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The output pulses of a commercial high-power femtosecond fiber laser or amplifier are typically around
300–500 fs with wavelengths of approximately 1030 nm and tens of microjoules of pulse energy. Here, we present
a numerical study of cascaded quadratic soliton compression of such pulses in LiNbO3 using second-harmonic
generation in a type-I phase-matching configuration. We find that because of competing cubic material
nonlinearities, compression can only occur in the nonstationary regime, where group-velocity-mismatch–induced
Raman-like nonlocal effects prevent compression to less than 100 fs. However, the strong group-velocity
dispersion implies that the pulses can achieve moderate compression to durations of less than 130 fs in available
crystal lengths. Most of the pulse energy is conserved because the compression is moderate. The effects of
diffraction and spatial walk-off are addressed, and in particular the latter could become an issue when compressing
such long crystals (around 10 cm long). We finally show that the second harmonic contains a short pulse locked
to the pump and a long multi-picosecond red-shifted detrimental component. The latter is caused by the nonlocal
effects in the nonstationary regime, but because it is strongly red-shifted to a position that can be predicted, we
show that it can be removed using a bandpass filter, leaving a visible component of less than 100 fs at λ = 515 nm
with excellent pulse quality.
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I. INTRODUCTION

Pulsed fiber laser systems are currently undergoing rapid
development, and by employing the chirped pulse ampli-
fication (CPA) technique, high-energy femtosecond pulses
can be generated with microjoule to millijoule energies [1].
Combined with the fact that the fiber laser technology offers
a rugged, cheap, and compact platform, ultrafast fiber CPA
(fCPA) systems could compete with solid-state amplifier
systems. However, the gain bandwidth of the Yb-doped fibers
typically used for lasing in the 1.0-µm region is considerably
less than competing solid-state materials (such as Ti:sapphire
crystals). Thus, due to the buildup of an excessive nonlinear
phase shift, Yb-based fCPA lasers are often limited to a
pulse duration that typically is sub-picosecond at best (around
500–700 fs) for ∼100-µJ pulses [2], while shorter pulses can
be reached (∼250 fs) for ∼30-µJ pulses [3].

Efficient external compression methods are therefore
needed. A prototypical compressor consists of a piece of
nonlinear material, where a broadening of the pulse bandwidth
occurs by self-phase modulation (SPM), followed by a
dispersive element (gratings or chirped mirrors) that provides
temporal compression. With this method (using a short piece
of fiber as nonlinear material) 27-fs sub-µJ pulses were
generated from 270-fs 0.8-µJ pulses from an fCPA system [4].
Alternative methods consist of using long (0.5 m or more) gas
cells or filaments [5] as nonlinear material, and this works with
pulse energies from 50 µJ to around 1 mJ (limited in part by
self-focusing effects) or possibly even greater energies [6].

When soliton compression is used, both the SPM-induced
pulse broadening and dispersion-induced compression occur
in the same material [7]. The SPM is provided by the Kerr self-
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focusing nonlinearity inherent in most materials. However,
as self-focusing solitons require anomalous dispersion, this
can only be achieved in the near-infrared (IR) region through
strong waveguide dispersion. This means using specially
designed fibers, such as microstructured fibers. Fibers have a
very limited maximum pulse energy of a few nanojoules, albeit
large mode-area microstructured solid-core and hollow-core
fiber compressors can support up to 1 µJ [8].

Unfortunately, the pulse energy from fCPA systems lies
exactly in the gap between these methods. Here, we study
a compression method that can compensate for this. It is a
soliton compressor based on cascaded quadratic nonlinearities
[9–11]; see Fig. 1. This has several advantages: As it relies on
a self-defocusing nonlinearity, there are no problems with self-
focusing effects, and pulse energies of multiple millijoules can
be compressed. Moreover, solitons of the self-defocusing kind
require normal instead of anomalous dispersion, implying that
solitons can be generated in the visible and near-IR regions.
Finally, it is extremely simple, as it relies on just a small piece
of quadratic nonlinear crystal, preceded only by a lens or a
beam expander [12].

The basis for the cascaded quadratic soliton compressor
(CQSC) is phase-mismatched second-harmonic generation
(SHG). The cascaded energy transfer from the pump (fun-
damental wave, FW) to the second harmonic (SH) and back
imposes a strong SPM-like nonlinear phase shift on the FW,
whose sign can be made self-defocusing [13,14]. Thereby,
the FW pulse can be compressed with normal dispersion [9],
and soliton compression becomes possible in the visible and
near-IR regions [10].

In this article, we investigate the CQSC in a lithium niobate
(LiNbO3, LN) crystal cut for type-I phase matching, where the
goal is to perform moderate compression of longer femtosec-
ond pulses from fCPA systems at the Yb gain wavelength of
1030 nm. We show that in order to overcome the detrimental
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FIG. 1. (Color online) Cascaded quadratic soliton compressor
studied here: The Yb fiber laser produces energetic longer pulses
(�100 fs) that are launched collimated in a quadratic nonlinear NB
crystal, where the phase-mismatched type-I SHG process compresses
the input pulse.

cubic nonlinearities, the phase mismatch has to be chosen low
enough that the compression occurs in the so-called nonsta-
tionary regime. This regime is dominated by group-velocity-
mismatch (GVM) effects, and large GVM is a well-known
drawback of using LN in the near-IR region for SHG. However,
when only moderate compression is desired, the soliton order
can be kept low, and we show through numerical simulations
that reasonable pulse quality can be achieved and that up to
80% of the pulse energy is retained in the central spike. The
compression limit is found to be around 120 fs full width at
half maximum (FWHM), which is a limit set by the GVM
effects. The compression occurs in a crystal of reasonable
length, 10 cm. This is possible only because LN has a very
large second-order dispersion. Finally, we show that bandpass
filtering of the SH actually can lead to a very clean visible pulse
of less than 100 fs with around 0.1% conversion efficiency.

In this article, we first discuss the general compression
properties of LN in a cascaded type-I SHG interaction setup in
Sec. II and then in Sec. III show some numerical simulations
of pulses coming from two different commercially available
fCPA systems. We conclude in Sec. IV. The properties of
LN are discussed in Appendix A, and in Appendix B we
discuss the anisotropic Kerr nonlinear response of LN. In
Appendixes C and D, we discuss the conversion relations
between Gaussian and SI units for cubic nonlinear coefficients
and Miller’s rule, respectively.

II. TYPE-I COMPRESSION PROPERTIES OF LITHIUM
NIOBATE CRYSTALS

With the CQSC, high-energy, few-cycle compressed
pulses can be generated, as was experimentally observed at
1250 nm [15]. However, the first studies performed at 800 nm
were plagued by GVM effects that prevented reaching the
few-cycle regime [9,10,15]. These studies used a β-barium–
borate (BBO) crystal in a type-I SHG oo → e configuration,
where the FW (ordinary polarization) is orthogonal to the
SH (extraordinary polarization) and where birefringent phase
matching is possible by angle-tuning the crystal. BBO is in
many respects an ideal nonlinear crystal: it has low dispersion,
a very large transparency window, and a reasonably strong
quadratic nonlinearity relative to the detrimental cubic one. As
we have shown in previous theoretical and numerical studies,
BBO provides an excellent compression of longer pulses to
ultrashort duration at the Yb gain wavelengths [16–18]. The
problems with BBO are that good-quality waveguides are not
supported and that it is very difficult to grow long crystals. In
particular, the latter is important if only moderate compression

of longer pulses is desired. In moderate soliton compression,
most of the pulse energy is conserved in the compressed pulse,
and the pulse has a reduced pedestal. The problem is that
compression will only occur after a long propagation length.

We therefore turn here to LN, which is a widely used
quadratic nonlinear crystal for IR frequency conversion. LN is
attractive due to extremely large quadratic nonlinearities that
can be accessed through a quasi-phase-matched (QPM) type-0
SHG phase-matching configuration where FW and SH have
identical polarizations. However, here we study LN in a type-I
configuration as BBO. The advantages of a type-I configu-
ration over QPM are very flexible phase-matching properties
and a simpler device, and in type-I LN the effective quadratic
nonlinearity is still more than twice as large as in BBO.

LN is usually not considered very suitable for SHG of
short pulses in the near-IR because the SH becomes very
dispersive; thus, the FW and SH group velocities are very
different, resulting in large GVM. This is also why LN has
not been used in the near-IR as nonlinear medium for the
CQSC, for which GVM is a very detrimental effect. Another
disadvantage for the CQSC is that the Kerr nonlinear response
is several times larger than BBO, which counteracts the
advantage of the large quadratic nonlinearity of LN. Therefore,
the CQSC experiments done so far using LN were done in
the telecommunication band and exploited QPM in a type-0
configuration [19], where effective quadratic nonlinearity is
around three times larger than what can be achieved in a type-I
configuration. However, we now show that type-I LN offers
a quite decent compression performance without having to
custom design a QPM grating.

A. Solitons with cascaded quadratic nonlinearities

In cascaded SHG, we study the frequency conversion
ω1 + ω1 → ω2 in the absence of phase matching. Here, ωj

are the frequencies of the FW (j = 1) and SH (j = 2), and by
energy conversion ω2 = 2ω1. During this interaction, the FW
effectively experiences a Kerr-like nonlinear refractive index.
This is in addition to the cubic (Kerr) nonlinearities that are
always present in all media. We can write the total refractive
index of the FW [see Eq. (C2)] as

n = n1 + 1
2 |E1|2ncubic = n1 + I1n

I
cubic, (1)

where n1 is the FW linear refractive index, E1 is the FW electric
field, and I1 is the FW intensity. It is typical to report the
nonlinear refractive index relative to the electric field, ncubic, or
to the intensity, nI

cubic. For simplicity, we have here neglected
cross-phase modulation (XPM) contributions since they are
small in cascaded SHG. As mentioned, we have contributions
from both cascaded quadratic and cubic Kerr nonlinearities,

nI
cubic = nI

SHG + nI
Kerr,11, (2)

where nI
Kerr,11 is the SPM Kerr nonlinear refractive index of

the FW (see Appendix B for details on the notation). The
contribution from the cascaded quadratic nonlinearities can
in the large phase-mismatch limit (�kL � 1, where L is the
crystal length) be approximated as [13]

nI
SHG � − 2ω1d

2
eff

c2ε0λ1n
2
1n2�k

, (3)
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where deff is the effective χ (2) nonlinearity. For �k = k2 −
2k1 > 0, the cascaded contribution is negative, that is, self-
defocusing. Here, kj = njωj/c is the wave number.

The effective quadratic nonlinearity of the type-I oo → e

interaction for the negative uniaxial 3m crystal class (LN,
BBO) is

deff = d31 sin θ − d22 cos θ sin 3φ, (4)

where the angles are defined in Fig. 10 in Appendix B.
Choosing φ = −π/2 gives maximum nonlinearity (see
Appendix A).

In cascaded quadratic soliton compression, the aim is to
get nI

SHG < 0 and |nI
SHG| > nI

Kerr,11 so as to achieve a total
self-defocusing cubic nonlinearity. The soliton interaction can
then be described by an effective soliton order [17],

N2
eff = N2

SHG − N2
Kerr = ω1

c
LD,1Iin

(∣∣nI
SHG

∣∣ − nI
Kerr,11

)
, (5)

where NSHG = LD,1Iin|nI
SHG|ω1/c is the soliton order of the

self-defocusing cascaded quadratic nonlinearity, and NKerr =
LD,1Iinn

I
Kerr,11ω1/c is the soliton order of the material Kerr

self-focusing cubic nonlinearity. The FW dispersion length is
LD,1 = T 2

in/|k(2)
1 |, where k

(2)
1 is the FW group-velocity disper-

sion (GVD) and Tin is the input pulse duration. We use the
following notation for the dispersion: k

(m)
j = dmkj/dωm|ω=ωj

.

B. Linear and nonlinear response of LN at 1.03 µm

For λ1 = 1.03 µm, the operating wavelength of most
Yb-based fiber laser amplifiers, the properties of LN are
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FIG. 2. (Color online) Properties at λ1 = 1.03 µm when angle-
tuning the LN crystal: (a) phase mismatch, (b) GVM parameter,
(c) GVD of FW (red) and SH (blue), and (d) the spatial walk-off
angle ρ. The effective quadratic nonlinearities neglecting (black) and
including (dashed red) spatial walk-off are shown in (e) and (f) are
the total cubic Kerr nonlinearity, Eq. (2), from cascaded quadratic
nonlinearities and Kerr SPM (using nI

Kerr = 18 × 10−20 m2/W; see
Appendix B).

summarized in Fig. 2: The phase mismatch (a) becomes small
at θ � 1.3 rad (70–75 deg). As shown in (e), in this range
deff � 5.2 pm/V, and the total nonlinear refractive index (f),
as expressed by Eq. (2), can become negative, implying that the
cascaded nonlinearity is stronger than the Kerr nonlinearity.
This happens for �k < 62 mm−1 (or θ > 70.4 deg). At θ =
75.8 deg, phase matching is achieved, after which nI

SHG > 0
and thus is self-focusing.

GVM is very large [see Fig. 2(b)], which as we see later sets
a strong limitation on the compression performance. The GVD
is shown in Fig. 2(c), and importantly FW GVD (red) is large
and normal (i.e., positive). It stays normal until λ1 > 1.9 µm,
after which it becomes anomalous and self-defocusing solitons
are no longer supported. The SH GVD (blue) is about three
times larger than the FW GVD.

Since the type-I critical phase matching is employed,
the walk-off angle ρ = arctan[tan(θ )n2

o/n2
e] − θ (valid for

a negative uniaxial crystal) is nonzero; see Fig. 2(d). In
Fig. 2(e), it is apparent that deff is largely unaffected by
walk-off. However, walk-off does set a limit on the effective
interaction length between the pump and the SH, as we discuss
later.

C. Compression diagram for type-I LN

We now generalize to other wavelengths and summarize
the type-I compression performance of LN in Fig. 3.1 This

1The specific crystal chosen in this work is 1% MgO-doped
stoichiometric LN, as the MgO doping gives a much higher material

FIG. 3. (Color online) Compression diagram for 1% MgO:sLN
at room temperature and aligned for type-I SHG. For various pump
wavelengths λ1, the choice of phase-mismatch parameter �k affects
the compression. In order to excite solitons, the phase mismatch must
be kept below the red line (�k < �kc,max), because otherwise the
material cubic nonlinearities are too strong (nI

Kerr,11 > |nI
SHG|). Opti-

mal compression occurs when the cascaded nonlinearities dominate
over GVM effects (�k > �ksr, above the black line). We have also
indicated the operation wavelengths of Yb- and Er-doped fiber lasers.
The red line uses Miller’s rule to estimate the nonlinear quadratic and
cubic susceptibilities at other wavelengths, cf. Eqs. (D1) and (D2), and
uses nI

Kerr,11 = 20 × 10−20 m2/W for λ = 0.78 µm (see Appendix B
for an extended discussion).
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compression diagram shows the different compression regimes
for the CQSC as the wavelength and the phase mismatch is
varied. Above the red curve, the total nonlinear refractive index
is focusing nI

cubic > 0, so solitons are not supported since the
FW GVD is normal. The curve is found by setting |nI

SHG| =
nI

Kerr,11 [17]:

�kc,max = k1
2d2

eff

cε0n
2
1n2n

I
Kerr,11

. (6)

Below the black curve, the compression performance is
dominated by GVM effects (nonstationary regime), while
above it is dominated by cascaded effects (stationary regime).
The curve is to the second order2 given by [16],

�ksr = d2
12

2k
(2)
2

, (7)

where d12 = k
(1)
1 − k

(1)
2 is the GVM parameter and k

(2)
2 is the

SH GVD. It is better when the curve is lower because this
implies that the chance of observing solitons in the stationary
regime increases. Thus, the very large GVM parameter d12 is
detrimental because it pushes the curve upward. Instead, the
huge SH GVD values [see Fig. 2(c)] are actually helping to
push the curve downward. Therefore, a large SH GVD can
actually be beneficial for clean soliton compression.

The optimal compression occurs in the so-called compres-
sion window [16], where the soliton compressor works most
efficiently because solitons are supported in the stationary
regime. The diagram shows a compression window for type-I
LN in the regime λ1 = 1.6–1.9 µm. Unfortunately, in this
range there are no fCPA systems. Fortunately, as we show, in
the nonstationary regime compression is possible as long as
the effective soliton order is low enough.

Coming back to λ1 = 1.03 µm, we observe that solitons are
supported for when 0 � �k < �kc,max = 62 mm−1. When
getting too close to �kc,max, the intensities required to observe
solitons become very large, implying excessive Kerr XPM
effects and increased Raman-like GVM effects [18]. On the
other hand, for �k that is too small, the cascading limit ceases
to hold, and also the compressor performance decreases due to
excessive GVM effects [18]. In fact, generally the compression
limit in the nonstationary regime (in which the system
will always be for �k ∼ 0) is roughly given by the pulse
duration for which Lcoh = LGVM, where Lcoh = π/|�k| is the
coherence length and LGVM = �tsoliton/|d12| is the dynamic
GVM length of a sech-shaped soliton. By “dynamic,” we mean
that the GVM length changes as the soliton compresses. Thus,
in the nonstationary regime the limit is3

�tFWHM
limit ∼ 2 ln(1 +

√
2)

π |d12|
|�k| , (8)

damage threshold. Also, 5% MgO-doped congruent LN would work
well. See Appendix A for more details about the crystal.

2A more accurate transition easily can be calculated numerically
using the full SH dispersion operator [18], which we have done in
what follows.

3Note that this expression differs with a factor of π/2 from the
limit TR,SHG = 2|d12/�k| that we suggested in [18]; this is purely an
empirical choice.

where the factor in front of the fraction is the conversion
factor to FWHM for a sech-shaped pulse. Obviously, as
�k approaches the phase-matching point, the soliton cannot
compress to short durations. We numerically found the optimal
compression point in the �k = 35–50 mm−1 regime, and
the best results were for �k = 45 mm−1, for which nI

SHG �
25 × 10−20 m2/W.

D. Predicting the compression performance

The next step is to estimate what the compression perfor-
mance could look like. Here, the scaling laws4 come into the
picture, which can be used to predict the propagation distance
for optimal compression zopt, the compression factor fc, and
the pulse quality Qc [17].

As we have pointed out recently [16], it is the phase
mismatch and the GVM (zero- and first-order dispersions)
that really control the compression properties. The only
requirement to the second-order dispersion is that FW GVD
is normal k

(2)
1 > 0 so as to support solitons. Otherwise, as we

discuss later, the FW GVD is basically just determining the
optimum compression length. The SH GVD instead plays a
minor role in the compression properties; cf. Eq. (7). Our initial
idea was to exploit the fact that LN is quite dispersive when
pumped at λ1 ∼ 1.0 µm, so the very large FW GVD makes it
possible to compress the pulse in a short crystal.

So why and when is it interesting to increase GVD as
to compress in a short crystal? Obviously, the crystals have
length limits, which for LN is around 100 mm. The optimal
compression point scales as [17]

zopt

z0
= 0.44

Neff
+ 2.56

N3
eff

− 0.002, (9)

where z0 = π
2 LD,1 is the soliton length [20]. Thus, the point

where the pulse compression is optimal depends on the
effective soliton order, the input pulse duration, and the FW
GVD. Therefore, since quality LN crystals are at most 100 mm
long, the CQSC works best when the soliton order is large and
the GVD length is short. When the soliton order is large, the
detrimental effects due to GVM are strongly increased [15,18],
in particular in the nonstationary regime. Therefore, in the case
we study here, clean compression can only be done with low
soliton order, and therefore the FW GVD must be large to
ensure compression in realistic crystal lengths.

A downside to the large GVD is the following: Given
that some effective soliton order is required, then since

Neff ∝
√

IinLD,1 ∝ Tin

√
Iin/|k(2)

1 |, a large GVD gives a short
GVD length and thus larger intensities are needed to excite a
soliton. The same problem is found for short-input pulses, say,
from a Ti:sapphire amplifier. However, this is only an issue
if operating with intensities close to the damage threshold,
which is not the case here: The intensities are moderate
(Iin � 100 GW/cm2), and instead our issue is to get the
solitons to compress in a crystal that is not too long.

4Note that the scaling laws presented here are only approximate
figures when used in the nonstationary regime because they were
found in the stationary regime.
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The compression factor fc = Tin/�topt, where �topt is the
pulse compressed pulse duration at zopt, is also affected by the
effective soliton order [17]:

fc = 4.7(Neff − 0.86). (10)

The pulse quality can also be predicted and is defined as the
ratio between the compressed pulse fluence with that of the
input pulse. It scales as [17]

Qc = [0.24(Neff − 1)1.11 + 1]−1. (11)

We can use this to calculate the compressed pulse peak inten-
sity Iopt = QcfcIin and energy Eopt = QcEin. An advantage
of using low soliton orders is that Qc remains high, and
thus the compressed pulse retains most of the initial pulse
energy.

E. Compression performance of fCPA systems

Let us use these scaling laws to predict the compression
performance of fCPA systems. High-energy femtosecond
pulses from fCPA systems use both Yb-doped and Er-doped
gain fibers. Since fCPA systems are diode pumped with a
wavelength just less than 1.0 µm, the quantum efficiency of
Yb-doped systems is greater, and therefore the majority of
commercial and scientific systems prefer to use Yb over Er.
Most systems operate at the λ = 1.03 µm Yb emission line
and can for low pulse energies (<15 µJ) generate pulses as
short as 250 fs, whereas greater pulse energies result in longer
pulses (currently 50-µJ 450-fs pulses are the state-of-the-art
for commercial systems). In Er amplifier systems, much lower
pulse energies are available, typically pulses of 1–3 µJ and
500–700 fs at λ = 1.55 µm; such low pulse energies and long
pulse duration mean that only very low soliton orders can be
excited, and thus the CQSC can only achieve very moderate
compression in very long crystals.

The basis for the following case studies and numerical
simulations is therefore a couple of commercially available
Yb-based fCPA systems, both operating at 1030 nm. Case
1 is a Clark MXR Impulse5 giving 15-µJ 250-fs FWHM
pulses, which represents a system giving quite short yet still
reasonably energetic pulses as a starting point. Case 2 is an
Amplitude Systemes Tangerine6 giving 50-µJ 450-fs FWHM
pulses, which represents a system with more energetic but also
longer pulses.

The two cases are studied together, taking �k = 45 mm−1.
Figure 4(a) shows that in case 1 we need to focus the pulses
to w0 < 600 µm to observe solitons: In this regime, Fig. 4(d)
shows that the Rayleigh length zR = πw2

0/λ is only five to
six times larger than the optimal compression point zopt of
around 100 mm. This is borderline for experiencing diffraction
problems. Even increasing or decreasing the waist does not
improve this ratio much. In case 2 instead, the increased
pulse energy makes solitons appear already at w0 � 1.6 mm,
despite the longer pulse duration. This means that diffraction
should be less of an issue: In Fig. 4(d), the pulse compression

5http://www.clark-mxr.com
6http://www.amplitude-systemes.com

FIG. 4. (Color online) Practical operation range of the LN type-I
compression system at λ1 = 1.03 µm for �k = 45 mm−1. The plots
show the predicted behavior when the FW waist w0 is varied. The
two cases are (1) pump pulses with T FWHM

in = 250 fs and 15 µJ pulse
energy and (2) pump pulses with T FWHM

in = 450 fs and 50 µJ pulse
energy. The curves in (b)–(f) are calculated based on Neff shown in
(a) by using the scaling laws [17] that hold for Neff > 1.

point relative to the Rayleigh length of the focused beam is
significantly smaller in case 2.

Figure 4(c) indicates that the spatial walk-off in the crystal
can become an issue: The crystal should be shorter than the
spatial walk-off length Lwo = w0/ tan ρ � w0/ρ to ensure
proper interaction between the FW and the SH, but evidently
the pulse compression lengths in both cases are longer by
factors of at least two or three than the spatial walk-off length.
Therefore, it might be necessary to compensate for this by
using two crystals, one inverted relative to the other, so that
the walk-off direction in the second crystal is inverted with
respect to the first crystal [21].

An alternative solution to the walk-off problem is to turn
to a noncritical phase-matching scheme, where ρ = 0. This
happens for θ = 0 or π/2; see Fig. 2(d). Of course, this
removes the possibility of tuning the phase matching via
θ , and one has to turn to temperature tuning of �k. The
temperature needed to get to the desired operation point
(�k � 40–50 mm−1) can be estimated using the temperature-
dependent Sellmeier equations [22], and our calculations
indicate that it should happen already at a temperature of
around 45◦C. This would make an easy solution to the walk-off
problem.

The strong GVM implies that compression of Yb-based
systems can only occur in the nonstationary regime; see Fig. 3.
Thus, unless Neff is close to unity, the GVM-induced Raman-
like effects dominate, and the FW pulse becomes extremely
distorted and very poorly compressed. Actually, it almost never
makes sense to use Neff larger than what is sufficient to reach
the limit expressed by Eq. (8), and typically even an Neff
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smaller than that. The limit is drawn as a dotted line in Fig. 4(e),
and it is reached around w0 = 400 µm in case 1 and w0 =
800 µm in case 2.

Finally, Fig. 4(b) shows that quite moderate input intensities
must be used to achieve solitons in both cases. This is related
to the quite long input pulse durations. Furthermore, Fig. 4(f)
shows that the low soliton orders conserve most of the pulse
energy in both cases.

III. NUMERICAL SIMULATIONS

We here present numerical simulations of the two cases
using a plane-wave temporal model based on the slowly
evolving wave equation (see more details in [17] and references
therein), which includes self-steepening effects and higher
order dispersion. This model is justified as long as diffraction is
minimal, which we assume is the case when the crystal length
is much shorter than the Rayleigh length and when spatial
walk-off is minimal. This requirement is discussed further
later.

A. Case 1: 250-fs 15-µJ pulses

For the 250-fs 15-µJ pulses from a Clark laser system,
we found that the best compression was obtained with Neff ∼
1.3–1.5. This soliton order can be achieved with 15-µJ pulse
energy when the pump is focused to around w0 = 400 µm;
see Fig. 4(a).

The theoretical compression factor for such soliton orders
is fc = 2–3, that is, a �topt ∼ 80–125 fs FWHM compressed
pulse is predicted. In Fig. 5, we show the results of a
simulation with Neff = 1.4. This soliton order gave the best
compression: A slightly asymmetric �topt = 126 fs (FWHM)
pulse is observed after 91 mm of propagation; see Fig. 5(a)
and cut in (e). Preceeding the compression, note the SPM-like
broadening of the FW spectrum in (b). It becomes slightly

asymmetric with the blue shoulder being strongest, which is
related to the Raman-like action of the cascaded nonlinearities
[18,23].

The observed compression is not quite as strong as predicted
by the scaling law (10), but this is because the scaling laws
are based on pulse compression in the stationary regime. On
the other hand, the pulse quality is large, Qc = 0.82, so most
of the pulse energy is retained in the central compressed part,
and the pulse pedestal is also very small. These are the main
advantages of soliton compression with low soliton orders.

In the SH time plot, Fig. 5(c), we observe the strong GVM
first inducing a weak component and quickly escaping from
the central part of the pulse, and later the GVM induces the
characteristic dc-like trailing temporal pulse in the SH (this
often occurs close to or at phase matching in the presence of
GVM; see also [24]). This behavior is also reflected in the SH
spectrum [see Fig. 5(d) and cut in (f)], which shows a very
strong and extremely narrow red-shifted component building
up, which eventually becomes the dominating contribution.
As we discuss later, its spectral position can accurately be
predicted by the nonlocal theory that was recently developed
by us [16,18]. We believe that this strong and long SH trailing
component actually causes the trailing part of the FW to be
strongly depleted and that this is the main reason for the
asymmetrical FW shape.

The question is now whether we can increase the effective
soliton order and achieve further compression toward the
limit predicted by Eq. (8). This turns out to be impossible:
When Neff is increased, the GVM effects become stronger,
making the compressed pulse more distorted. This is clearly
observed in Fig. 6, where we increase Neff and compare it with
the compression of Fig. 5: For Neff = 2.0, the compressed
FW pulse in (a) is still quite short but clearly is less clean.
For Neff = 2.5, the compressed pulse instead becomes quite
distorted. It is also evident in the SH time plots that the trailing
dc-like component increases with Neff , while the central part

FIG. 5. (Color online) Numerical simula-
tion of soliton compression in LN with λ1 =
1.03 µm, T FWHM

in = 250 fs, �k = 45 mm−1, and
Neff = 1.4 (implying Iin = 6.9 GW/cm2). The
FW pulse shown in (a) compresses to �topt =
126 fs (FWHM) after propagating 91 mm. The
SH time plot (c) and FW (b) and SH (d) spectra
are also shown on a logarithmic scale, and Uj

are normalized to the peak input FW electric
field. In (e) and (f), cuts are shown at the optimal
compression point z = 91 mm (corresponding
to the white line in the two-dimensional plots).
Note that the SH in (e) is magnified one hundred
times.
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FIG. 6. (Color online) Simulations as in Fig. 5 but with increasing
Neff . The red curve corresponds to the optimal compression point
from Fig. 5(e), whereas the black curves show what happens as the
effective soliton order increases (making the optimal compression
point occur sooner).

in all cases is a FWHM pulse less than 100 fs. It is quite weak
because most of the converted SH energy is fed into the dc-like
part of the pulse, which is connected to the strong spectral peak
in the SH spectrum. This spectral peak becomes stronger with
increased Neff (not shown) but does not change position as it
does not depend on Neff .

In order to understand the spectral content of the differ-
ent temporal components, the cross-correlation frequency-
resolved optical gating (XFROG) method is useful. The
spectral strength is given by [25]

Sj (z,T ,�) =
∣∣∣∣
∫ ∞

−∞
dtei�tEj (z,t)Egate(t − T )

∣∣∣∣
2

, (12)

where Egate(t) is a properly chosen gating pulse. The spec-
trograms of the compressed pulses in Fig. 6 for Neff = 1.4
are shown in Fig. 7. The FW compressed pulse is slightly
blue-shifted (around 2 THz), and the compressed part (located
at T ∼ 200 fs) shows a significantly broader spectrum.

The SH spectrum is very particular: The part of the pulse
that propagates with the FW group velocity (the “locked”
part) shows a quite clean short pulse. This group velocity
locking of the SH has been observed before [19,24] and can
be understood from the nonlocal theory [16,18]: The SH
has a component that is basically slaved to the FW due to
the cascading nonlinearities. In frequency domain, it can be
compactly expressed as [18]

U2(z,�) ∝ R̃−(�)F
[
U 2

1 (z,t)
]
, (13)

where F[.] denotes the forward Fourier transform and Uj are
properly normalized fields. Thus, the spectral content of the
SH is slaved to the spectral content of the spectrum of U 2

1 .

FIG. 7. (Color online) XFROG-like spectrograms of the simula-
tion in Fig. 5 at the optimal compression point zopt = 91 mm. The
sech-shaped gating pulse had T FWHM

0 = 70 fs, and the spectrograms
are normalized to the peak value of S1. The top and side plots show
the purely temporal and spectral traces, respectively, and are thus
identical to Fig. 5(e) and 5(f). The red dashed line in (b) indicates the
value �+ as calculated by the nonlocal theory.

The weight is provided by the nonlocal Raman-like response
function in the nonstationary regime [18],

R̃−(�) = (2π )−1/2 �+�−
(� − �−)(� − �+)

, (14)

where �± = �a ± �b. These frequencies can be calculated
(to the second order) from the dispersion of the sys-
tem as �a = d12/k

(2)
2 = −1.044 PHz and �b = |2�k/k

(2)
2 −

�2
a|1/2 = 0.963 PHz. In the center around � = 0, where

F[U 2
1 (z,t)] is residing in this case, the response is quite flat.

Thus, we get a SH component locked to the FW, and when the
FW compresses, so does this SH component.
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FIG. 8. (Color online) XFROG spectrogram of the SH pulse from
Fig. 7(b) passed through a third-order super-Gaussian bandpass filter
centered at the SH carrier frequency λ2 = 0.5150 µm and with a
FWHM of 100 THz.

Another striking feature of the SH spectrogram is the dc-like
component: It is very evident as a long pulse is centered
around � ∼ −80 THz. Also, this peak can be understood from
Eq. (13), because according to Eq. (14), the nonlocal response
function in the nonstationary regime has sharp resonance peaks
in the response at � = �±. By inserting the dispersion values
of the simulation, we get �+ = −81.6 THz, in excellent
correspondence with the observed peak position, as the red
dashed line indicates. Instead, �− is located too far into the
red side of the spectrum to affect the behavior.

Considering this spectral composition, filtering the disturb-
ing SH component at � = �+ would leave a quite decent
SH temporal pulse. In Fig. 8, we show that this is feasible:
We pass the SH pulse through a super-Gaussian (n = 3)
bandpass filter centered at ω2 and with a bandwidth of 100 THz
FWHM (corresponding to 15 nm). This filters away the
disturbing sharp peak, and a 80-fs FWHM pulse remains at
λ = 0.515 nm. The peak intensity in this short pulse is around
0.006Iin = 0.0414 GW/cm2. If we assume that it is created
with 15-µJ pulse energy focused to w0 = 0.5 mm to achieve
Neff = 1.4, and that the generated SH has roughly the same
spot size, then the pulse energy of the filtered 80-fs pulse would
be around 50 nJ.

B. Case 2: 450-fs 50-µJ pulses

In case 2, the pulse duration is longer, 450 fs. When the
pulse duration is longer, for a fixed soliton order the soliton
will compress after a longer distance. This is because according
to Eq. (9) zopt ∝ LD,1 ∝ T 2

in. However, we may compensate for
this by increasing the effective soliton order enough to reach
the limit governed by Eq. (8). For a 450-fs 50-µJ pulse, it
is achieved around w0 = 0.8 mm [see Fig. 4(e)], resulting
in Neff ∼ 2.0–2.5. This higher soliton order should make it
possible to compress in crystal lengths of around 10–15 cm;
see Fig. 4(c).

FIG. 9. (Color online) Numerical simulations using 450-fs 50-µJ
input pulses and taking �k = 45 mm−1. The best pulse was observed
for Neff = 2.0 (red curve) where pulse compression occurs after
15 cm. The black curves show what happens as the effective soliton
order increases (in which case the optimal compression point occurs
sooner).

In Fig. 9, we show some numerical simulations using
these longer, more energetic pulses. The best pulse observed
shows a three-fold compression to �topt = 121 fs (FWHM) at
Neff = 2.0. The compression occurred after around 15 cm of
propagation, so spatial walk-off would be an issue here. When
the soliton order is increased to Neff = 2.6, the pulse becomes
more distorted but still compresses to around 150 fs FWHM
after 9.5 cm, a more realistic interaction length. Finally, at
Neff = 3.0, the pulse becomes too distorted as the GVM effects
become stronger.

In the two cases, the pulses therefore eventually compress to
the same duration, which is the limit imposed by the nonlocal
GVM effects. The more energetic pulses in case 2 allow for a
more defocused pump beam so the compression should be less
affected by diffraction. On the other hand, as the pulses are
longer, they compress later, so spatial walk-off is a more severe
issue. A more optimal situation in both cases therefore would
be more energetic pulses so that the pump can be defocused by
a factor of two or three. This would diminish spatial walk-off
effects.

IV. CONCLUSION

Here we have shown that LN crystals in a type-I cas-
caded SHG interaction can provide moderate compression of
femtosecond pulses from Yb-based fiber amplifier systems
(1.03 µm wavelength). The phase mismatch was controlled
through angle tuning (critical phase-matching interaction).
By using numerical simulations, we found that the best
compression was to around 120 fs FWHM after around 10 cm
of propagation.
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Better compression was prevented in part by strong GVM
effects, caused by strong dispersion in the LN crystal and com-
peting material Kerr nonlinear effects. These are focusing in
nature and counteract the defocusing Kerr-like nonlinearities
from the cascaded SHG. In order to make the total nonlinear
phase shift negative, the phase mismatch had to be taken
quite low, and in this regime GVM effects dominate (the
“nonstationary” regime). GVM imposes a strongly nonlocal
temporal response in the cascaded nonlinearity that feeds most
of the converted energy into a narrow red-shifted peak. In the
temporal trace, this gave a SH with a multi-picosecond long
trailing component. The FW therefore experienced a distorted
compression unless the soliton order was kept very low. For
such low soliton orders, the compression distance increases
substantially, but here the strong dispersion of the LN crystal
actually becomes an advantage: Due to a large GVD, the
soliton dynamics occur in much shorter crystals than usual,
and the numerics indicated compression in realistic crystal
lengths (10 cm).

It was noted that using low soliton orders gave a compressed
pulse retaining most of the input pulse energy (in the cases we
showed around 80%), and that the unavoidable soliton pedestal
was less pronounced.

We also discussed the implications of using long crystals.
Spatial walk-off will be an issue since a critical phase-
matching scheme is used that exploits birefringence, and also
diffraction can be a problem. In order to counteract these
detrimental effects, the pump pulses need to be as energetic
and short as possible. Two cases were highlighted, taken from
commercially available systems, and we argued that diffraction
should not prevent observing the predicted compression, but
that some sort of walk-off compensation might be needed.
Future systems with more energetic pulses and reasonably
short pulse durations (<500 fs) would be able to beat the
walk-off problem. Walk-off could also be prevented by using
a noncritical type-I phase-matching scheme (θ = π/2) and
increasing the temperature slightly to around 45◦C.

We finally noted that the peculiar SH shape in the
nonstationary regime gave a very characteristic spectrogram.
As mentioned previously, nonlocal GVM effects resulted in a
sharp spectral red-shifted peak with a long multi-picosecond
trailing temporal component. Another pulse component was
instead locked to the group velocity of the compressed FW
soliton. This locked visible pulse was located at the SH
wavelength (515 nm), quite far from the red-shifted peak. We
showed that a simple bandpass filter could actually remove
the detrimental red-shifted peak, leaving a very clean 80-fs
visible pulse (λ = 515 nm). This approach is in contrast to
other studies (see, e.g., [24,26]), where focus was on exploiting
“spectral compression” of femtosecond pulses to obtain longer
picosecond pulses. Despite that fact that the cascaded SHG by
nature has a low conversion efficiency, the pulse energy of
this short visible pulse can easily be 50–100 nJ. Such pulses
could be used for two-color, ultrafast energetic pump-probe
spectroscopy.

This study showed that cascaded quadratic pulse compres-
sion is possible even in a very dispersive nonlinear crystal.
However, if compression occurs in a medium with stronger
quadratic nonlinearities, then it would be possible to increase
the phase mismatch and thereby enter the stationary regime

where the nonlocal GVM effects are much weaker. The
benefit would be triple: Cleaner compressed pulses could
be generated, higher soliton orders could be used to achieve
stronger compression, and it would occur in a shorter crystal.
This conclusion is in line with what was noted previously
in a fiber context [27], where one of us found that the very
dispersive nature of wave-guided, cascaded SHG could be
overcome if a strong enough quadratic nonlinearity is present.

Stronger nonlinearities can be achieved using the QPM
technique to achieve soliton compression. Here, periodically
poling ensures access to the strong d33 component of LN,
and this has been studied before in a soliton compression
context in the telecommunication C-band [19,28] and also for
poled silica fibers in the near-IR region [29]. Although QPM
usually strives to engineer the poling period to get zero residual
phase mismatch, in cascaded QPM a slight misalignment of
the grating period allows for an overall phase mismatch to
ensure the cascaded operation. The goal would then be to
make this phase mismatch small enough to observe solitons
but large enough to be in the stationary regime. This should be
possible even when going to shorter wavelengths such as the
one studied in this work, where the GVM of periodically poled
LN becomes very strong. We are currently investigating this as
well as other possible nonlinear crystals in order to get closer
to the goal: efficient compression of femtosecond pulses from
high-power fiber lasers with durations of less than 100 fs.
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APPENDIX A: LN CRYSTAL PARAMETERS

LN is a negative uniaxial crystal of symmetry class 3m.
Its low damage threshold due to photorefractive effects and
problems with green-induced IR absorption can be improved
dramatically by doping the crystal, in particular with MgO
doping [30,31]. Usually, 1% MgO doping in stoichiometric LN
(1% MgO:sLN) is enough to practically remove photorefrac-
tive effects and increase dramatically the damage threshold,
whereas 5% is needed in congruent LN (5% MgO:cLN) to do
the same [31]. Also, 1% MgO:sLN has a shorter ultraviolet
(UV) absorption edge (λ = 0.31 µm).

We here use 1% MgO:sLN, and the Sellmeier equations
from [22]. Note that for 1% MgO:sLN, they only measured
ne, but we checked that the 5% MgO:cLN no Sellmeier
equation matches (at room temperature) the 1% sLN no

equation from [32]. The quadratic nonlinear coefficients have
been measured at λ = 1.06 µm and are d31 = −4.7 pm/V and
d33 = 23.8 pm/V [33], whereas d22 = 2.1 pm/V [34] was
measured for undoped LN; d31d22 < 0 has been established
in, for example, [35]. The effective quadratic nonlinearity of
the type-I oo → e interaction is given by Eq. (4). Because
d31d22 < 0 [35], the maximum nonlinearity is realized with
φ = −π/2.
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TABLE I. Nonlinear Kerr refractive index of LN measured mainly by the Z-scan method [37]. The underlined results are the values reported.
The other entries have been calculated using Eqs. (C8)–(C11).

λ χ
(3)
eff nI

Kerr nI
Kerr tFWHM θ

(nm) (10−13 esu) (10−13 esu) (10−20 m2/W) (ps) Rep. (deg) pol n cij Ref. Note

1064 1.1 4.8 9.1 30 Single 90 e 2.2 c33 [38] x cut
1064 0.73 3.2 6.0 55 2 Hz 90 o 2.2337a c11 [39] Paraxial fit
1064 0.66 2.9 5.4 55 2 Hz 90 o 2.2337a c11 [39] Gaussian fit
1064 2.4 10 19 55 2 Hz 90 o 2.2337 c11 [40] Fit to transmission curve
1064 0.80 3.4 6.3 55 2 Hz 90 e + o 2.2337 c12,c18 [40] Fit to transmission curve,

c12 = c11/3
1064 0.57 2.8 4.9 55 2 Hz 90 e 2.1495 c33 [40] Fit to transmission curve,

c33 = c12/1.4
1064 0.67 2.9 5.5 55 2 Hz 90 e + o 2.1912 c23,c16 [40] Fit to transmission curve,

c23 = c12/1.2
800 1.8 7.8 15 0.42 1 kHz ? ? 2.1677a ? [41] x cut, z cut
780 2.6 11.0 20 0.15 76 MHz 0 o 2.2552a c11 [42] 6% MgO:LN, z-cut
577 1.6 6.6 12 5,000 40 Hz 0 o 2.301a c18 [43] c18 = c11/3
532 10 44 83 22 single 90 e 2.23 c33 [38] x cut
532 6.6 28 53 25 10 Hz 0 o 2.2244a c11 [44] z cut
520 5.0 21 39 0.2 1 kHz 90 e 2.24 c33 [45] 5% MgO 0.06% Fe cLN

aLinear refractive index not provided; this value was calculated by us for conversion purposes.

APPENDIX B: ANISOTROPIC KERR NONLINEAR
REFRACTION

We previously studied type-I cascaded SHG in a BBO
crystal [16–18], assuming an isotropic Kerr nonlinearity,

χ
(3)
eff,11 = χ

(3)
eff,22 = 3χ

(3)
eff,12, (B1)

where χ
(3)
eff,jj are the FW and SH SPM coefficients and χ

(3)
eff,12 is

the XPM coefficient. However, all quadratic nonlinear crystals
are anisotropic, and we address this later.

Note first that the error made in assuming an isotropic
response for the CQSC is probably small, as the crucial
parameter is the FW SPM coefficient. As we see for type
I, this is identical in the isotropic and in the anisotropic
cases. However, it should be emphasized that the various
experimental attempts to measure the Kerr nonlinear refractive
index of nonlinear crystals do not always measure the tensor
component relevant to our purpose, namely the c11 component;
see Table I. The analysis presented here should help us
understand what exactly has been measured and put the results
into the context of cascaded quadratic soliton compression.

For a nonlinear crystal in the symmetry group 3m (LN and
BBO), there are thirty-seven nonzero elements for the χ (3)

tensor, and of these only fourteen are independent [46],

xxxx = yyyy = xxyy + xyxy + xyyx,

xxzz = xzxz = xzzx = yyzz = yzyz = yzzy,

= zyyz = zyzy = zzyy = zxxz = zxzx = zzxx

xxyy = xyxy = xyyx = yxxy = yxyx = yyxx,
(B2)

xxyz = xxzy = xyxz = xyzx = xzxy = xzyx

= −yyyz = −yyzy = −yzyy = yxxz = yxzx

= yzxx = −zyyy = zxxy = zxyx = zyxx,

zzzz,

where Kleinman symmetry has been invoked, and the polar-
ization relative to the crystal coordinate system is defined in
Fig. 10. Under Kleinman symmetry, the nonlinear coefficients
are assumed to be dispersionless, and the criterion for this
assumption is that the system is far from any resonances. By
using the notation χ

(3)
ijkl = cµm where

for µ : x → 1 y → 2 z → 3,

for m : xxx → 1 yyy → 2 zzz → 3 yzz → 4

yyz → 5 xzz → 6 xxz → 7 xyy → 8

xxy → 9 xyz → 0, (B3)

these tensor components can be written in reduced form:

c =

⎡
⎢⎣

c11 0 0 0 0 c16 0 c11
3 0 c10

0 c11 0 c16 −c10 0 c10 0 c11
3 0

0 −c10 c33 0 c16 0 c16 0 c10 0

⎤
⎥⎦. (B4)

These results conform with the IRE/IEEE standard [47].
We now evaluate the cubic nonlinear response for a type-I

interaction. By using the notation from [17], we determine the
cubic nonlinear polarization response to be

P(3)
NL = ε0χ

(3)...EEE. (B5)

Here, we have only considered an instantaneous (electronic)
cubic nonlinear response [48]. Let us consider the type-I
SHG interaction where two ordinarily polarized FW photons
are converted to an extraordinarily polarized SH photon
(oo → e). In the coordinate system according to the IRE/IEEE
standard [36] (see Fig. 10), the unit vectors for o-polarized and
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FIG. 10. Definition (in accordance with the IRE/IEEE standard
[36]) of the crystal coordinate system xyz relative to the beam
propagation direction indicated by k.

e-polarized light are

eo =

⎡
⎢⎣

− sin φ

cos φ

0

⎤
⎥⎦ ee =

⎡
⎢⎣

− cos θ cos φ

− cos θ sin φ

sin θ

⎤
⎥⎦ , (B6)

where walk-off has been neglected.
We then introduce slowly varying envelopes polarized

along arbitrary directions,

E(t) = Re[u1E1(t)e−iω1t + u2E2(t)e−iω2t ], (B7)

where uj is the unit polarization vector. For type-I SHG,
we have u1 = eo and u2 = ee. The nonlinear slowly varying
polarization response

P(3)
NL(t) = Re

[
u1P

(3)
NL,1(t)e−iω1t + u2P

(3)
NL,2(t)e−iω2t

]

then becomes

P
(3)
NL,i = 3

4ε0
[
χ

(3)
eff,ii |Ei |2 + 2χ

(3)
eff,ij |Ej |2

]
Ei , (B8)

where i,j = 1,2 and j 
= i. We have here only included phase-
matched components and frequency-mixing terms where
2ω1 − ω2 = 0. The numerical prefactor 3

4 is the K factor
[49] for a third-order nonlinear effect, creating an intensity-
dependent refractive index with degenerate frequencies, and
the factor 2 on the XPM terms χ

(3)
eff,ij stems from the fact that

the K factor for cross-phase modulation with nondegenerate
frequencies is 3

2 .
For calculating the cubic nonlinear coefficients, it is

convenient to use an effective cubic nonlinearity [50]:

χ
(3)
eff = ud · χ (3)...uaubuc = ud · c · u(3), (B9)

a,b,c,d = 1,2. Here, ud is the unit vector of the field under
consideration; thus, if we are interested in calculating the cubic
nonlinear polarization for the FW [taking i = 1 in Eq. (B8)],
then ud = u1. The other three unit vectors ua,b,c are the unit
vectors of each field appearing in Eq. (B5) and, in the case
we are considering here, can be either u1 or u2 according to
the identity (B7). Most combinations are not phase matched or
have 2ω1 − ω2 
= 0 and are therefore not included in Eq. (B8).
The rank-4 tensor on reduced form, as given by Eq. (B4) for

LN, can be used to find the tensor product χ (3)
...uaubuc as a

simple matrix-vector product c · u(3) where

u(3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Lxxx

Lyyy

Lzzz

Lyzz + Lzyz + Lzzy

Lyyz + Lyzy + Lzyy

Lxzz + Lzxz + Lzzx

Lxxz + Lxzx + Lzxx

Lxyy + Lyxy + Lyyx

Lxxy + Lxyx + Lyxx

Lxyz + Lxzy + Lzxy + Lyxz + Lyzx + Lzyx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B10)

Here, Ljkl ≡ ua,jub,kuc,l where the jkl indices refer to the x,
y or z components of the unit vectors.

It is convenient at this stage to simplify the notation based
on the type-I SHG interaction we are interested in. The
effective cubic nonlinearity (B9) then reduces to the nonlinear
coefficients appearing in Eq. (B8):

χ
(3)
eff,ij = ui · χ (3)...uiuj uj . (B11)

The SPM terms can now be calculated as follows. The FW
SPM interaction has i = j = 1 in Eq. (B11) and is an ooo → o

process: u1 = eo. The SH SPM interaction has i = j = 2 and
is an eee → e process, so u2 = ee. We then need to calculate
χ (3)

...uiuiui using the reduced notation. Since for the SPM
terms all the unit vectors in u(3) are degenerate in frequency,
all Ljkl components in a given vector entry are identical, for
example, Lyzz = Lzyz = Lzzy . We then get for the FW

χ (3)...u1u1u1 =
⎡
⎣ −c11 sin φ

c11 cos φ

−c10 cos3 φ

⎤
⎦ . (B12)

A similar expression can be calculated for the SH SPM
component, although it is substantially more complex. In the
final step, we carry out the vector dot product of these vectors
with ui , as dictated by Eq. (B11), and get for the FW (i = 1)
and the SH (i = 2) [47]

χ
(3)
eff,11 = c11, (B13)

χ
(3)
eff,22 = −4c10 sin θ cos3 θ sin 3φ + c11 cos4 θ

+ 3
2c16 sin2 2θ + c33 sin4 θ. (B14)

For the XPM terms, note that the three unit vectors used to
calculate Eq. (B10) are nondegenerate in frequency. As an ex-
ample, for χ (3)

...u2u1u1, terms like Lxyy + Lyxy + Lyyx must be
evaluated, whose components are Lxyy = − cos θ cos3 φ and
Lyxy = Lyyx = cos θ sin2 φ cos φ. This gives χ

(3)
eff,12 = χ

(3)
eff,21

and [40,47]

χ
(3)
eff,12 = 1

3c11 cos2 θ + c16 sin2 θ + c10 sin 2θ sin 3φ. (B15)

The next step is to obtain the the values for LN of each
component in Eqs. (B13)–(B15). The value of the cubic
nonlinear refractive index has been measured by many authors
and for many different pulse durations and crystal cuts. In
Table I, the χ (3) tensor components and the nI

Kerr are reported

053815-11



MORTEN BACHE AND FRANK W. WISE PHYSICAL REVIEW A 81, 053815 (2010)

in electrostatic units values, and the latter is also given in SI
units (see Appendix C for details).

In one of the earliest studies, the tensorial nature of LN was
studied [43]. Another early study found that c11 = 3c10 [51].
Later studies used Z-scan methods, and often a nonlinear
refractive index value was found without any mention of the
tensorial nature of the cubic nonlinear susceptibility. The
cascaded quadratic contributions were also often forgotten or
neglected.

A recent study by Kulagin et al. went into a detailed exper-
imental determination of the various cubic tensor components
of LN, and they found c11 = 2.4 × 10−13 esu at λ = 1.06 µm
and c18 = 1.2c16 = 1.4c33 [40]. Through the relation c11 =
3c18, the other coefficients are c16 = c11/3.6, c33 = c11/4.2.
A problem with this study is that the cascaded quadratic
nonlinear contributions to the observed Z-scan results were
neglected, so it is not clear presently whether the results can
be trusted.

There are other issues with the Z-scan method: If the
repetition rate is too great, there will also be contributions to
the measured nI

Kerr from thermal effects as well as two-photon
excited free carriers [52], and hence nI

Kerr does not contain
just the instantaneous electronic response, as it is supposed to.
Similarly conclusions can be made for pulses longer than 1 ps.
For more on these issues, see, for example, [53].

For the CQSC system, the by far most important component
is the FW SPM coefficient nI

Kerr,11. The SH SPM and the XPM
coefficients play only minor roles in extreme cases close to
transitions (e.g., close to the soliton existence line in Fig. 3).
In the cases we studied in this article, even when increasing the
SH SPM and XPM Kerr coefficient several times, the isotropic
values did not significantly change the compression results.

Therefore, until detailed reliable measurements of the cubic
tensorial components of LN become available, we decided to
use an isotropic Kerr response and focus on using a realistic
value of the FW SPM coefficient. The best choice seems
to be nI

Kerr = 20 × 10−20 m2/W at λ = 0.78 µm found in
Ref. [42]. In this experiment, they have θ = 0, and thus what
they measure is χ

(3)
eff = c11. For orthogonal input polarizations

(corresponding to φ = 0,π/2, both cases o-polarized), they
find the same value as they should since this χ

(3)
eff does not

depend on φ [cf. Eq. (B13)]. Since they used femtosecond
pulses, problems with long pulses are avoided. The high
repetition rate could cause concern, but they checked that
lowering it to less than 1 MHz did not change the results.
Finally, the contribution from the cascaded nonlinearities
should be low: we estimate |nI

SHG| < 10−21 m2/W.
As discussed in Appendix D, we use Miller’s rule to

convert the nonlinear coefficients to the λ1 = 1.03 µm that
we use in the simulations in Sec. III. This implies that in
the numerics we use nI

Kerr,11 = 18.0 × 10−20 m2/W, nI
Kerr,12 =

6.0 × 10−20 m2/W, and nI
Kerr,22 = 18.3 × 10−20 m2/W.

APPENDIX C: CONVERSION RELATIONS

Often the nonlinear susceptibility is reported in Gaussian
cgs units (esu) instead of the SI mks units. The conversion
between esu and SI is

χ
(3)
SI = 4πχ (3)

esu(104/c)2, (C1)

where c is the speed of light in SI units. The 4π comes from
the Gaussian unit definition of the electric displacement D =
E + 4πP, and the 104/c comes from converting statvolt per
centimeter to volt per meter.

In most cases, the nonlinear Kerr refractive index is used.
It is usually defined as the intensity-dependent change �n in
the refractive index observed by the light:

n = n0 + 1
2�n = n0 + nKerr

1
2 |E0|2 = n0 + nI

KerrI0. (C2)

Here, n0 represents the linear refractive index, and E0 and
I0 are the input electric field and intensity, respectively. In
our case, the total polarization (linear and cubic, in the
absence of quadratic nonlinearities) can be written as Pi =
P

(1)
i + P

(3)
NL,i = ε0(εi + εNL,i)Ei . By writing the sum of the

linear and nonlinear relative permittivities as εi + εNL,i =
(ni + 1

2�ni)2 � n2
i + ni�ni (here we take �ni � ni), we can

write the change in refractive index due to the Kerr nonlinearity
in the form

�ni � nKerr,ii |Ei |2 + 2nKerr,ij |Ej |2. (C3)

When it is compared with Eq. (B8), we get in SI units [54]:

nKerr,ij (SI) = 3

4ni

χ
(3)
eff,ij (SI), i,j = 1,2. (C4)

Note that the numerical prefactor 3/4 is the K factor discussed
previously. By adopting the intensity notation, the change in
refractive index is �ni � 2(nI

Kerr,iiIi + 2nI
Kerr,ij Ij ), and since

in SI units Ii = 1
2ε0nic|Ei |2, we get

nI
Kerr,ij (SI) = 1

njε0c
nKerr,ij (SI) (C5)

= 3

4ninj ε0c
χ

(3)
eff,ij (SI). (C6)

With Gaussian cgs units, we would instead get [54]

nKerr,ij (esu) = 3π

ni

χ
(3)
eff,ij (esu) (C7)

nI
Kerr,ij (esu) = 4π

njc
nKerr,ij (esu) (C8)

= 12π2

ninj c
χ

(3)
eff,ij (esu). (C9)

In Gaussian units, the intensity is Ii (esu) =
(8π )−1nic|Ei (esu)|2. The K factor appears also in Eq. (C7) as
3
4 4π = 3π . Note that c is still in SI units in these expressions.

The connection between the Gaussian and SI systems can
best be done via Eq. (C1) and (C6) to give [49,54]

χ
(3)
eff,ij (esu) = ninj c

120π2
nI

Kerr,ij (SI), (C10)

nKerr,ij (esu) = njc

40π
nI

Kerr,ij (SI), (C11)

where the SI system defines ε0c
2 = 1/µ0 = 107/4πA2/N

using c = 299 792 458 m/s.
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Note that often the definition of the Kerr nonlinear refrac-
tive index is n = n0 + �n = n0 + nKerr|E |2 = n0 + nI

KerrI (in
Ref. [17], we used this notation), which introduces an
additional factor of 2 between nKerr and nI

Kerr, while the relation
between nI

Kerr and χ (3) is unaffected. Thus, working with
χ (3) and nI

Kerr is the safest because one never has to worry
about this factor of 2; as an example, Eq. (C10) is still valid,
whereas with the alternative definition Eq. (C11) becomes
nKerr (esu) = (n0c/80π )nI

Kerr (SI) [49].

APPENDIX D: WAVELENGTH SCALING OF THE
NONLINEAR SUSCEPTIBILITY: MILLER’s δ

In the results presented here, we account for the wavelength
dependence of the nonlinear coefficients by using Miller’s rule,
which states that the following coefficients (Miller’s δ) are

frequency independent [55],

δ(2) = χ
(2)
ijk

χ
(1)
ii χ

(1)
jj χ

(1)
kk

, i,j,k = x,y,z, (D1)

and we note that the linear susceptibility is 1 + χ
(1)
ii = n2

i . A
similar relation holds for the cubic nonlinearity

δ(3) = χ
(3)
ijkl

χ
(1)
ii χ

(1)
jj χ

(1)
kk χ

(1)
ll

, i,j,k,l = x,y,z. (D2)

We remark that Miller’s δ is based on an anharmonic
oscillator with a single resonant frequency and only gives
an approximate estimate of the value. Thus, it is not to be
expected to have great accuracy (see, e.g., [56,57]). However,
it has been shown to work decently for most nonlinear
crystals [58].
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Appl. Phys. B 92, 9 (2008).
[5] M. Nisoli, S. D. Silvestri, and O. Svelto, Appl. Phys. Lett. 68,

2793 (1996); C. Hauri, W. Kornelis, F. Helbing, A. Heinrich,
A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Appl.
Phys. B 79, 673 (2004).

[6] J. Chen, A. Suda, E. J. Takahashi, M. Nurhuda, and
K. Midorikawa, Opt. Lett. 33, 2992 (2008).

[7] L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett.
45, 1095 (1980).

[8] D. Ouzounov, C. Hensley, A. Gaeta, N. Venkateraman,
M. Gallagher, and K. Koch, Opt. Express 13, 6153 (2005);
J. Lægsgaard and P. J. Roberts, J. Opt. Soc. Am. B 26, 783
(2009).

[9] X. Liu, L. Qian, and F. W. Wise, Opt. Lett. 24, 1777 (1999).
[10] S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, J. Opt. Soc.

Am. B 19, 2505 (2002).
[11] F. W. Wise and J. Moses, in Self-focusing: Past and Present,

Topics in Applied Physics, Vol. 114, edited by R. W. Boyd,
S. G. Lukishova, and Y. R. Shen (Springer, Berlin, 2009),
pp. 481–506.

[12] J. Moses, E. Alhammali, J. M. Eichenholz, and F. W. Wise, Opt.
Lett. 32, 2469 (2007).

[13] R. DeSalvo, D. Hagan, M. Sheik-Bahae, G. Stegeman,
E. W. Van Stryland, and H. Vanherzeele, Opt. Lett. 17, 28
(1992).

[14] G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum
Electron. 28, 1691 (1996).

[15] J. Moses and F. W. Wise, Opt. Lett. 31, 1881 (2006).
[16] M. Bache, O. Bang, J. Moses, and F. W. Wise, Opt. Lett. 32,

2490 (2007).
[17] M. Bache, J. Moses, and F. W. Wise, J. Opt. Soc. Am. B 24,

2752 (2007).
[18] M. Bache, O. Bang, W. Krolikowski, J. Moses, and F. W. Wise,

Opt. Express 16, 3273 (2008).

[19] S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura,
K. Kitamura, M. Cha, and T. Taira, Appl. Phys. Lett. 84, 1055
(2004); X. Zeng, S. Ashihara, N. Fujioka, T. Shimura, and
K. Kuroda, Opt. Express 14, 9358 (2006).

[20] G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press,
London, 2001).

[21] J.-J. Zondy, M. Abed, and S. Khodja, J. Opt. Soc. Am. B 11,
2368 (1994).

[22] O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91,
343 (2008).
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