
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Jun 05, 2024

Experimental continuous-variable cloning of partial quantum information

Sabuncu, Metin; Leuchs, Gerd; Andersen, Ulrik Lund

Published in:
Physical Review A

Link to article, DOI:
10.1103/PhysRevA.78.052312

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Sabuncu, M., Leuchs, G., & Andersen, U. L. (2008). Experimental continuous-variable cloning of partial quantum
information. Physical Review A, 78(5), 052312. https://doi.org/10.1103/PhysRevA.78.052312

https://doi.org/10.1103/PhysRevA.78.052312
https://orbit.dtu.dk/en/publications/4ab9f273-b56d-468e-ad1a-87db3d888f7a
https://doi.org/10.1103/PhysRevA.78.052312


Experimental continuous-variable cloning of partial quantum information

Metin Sabuncu,1,2,* Gerd Leuchs,2 and Ulrik L. Andersen1,2

1Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
2Institut für Optik, Information und Photonik, Max-Planck Forschungsgruppe, Universität Erlangen-Nürnberg,

Günther-Scharowsky Strasse 1, 91058, Erlangen, Germany
�Received 26 March 2008; published 7 November 2008�

The fidelity of a quantum transformation is strongly linked with the prior partial information of the state to
be transformed. We illustrate this interesting point by proposing and demonstrating the superior cloning of
coherent states with prior partial information. More specifically, we propose two simple transformations that
under the Gaussian assumption optimally clone symmetric Gaussian distributions of coherent states as well as
coherent states with known phases. Furthermore, we implement for the first time near-optimal state-dependent
cloning schemes relying on simple linear optics and feedforward.
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I. INTRODUCTION

The ignorance about a given quantum state is what makes
quantum protocols difficult to execute in practice or even
impossible in principle. For example, high efficiency and
deterministic teleportation of a quantum state with no prior
information is possible only in the unrealistic limit of perfect
entanglement. Furthermore, it is well known that perfect
cloning of an arbitrary quantum state is impossible as formu-
lated in the no-cloning theorem �1,2�. Luckily, in all practical
quantum communication or computation schemes we are not
completely ignorant about the set of possible input states,
which in turn greatly facilitates the execution of these proto-
cols: The more prior information one has about the input
alphabet the fewer resources are needed for the process.

An interesting example demonstrating the influence of
partial quantum information is cloning. For example, the op-
timized continuous-variable �CV� cloner of an arbitrary state
�also known as the CV universal cloner� yields a cloning
fidelity of 1 /2 corresponding to a standard classical distribu-
tor �3�. However, if the input states are known a priori to be
coherent states �but with unknown amplitude and phase�, the
fidelity increases to 2 /3 �4,5�. With further limits on the
number of possible input states, the fidelity increases even
further, as theoretically analyzed in Ref. �6� for a symmetric
Gaussian distribution of coherent states, in Refs. �6–8� for
coherent states with known phase, and in Ref. �9� for phase
covariant cloning, where the mean amplitude is fixed but the
phase random. Cloning of displaced thermal states and
squeezed states has also been theoretically analyzed �10�.
Despite this high interest in cloning of partial CV quantum
information, there have been no experimental demonstra-
tions. Experimental studies have been entirely devoted to
cloning of qubits with partial information, e.g., phase cova-
riant cloning �11–13�.

In this work we investigate, theoretically and experimen-
tally, the optimization of a continuous-variable quantum
cloning machine with respect to two different coherent-state
alphabets, using a simple setup based entirely on linear op-

tics, homodyne detection, and feedforward. In particular, we
propose and experimentally realize an optimal Gaussian
cloning machine tailored to clone a symmetric Gaussian al-
phabet of coherent states as well as coherent states with
known phases. In addition, we prove the optimality of the
latter scheme and find that a fidelity as large as 96.1% can in
principle be achieved.

II. THE CLONING PROTOCOL

A common measure of the quality of a cloning operation
is the fidelity, which is defined as follows. Consider the pro-
tocol where the coherent state ��� to be cloned is chosen
from an ensemble defined by �p��� , ���� where p��� denotes
the probability that the state ��� was chosen. This state un-
dergoes a cloning transformation, thus resulting in a density
matrix ���� associated with the input state, �. The overlap
	��������� then quantifies the quality of cloning a specific
member, ���, of the alphabet. The average fidelity of the
cloning action thus reads

F̄ =
 p���	���������d2� . �1�

Using the fidelity as a measure, the cloning transformation is
optimal when this expression is maximized. Such a maximi-
zation normally yields a non-Gaussian solution, that is, the
optimal map � is non-Gaussian. However, since the Gauss-
ian cloning transformation is known to be near optimal, we
will mainly focus on such maps.

In Ref. �14� a 1→2 cloning map based on linear optics,
homodyne detection, and feedforward was proposed. A gen-
eralized version of this map is illustrated in Fig. 1 and de-
scribed in the figure caption. With the transmittivity set to
T2=1 /2 and the electronic gains to gx=gp=�2�1−T1� /T1,
the input-output relation for one of the clones in the Heisen-
berg picture reads

âclone1 =
1
�2

�� 1

T1
âin +� 1

T1
− 1â2

† + â3 , �2�

where âclone1, âin, â2, and â3 are the field operators associated
with the output, the input, and the ancilla fields, respectively.*msabuncu@optik.uni-erlangen.de
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The field operators are given by â= x̂+ ip̂ where x̂ and p̂ are
the amplitude and phase quadratures, respectively. The map
in Eq. �2� coincides with the one in Ref. �14� for T1=1 /2,
which was found to be the optimal Gaussian cloning map for
completely unknown coherent states corresponding to a flat
input alphabet. If, on the other hand, the number of possible
input coherent states is finite the transformation in Ref. �14�
is no longer optimal. For a symmetric Gaussian distribution
of coherent states with variance V, p���
=1 /2�V exp�−���2 /2V�, the fidelity in �1� is

F̄ =
2T1

2V�1 − �2T1�2 + T1 + 1
. �3�

It is clear from this expression that the fidelity is a function
of the knowledge of the input states through the variance V
of the Gaussian alphabet. For a given variance V, the maxi-
mized fidelity is

F̄ =�
4V + 2

6V + 1
, V �

1

2
+�1

2
,

1

�3 − 2�2�V + 1
, V �

1

2
+�1

2
,� �4�

which is obtained using the scheme in Fig. 1 with T1

= 1
2 �1 / �2V�+1�2 and T1=1, corresponding to the upper and

lower inequalities, respectively. These fidelities are identical
to the ones found in Ref. �6� for optimized Gaussian cloning
using an optical parametric amplifier �OPA�. Let us consider
these expressions in two extreme cases: If no a priori infor-
mation is available about the distribution of coherent states,

V→� and the fidelity averages to F̄=2 /3. In the other ex-
treme, where complete information about the input state is at
hand, V=0 and the fidelity is unity. In the following, we
investigate experimentally the realistic intermediate regime
where the width of the input distribution is finite and non-
zero.

III. THE EXPERIMENT

We prepare the input coherent states by modulating a
continuous-wave laser beam �1064 nm� at the frequency of
14.3 MHz. Two electro-optical modulators inserted in the

beam path were used to control the mean phase 	pin� and
amplitude 	xin� quadratures independently by separate low-
voltage function generators. Through the modulation, pho-
tons were transferred from the carrier into the sidebands, thus
producing a pure coherent state at the modulation frequency.
We set the modulation frequency to 14.3 MHz and defined
the bandwidth of the coherent state to be 100 kHz.

The pure coherent states are subsequently injected into the
cloning machine �Fig. 2�. First the states are split into two
parts using a variable beam splitter which consists of a half-
wave plate and a polarizing beam splitter; thus any T1 in Eq.
�2� is easily accessed by a simple phase plate rotation. The
reflected part of the state is measured using heterodyne de-
tection where x and p are simultaneously measured. This is
done by causing interference of the signal with an auxiliary
beam �AUX1� with a � /2 phase shift and balanced intensi-
ties; subsequently the two outputs are measured with high-
efficiency and low-noise detectors, and the sum and the dif-
ference currents are constructed to provide a measure of x
and p. The outcomes are scaled with low-noise electronic
amplifiers and used to modulate the amplitude and phase of
an auxiliary beam �AUX2�, and subsequently combined by
the remaining part of the signal, employing a 99:1 beam
splitter. This accomplishes a high-efficiency displacement
operation. Finally, the displaced state is divided into two
clones using a symmetric beam splitter and the two outputs
are characterized using two homodyne detectors with intense
local oscillator beams �LO1 and LO2�. The signal power and
variances of the input state as well as the output states are
then measured using a spectrum analyzer with resolution
bandwidth set at 100 kHz and video bandwidth at 300 Hz.
Such measurements suffice to fully characterize the states
due to the Gaussian statistics of x and p. Active electronic
feedback loops were implemented at all interferences to en-
sure stable relative phases. From the power and variance
measurements, we estimate the gain as well as the added
noises associated with the cloning transformation. Using
these values we calculate the fidelity for a given input alpha-
bet using the expression

F̄ =
2

��1 + �x2 + 4V�1 − �x�2��1 + �p2 + 4V�1 − �p�2�
,

�5�

which is obtained from Eq. �1� by inserting an arbitrary
Gaussian state �with variance V� in replacement of ����.

FIG. 1. �Color online� Schematic of the proposed 1→2 cloning
protocol. The signal ain is reflected at a beam splitter with transmit-
tance T1 and detected using a beam splitter with transmittance T2

and two homodyne detectors measuring the amplitude x and phase
p quadratures. The measurement outcomes are scaled with the gains
gx and gp and used to displace the transmitted signal. The displaced
state is subsequently split on a symmetric beam splitter, thus pro-
ducing two clones denoted by aclone1 and aclone2. a1, a2, and a3 are
ancilla states.

FIG. 2. Experimental cloning setup. AM, amplitude modulator;
PM, phase modulator; EOM, electro-optic modulator; LO, local os-
cillator; AUX, auxiliary state; T1, variable beam splitter.
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�x= 	xclone� / 	xin� and �p= 	pclone� / 	pin� are the cloning ampli-
tude gains.

IV. RESULTS AND DISCUSSION

As an example, we consider a Gaussian input distribution
with V=1.72 shot noise units �SNU�. For this alphabet, the
cloning machine is optimized by setting T1=0.83 and gx
=gp=0.64 corresponding to a cloning gain of �x=�p=0.775.
We adjusted the beam splitter transmittance to this value and
tuned the electronic gains to the optimized value while moni-
toring the optical gain of a test signal �through comparison
between the input power and output power of the signal�. For
this specific experimental run, we measured an optical clon-
ing gain of 0.775	0.005 valid for all input states. After
adjusting the gain to this value, the associated added noises
in x and p were measured to 1.21	0.02 and 1.26	0.02.
Inserting these values in Eq. �5� we find an average cloning
fidelity of F=0.775	0.01 which is very close to the optimal
value of F=0.785 �see Eq. �4��. This experiment was re-
peated with different gains corresponding to different widths
of the input alphabet and the results are summarized in Fig.
3. The solid curve in Fig. 3 represents the ideal average
fidelity given by Eq. �4�. Small deviations from ideal perfor-
mance are caused by small inefficiencies of the heterodyne
detector in the feedforward loop: The mode overlap between
the auxiliary beam AUX1 and the signal beam was 99% and
the quantum efficiency of the associated detectors was
95% 	2%. Taking these parameters into account, the ex-
pected average fidelity follows the dashed curve, which
agrees well with the measured data. Note that all the mea-
sured data were corrected for the detection inefficiencies of
the verifying detectors �amounting to 83% and 85%� to avoid
an erroneous underestimation of the added noise and thus an
overestimation of the fidelity. Note also that for V
1 /2
+1 /�2 �corresponding to the gray shaded region in Fig. 3�,

the best cloning strategy is a simple beam splitter operation,
which is obtained in the present setup by setting T=1 and
gx=gp=0; thus �x=�p=1 /�2. In this case ideal performance
is naturally achieved and the ideal solid curve and real
dashed curve in Fig. 3 are identical. Since the detection ef-
ficiency is inferred out of the results, the actual measured
performance will be only limited by the errors in estimating
these efficiencies. We now proceed by considering another
input alphabet. The coherent states are assumed to have a
known and constant average phase but completely random
amplitude. This input distribution was also considered theo-
retically in Refs. �6,8�, where two different strategies were
suggested for the experimental realization. In the latter ref-
erence, however, the proposed strategy was not optimal and
in the former reference the method relied on squeezing trans-
formations to surpass the classical cloning strategy. Further-
more, the optimality of the suggested schemes were not
proven in these references. In the following we show that the
transformation depicted in Fig. 1 is optimal for special
choices of the ancilla states a1 and a3, and the transmittances
T1 and T2. We start by setting T1=1 /2 and T2=1 and thus get
the following transformation for one of the output clones:

xclone1 = xin +
1
�2

x3, �6�

pclone1 =
1

2
pin −

1

2
p1 +

1
�2

p3. �7�

First, assuming that the input ancillas �a1, a2, and a3� are
vacuum states, the fidelity for this transformation is easily
found using the expression �1� and inserting a distribution
with the above mentioned properties. We find F=2 /�5
�0.894. This should be compared with the optimized mea-
sure and prepare strategy, which we conjecture to be associ-
ated with single-quadrature detection followed by displace-
ment of an optimally squeezed ancilla state in the quadrature
direction corresponding to the constant phase. The optimized
squeezing factor is �1 /2 of the undisplaced phase quadra-
ture, and this measure and prepare strategy yields a fidelity
of F=2 /�3+�2�0.828 �15�. Remarkably, our proposed
scheme surpasses this value without the use of squeezed
states. Although this cloning protocol surpasses the measure
and prepare protocol, it is not the optimal Gaussian cloning
machine for this input alphabet. If the input state a1 is infi-
nitely squeezed in the amplitude quadrature and a3 is
squeezed by a factor of �8 /5, the cloning machine is optimal
yielding a fidelity, F=4��10−1� /9�0.961. Hence, knowing
the phase of the input coherent states, the cloning fidelity can
be exceptionally high using a very simple scheme.

Let us now prove the optimality of this scheme. A generic
Gaussian cloning transformation is cast as

xclone1 = �x1�xin + nx1�, pclone1 = �p1�pin + np1� ,

xclone2 = �x2�xin + nx2�, pclone2 = �p2�pin + np2� ,

where ni are noise operators. Since the two clones are as-
sumed to be identical we set �x=�x1=�x2 and �p=�p1=�p2,
and because the amplitude of the input is completely random

FIG. 3. �Color online� Average fidelity plotted against the width
��V� of the distribution of input states. The solid line corresponds to
the theory and the red dots and black squares correspond to average
fidelities for clones 1 and 2. The dashed line takes into account that
the amplifier used in the scheme was nonideal and some technical
noise entered the cloning process. The dotted line corresponds to a
measure and prepare strategy. The gray shaded area corresponds to
the region where the solution T1=1 is optimal. The red line extends
this solution into the region where it is not optimal.
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we must have �x=1 to maximize the cloning fidelity. Fur-
thermore, by using the fact that the amplitude �phase�
quadrature of clone 1 commutes with the phase �amplitude�
quadrature of clone, we find

�xc1,pc2� = g��xin,pin� + �nx1,np2�� = 0

⇒�nx1,np2� = − 2i

and

�nx2,np1� = − 2i , �8�

which yield the uncertainty relations

�2�nx1��2�np2� � 1,

�2�nx2��2�np1� � 1.

Due to symmetry we get

�2np�2nx � 1 �9�

with �2nx��2nx1=�2nx2 and �2np��2np1=�2np2. Now,
considering the commutation relation between conjugate
quadratures of a single clone, we find

�xc1,pc1� = g��xin,pin� + �nx1,np1�� = 2i

⇒�nx1,np1� = 2i
1 − g

g
,

which results in the uncertainty product

�2nx�
2np � ��1 − �p�/�p�2

for both clones. This product is minimized for �p=1 /2 while
satisfying the relation �9�. The minimum variances of the two
output clones are therefore

�2x = 1 + �2nx,

�2p =
1

4
�1 + �2np� .

By evaluating the Gaussian fidelity for these clones we find

F =
2

��2 + 1/�2p��5/4 + �2p/4�

which is maximized if the ancilla state is squeezed such that
�2np=�5 /2 and �2nx=�2 /5. The maximum fidelity is thus
found to be F=4��10−1� /9.

We now demonstrate cloning of coherent states with con-
stant phases using the scheme in Fig. 1 with a1 and a3 in
vacuum states. The experimental setup is slightly modified
with respect to the one in Fig. 2. To enable direct detection of
the amplitude quadrature in the feedforward loop, the auxil-
iary beam AUX1 is blocked and the sum of the currents
produced in the two detectors is taken. This yields the am-
plitude quadrature and is correspondingly used to generate
the amplitude displacement. The feedforward gain driving

the phase displacement is set to zero; thus the phase quadra-
ture is unaffected by the feedforward action. Since the am-
plitude quadrature of the input states is completely unknown,
the electronic gain gx is set such that the overall optical am-
plitude quadrature gain is unity. This maximizes the average
fidelity for this set of states.

Finally, the clones are generated at the output of the third
beam splitter. The verification procedure is the same as be-
fore, and a measurement run is depicted in Fig. 4. Making
use of Eq. �5� we calculated the fidelity of the generated
clones to be �89.1	0.2�% and �88.7	0.2�%. In this particu-
lar measurement run the gains for the amplitude quadratures
were measured to be �x1=0.98	0.01 and �x2=0.99	0.01
for clone 1 and clone 2. The experimental cloning fidelity
greatly exceed the classical fidelity of 82.8% and is close to
the optimal value of 89.4% for nonsqueezed ancillas.

V. CONCLUSION

In conclusion, we have illustrated the intriguing relation-
ship between cloning fidelity and prior partial information by
proposing and experimentally demonstrating the state depen-
dent cloning transformation of coherent states with superior
fidelities. We found that the more prior information about the
input states the greater is the cloning fidelities. This relation-
ship is valid not only for cloning protocols, but also for other
protocols such as teleportation and purification of quantum
information. Since prior partial information is common in
quantum information networks, we believe that the state-
dependent cloning strategies presented in this paper as well
as similar strategies for other protocols will have a vital role
in future quantum informational systems.
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FIG. 4. �Color online� Spectral amplitude quadrature noise den-
sities of the two clones �upper black traces� relative to the quantum
noise level �lower red trace�. The measurement was taken over a
period of 2 s. The settings of the spectrum analyzer were 14.3 MHz
central frequency, 100 kHz bandwidth, and 300 Hz video band-
width. The added noise contributions are 1.8	0.1 dB and
1.85	0.1 dB for clone 1 and clone 2, respectively. The optimal
cloning limit �1.75 dB above the shot noise level� is pointed out by
the solid green line.
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