL REVIEW B 66, 024201 ~2002!
R8, respectively, andcR is the site-occupation operator ta
ing on the value 1 if there is anA atom on siteR and 0
otherwise. UsingdcR , defined bycR5c1dcR , we may re-
write the Hamiltonian in the equivalent form

H5
1

2 (
R,R8

VRR8dcRdcR8

1
1

2 (
RÞR8

@c2vRR8
AB

12c~12c!vRR8
AB

1~12c!2vRR8
BB

#,

~14!

where the first term includes the intrasite interactionR
5R8),

VR5052S 1

~12c!
e0

A1
1

c
e0

BD ~15!

as well as the intersite interactions (RÞR8),

VRR85vRR8
AA

1vRR8
BB

22vRR8
AB . ~16!

Upon Fourier transformation of the first term we find

H5
N

2VBZ
E

BZ
dq V~q!cqcq*

1
1

2 (
RÞR8

@c2vRR8
AB

12c~12c!vRR8
AB

1~12c!2vRR8
BB

#,

~17!

where the second term is the average contribution to
energy due to pair interactions which in the case of dir
Coulomb ion-ion interactions isqxqy /uR2R8u combined
with the corresponding contribution from the interaction b
tween the ions and the homogeneous compensating ch
The second term is exactly Eq.~12!.

The first term in Eq.~17! is usually associated with th
configurational contribution to the energy of the system,
this is correct only if the contribution from intrasite intera
tions is zero. It is easily evaluated in a completely rand
alloy, where all the occupation numbers are uncorrelated
thereforecqcq* 5c(12c)/N, i.e., normalized to give the or
dering energy per atom. One finds

E
BZ

dq V~q!cqcq* 5c~12c!E
BZ

dq V~q!

5VBZc~12c!VR50 , ~18!

which according to Eq.~13! is equal toce0
A1(12c)e0

B .
It now remains to define the on-site interaction terme0

i ,
which results from the interaction of the net chargeqi in the
alloy with the corresponding screening charge, in such a w
that e0

i and the corresponding on-site Coulomb potentialVi

given by Eq. ~7! are consistent within DFT, i.e.,Vi

5de0
i /dqi :

e0
i 52

e2

2

ascr

S
qi

2 . ~19!

Using this definition the first term in the Hamiltonian~17!
may be written
02420
e
t

-
ge.

t

nd

y

EMad
rand2ss5EMad

scr2ss52
e2

2

ascr

S
@cqA

21~12c!qB
2 #

52
e2

2
c~12c!

ascr

S
~qA2qB!2

[c~12c!Vscr~R50!. ~20!

This is the result obtained by Magriet al.10 more than a
decade ago in the so-called charge-correlated model and
by Korzhavyiet al.15,11 and by Johnson and Pinski12 in their
‘‘screened’’ models for the single-site CPA-DFT. The diffe
ence between these models lies only in the way the par
eterascr is determined~from 0.439 721 2 for bcc in Ref. 12
to 0.542 820 38 for fcc in Ref. 20!. A discussion of the issue
involved may be found in Refs. 12, 20, 23, 24 and 31.

In the supercell aproach, of course, only intersite Co
lomb interactions of the net charges contribute to the Ma
lung energy. The existence of a nonzero Madelung energ
that case is a consequence of the dispersion in the
charges of theA and B components due to different loca
environment at every site. The difference in the net char
is the result of the fact that the screening charge density g
beond the atomic spheres of the alloy components and th
fore sites with different local environments will have a d
ferent amount of screening charge. To include the dispers
of charges which exist in the supercell model, one must
formulate the single-site effective-medium model by add
the corresponding on-site screening contribution to the us
intersite part of the Hamiltonian.

B. Configurational part of the Madelung energy and potential
in the effective-medium approach

The reason why we reformulated the Hamiltonian
terms of concentration waves is to show how to define c
rectly the configurational part of the energy, and in particu
the Madelung energy in the presence of on-site interactio
This is an important issue since in some formalisms, such
pseudopotential theory or theS(2) formalism,42–44 V(q) is
already given a particular form and this may lead to pro
lems with the correct definition of the configurational part
the total energy. The point is that the intrasite interactionsdo
not contribute to theconfigurationalpart of the total energy
which in real space may be written as~here, we do not con-
sider the contribution from multisite interactions!45

Hcon f5
1

2 (
RÞR8

VRR8dcRdcR8 . ~21!

Therefore if the configurational Hamiltonian is written
terms ofV(q), e.g., in the concentration wave formalism,
must be corrected by the subtraction of the correspond
intrasite interaction, i.e.,

Hcon f5
1

2VBZ
E

BZ
dq V~q!cqcq* 2

1

2
c~12c!VR50

5
1

2VBZ
E

BZ
dq@V~q!2VR50#cqcq* , ~22!
1-10
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SCREENED COULOMB INTERACTIONS . . . I. . . . PHYSICAL REVIEW B 66, 024201 ~2002!
where we have used the sum rule for the concentration w
densitycqcq* : *BZdq V(q)cqcq* 5VBZc(12c).

The subtraction of the intrasite term in Eq.~22! is crucial
for obtaining the correct ordering energy in pseudopoten
theory and in theS(2) formalism42–44 as well as for making
the theory consistent. Let us, for instance, consider
Madelung energy of a binary, completely ordered alloy w
two nonequivalent sublattices. It is easy to show that
Madelung energy may be presented in a form similar to t
of the Madelung energy of the random alloy. For instan
the Madelung energy of theL10 ordered phase is

EMad
L10 52

e2

2

aL10

S
c~12c!~qA2qB!21

e2

2

a f cc

S
q̃2,

~23!

where the last term is zero in the ASA sinceq̃50 as in the
random alloy case, but nowaL10

is a constant which appear
due to the intersite Coulomb interactions. In the appendix
Ref. 37 it is shown that, in fact,aL10

(qA2qB)2/S is the
Fourier transform of the effective direct electrostatic inter
tion at the corresponding superstructure vectorkL10

52p/a(100), i.e.,Ves(kL10
)5aL10

(qA2qB)2/S.

On the other hand,EMad
L10 may also be found as the sum

the electrostatic energy of the completely random all
EMad

rand2ss, given by Eq.~20! and the ordering energy,DU:
EMad

L10 5EMad
rand2ss1DU. Since the Madelung energy of the o

deredL10 alloy, EMad
L10 is uniquely defined in terms of th

corresponding Madelung constant, which has nothing to
with the screening in the alloy, it is obvious that a screen
term must be present in the ordering energyDU to compen-
sate for the screening contribution toEMad

rand2ss.
Indeed, as shown in the appendix of Ref. 45 the order

energy in theL10 structure may be written in the form

DUMad5
1

8
h2@Ves~kL10

!2Vscr~R50!#, ~24!

from which it is easy to see that in the completely orde
state, where the long-range order parameterh51, the last
term in Eq.~24! is exactly the Madelung energy of a rando
alloy at the stoichiometric composition@c(12c)51/4#, and
thusEMad

rand2ss1DU51/8aL10
(qA2qB)2/S.

This illustrates an important point: The ordering ener
represented in reciprocal space in the concentration w
formalism must be corrected by the subtraction of the in
site term, otherwise the theory will not be consistent. Eq
tion ~22! gives the correct definition of the ordering ener
considered more thoroughly in the appendix of Ref. 45. T
intrasite interaction must also be subtracted when one c
siders the energy of short-range order~SRO! effects, and
thus the correct Krivoglaz-Clapp-Moss expression must h
V(q)2VR50 instead ofV(q), which is exactly the case in
Krivoglaz’s derivation.46 Note, however, that this problem
does not exist if the Krivoglaz-Clapp-Moss expression
used together with the so-called Onsager correction43 pro-
vided that it is properly defined.
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C. Effective-medium approach to the Madelung potential
and energy of a random alloy resented by a supercell

The reason that it was possible to calculateascr on the
basis of theorderedstructures is the fact that in an ordere
binary alloy with onlytwo nonequivalent sublattices one ha
an exact cancellation of the screening contribution to
Madelung energy and potential. This does not happen, h
ever, in the general case of a supercell withn.2 nonequiva-
lent sublattices. Forn52, the Madelung energy in the
effective-medium approach may be written as the sum of
contribution from the intrasite screening interactions,

EMad
scr2sc5

e2

2N

ascr

S (
i

qi
2

5
e2

2

ascr

S S c
1

NA
(
i 5A

qiA
2 1~12c!

1

NB
(
i 5B

qiB
2 D

3S Þ
e2

2

ascr

S
@c^qA&21~12c!^qB&2# D , ~25!

whereNA andNB are the number ofA andB atoms, respec-
tively, and the ordering energy due to the intersite inter
tions

DUMad5
e2

2S (
i

g i~aki
2ascr!Dqki

2 . ~26!

Here,g i is a normalizing coefficient,aki
a constant due to

thebareelectrostatic interactions between the net charges
the superstructure vectorki which may be calculated from
the Madelung constantsaM

i j of the corresponding superce
similar to theaL10

considered above, andDqki
the difference

between the charges in the crests and in the troughs of
concentration wave in the supercell. In the case of a bin
alloy with two nonequivalent sublattices, there is only oneki
andDqki

5(qA2qB).

If aki
depends only on the structure and describes thebare

electrostatic interaction between net charges, thenDqki

‘‘dresses’’ these interactions according to the real charge
tribution in the alloy~an equivalent description in real spac
in the charge correlated model is given by Wolverton a
Zunger,47 who also show that the Madelung energy of t
random alloy has intrasite character!. If the net charges in the
supercell are screened~or uncorrelated! at distances less tha
half the period of the concentration wave with wave vectorki
thenDqki

50 due to the destruction interference and the c
responding contribution to the ordering energy vanishes
the supercell includes only long-range concentration wav
the corresponding ordering contribution to the Madelung
tential and energy becomes zero.

Let us finally mention the fact that the Madelung ener
of a random alloy obtained in supercell calculations~25! is
not equal to the Madelung energy in the single-site calcu
tions, and thus it cannot be used to obtainascr . The reason is
simply that the Madelung energy is not a self-averag
quantity. However, the Madelung potential is, and it is cle
that
1-11
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^VX&sc5
e2

NX

ascr

S (
i 5x

qiX5e2
ascr

S
^qX&5VX

ss, ~27!

which allows one to use Eq.~8! to obtainascr in the super-
cell calculations and shows whya rand is exactly equal to
ascr .

D. Intersite screened Coulomb interactions

Although the screened Coulomb interactions have an
trasite character, they may contribute to the effectivepair
intersite interactions of the kind obtained in the generaliz
perturbation method~GPM!,19,48 because the screenin
charge is located on several of the coordination shells aro
each atom. This was, in fact, already recognized
Ducastelle19 who derived the contribution to the GPM pote
tials from the screened Coulomb interactions in the fram
work of the Hartree-Fock tight-binding CPA theory.

The existence of an additional electrostatic term due
the screening is also consistent with Andersen’s fo
theorem,49 which states that the change in the total energy
a system due to some perturbation to first order is given
the change in the sum of the one-electron energies obta
from frozen one-electron potentials plus the change of
electrostatic energy due to the perturbation. In fact, this la
contribution from the screened Coulomb interaction has b
completely neglected in a number of first-principles calcu
tions of GPM interactions.50–53Here we will therefore show
how the screening contribution to the GPM potentials m
be defined and obtained on the basis of the calculated sp
distribution of the screening charge.

GPM-like pair interactions, usually defined by Eq.~16!
for a specific lattice vectorR, may be determined as th
site-projected part of the change in the total energy when
atoms of different types in a completely random alloy a
exchanged between sites infinitely far apart in such a w
that their neighbors at the relative positionR are of the op-
posite type after the exchange. This is schematically ill
trated in Fig. 7. That part of the total energy which should
accounted for is half the site-decomposed total energy w
ten in terms of the intersite interactions or interatomic pot
tials, i.e.,

V(2)~R!5
1

2
@E1

(2)~R!2E2
(2)~R!#. ~28!

Here,E1
(1) is the total energy due to pairwise interactions

the unperturbed system projected onto site 0 andE2
(2) is the

FIG. 7. Two systems, whose 0-site projected Coulomb energ
to be used in the calculation of the screened effective interaction
distanceR.
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same quantity after the exchange. A similar expression
also valid in the case of multisite interactions, but this w
involve a more complex exchange of atoms and will not
considered here because the screened Coulomb interac
do not contribute to the effective multisite interactions in t
ASA.

Within multiple-scattering theory as well as in the tigh
binding approximation a Green’s-function formulation a
lows both site and ‘‘path’’ decomposition of the electron de
sity and thereby makes it possible to write down
analytical expression for the one-electron contribution to
n-site interactions,V(n)(R), in the CPA.19,48 Concerning the
screened Coulomb interactions one must, however, proc
differently. There are several ways to do so, but here we
present a straightforward approach.

In the sense of the CPA and single-site mean-field the
we will use an effective-medium approach, assuming tha
all sites, i.e., within the atomic spheres assigned to each
there is an electroneutral effective medium except at the
sites0 andR under consideration. In those two sites we mu
use the actual values of the net charges of the alloy com
nents, which in the effective-medium approach are the a
age net chargesqA andqB of the alloy components.

In the first-principles methods, however, these net char
depend on the specific choice of the size of the atom
spheres and thus they must, in principle, go together with
corresponding screening cloud. Since we calculate
change in the electrostatic energy of the two systems sh
in Fig. 7 projected onto site0 due to the exchange ofA and
B atoms in positionsR, we must include only the interactio
of the net charge at site0 with the net charge at siteR andits
screeningcharge. That is, the interaction of the net char
with its own screening charge must be excluded as it is
cluded in the definition of the screened on-site interactio
see Eq.~11!. Thus the first term in Eq.~28! for the system
before the exchange of atoms has been made,E1

scr(R), is

E1
scr~R!5e2qA (

R8Þ0

qAR8

R8
1e2qB (

R8Þ0

qBR8

R8
. ~29!

Here,qiR8 is either the net charge of thei th componentqi if
R85R or the corresponding screening charge ifR8ÞR. A
similar expression may be written forE2

scr(R), after the ex-
change of theA andB atoms in theR sites, i.e.,

E2
scr~R!5e2qA (

R8Þ0

qBR8

R8
1e2qB (

R8Þ0

qAR8

R8
. ~30!

The resulting expression for the screened Coulomb inte
tions which should be added to the usual one-electron ter
therefore

Vscr~R!5
e2

2 S qA (
R8Þ0

qAR82qBR8

R8
2qB (

R8Þ0

qBR82qAR8

R8
D

5
e2

2
~qA2qB!2 (

R8Þ0

Q~ uR82Ru!

R8
, ~31!

is
at
1-12



in
th
al

ergy

of
re-

tion
in

the

e-
the
c-
as
rgy

tri-
ct
ons

nts
A
n
si-
RO
tion

on
g.

SCREENED COULOMB INTERACTIONS . . . I. . . . PHYSICAL REVIEW B 66, 024201 ~2002!
whereQ(R) is the normalized screening charge defined
Eq. ~9!, and where we have used the condition that
screening does not depend on the type of the atom. Fin
performing the summation in Eq.~31! one may define the
screened Coulomb interactions as

Vscr~R!5
e2

2
~qA2qB!2

ascr~R!

S
. ~32!

FIG. 8. The intersite screened Coulomb effective interacti
obtained from the normalized screening charge presented in Fi
02420
e
ly,

It is easy to see from Eqs.~31! and ~11! that ascr(R50)
5ascr5a rand and thereforeVscr(R50) is exactly the on-
site screened interactions that defines the Madelung en
of the binary alloy which has exactly the same form~20!.
This on-site interaction must be included in the definition
the S(2) interactions,42 as has been demonstrated in the p
vious section~see also Ref. 44!. When RÞ0, Vscr(R) de-
fines the intersite screened Coulomb interaction contribu
to the GPM-like effective interactions. Since the screening
the ASA is practically universal these interactions have
universal form presented in Fig. 8.

VI. TOTAL ENERGY IN THE SINGLE-SITE CPA
AND THE SUPERCELL LSGF METHODS

The fact that the Madelung energy of a random alloy d
scribed either by the effective-medium model defined by
SS-DFT-CPA method or by the supercell model in conjun
tion with the SS-LSGF method differ from each other h
neither consequences for the final result for the total ene
of the random alloy nor even for the partial and local con
butions to the total energy. This follows simply from the fa
that the density of states and its average local contributi
are the same in the two methods, as shown above.

In Table I we compare the total energy and its compone
in a Cu50Pt50 random alloy calculated by the SS-DFT-CP
method withascr50.605 72 and by the SS-LSGF method o
the basis of a 512-atom supercell, in which the atomic po
tions of Cu and Pt have been chosen such that the S
parameters are equal to zero at the first seven coordina

s
6.
in
l
venth

ator,
TABLE I. The total energy,~in Ry! of Cu50Pt50 random alloy and corresponding contributions obtained
three different calculations: by the single-site CPA-DFT method,~ss-CPA-DFT!, in the 512-atom supercel
LSGF calculations with optimized atomic distribution, providing zero SRO parameters up to the se
coordination shell,~LSGF-1!, and with atomic configuration immediately after random number gener
~LSGF-2!., (Ecoul5Eel2nuc1Eel2el1EMad).

Site Energy ss-CPA-DFT LSGF-1 LSGF-2

Cu
Kinetic 3360.076110 3360.076294 3360.077674

^Eel2nuc& 27974.160832 27974.157257 27974.178557
^Eel2el& 1439.080777 1439.078359 1439.099272
^EMad& 20.004193 20.005646 20.005994
^ECoul& 26535.084248 26535.084544 26535.085279
^Exc& 2130.026085 2130.026000 2130.026621
^ECu& 23305.034222 23305.034250 23305.034226

Pt
Kinetic 42188.794140 42188.794273 42188.791806

^Eel2nuc& 292747.101049 292747.093691 292747.030284
^Eel2el& 14378.917863 14378.911671 14378.849707
^EMad& 20.004193 20.005533 20.005472
^ECoul& 278368.187379 278368.187553 278368.186049
^Exc& 2693.866856 2693.866786 2693.865919
^EPt& 236873.260095 236873.260068 236873.260162

Alloy Etot 220089.147159 220089.147159 220089.147194
1-13
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shells ~LSGF-1!. The agreement between the two calcu
tions is seen to be excellent if one combines the electr
nucleus, the electron-electron, and the Madelung contr
tions to form a total Coulomb energy,Ecoul5Eel2nuc
1Eel2el1EMad .

The accuracy of the SS-DFT-CPA method with the app
priate screening contribution to the Madelung potential a
energy may be appreciated if one compares the results
512-atom supercell calculation performed by the SS-LS
method~LSGF-2! where the distribution of the Cu and P
atoms have not been optimized after the application of
random number generator leading to quite small, but
zero, SRO parameters. The values of the SRO parameter
the first seven coordination shells are20.005 208 ~1!,
0.026 041~2!, 0.007 161~3!, 20.014 323~4!, 20.021 484
~5!, 0.039 062 5~6!, 20.013 671 8~7!, respectively, which are
approximately the same, as in the LSMS calculations in R
54. The agreement between SS-DFT-CPA results and
LSGF calculations with a properly chosen superc
~LSGF-1! is obviously better than between two SS-LSG
calculations.
,

d

d

V.

e

.

J
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VII. CONCLUSION

The screened Coulomb interactions which are due to
interaction between the net charge of an alloy compon
and its screening charge must be included in a consis
single-site mean-field theory of the electrostatics in rand
alloys. In this paper we have shown how this may be do
and we have calculated the spatial distribution of the scre
ing charge which in the ASA is found to be practically un
versal for homogeneous systems. A formalism that descr
the contribution from for the screened Coulomb interact
to Madelung potential and energy as well as to the effec
interactions of the GPM-type is presented.
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