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Screened Coulomb interactions in metallic alloys.
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A quantitative description of the configurational part of the total energy of metallic alloys with substantial
atomic size difference cannot be achieved in the atomic-sphere approximation: It needs to be corrected at least
for the multipole-moment interactions in the Madelung part of the one-electron potential and energy. In the
case of a random alloy such interactions can be accounted for only by lifting the atomic-sphere and single-site
approximations, in order to include the polarization due to local environment effects. Nevertheless, a simple
parametrization of the screened Coulomb interactions for the ordinary single-site methods, including the
generalized perturbation method, is still possible. We obtained such a parametrization for bulk and surface NiPt
alloys, which allows one to obtain quantitatively accurate effective interactions in this system.

DOI: 10.1103/PhysRevB.66.024202 PACS nuntder64.90+b, 71.23-k

[. INTRODUCTION cific interaction insidehomogeneougparts of the systems,
e.g., inside the layers parallel to a surface.

One of the main problems of modern alloy theory is to In this situation there appears to be only one alternative to
establish a quantitatively accurate description of the the structure inversion methods: The so-called generalized
configuration-dependent part of the free energy, i.e., the difperturbation methodGPM), proposed by Ducastelket al>’
ference in the total energies of alloys with different atomicon the basis of the coherent potential approximation
arrangements on the underlying lattice, in terms of effectivd CPA),®~'%and formulated within tight-bindingTB) theory.
cluster interactions which may subsequently be used in std-ater the GPM was generalized in a straightforward
tistical thermodynamics simulatiohs® Even without lattice mannet'~**for use inab initio calculations based either on
relaxation effectswhich are not considered here, althoughthe Korringa-Kohn-RostoketKKR) method or the linear-
they play an important role in the phase equilibria of manyized muffin-tin orbitals (LMTO) method in the atomic-
alloy systemsa solution to the problem is still a challenge SPheré approximatiofASA). The main idea behind the
especially in the case of inhomogeneous systems such M is to calculate perturbatively the total-energy difference

surfaces in the presence of long-range and multisite intera etween the ‘fi"Oy in the |n|t|_al sta_te, which is compl_etely
tions which cannot be neglected. random, and in a final state in which only one specifically

o ... chosen atomic distribution correlation function or short-
The challenge originates from the fact that quanutatlvelyrange order parameter is different from that in the random

a_lccufratehand rerl1|abIEW|th|n tre. accuracyfoLthe aplproxma- fstate. This makes the GPM very efficient and convenient to
tion for the exchange-corre ation 'part 0 t e total energy of g o jt directly yields the needed effective cluster interac-
the electronic subsystem in density-functional the@yT) ;

(Refs. 4 and § effective cluster interactions can be obtained However, it is known, although rarely mentioned in the

only by the Connolly-Williams(CW) or structure inversion |iterature, that the interactions obtained by the GPM yield a
method"® on the basis of the total energies of a set of speguantitatively poor description of the ordering in real alloys
cifically chosen ordered structures calculated by the so-callegsee, for instance, Ref. 15n those cases where there is a
full potential (FP) methods, which have no restrictions on the substantial size mismatch between the alloy components.
form of the one-electron potential and density. However, theThis failure may only partly be attributed to lattice relaxation
structure inversion methods become practically unusable ieffects. Rather, it originates not from the GPM method itself
the case of an inhomogeneous system, not only because biit is a consequence of inappropriate approximations in the
the large number of basic structures which must be calcubasic methods underlying the GPM calculations. This is so,
lated to extract positiondayer-, for instancedependent in- because, as has been demonstrated by Biebal'® in pa-
teractions, but mainly because of the large size of those basiametrized tight-binding calculations and by Siretall’ in
structures(supercells which are needed to factorize a spe- ab initio KKR-CPA calculations, the GPM interactions may
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provide (under certain conditions consistentlescription of  in the extreme case, where one of the alloy components is a
the ordering or configurational energy. That is, the orderingracancy, the error due to the use of the ASA is about 100%
energy obtained from the GPM interactions, calculated in théor several eV in absolute value®r the vacancy formation
framework of a particular technique, agrees reasonably weknergy’® As has been shown by Korzhawf al,” this kind
with the ordering energy obtained directly from the total- Of error originates from the oversimplified description of the
energy calculations by theametechnique. nonspherical electrostatic contribution to the one-electron
Theab initio techniques underlying GPM calculations are Potential and energy mainly from the charge density on the
usually the KKR-ASA, KKR-ASA-CPA, and LMTO-CPA atomsnextto the vacancy. ,
method2® which are based on a number of approximations, This is similar to the case of_surfaces where the'qwte
such as the CPA, the single-sit8S approximation for the Ia_1rge ASA error may be substantially reduced by the |_ncl_u-
electrostatic part of the DFT problem, and the spherical apSio" of th_e multipole moments of the electron charges _|nS|de
proximation for the form of the potential which, depending € atomic sphereS. The so-called ASAM approach sig-
on the geometry, is called either the muffin-tiMT) or n!flc%]glly improves vacancy and defect formation ener-
atomic-sphere approximatiGhSA). The question is which 9i€S; ~ surface energie¥, and alloy energeticE’ Recently,

. . 34 . . . .
of these approximations is the most severe in the cases whefdNis €t al-" have included the multipole moments in their
the alloy components have a substantial size difference? Tef!-consistent tight-binding model which allowed them
answer the question, we note that a size difference leads {§ OPtain a quite accurate description of the energetics of
so-called “charge-transfer effects” or, to be more precise, to?'f¢onia-

a nonzero net charge for each alloy component inside their '" this paper we show that the use of the ASK ap-
atomic sphereshosen to be of equal size proach leads to a representation of the configurational part of
Although there are systems where the CPA may lead tdhe tota_l energy, Whl(_:h is very close to the fuII-pote_nuaI re-
substantial errors, it is clear from a general point of view thaSUltS- Since the polarization of the atoms in an alloy is almost
the CPA cannot be responsible for the errors in the case gntirely determined by their closest local environment, it is
pronounced charge-transfer effects, because the error of tfppvious that the effect of polarization cannot be described
CPA is mainly related to specific features of the electronicP™OPerly in the single-site approximation. Nevertheless, the
structure of the individual alloy components such as the dif>SPFT-CPA methods may be still used for the electronic
ference in the position and overlap of the energy b&rds. structur_e_ gnd total-energ_y calcg!anons_ of rando_m alloys if
Moreover, there is a number of different calculations whichth€ definition of the SCI is modified. It is the main purpose

show that in such systems as, for instance, CuPd and CuAQ the present paper to demonstrate how this may be done in

where the alloy components have similar electronic struct€ c@ses of ordinary bulk homogeneous random alloys and

tures but different atomic size, the CPA works fairly NNomogeneous systems such as surfaces. _
well?>-22 a5 a method for obtaining the average electronic The paper is orgz_;\ngd as foIIows_. In Sec. Il We_|ntroduce
structure of random alloys. the ASA+M approximation and outline some details of our

As far as the underlying KKR-CPA or LMTO-CPA meth- calculations. In Sec. Ill we compare the ordering energies of
ods are concerned, much larger errors may in fact come frofyiPt alloys, calculated by the KKR method in different ap-
the use of the single-site approximation in the seIf-consister?rox'mgg%”s and by the Vienrab initio simulation package
DFT part of the calculations as this yields no information (VASP)-">"In Sec. IV we define the on-site screening Made-
about the distribution of the charge outside the individuallund potential, which should be added to the one-electron
atomic spheres of the alloy components. In fact, the effectiv@0tential in the SS-DFT calculations. The SCI and the Made-
medium outside the individual atomic-spheres of the alloy'ind energy of a random alloy are defined in Sec. V. In Sec.
components is electroneutral, and therefore, if the net chargé! We calculate the intersite SCI in NiPt in different approxi-
of an atomic sphere is nonzero, Poisson’s equation cannot pRations and by different methods. In Sec. VII the screened

solved properly. A number of different models have beergeneralized perturbation method interactions are calculated

proposed to include the missirsgreeningcharge in the so- and compared with the Connolly—WiIIiams interactions. In
lution to Poisson’s equatidi2® and, most recently, a gen- Sec. VII we show how the formalism for the SCI should be

eral formalism of screened Coulomb interactiof®CI's) modified in the case of inhomogeneous systems where there

based on the knowledge that the spatial distribution of thé'® several nonequivalent sublattices, like partially ordered

screening charge around an impurity has been developed f0YS or surfaces.
Ref. 27 together with a formalism for the SCI contribution to
the GPM interaction$.Although the SCI may now be in-
cluded in SS-DFT-CPA calculations, this does not solve all
problems connected with the description of the energetics of In a companion papéf, in the following referred to as
alloys. paper |, we presented a consistent and variational, within
It is not surprising that the main source of inaccuracy inDFT, approach to the electrostatic screening effects in ran-
the KKR-CPA and LMTO-CPA methods is the spherical ap-dom alloys, and within the ASA we found that these screen-
proximation, MT or ASA, for the form of the electron den- ing effects were almost independent of alloy composition,
sity and potentialin the following we will consider only the lattice spacing, and crystal structure. However, in those cases
ASA, since the difference between the ASA and MT is un-where the alloy components have a substantial size differ-
important for the later discussion and resultSor instance, ence one cannot obtain a quantitatively correct description of

IIl. BEYOND THE ASA
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the configurational part of the total energy of metallic alloyslead to a substantial error in the total energy, as the
within the ASA. One must therefore go beyond the sphericamultipole-multipole interactions will not be accounted for.
approximation at least for the density. In the following we
will show how this may be done. All other details of our B. Details of calculations
approach may be found in paper I. :
The Green’s-function technique has been used in both the
A. Multipole correction to the atomic-sphere approximation: KKR-ASA and the locally self-consistent Green's-function
ASA+M (LSGF calculations in the scalar relativistic and atomic-
) ) ) o . sphere approximations. This part of the techniques is de-
The idea behind the multipole correction is simply to in- goribed in Refs. 27, 32 and 37. The basis functions have been
clude those coptrlbutlons_ to the electrostatic multlpole—expanded up tdna=3 (spdf basig inside the atomic
moment expansion of the intercell or Madelung part of thegpheres while the multipole moments have been calculated
one-electron potential and energy, which are neglected in thgp toIM_=6. We have also performed a number of calcu-
ASA. If the multipole moments of the electron chargk max

L : ) lations in thespd basis, i.e.)nax=2 andlr'\,ﬂax=4. The inte-
inside an atomic-sphere centerecRahre defined as gration of the Green's-function over energy was performed

Ny Y in the complex plgne over 16 ehngrgy p\(;\i/nt?]on a sergicri]rcular
L_ o ° _ contour using a Gaussian technique. We have used the gen-
9R7211 sR( 5R> NRIRVL(TR)AR=Zro0 (1 eralized gradient approximatioiGGA) of Perdew and
) co-workers>® For each structure the integration over the
whereL is shorthand for thel(m) quantum numbersSg the  pjjiouin zone(BZ) has been done by using equally spaked
radius of the atomic spherag the nonspherical charge den- yoints in the irreducible part of the appropriate BZ and the
sity, andY_ a real harmonic, the Madelung contribution to hymber ofk points has been chosen to be equivalent to 500—

the one electron potential is given by 1000 uniformly distributed points in the irreducible part of
1 the BZ of the fcc structure. Core states were recalculated at
L LL" L’ each DFT iteration.
== M ’ 1y 2 H H Tall
UMRTg R;L, rRR IR @ For benchmark calculations we applied the Vieahani-

_ ) ) tio simulation packagé/ASP) described in detail in Refs. 35
while the Madelung energy which now includes the ang 36. These calculations were performed in a plane-wave
multipole-multipole electrostatic interactions between differ-pasis,  utilizing fully nonlocal Vanderbilt-type ultrasoft

ent lattice sites may be written pseudopotentialéUS-PP,%° which allow the use of a mod-
1 erate cutoff in the construction of the plane-wave basis for
E=— L Mt gl 3 the transition metals. In the actual calculations th_e energy
M7 2s RE,L qRR;L, RR' AR ® cutoff was set to 302 eV, exchange and correlation were

) treated in the framework of the GGR,and the integration

In these expressiond/ ;’;, is the multipole Madelung ma- over the Brillouin zone was performed on a Monkhorst-Pack
trix which is equivalent to the conventional LMTO structure k mesh® Test calculations showed that, depending on struc-
constants and the number of multipoles included inltie’  ture, the required convergence was reached for 354275
summations is determined by the angular momentum cutofpoints in the irreducible wedge of the BZ.
I max in the basis set used in the Green’'s-functions calcula-
tions. Owing to the properties of the Gaunt coefficients non-
zero multipole moments of the charge density may be gen-
erated forl values up td .= 2l nay. We start by demonstrating the accuracy of the various

We note that, since in the ASAM the one-electron po- approximations which are usually used in KKRITO)-
tential is still kept spherically symmetric inside each atomicASA-like calculations. For this purpose we have calculated a
sphere, the only term which contributes to the one-electroset of ordered fcc NiPt alloys by the KKR-ASA method and
potential is theL=(0,0) or monopole term. This simple re- by the US-PP for a fixed lattice constant without any local or
striction on the form of the one-electron potential violates theanisotropic relaxations. The lattice constant has been chosen
variational connection between the Madelung potential ando bea~3.791 A, which corresponds to an atomic Wigner-
energy and, in turn, between the one-electron potential an8eitz radius of 2.8 a.u. The ordered structures incliide:

Ill. ORDERING ENERGIES IN Ni-Pt

the total energy, i.e., (CusAu-type), DO,, (TiAl 5-type), Z3, 8,* y (PLMo-type),
L1, (CuAu-type, CH or “40” (NbP-type, Z2,* L1, (CuPt-
o0, %Ewm type), and the so-called SQS-18.
UMR=UMRT ong 4) To simplify the comparison we present in Table | the val-

ues of the calculated “mixing” energies of the above-
However, since this is just a consequence of the model, buyhentioned ordered structures,

not of theory in general, it does not create any problems. On
the other hand, the reinstatement of the variational connec-
tion between the one-electron potential and the total energy ENimPta_ gNimPty
by keeping only the monopole-multipole term in E§) may mix tot m+n

Ni Pt
ME+NEo

, ©)
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TABLE |. “Mixing” energies —Epx (in mRy/atom of ordered  volume dependent contribution to the total energy is not ex-
and random NiPt alloys obtained by different methods at a ﬁxeobanded in terms of cluster interactions, which is an ill-

Wigner-Seitz radius 06=2.8 a.u. defined procedure in metallic systems and usually leads to
very bad convergence of the CW meth@ee, for instance,
KKR-ASA Ref. 43
Alloy spdf spd US-PP R

In Table | we present KKR-ASA results in thepdf as

ASATM ASA Neutral ASATM ASA well as thespd basis and in both cases we show results in

NisPt s the pure ASA, i.e., without multipole moment contributions,
L1, 21.7 195 28.4 31.1 31.7 223 and in the ASAHVI. We al_so include the results of ne_utral
DO,, 20.6 183 26.4 30.3 30.1 21.0 Sphere calculations, in which the_ atomlc-sphere_of Pt is cho-
73 13.2 8.6 23.4 18.1 170 145 Sento be larger than that of Ni in order to provide zero net

Random 15.6 117 237 220 211 164 chargc.asf of the a'gomic spheres. AIthough the comparison of
the mixing energies should be done with some caution, be-

PL,Mo 215 182 283 31.9 312 95 Ccause the grounq-sta_lte properties of the alloys are dlffere_nt in
p 16.4 107 277 237 225 194 different approximations and becayse all _the calculat|o_n§
. have been performed at the same fixed lattice constant, it is
NisoPtso clear that the ASA-M approach in thespdf basis leads to
L1, 21.5 238 331 39.0 384 280 \alues ofE,ix Which are in considerably better agreement
22 13.4 51 251 17.0 134150 " \\ith the US-PP results than any of the other approaches.
CH 26.3 228 310 38.0 374 269 Using the results of the Connolly-Williams method for the
L1, 22.7 175 32.8 30.8 30.1  23.0  tota energy of random alloys one can calculate the ordering
SQS-16 20.7 21.7  energies, defined as the difference between the total energies
Random 206 149 293 28.7 268 21.6 of an ordered and a random alloy at the same composition. In
NigsPt3 Table Il we compare the ordering energies of different struc-
B 176 100 239 239 206 193 tures calculated in different approximations for;Ri, NiPt,
PtMo 219 181 26.2 31.6 302 229 and PfNi. Such a comparison makes sense since the order-
NizsPtrs ing energies are much less volume dependent than the total
Z3 14.0 8.4 18.4 18.5 15.8 14.6 energies themselves. Again, it is seen that, relative to the
DO,, 19.7 16.7 218 28.3 27.0 20.2 US-PP results, the ASAM approach in thepdfbasis gives
L1, 20.0 16.8 22.0 28.2 27.2 20.6 notonly the best, but also a quite accurate description of the

Random 15.4 10.7 204 21.1 19.1 16.4 ordering effects in NiPt. It is also seen that the ordering
energies in the ASAM but without multipole-multipole
, contribution to the Madelung energy appear to be halfway
whereEfy, andEf}; are the total energies of the pure com- beteeen ASA and ASAM results. As we will see below, this
ponents calculated at the same lattice constant. All total eris in fact the limit of accuracy which can be reached in con-
ergies are per atom. The mixing energies of the random akistent single-site mean-field calculations.
loys have been obtained on the basis of all the energies It is also obvious from the table that the KKR-ASA does
included in Table I, except SQS-16, plus the energies ohot yield reasonable values for the ordering energies in the
Ni;Pt and PiNi (CuPt-type) ordered alloygnot presented case of transition-metal alloys unlefsstates are included in
in the table by the Connolly-Williams method in which the the basis. Thesé states are needed to supply a better aug-
total-energy expansion included pair interactions at the firsentation of the basis functions at the atomic sphere and a
four, seventh and tenth coordination shelleese are the better interstitial charge densityThe neglect of states can
largest pair interactions in this as well as in many other fcaonly be partly compensated by the use of the so-called
transition-metal alloys the first four triangle interactions combine-correction term in the LMTO meth8d.
and the two tetrahedron interactions corresponding to the Another important conclusion, which can be drawn from
tetrahedra of nearest neighbors, and the straight line alon@pe results in Table Il, is the fact that the use of neutral
[111] direction (the last being quite substantial in many spheres leads to a substantial underestimate of the ordering
systems effects in KKR-ASA(+M) calculations. In other words, al-
The SQS-16 is a so-called special quasirandom strtféturethough the neutral-sphere approach formally solves the prob-
which consists of eight atoms of one type and eight atoms ofiem of the electrostatic interaction in an alloy, the electro-
another type distributed in the unit cell in such a way that thestatic contribution to the one-electron potential and energy
first seven pairs, the nearest-neighbor triangle, and the tetréeing zero by definition, it introduces errors which are unac-
hedron atomic distribution correlation functions are the sameeptable in a quantitative description of the configurational
as in the random alloy. Hence the fact that the values oénergetics.
ES25 16 and E20Y are nearly equal indicates that) the The reason for this failure is the following. If we com-
SQS-16 provides a good model for the random NiPt alloypare the values o, from Table | obtained with neutral
and (i) the convergence of the CW method is reasonablyspheres with those obtained with equal spheres, we find that
good. Part of the convergence of the CW method is providethe neutral sphere approach leads to substantial lowering of
by the use of total energies on a fixed lattice, whereby théhe total energy of the ordered alloys. However, the amount
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TABLE II. Ordering energiegin mRy/atom NiPt alloys at a fixed Wigner-Seitz radius 8&=2.8 a.u.
Ordering energies obtained without multipole-multipole contribution in the A8Kcalculations are given in

parentheses.
KKR-ASA
Alloy spdf spd US-PP
ASA+M ASA Neutral ASA+M ASA
PNi
L1, -6.13(—7.07) —7.84 —4.69 —-9.17 —10.58 —5.98
DO,, —5.06(—5.9) —6.63 —2.67 -8.34 —9.04 —4.63
Z3 2.34(2.72 3.06 0.31 —-3.85 4.09 1.83
NiPt
L1, —6.91(—8.05 —8.92 —3.82 —-10.31 —11.63 —6.49
Z2 7.18( 8.66 9.85 4.14 11.72 13.35 6.55
CH —5.66(—6.86 -7.87 -1.67 —-10.05 —10.68 -5.30
L1, —2.03(—2.38 —2.58 —3.54 -2.15 -3.39 -1.47
SQS-16 —-0.07(-0.12 -0.18
NiPt
L1, —4.58(—5.48 —6.12 —1.66 —7.05 —8.05 —4.52
DO,, —4.29(—5.25 —6.01 —-1.37 —-7.12 —7.09 —4.20
Z3 1.35(1.92 2.31 1.99 2.65 3.33 1.48

of lowering is structure dependent: In the case of “phasedV. THE ON-SITE SCREENING MADELUNG POTENTIAL
separated-like” structures, where there is a certain clustering IN THE ASA +M

of atoms of one type, lik&3, Z2, the lowering is much Although the ASA-M approach seems a natural generali-

greater than it is in some of the more “normal” structures. __.. o ) )
Through the CW procedure the exaggerated lowering of thEz}amon of the ASA, that changes little in the formalism, it has

energies of th&3 andZ2 structures leads to an exa erateda large effect on the way the SCI must be treated in random
9 ggerate alloys. The most dramatic consequence of the ASAis the
lowering of the total energy of the random alloy, making, in

the end, all the ordering energies much smaller in absolutfeaCt that the correct SCI can no more be obtained in single-
value t’han the shouglld beg In the case of the phas Site electronic structure or Green's-function calculations: The

' : y T L b eIargest polarization effects, which give multipole-moment
separated-like structures this kind of error originates in the

¢ filling of the crvstal rovided by the non ualcontributions to the SCI, actually come from the nearest
oo g ot Ihe crystal space provided Dy the honeq neighbors of the atom the screening of which is considered.

e 2 e o e o o bay o TS s 625 0 6  he case of a gl mpury 1
. T . otherwise perfect crystal which is the dilute limit of a ran-
not genera_tlly known. Now, if such division is done differ- om alloy. The point-group symmetry of the impurity site is
ently_for d|fferent_ qrdere_d structures by means of nongquaﬂxactly the same as that of the underlying lattice, while none
atomic spheres, it is obvious that the resulting errors will be¢ o neighbors has even inversion symmetry and therefore
st.ructure dgpendent and render a comparison of total enekyery atomic sphere around the impurity has a nonzero di-
gies meaningless. pole moment. Such a dipole moment plus the higher multi-
Based on the abOVe ConSiderationS |t appears that the u%le moments induced by the presence of the |mpur|ty can
of equal atomic spheres for the alloy components providegnly be found in Green’s-function calculations which include
the only consistent and correct way of dividing space forthese neighboring sites in the perturbation part of the Dyson
configurational or ordering energy calculations, if the underequation. Thus the multipole-moment contribution to the SCI
lying lattice is a simple Bravais lattice, such as fcc and bcccan be obtained onlgeyondthe single-site approximation in
In that case the packing of space by the atomic spheres of thhe Green’s-function calculations.
alloy components is homogeneous and independent of the Nonetheless, we will determine a simple parametrization
alloy configuration which makes at least part of the ASAof the SCI for the SS-DFT-CPA method, which will allow us
error systematically compensated when the energy differende obtain accurate results in SS-KKBMTO)-CPA calcula-
of different structures is calculated. Of course, the situatiortions. Such a parametrization of the SCI in the ASM is
is different in alloys where the underlying lattice has a morepurely a fitting procedure in contrast to the SCI determined
complicated structure. However, in the configurational enby SS-ASA-Green’s-function calculations in paper | basi-
ergy calculations one should follow the recipe of choosingcally for the purpose of showing the existence of a consistent
equal sphere radii of the alloy components on the sublatticgheory of the SCI in random alloys in the framework of the
where the alloying(ordering is taking place(see, for in-  single-site-CPA theory.
stance, Ref. 47 Let us first consider the on-site Madelung potential in a

024202-5



RUBAN, SIMAK, KORZHAVYI, AND SKRIVER PHYSICAL REVIEW B 66, 024202 (2002

random alloy due to the screened Coulomb interactions 0.05
which should be used in SS-DFT-CPA calculations for the
random alloy. In the case of a binary random allay, .B., 2 o
this potential can be defined ésee paper)l 0.00 eoes
i o
Vi=— ezascr(o) q_SIa (6) \% —0.05 OASA
e} 0 ASA+M
whereq; is the net charge of thith alloy componentS the o0 | E !
Wigner-Seitz radius, ands,(0) the on-site screening con-
stant which can be obtained from the screening charge by
performing “impurity” calculations (see paper)| for in- -0.15 > 3 7 s s
stance, by exchanging the type of atom at a particular site of R/S

the supercell modeling the random alloy. Theg.(0) is

FIG. 1. The normalized screening charge in fcc NiPt, obtained

2S in the ASA and ASA-M approximations.
sl 0)=—3 2, So(RQUR), )

, . some particular site in a 384-atomgpRt;, supercell, the first
v_vhere S (RY) are _the canonlc_al_ struct_ure cons_tants, theseven short-range ordé8RO parameters of which are equal
first few terms of which are explicitly defined, for instance

in Ref. 48. Furth R th lized itinol ' to zero. The calculations have been carried out in the single-
N Ret. 4o, Fur erQL'( ) are € hormalized mullipole Mo-  gje (59 | SGF-ASA as well as the embedded-clUStEC)-
ments of the screening charge in the atomic-sphere center

$SGF-ASA+M methods(see paper)l The local interaction

atR, zone(LIZ) in the EC-LSGF-ASA-M calculations included
Ag.(R) Aq.(R) 43 atoms, i.e., the central atom and its first three coordination
QLR)= — = —, (8) shells(LIZ=4), while in the SS-LSGF calculations the LIZ
Aq(R=0)  AQL-o(R=0) included only one atoniLIZ =1).
whereAq, (R) is the difference between tHe moments of It may be seen from Fig. 1 that the screening is more
the charge in the atomic sphere Rtafter and before the €fficient in the ASA+M than in the ASA, although the dif-
impurity has been introduced at the sRe=0. ference between the two cases is very small. Nevertheless,

There is one important point. In the pure A%A.(0) can the effect of the multipole moments on the on-site screening
be determined in an alternative although formally equivalen€onstantas.(0) is quite pronounced, it increases to about

manner by 0.74 from the 0.61 in the ASA calculations. The largest mul-
tipole contribution comes from the dipoles in the first coor-
S (v;) dination shell, which contribute almost 0.1 to theg.(0),
@scr(0) = (@rand = — 2 (@)’ (9 while the quadrupole and octuple moments contribute 0.036

and 0.016, respectively.
where(V;) and(q;) are the average values of the Madelung The effective charge transferAq=(qy;)—(dpy), in-
potential and net charges of thth alloy component in the creases from 0.505 in the ASA to 0.583 in the ASM.
self-consistent supercell calculations of the random alloyHowever, it is still reproduced correctly in SS-DFT-CPA cal-
Being practically exact in the ASA this scheme is only ap-culations, provided thecorrect i.e., corresponding to the
proximately valid in the ASA-M, where the average Made- ASA+M, value of the on-site screening constamg.(0), is
lung potential of the supercell, which is equal to the Made-used in Eq.(6). This is so because the on-site screening
lung potential of the underlying lattice, is not equal to zero inconstant is a parameter which determines a constant shift of
general due to the presence of the nonzero multipole mahe one-electron potential both in the ASA and ASK.
ments at least fok=4. In the case of inhomogeneous sys- This constant may be chosen to contain the monopole-
tems like surfaces, where the multipole contribution to themultipole interactions of the charge at a given site with its
average Madelung potential is quite large, E).cannot be screening cloud, thereby yielding the correct effective charge
used at all. Therefore, Eq9) should be modified by sub- transfer. Unfortunately, the same is not the case for the
tracting the corresponding average values of the net chargédadelung energy and the SCI in general.
and Madelung potentials of the alloy components on the

(sublattice, q=(1-c){qa)+c(gs) and v=(1—c)(va) V. THE SCI AND MADELUNG ENERGY
+c(vg), OF A RANDOM ALLOY
S (v))—v The screened Coulomb interactions,.(R), are the en-

asc(0) = (arand = — ez< _>_—- (10) ergies of the electrostatic interaction between the electron
4’4 charge density inside an atomic-sphere centered at some site

In Fig. 1 we compare the monopole moment of the normal{it is convenient to choose this site as the origamd the

ized screening charg®, —oo(R), in a NisgPt;o random alloy  perturbed electron density and its screening charge at an-

obtained by changing the type of the atom from Pt to Ni at aother, in general, different site. In the ASA, the SCI can
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be represented in the form of the multipole expansion, 40 ‘
Total
30 | R
Vsel =2 Vee(R), (12) —— 5Q5-16
L sl KKR-CPA
whereVL,(R) is theL-component contribution to the SClat
the distancdr, which for a binaryA, _.B. alloy on a Bravais 1oy}
lattice may be expressed, as in paper |, as T
= 60 i ‘
e QuLR=0)as.(R) fQ
VR = 5 AgE 8
40 |
e2
Z_A 2 R=0 - ’ R, ’
25~ Qu( )LI’RE,#O St=o0L/(R)QL o0 |
X(R'—R). (12 ,
0 saaazEszssiis L
Here Aq is the difference of the net charges in the atomic -08 -06 -04 -02 0 0.2
sphere after and before the perturbation, i.e., the exchange of E - E; (Ry)

the type of atom at sit®, a*(R) is a generalized screening _ . ) o
constant,S, (/(R’) are the canonical structure COﬂStaﬁS, F_IG. 2.. The total and site-projected densnty of states iR,
Q.(R'—R) "are the normalized multipole moments of the obtained in the supercell EC-LSGF calculations and by the SS-
screening charge, antlg, —go={ga)—(0gg) is the effective KKR-CPA method.
charge transfer in the alloy. . . )

ng]thin the single-site m)éan-field considerations presente&ter' The simplest way to do so is to define the Madelung
in paper 1, all the multipole moments on the alloy sites arec"ergy of the random alloy as
uncorrelated, the average value Qf (R=0) being either
very small or equal to zero, unleks=00, and thus the only ERM= cES, (15
nonzero SCI i8/5.,%, which, for instance, in the case of the !
1;():0 underlying lattices can be written in the forigee paper \herec; is the concentration of thieh alloy component, and

2 —

& arseR) erer=" pop 2 a6
2

Vserl R):qu s (13

which means that in the case of a binary random alloy
where

Efant=c(1—c)BVse(R=0). (17)

1
ase(R) =5 2 St=00/(RNQL(R'=R). (14 Here, g is the renormalization coefficient which is approxi-
LLR#0 mately equal to 1.16 for most fcc and hcp transition-metal
The on-site ternV.(R=0) is the energy of the electrostatic random alloys. ThusE}*" and Vi, are no more DFT-
interaction between the net charge of an alloy componentonsistenfsee Eq.(4)].
and its screening density or, as has been shown in paper |, it As discussed above, this violation of general theory is a
is the screening Madelung energy of the random alloy. It iconsequence of the ASAM, which on the other hand brings
easy to see that this energy is DFT-consistent with the correhe ordering energies of the much more efficient SS-DFT-
sponding screening Madelung shift of the one-electron po€PA approach into good quantitative agreement with the cor-
tential (6). However, in contrast to the screening Madelungresponding full-potential results. Although the difference be-
potential which correctly reproduces the effective chargeween the multipole-multipole and monopole-multipole
transfer in random alloysVs.(R=0) underestimates the results in Table Il might not look so dramatic, the omission
corresponding Madelung energy in the ASM because of of the multipole-multipole interactions in the ASAV
the missing contribution from the multipole-multipole inter- Madelung energy has much more serious consequences in
actions in the single-site mean-field approximation. In thethe case of, for instance, surface energy anisotropy calcula-
case of, for instance, a NPty random alloy this contribu- tions, which cannot be reproduced eralitativelywithout
tion is about—3 mRy/atom for the Wigner Seitz radil®  this term.
=2.8 a.u. Finally, we show that the CPA itself introduces relatively
This means that if one wants a quantitatively accuratesmall errors in the electronic structure calculations of a ran-
value of the total energy of a random alloy in the SS-DFT-dom alloy. In Fig. 2 we compare the total density of states
CPA calculations consistent with the supercell AB¥ cal- (DO of a random NjgPt; alloy and the local, Pt and Ni,
culations one needs to modify the definition of the Madelungcontributions obtained by two different methods, SS-KKR-
energy of the random alloy by introducing a fitting param-CPA and EC-LSGF. The SS-KKR-CPA calculations have
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been performed witlxg.,=0.74 for the screening Madelung TABLE Ill. ag.(R;) at the first four coordination shells in the
potentials of the alloy component§), and in the EC-LSGF ASA and ASA+M obtained by different methods.

calculations LIZ4 has been used to calculated the SQS-16
supercell of NjoPt,. Since all the SRO parameters of the Method i=1 2 3 4
SQS-16 are equal to zero up to the seventh coordination

. o . ASA
shell, beyond which the net charge at each site is practlca]l q. (13 01584 —0.0017 —0.0163 —0.0108
completely screened, the EC-LSGF results may be consi . (19) 01640 —00026 —0.0189 —0.0116
ered as a benchmark for the SS-KKR-CPA method. The ™ ' ' ASA+M. '
agreement between the EC-LSGF and SS-KKR-CPA resuItEq. 13 01279 —0.0023 —00101 —0.0050

is seen to be good, clearly indicating that the CPA works . _
fairly well for this system. Eqg. (13) (impurity)  0.1304 —0.0035 —0.0106 -—0.0052

VI. INTERSITE SCREENING CONSTANTS IN NiPt =7. It is obvious that the first term in Eq18) may be

L ) . _ identified with the usual GPM interactions.
There are several ways of obtaining the intersite screening |+ follows from Eq. (18), that if N—1<Ng,, and ;=0

constantsxs¢(R), which determine the corresponding inter- ¢o 411 j <N, ., except for one coordination shelwhich is
S|te_SCI. First, they may be obtf';uned directly from the NOrheyond the LIZ,j>N—1, then the intersite SCI for this
malized moments of the screening chaf@g(R) by means  gpacific coordination shell can be determined in two LSGF
of Eq. (14). This requires two self-consistent supercell cal-cgicylations: One performed for a supercell which corre-
culations: One performed for some initial atomic conﬂgura-sponds to the random alloyx(=0 for all i<Ny.,) and the

tion in the supercell and the other for the same supercell Wityiher for a supercell which satisfies the above-described con-
an “impurity” at the site where the type of atom is changed yitions with ;#0. In this case

(see paper)l In this manner, however, only the monopole-
multipole part of the SCI can be found.
. . 4SE,q

Second, one may take advantage of the special properties aser(R) = ) (19
of the LSGF method, namely of the fact that the electronic e’c(1-c)Ag?zja;
structure in the LSGF method is obtained in the so-called
combined-cluster—effective-medium approath’ That is, In the ASA all the SCI can be determined by using Eq.
the local environment effects are taken into account only19) in the corresponding SS-LSGF-CPA calculations, while
inside the LIZ during the electronic structure calculations,as(R,) is the first SCI which can be determined in the
while the rest of the crystal is seen by each atom as a rando®SA+M in this way, since there is no multipole contribution
alloy, described by the CPA effective medium. This meango the SCI in the single-site approximatipN(LIZ) =1]. It
that all the correlated atomic configurations attributed to thds also clear that if the multipole-multipole Madelung energy
nonzero SRO parameters beyond the LIZ do not contributés included in the corresponding LSGF calculations, then, in
to the electronic structure of the supercell. At the same timeprinciple, a.(R) determined from Eq(19) will also con-
since the Madelung problem is solved exactly, they are actain the multipole-multipole contribution.
counted for in the electrostatic part of the total energy. However, in this approach the higher-order atomic distri-

Considering the change of the atomic configuration on théution correlation functiongmultisite SRO parameterof
lattice as a small perturbation, one may argue on the basis dfie supercell should be also optimized. This is so, since all
Andersen’s force theoreththat the difference in the total the multisite interactions for the figures inscribed in the LIZ
energies of the alloy with some nonzero SRO parameters andith a vertex located at the central atom of the LIZ, also
a completely random alloy in the LSGF calculations may becontribute to the ordering energy. Moreover, in the case of

given by the ASA+M, in principle, there is a nonzero contribution
from the SCI to the multisite interactions themselves. In our
ELIZ=N_ gSRO_ prand calculations, we have not optimized the multisite SRO pa-
ord tot ot rameters of the supercells and therefore considering the quite
1 N-1 small values of the SCI beyond the first coordination shell
= Ec(l—c) 21 aiZ\Vone_el(R) we have not used Eq19) in the ASA+M calculations.

In Table Il we comparexg(R) for the first four coordi-

nation shells calculated either by direct summation of the
, (18  normalized multipole momentd4) or by means of Eq(19)

in the SS-LSGF total energies. The LSGF calculations have

been performed for 384-atom supercells of an equiatomic
where a; are the Warren-Cawley SRO parametésse, for  NigoPt;, alloy with the corresponding sets of SRO param-
instance, Ref. Rat theith coordination shellN the size of eters. Although we have not optimized the higher-order SRO
the local interaction zone, which is determined as the numbgsarameters, they turned out to be sma#d.02 or less, at
of coordination shells around the impurity site plus 1, andleast for the triangle and tetrahedra of the nearest neighbors
Ns¢r the coordination shell beyond which the SCI vanish. Inon the fcc lattice. Thus they should not affect the results, at
the case of an fcc alloy it may safely be assumed bhgt  least in the ASA. As seen from Table Ill the agreement be-

NSCF

+ El @iZVge(Ry)
=
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TABLE IV. Effective interatomic interactions at the first four coordination shells obtained by different
methods(in mRy). The SCI contribution to the SPGM interactions is given in parentheses.

Approximation Vi Vs, V3 V,
SGPM

ASA+M (0-L) 14.05(15.49 0.32(-0.10 -1.09(—-1.22 —1.76(—0.89

ASA 12.26(14.39 0.53(—0.19 —1.31(—1.48 —2.14(—0.98

Neutral (GPM) 5.49 1.22 0.01 -0.73
Connolly-Williams method

ASA+M 12.68 1.31 —-0.02 -0.73

ASA+M (0—L) 13.70 0.49 —0.86 -1.39

ASA 14.33 0.28 -1.72 -1.92

USs-pPP 12.81 1.30 0.69 —-0.40
Direct calculations fron{19)

ASA+M 12.45 0.47 -0.49 —0.65

tween the intersite screening constaats,(R), determined alloys similar to the case of the intersite screening constant
in two different calculations in the ASA, is quite reasonable.calculation described in the previous section. That is, in
As shown in paper lgg.(R) is practically a universal (iii) the effective interactions have been obtained from the
function for metallic alloys on simple Bravais lattices in the EC-LSGF total energy calculations for a completely random
ASA and the single-site approximation. In the A&M ap-  alloy, ;=0 for all i<Ng,, and for an alloy with one non-
proach, this is not the case any more. However, our calculazero«; . However, nowj <N—1, whereN is the size of the
tions for the dilute limit of NiPt alloys and for different lat- LIZ in the LSGF calculations, and therefore the local envi-
tice constants show that.,(R) changes very little in these ronment effects attributed to the nonzero SRO parameter, are
cases and, in fact, less than the difference between the valugsluded in the electronic structure calculations. In this case
of as.(R) calculated in two different ways. For instance, in the effective pair interactions can be determined as
Table Il we show the values ot (R) obtained for a Ni

impurity in pure Pt atS=3 a.u., which are very close to 2E'5'r§:N
those of the random equiatomic alloy &t2.8 a.u. Vj=1—. (22)
c( —C)Zjaj
VIl. SCREENED GPM INTERACTIONS IN NiPt It is important that Eq(21) is not based on any additional

As demonstrated in paper | the intersite screened Couapproximations and therefore constitutes a direct way of de-
lomb interactionsV.(R), given by Eq.(13) must be added Ferm?nir}g thg effect.ive interactions with an accuracy which,
to the corresponding one-electron term given by the GPM il principle, is rest'ncted only by the approximations 'used n
order to satisfy the force theorethln the case of a binary the LSGF (_:alculatlons, that is, m_amly by th_e ASM, since
random alloyA B, ., the screened generalized perturba_the CPA yields very small relative errors in the EC-LSGF

tion method(SGPM interactions are defined as in Ref, 2: calculations with LIZ>2. . .
Although the SGPM interactions as well as the interac-

VSGPMR) =VCPM(R) +V__(R) tions determined from Ec{Zl) are concentration dependent,
while the Connolly-Williams interactions are concentration

5 sc(R) independent, they can be compared since the concentration

T g (20) dependent interactions obtained for an equiatomic alloy com-
position are equal to those of the concentration independent

where VEPM(R) is the usual GPM interactions obtained asinteractions, at the same fixed volurifeTherefore, if the

the change of the one-electron energies due to specificallyasis in the Connolly-Williams method includes all the im-

induced alloy configurations on the alloy’s underlying lattice. portant interactions for a given system, the Connolly-

In fact, VePM(R) should be renormalized due to the intersite Williams interactions obtained from the KKR-ASAM cal-

SCI. However, this problem, as well as the complete SGPMulations of the ordered alloys at a fixed lattice constant

formalism will be considered elsewhete. should be equal to those obtained from E2{) for the equi-

In Table IV we compare the first four most important atomic alloy composition at the same lattice constant.
effective pair interactiongthe rest of the pair interactions It is clear from Table IV that in general the agreement
and the multisite interactions are less than 0.1 miRythe  between the Connolly-Williams and the direct calculations is
NiPt fcc alloys atS=2.8 a.u. obtained by three different quite good. Further, the Connolly-Williams interactions ob-
techniquesli) the SGPM for equiatomic alloy composition, tained by the KKR-ASA-M and by the US-PRCW-KKR-

(i) the Connolly-Williams method on the basis of the total ASA+M and CW-US-PPagree well with each other, except
energies of the ordered alloys described above, (@ddi-  for V5 which is a little larger in the CW-US-PP calculations
rect calculation from the EC-LSGF total energies ofRi;,  than in the CW-KKR calculations. This, then, confirms our

2
€
:VGPM(R)+ ?Aq
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TABLE V. Ordering energies of the equiatomic NiPt alloys ob- ~ TABLE VI. The on-site screening constant}.(0) in the first
tained from the pair SGPM effective interactions. The values obthree layers of111), (100, and (110 fcc surfaces.
tained in the direct calculationsee Table I} are given in paren-

theses. Facet A=1 2 3
Structure ASAFM ASA Neutral fee(11D) 0.805 0.730 0.728

fcc(100) 0.841 0.732 0.729
L1, —7.73(-8.09 —7.46(-8.92 —3.61(-3.82 fcc(110) 0.840 0.756 0.732
z2 9.22(8.66 8.68( 9.85 4.19( 4.14
CH ~7.15(-6.86 —6.62(-7.87 —1.77(—1.67)
L1, —2.96(-2.39 —3.75(-2.59 —3.09(—3.59 o2 V' (R)

VA (R)=— AgyAay = T (22)

point that the ASA-M approach allows us to obtain quanti- whereAq, is the effective charge transfer on thesublat-

tatively accurate configurational energies of metallic alloys.tice, andagér (R) the screening constant, which is defined as
It is interesting to note that although the neutral-sphere

approach yields quite large errors for the ordering energies, it PN

seems to work remarkably well for the GPM interactions, scr(R)_ 2 L’% . St=00/(RNQL(R'=R). (23

except forV,, which is more than twice as small as it should R

be. It is probably a coincidence that they come out very closélere, the vectoR connects the site on sublattiae where

to the CW-KKR-ASA+M interactions, since the SCI are the perturbation of the charge density is induced to the site

quite small beyond the first coordination shell. Unfortu-On sublattice\’, at which the SCI is determingdee paper |

nately, the CW interactions obtained in the neutral spherdor details, and Ql(R) are the multipole moments of the

calculations do not seem to be convergent, the three- angFreening charge in the atomic-sphere centerd?l mbrmal-

four-site interactions being of the same order of magnituddzed by Aq,(R=0)..

as the interaction at the first coordination shell and therefore It is clear thatagér (R) depends on the direction &, i.e.,

they are not given in the table. al) (R)# b N(R), and therefore the SGPM interactions,
The SGPM interactions, obtained in the ASM and in \which in the inhomogeneous systems should be invariant

the ASA[in these two cases we have used the intersite SGlinder a sublattice index interchange, are defined as

calculated by Eq(13)] are not very different, except for the

interactions at the first coordination shell. This is most prob- \/SCPM GPM NV NS

ably due to the missing multipole-multipole contribution to Vi (R =V (R)+ Wscr(RHVscr(R)]

the intersite SCI in the ASAM. One may also see from

Table IV that the SGPM-KKR-ASAM interactions are in \EPM al) (R + Scr(R)
fact quite close to those of the CW-KKR-ASAV obtained Vv (R)+ AQ)\Aq)\’ S

without multipole-multipole electrostatic interactions (-

These interactions have recently been used in Monte Carlo (24)

simulations of the ordering in NiPt and reproduced quite We"whererf’,M(R) is the usual GPM interaction.

the order-disorder transition temperature for an equiatomic As an example of the inhomogeneous system we have
alloy composition and the values of the SRO parameters in a
y b P chosen three low-index fcc surfacé$11), (100), and(110).

random alloy aff=1200 K>3
Finally, in Table V we show the ordering energies of theThe calcu_latlons_ has been performed. by the_ EC- LS.GF
four equiatomic ordered alloys, obtained from the first 20methOd with an inhomogeneous effective mgdlum, which
SGPM interactions, although the contribution from the inter-Vas fce11D), fC_C(lOO)’ gnd fc¢110 slabs consisting O.f three .
actions beyond the fourth coordination shell is only a fewacuum and six atomic layers, four vacuum and six atomic
percent of the total ordering energy. Comparing these ene;ayers and six vacuum and ten atomic layers, respectively,
parallel to the surface. The actual supercells for the impurity

ies with those from the direct total-energy calculations, pre
gented in Table II, we find reasonableg);greement forpthgalculatlons were built on the basis of the effective-medium

ASA+M and the ASA results and verv good agreement inSUP€rcells byN, XNy translations in the plane parallel to the
neutral sphere approach. y e 9 surface, which were 86 for the (111) and (100 surfaces,

and 6x4 for the (110 surface. In the case of th@10
surfaceN,=6 was the period in the closed-packgHL0]
direction, whileN, =4 was the period in thg001] direction.
Since the screening is insensitive to the alloy composition
The generalization of the SCI formalism to inhomoge-and the lattice parameter, the screening density was obtained
neous systems, such as partially ordered alloys or surface®r a Ni impurity in pure Pt aS=3 a.u.
is straightforward. In the latter case the SCI also become In Table VI we present the on-site screening constant,
inhomogeneous and therefore definititk8) should be re- k. (0)=al}(R=0), in the first three layers of these sur-
written as faces (the impurity is in the\ layen. It is clear that the

VIIl. SCI AT ALLOY SURFACES
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TABLE VII. ) (R)) at the first four coordination shells ofthe  The intersite screening constantd), (R) are presented
(111), (100, and (110 fcc surfaces. in Table VII. Again, one can see that the surface has a quite

N =1 2 3 4 substantial effect on the screening constmﬁg(R), which
is due to the perturbed electron density in the first layer,
A=1. However, the values foagé‘; (R) are already very

close to the corresponding bulk valuésee Table I} for

A Facet

Ry
1 fco(111) 0.1160 0.1262
fce(100) 0.1007 0.1241

=2,
fcc(110 0.1026 0.1176 0.1285
2 fco(11D 0.1297 0.1295 0.1287
fcc(100) 0.1263 0.1322 0.1298
fce(110 0.1325 0.1306 0.1318 IX. CONCLUSION
3 feo11D 0.1319 0.1317 0.1307 The polarization of the electron density of the alloy com-
fcc(100) 0.1325 0.1306 0.1318  ponents due to their size mismatch makes a substantial con-

fcc(110  0.1290 0.1297 0.1285 0.1312  tribution to the electrostatic energy of the alloy. This contri-
bution, which is missing in the pure ASA, may be accounted

Rz for in the ASA+M approach through the multipole-moment

1 fco(11D) 0.0012 interactions in the Madelung part of the electrostatic prob-
fcc(100  —0.0111 —0.0022 lem, and, as we have shown, it plays a crucial role in obtain-
fcc(110 —0.0111 0.0040 ing the correct ordering energetics.

2 fco(11))  —0.0035 0.0012 We have also demonstrated that the neutral sphere ap-
fcc(100 —0.0003 0.0017  proach based on the use of different atomic-spheres for the
fee(110 —0.0021 —0.0011  alloy components on the corresponding underlying laftice

3 fed11) —0.0003 0.0001 subllatice, in generalleads to unacceptable, quantitative er-
fcc(100  0.0027 0.0016 rors, and therefore the only consistent way of obtaining cor-
fcc(110  —0.0039 —0.0023 rect configurational energetics is to use spheres of equal radii

for the alloy components on the sublattice where the alloying
Rs is taking place.

1 fec(11) —-0.0139 —0.0099 —0.01441 Since the multipole moments due to polarization effects

fcc(100 —0.0080  —0.0156 originate from the specific local atomic configuration around

fec(110  —-0.0131 -0.0090 -0.0101 -0.0111  each site, they may in principle be accounted for only by
2 fco1l) —0.0104 —0.0096 —0.0095 —0.0111  methods which go beyond the single-site approximation in
fcc(100  —0.0097 —0.0088 —0.0096  the electronic structure(Green's-functioh calculations.
fcc(110  —-0.0079 —0.0069 —0.0107 —0.0117 However, the use of a simple parametrized form for the on-
3  fcq11) —0.0099 -—0.0097 -—0.0111 —0.0113 site Madelung potential and energy in the SS-DFT-CPA cal-
fcc(100 —0.0091 —0.0087 —0.0103 culations still allows one to obtain a reasonably accurate de-
fcc(110  —-0.0124 -0.0107 —0.0118 —0.0108  scription of the electronic structur@ the CPA works for a
given system and total energy, although, obviously, such a

Ry parametrization is possible only on the basis of the calcula-
1 fco(11l)  —0.0058 —0.0087 tions by more accurate methods.
fcc(100  —0.0043 —0.0103 The monopole-multipole intersite SCI's have been ob-
fcc(110  —0.0031 —0.0063 tained for NiPt fcc bulk and surface alloys. The SGPM in-
2 feo(11) —0.0031 —0.0042 teractions, which are the usual GPM interactions plus the
fcc(100 —0.0033 —0.0030  SCI, reproduce the corresponding monopole-multipole
fce(110 —0.0047 —0.0036 KKR-ASA+M results, which give a semiquantitatively cor-
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fcc(110 —0.0029 —0.0058
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