Spin injection from Co2MnGa into an InGaAs quantum well

Hickey, M. C.; Damsgaard, Christian Danvad; Holmes, S. N.; Farrer, I.; Jones, G. A. C; Ritchie, D. A.; Jacobsen, Claus Schelde; Hansen, Jørn Bindslev; Pepper, M.

Published in:
Applied Physics Letters

Link to article, DOI:
10.1063/1.2938418

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Spin injection from Co$_2$MnGa into an InGaAs quantum well

1 Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 OHE, United Kingdom
2 Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark

(Received 6 January 2008; accepted 11 May 2008; published online 9 June 2008)

We have demonstrated spin injection from a full Heusler alloy Co$_2$MnGa thin film into a (100) InGaAs quantum well in a semiconductor light-emitting diode structure at a temperature of 5 K. The detection is performed in the oblique Hanle geometry, allowing quantification of the effective spin lifetime and spin detection efficiency ($22 \pm 4\%$). This work builds on existing studies on off-stoichiometric Heusler injectors into similar light-emitting-diode structures. The role of injector stoichiometry can therefore be quantitatively assessed with the result that the spin injection efficiency increases by a factor of approximately 2 as compared with an off-stoichiometric Co$_{2.4}$Mn$_{1.6}$Ga injector. © 2008 American Institute of Physics. [DOI: 10.1063/1.2938418]

Spin injection into degenerate semiconductors such as GaAs is an area of massive interest to the field of spintronics. The technological application of spin injection are myriad and include the manipulation of classical information carried by spin, initialization, and readout of a spin qubit and coherent manipulation of spin in the proposed spin field effect transistor. Single element ferromagnetic transition metals such as Fe are attractive spin injectors as they possess a high Curie temperature and exhibit well understood thin film magnetism. However, the s-d hybridized nature of the band structures of these metals, means that the Fermi level polarization is limited to the range of 30%–40%. There has been a lot of work recently done on understanding the spintronic properties of systems which potentially have only majority spin electrons at the Fermi level, the so-called half metals. In spite of this, there have been very few experimental device implementations of this type of material.

Here, we focus on the Heusler alloy Co$_2$MnGa which crystallizes in the L_2^1 phase. This alloy falls into the general class of Co-based materials which have the the formula Co$_2$YZ, where the Y and Z atoms are a transition metal and an sp element, respectively. The lattice matching of Co$_2$MnGa to GaAs is attractive ($\sim 2\%$) and they have Curie temperatures above room temperature. Recent studies of Co$_2$MnGa on GaAs(100) (Ref. 4) demonstrate the feasibility of this material system. A fully spin polarized metallic contact may be used as a spin injector without the requirement of a tunnel barrier as it would be immune to the conductivity mismatch problem.

Electronic structure calculations on Co$_2$MnGa (Ref. 6) in the framework of density functional theory, indicate a bulk spin polarization in the density of states of 81% with a total spin moment of 4 μ_B per formula. However, the ternary nature of these alloys introduces another level of structural complexity as the formation of antisite defects follow Boltzmann statistics and have been shown to detrimentally affect the bulk and interface spin polarization7 in Co$_2$MnSi. In these calculations, the Fermi level spin polarization in the density of states was reduced to about 55% due to Co antisite defects.

In this paper, we have incorporated a Co$_2$MnGa injector into a spin light-emitting diode (LED) structure and investigated spin injection into an In$_{0.2}$Ga$_{0.8}$As quantum well (QW). This study can be compared with previous spin injection experiments on off-stoichiometric Co$_{2.4}$Mn$_{1.6}$Ga LED structures, where spin polarization has been measured to be 13%, while 27% spin injection has been achieved from Co$_2$MnGe (Ref. 9) into GaAs. This type of spin LED design is based on a n-Al$_{0.33}$Ga$_{0.67}$As Schottky LED structures which were used to successfully demonstrate spin injection from Fe into GaAs/AlGaAs QWs. Further, the oblique Hanle geometry can be used to estimate the effective spin lifetime in the QW.11

The structure comprises a GaAs based LED structure with a surface Schottky barrier onto which a ferromagnetic metal layer is grown. The III-V wafer is grown by standard molecular beam epitaxy techniques and is in situ transferred under UHV conditions into a magnetic metals chamber where a 10 nm Co$_2$MnGa layer is grown at 250 °C with a deposition rate of 3 Å min$^{-1}$ followed by a 3 nm Au cap.

The III-V part of the heterostructure consists of the following layers: 15 nm n-Al$_{0.33}$Ga$_{0.67}$As (3.3 \times 1018 cm$^{-3}$)/15 nm n-Al$_{0.33}$Ga$_{0.67}$As (1×10^{18} cm$^{-3}$)/50 nm n-GaAs (1×10^{18} cm$^{-3}$)/50 nm GaAs/5 nm In$_{0.22}$Ga$_{0.78}$As/100 nm GaAs/10 nm In$_{0.2}$Ga$_{0.8}$As/100 nm In$_{0.2}$Ga$_{0.8}$As/500 nm p-GaAs (1×10^{18} cm$^{-3}$) on a (100) p-GaAs substrate. This device wafer was designed to have two QWs in order to observe optical recombination from two distinct regions in the semiconductor. However, only recombination from one (5 nm) QW is observed. The metal/semiconductor heterostructure (spin LED) was then processed using Ar$^+$ ion etching techniques to make a 240 μm Co$_2$MnGa mesa inside a larger 500 μm mesa of the semiconductor part of the device heterostructure. The device band diagram, electroluminescence and current-voltage characteristics are plotted in Fig. 1.
The injected spin polarization is detected via a measurement of the circular polarization of the emitted light from the recombination region at 5 K. This method has become a standard technique in devices of this type and involves an oscillating quarter wave retarder and a static linear polarizer as described elsewhere. The polarization of the circularly polarized light and the emitted EL is collected along the [100] crystallographic direction which is the growth axis and the electric field gives rise in the 5 nm InGaAs QW region. The electric field gives rise to Bloch theory. The inset shows Hanle effect measurements at higher bias and a measured radiative lifetime of 400 ps by photoluminescence. The kink in the curve around zero field is associated with a nuclear dipole shift. This fit gives a value of $\Pi = 22\% \pm 4\%$ for the injected spin polarization, as detected in the QW. The bias dependent spin injection is shown in Fig. 3. At $V_b < 4.76$ V, the light intensity drops and the polarization data become unreliable as evidenced by the error bars on the plot. At higher bias, there is a reduction in observed spin polarization in the QW accompanied by an increase in the Hanle half-width. This corresponds to a shorter T^0_s. This is due to the enhanced electric field which the spins see in the 5 nm InGaAs QW region. The electric field gives rise to a more pronounced spin orbital field from the asymmetric confinement potential. Toward the higher bias limit, the optical polarization drops to a constant $P \sim 1\%$. The drop in measured polarization is due to the decrease in T^0_s, and hence a decrease in the spin detection efficiency $\eta(T^0_s/\tau)$. This decrease in T^0_s is evidenced by the increase the Hanle half-width in the $P(B)$ curve in Fig. 2.

The Hanle effect data at 5 K and fits to Bloch theory shown in Fig. 2 give effective spin lifetimes $T^0_s = (160 \pm 30)$ ps at $V_b = 4.76$ V, based on a g factor of $|g| = -0.8$ taken from data on In$_{0.21}$Ga$_{0.79}$As/GaAs QWs (Ref. 14) and a measured radiative lifetime of $\tau = 400$ ps by photoluminescence. The kink in the curve around zero field is associated with a nuclear dipole shift. This fit gives a value of $\Pi = 22\% \pm 4\%$ for the injected spin polarization, as detected in the QW. The bias dependent spin injection is shown in Fig. 3. At $V_b < 4.76$ V, the light intensity drops and the polarization data become unreliable as evidenced by the error bars on the plot. At higher bias, there is a reduction in observed spin polarization in the QW accompanied by an increase in the Hanle half-width. This corresponds to a shorter T^0_s. This is due to the enhanced electric field which the spins see in the 5 nm InGaAs QW region. The electric field gives rise to a more pronounced spin orbital field from the asymmetric confinement potential. Toward the higher bias limit, the optical polarization drops to a constant $P \sim 1\%$. The drop in measured polarization is due to the decrease in T^0_s, and hence a decrease in the spin detection efficiency $\eta(T^0_s/\tau)$. This decrease in T^0_s is evidenced by the increase the Hanle half-width in the $P(B)$ curve in Fig. 2.

The optical polarization as a function of applied magnetic field $P(B)$ is plotted in Fig. 2, having subtracted a small negative linear component, arising from a weak Zeeman splitting of $g \mu_B B/t = kT$. $P(B)$ is proportional to the S_z component of the spin and the total spin state S, obeys the Bloch equation for the time evolution of spin states. The injected spins undergo Larmor precession and the radius of precession is determined by the spin scattering rate. These processes underpin the oblique Hanle effect. The steady-state Bloch solution can be written as follows:

$$S_z = \frac{T_s S_{0z} + S_{0y} T^0_y S_z + S_{0z} T^0_y S_z}{1 + T^0_y S_z},$$

where $I_{\sigma \pm}$ is the intensity of right or left circularly polarized light and $n_{\uparrow \downarrow}$ is the density of spin up or down electrons which undergo recombination. In the experimental configuration here, the magnetic field is applied at 30° to the plane of the thin film contact and the emitted EL is collected along the (100) crystallographic direction (the growth axis) and normal to the plane of the thin film.

The optical polarization as a function of applied magnetic field $P(B)$ is plotted in Fig. 2, having subtracted a small negative linear component, arising from a weak Zeeman splitting of $g \mu_B B/t$. $P(B)$ is proportional to the S_z component of the spin and the total spin state S, obeys the Bloch equation for the time evolution of spin states. The injected spins undergo Larmor precession and the radius of precession is determined by the spin scattering rate. These processes underpin the oblique Hanle effect. The steady-state Bloch solution can be written as follows:

$$S_z = \frac{T_s S_{0z} + S_{0y} T^0_y S_z + S_{0z} T^0_y S_z}{1 + T^0_y S_z},$$

FIG. 1. (Color online) (a) The self-consistent field calculated band diagram of the spin LED structure, showing the $1e \rightarrow 1hh$ excitonic transition. (b) The electroluminescence spectrum at 5 K confirming that the emission is dominated by the $1e \rightarrow 1hh$ free exciton.
We have demonstrated spin injection from the Heusler alloy Co$_2$MnGa. The maximum optically measured spin polarization was found to be $4.0\% \pm 0.3\%$ in the low bias regime. The value of electron spin polarization inferred from this measurement in the Hanle geometry was found to be $22\% \pm 4\%$, having established an effective spin lifetime of $T_s = 160 \pm 30$ ps. Despite the predictions of a high degree of spin polarization in the injecting metal and the optimized Schottky barrier configuration, the injected spin polarization does not improve on that previously achieved with Fe. Comparing this result with off-stoichiometric Co$_{2.4}$Mn$_{1.6}$Ga, we find that there is an increase in the injected spin polarization by a factor of 2.

M. C. Hickey would like to acknowledge financial support from the Cambridge European Trust, Toshiba Research Europe Limited, and the Engineering and Physical Sciences Research Council.

