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Structural transition properties of the LiBH4+xLiI �x=0–1.00� pseudobinary system were examined
by powder x-ray diffraction and differential scanning calorimetry combined with periodic density
functional theory calculations. We experimentally and computationally confirmed the stabilization
of the high-temperature �hexagonal, lithium super�fast-�ionic conduction� phase of LiBH4 with
x=0.33 and 1.00, and the results also imply the existence of intermediate phases with x
=0.07–0.20. The studies are of importance for further development of LiBH4 and the derived
hydrides as solid-state electrolytes. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3117227�

Lithium borohydride �LiBH4� exhibits lithium
super�fast-�ionic conductivity accompanied by a structural
transition from low-temperature �LT, orthorhombic� to high-
temperature �HT, hexagonal� phases by heating to approxi-
mately 390 K.1 Since the structural transition is reversible,
the HT phase with super�fast-�ionic conductivity transforms
into the LT phase with lower conductivity by cooling to
around 380 K. It would thus be highly desirable to stabilize
the HT phase �or to prohibit the formation of the LT phase by
cooling in� of LiBH4 as a potential candidate of solid-state
electrolytes at room temperature �RT�.

It was recently suggested that the addition of lithium
halides,2–4 especially LiI,3 stabilizes the HT phase of LiBH4
below 380 K. For example, judging from the conductivity
measurements, the hydride with a nominal composition of
LiBH4+0.33LiI showed no obvious structural transition from
the HT to LT phases by cooling from 420 K down to RT.3

Accordingly, the value of the conductivity at RT increases
from the order of 10−8 S /cm for LiBH4 to that of
10−5 S /cm for LiBH4+0.33LiI. Systematic studies about the
structural transition of LiBH4 with and without LiI are highly
required for further developments of LiBH4 and the derived
hydrides as solid-state electrolytes.

The purpose of the present study is, therefore, to experi-
mentally and computationally examine the LiI-composition
dependence of the structural and thermodynamical properties
of the LiBH4+xLiI �x=0–1.00� pseudobinary system.

The samples examined were synthesized from the pow-
ders of LiBH4 and LiI �both from Aldrich Co. Ltd.�. Ap-
proximately 500 mg of the powder mixture with nominal
compositions of LiBH4+xLiI �x=0, 0.07, 0.14, 0.20, 0.33,
and 1.00� were mechanically milled for 5 h under Ar atmo-
sphere. Then the samples were examined by powder x-ray
diffraction �XRD, Cu K� radiation, at RT� and differential
scanning calorimetry �DSC, 5 K/min, under He atmosphere�.

The samples were always handled in a glove box filled with
purified Ar/He.

Periodic density functional theory �DFT� calculations
were performed using the DACAPO planewave pseudopoten-
tial code5 and the atomic simulation environment
implementation6 to investigate the relative ground state sta-
bilities of the LT and HT phases in LiBH4+xLiI. Ultrasoft
pseudopotential are used to model the ionic cores and the
exchange and correlation effects are described by the
Perdew–Burke–Ernzerhof functional.5 The Kohn–Sham
wave functions are expanded in a plane wave basis with a
cutoff energy of 350 eV, and the first Brillouin zone is
sampled on a k-point grid with a spacing of approximately
0.05 Å−1 in all directions. Super cells containing 2–8 for-
mula units �Li atoms� are used to describe the systems.

Figure 1 shows the powder XRD profiles of LiBH4
+xLiI. The diffraction peak intensities of the LT phase of
LiBH4 �x=0� drastically decrease with x=0.07. Only the
peaks corresponding to the HT phase can be detected with
x=0.33 and 1.00. The tendencies are consistent with the re-
sults on the conductivity3 and the addition of LiI stabilizes
the HT phase of LiBH4 at RT. The LiBH4+xLiI pseudobin-
ary system probably forms Li�BH4–I� solid solutions, simi-
lar to Li�Br–I� in the LiBr+xLiI system.8 The lattice con-
stants of the HT phase9 �x=0, 0.33, and 1.00� summarized in
Table I are found to increase with increasing x, as is well
comparable with the previous estimation of the unit cell
volumes.3

The thermodynamical properties of LiBH4+xLiI were
examined by DSC and the results of the second heating pro-
cess are shown in Fig. 2. The endothermic peaks directly
indicate the structural transition. �The single peak in each
sample might prove its compositional homogeneity.� Both
the peak temperatures �onset� and enthalpy changes �areas11�
decrease by up to x=0.20, and the values are summarized in
Table I. No endothermic peak was detected over x=0.33,
indicating the HT phase is stabilized at RT. It should bea�Electronic mail: orimo@imr.tohoku.ac.jp.
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noted that no change was observed in the DSC profiles for
x=0.33 even after 10 and 20 heating/cooling cycles �heating
up to 423 K and cooling down to RT�, as shown in Fig. 2; the
cyclic property is preferable for solid-state electrolytes.

The structural transition temperatures obtained from
Fig. 2 and summarized in Table I were plotted as a function
of x �top axis� and of “LiI mol%” �bottom axis�, as shown in
Fig. 3. We can confirm the stabilization feature of the HT
phase in the LiBH4+xLiI pseudobinary system. Near-linear
decrease of the structural transition temperatures might be
due to increased neighboring �BH4�− distance12 and to in-
duced lattice anharmonicity9,13,14 by I− substitution �ionic ra-
dius of I− �0.211 nm�� �BH4�− �0.205 nm��.15

The enthalpy changes of the structural transition from
the LT to HT phases were also determined by periodic DFT
calculations and summarized in Table I. Tendencies of both
the computational and experimental �from DSC� values show
good agreement, that is, a monotonous decrease with in-
creasing x. However, the decrease in the computational val-
ues up to x=0.33 is not as pronounced as in the experiments.

So far, a number of the crystalline structures of LiBH4 have
been proposed and studied.7,16–23 In the LiBH4+xLiI pseudo-
binary system, possible intermediate �IM� phases are pre-
dicted to be stable at low x-values and a crystalline structure
of the IM phase with x=0.14 is shown in Fig. 4. The corre-
sponding enthalpy change from the IM to HT phases, 2.3
kJ/mol, as in Table I, shows better agreement with the ex-
periment. The powder XRD profiles were indexed �using in-
dexing programs TREOR90

24 and PIRUM
25� by orthorhombic

unit cell for x=0 and by hexagonal one for x=0.33 and 1.00,
but both unit cells lead to significant errors for x
=0.07–0.20.26 The indexing results imply the existence of
the IM phases, as was predicted by the DFT calculations.
The details of the structural and thermodynamical properties
of the IM phases are under investigation.

In summary, the powder XRD and DSC combined with
the periodic DFT calculations revealed the structural and
thermodynamical properties of the LiBH4+xLiI �x
=0–1.00� pseudobinary system. The HT �hexagonal, lithium
super�fast-�ionic conduction� phase of LiBH4 can be stabi-
lized with x=0.33 and 1.00. Also, no significant change was
observed in the DSC profiles for x=0.33 even after 10 and
20 heating/cooling cycles. The experimental and computa-
tional results imply the existence of IM phases with x
=0.07–0.20.
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FIG. 1. �Color online� Powder XRD profiles of LiBH4+xLiI �x=0–1.00�.
The diffraction peaks are calibrated by Si internal standard. The standard
diffraction peaks of the LT �orthorhombic� and HT �hexagonal� phases of
LiBH4 are shown for reference �Ref. 7�.

TABLE I. Lattice constants, a and c, of the HT �hexagonal, lithium super�fast-�ionic conduction� phase for x=0, 0.33, and 1.00; structural transition
temperature Ts; and experimental and computational values of enthalpy change, �Hexp. and �Htheo. �calculated for the transition from the LT to HT phases�;
for LiBH4+xLiI, value of �Htheo. in square bracket was calculated for the transition from the IM to HT phases using a possible IM phase of LiBH4

+0.14LiI �shown in Fig. 4�. Lattice constants for x=0.07, 0.14, and 0.20 are left blank as none of them are indexed by orthorhombic and hexagonal unit cells.
Lattice constants of �hexagonal-�LiI are also added for reference.

x in LiBH4+xLiI
a

�Å�
c

�Å�
Ts

�K�
�Hexp.

�kJ/mol�
�Htheo.

�kJ/mol�

0 4.24�0.02a 6.87�0.03a 384�3 4.18b 7.7
0.07 ¯ ¯ 354�3 3.5�0.3 ¯

0.14 ¯ ¯ 334�3 2.6�0.1 6.3 �2.3�
0.20 ¯ ¯ 326�3 1.0�0.3 ¯

0.33 4.354�0.002 7.035�0.005 ¯ ¯ 6.2
1.00 4.389�0.001 7.073�0.003 ¯ ¯ 0.0
LiI 4.514�0.001c 7.311�0.002c

¯ ¯ ¯

aReference 9.
bReference 11.
cReference 10.
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FIG. 2. �Color online� DSC profiles of LiBH4+xLiI. The intensities are
normalized to show the heat flow per mole of the formula unit of LiBH4

+xLiI. The area of the endothermic peak of each profile gives the experi-
mental value of the enthalpy change ��Hexp.�, e.g., 4.18 kJ/mol with x=0.
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FIG. 3. �Color online� Structural transition temperatures of LiBH4+xLiI as
a function of value x �top axis� and LiI mol% �bottom axis�. The IM phases
are predicted with x=0.07–0.20.

FIG. 4. �Color online� Crystalline structure of a possible IM phase of
LiBH4+0.14 LiI �in LiI space group P42 /mnm�. Red, yellow, and black
circles correspond to Li, I, and H sites, respectively. B atoms are embedded
in blue �BH4�− tetrahedron.
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