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The characterization of chaotic Hamiltonian systems in terms of the curvature associated with a
Riemannian metric tensor in the structure of the Hamiltonian is extended to a wide class of potential
models of standard form through definition of a conformal metric. The geodesic equations reproduce the
Hamilton equations of the original potential model when a transition is made to an associated manifold.
We find, in this way, a direct geometrical description of the time development of a Hamiltonian potential
model. The second covariant derivative of the geodesic deviation in this associated manifold results in
(energy dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We discuss
some examples of unstable Hamiltonian systems in two dimensions.
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A Hamiltonian system of the form (we use the summa-
tion convention)

 H �
1

2M
gijp

ipj; (1)

where gij is a function of the coordinates alone, has un-
stable orbits if the curvature associated with the metric gij
is negative. One can easily see that the orbits described by
the Hamilton equations for (1) coincide with the geodesics
on a Riemannian space associated with the metric gij,
[1,2]; i.e., it follows directly from the Hamilton equations
associated with (1) that (using (12) and the time derivative
of (10))

 �x ‘ � ��mn‘ _xm _xn; (2)

where the connection form �mn‘ is given by

 �mn‘ �
1

2
g‘k

�
@gkm

@xn
�
@gkn

@xm
�
@gnm

@xk

�
; (3)

and gij is the inverse of gij.
The second covariant derivative of the geodesic devia-

tion depends on the curvature [2,3]

 Rjk‘i �
@�jki
@x‘
�
@�j‘i
@xk
� �jkm�‘mi � �j‘m�kmi ; (4)

i.e., for �i � x0i � xi on closely neighboring trajectories at
t,

 

D2�i
Dt2

� Rj‘ki _xj _xk�‘; (5)

where D=Dt is the covariant derivative along the line xj�t�.
The sign of the scalar contraction of (4) then gives infor-
mation on the stability of the orbits [3].

In this Letter, we point out that this formulation of
dynamic stability has application to a much wider range

of Hamiltonian models; in fact, every potential model
Hamiltonian of the form

 H �
pi2

2M
� V�x�; (6)

where V is a function of space variables alone, can be put
into the form (1), where the metric tensor is of conformal
form [4]. We obtain in this way a direct geometrical
description of the time development for a Hamiltonian
potential model.

Casetti, Pettini, and collaborators [5], for example, have
studied the application of both the Jacobi and Eisenhardt
metrics in their analyses of the geometry of Hamiltonian
chaos. The Jacobi metric [1] (of the form �E� V��ij) leads
to geodesic equations parametrized by the invariant dis-
tance associated with this metric on the manifold, in this
case, the kinetic energy, thus corresponding to the
Hamilton action. Transformation to parametrization by
the time t leads to the second order Newton law [5] in
the form (14) below, for which the geometrical structure is
no longer evident.

The Eisenhardt metric, leading to geodesic motion in t,
involves the addition of an extra dimension. As noted by
Caini et al. [5], this metric leads to the tangent dynamics
commonly used to measure Lyapunov exponents in stan-
dard Hamiltonian systems. The method that we use, asso-
ciated with a curvature that is explicitly energy dependent,
appears to be a more sensitive diagnostic than the compu-
tation of exponents of a locally linearized system.

The formulation of Hamiltonian dynamics of the type of
Eq. (6) in the form (1) is carried out by requiring that (6) be
equivalent to (1). For a metric of conformal form

 gij � ’�ij; (7)

on the hypersurface defined by H � E � const, the re-
quirement of equivalence implies that
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 ’ �
E

E� V�x�
: (8)

Substituting this result in the geodesic Eqs. (2), one
obtains an equation that does not coincide in form with
the Hamilton equations obtained from (6).

To see that the Hamilton equations obtained from (1)
can, however, be put into correspondence with those ob-
tained from the Hamiltonian of the potential model (6), we
first note, from the Hamilton equations for (1), that

 _x i �
@H
@pi
�

1

M
gijpj: (9)

We then use the geometrical property that _xi is a first rank
tensor (as is pi), under local diffeomorphisms that preserve
the constraint thatH be constant, to define the velocity field

 _x j � gji _xi �
1

M
pj; (10)

coinciding formally with one of the Hamilton equations
implied by (6). From this definition, we recognize that we
are dealing with two manifolds, each characterized, as we
shall see, by a different connection form, but related by

 dxj � gjidxi (11)

on a common tangent space at each point (for which gij is
nonsingular).

To complete our correspondence with the dynamics
induced by (6), consider the Hamilton equation for _pi,

 

_p ‘ � �
@H
@x‘
� �

1

2M

@gij
@x‘

pipj: (12)

With the form (7) for gij, we obtain in the particular
coordinate system in which (6) is defined,

 

_p ‘ � �
E

E� V
@V
@x‘

: (13)

Considering (11) as a change of variables, (13) becomes

 _p ‘ � �
@V

@x‘
; (14)

the second Hamilton equation in the usual form, where V is
considered a function of the fx‘g, now considered as inde-
pendent variables.

As a coordinate space, the fx‘g, which we shall call the
Hamilton manifold, is not uniquely defined in terms of the
original manifold fx‘g, which we shall call the Gutzwiller
manifold, since (11) is not an exact differential. As we have
remarked, we shall be working with two manifolds (char-
acterized by the connection forms (3) and (21)). It is the
local relation (11) which induces, from the geometry of the
Gutzwiller manifold, a corresponding geometry on the
Hamilton manifold. We shall discuss applications and
interpretation of the physics of the Gutzwiller manifold

elsewhere, but turn now to a further examination of the
consequences of the relations (10) and (11).

The geodesic Eq. (2) can be transformed directly from
an equation for �xj to an equation for �xj, the motion defined
in the Hamilton manifold. From (10), it follows that

 �x ‘ � g‘j �xj �
@g‘j
@xn

_xn _xj

� �
1

2
g‘k

�
@gkm

@xn
�
@gkn

@xm
�
@gnm

@xk

�
_xm _xn: (15)

Now, using the identity

 

@g‘j
@xn

� �g‘k
@gkm

@xn
gmj; (16)

it follows that, with the symmetry of _xn _xm,

 

@g‘j
@xn

_xn _xj � �
1

2
g‘k

�
@gkm

@xn
�
@gkn

@xm

�
_xn _xm: (17)

Thus, the term on the left side of (15) containing the
derivative of g‘j cancels the first two terms of the connec-
tion form; multiplying the result by the inverse of g‘j, and
applying the identity (16) to lower the indices of gnm in the
remaining term on the right side of (15), one obtains

 �x ‘ � �M‘
mn _xm _xn; (18)

where

 M‘
mn �

1

2
g‘k

@gnm
@xk

: (19)

Equation (18) has the form of a geodesic equation, with a
truncated connection form. In fact, it can be shown (a full
proof will be given elsewhere) that the form (19) is indeed
a connection form, transforming as

 M0‘mn �
@x0‘

@xr
@xp

@x0m
@xq

@x0n
Mr
pq �

@x0‘

@xr
@2xr

@x0m@x0n
;

consistent with the covariance of (18) under local diffeo-
morphisms of the Hamilton manifold.

Substituting (7) and (8) into (18) and (19), the Kronecker
deltas identify the indices of _xm and _xn; the resulting square
of the velocity cancels a factor of �E� V��1, leaving the
Hamilton-Newton law (14). Equation (18) is therefore a
covariant form of the Hamilton-Newton law, exhibiting
what can be considered an underlying geometry of stan-
dard Hamiltonian motion.

The geometrical structure of the Hamilton manifold can
be understood as follows. Let us write the covariant de-
rivative for a (rank one) covariant tensor on the Gutzwiller
manifold (defined as transforming in the same way as
@=@xm), using the full connection form (3),

 Am;q �
@Am

@xq
� �mqk Ak: (20)

Lowering the index q with g‘q, we obtain the covariant
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derivative in the Hamilton manifold, with connection form
(with the help of (16))

 �mH‘k � g‘q�mqk �
1

2
gmq

�@g‘q
@xk
�
@gkq
@x‘
�
@gk‘
@xq

�
: (21)

This induced connection form, in the formula for curva-
ture, would give a curvature corresponding to the Hamilton
manifold. However, it is antisymmetric in its lower indices
(‘, k) (torsion). Taken along a line parametrized by t,
corresponding to geodesic motion, the antisymmetric
terms cancel, leaving precisely the symmetric connection
form (19). Note that (19) and (21) are not directly derived
from gij; they are not metric compatible connections.
However, performing parallel transport on the local flat
tangent space of the Gutzwiller manifold, the resulting
connection, after raising the tensor index to reach the
Hamilton manifold, results in exactly the ‘‘truncated’’
connection (19). A complete discussion of the tensors on
the Gutzwiller and the Hamilton manifolds will be given
elsewhere. We note here, however, that the curvature asso-
ciated with the geodesic deviation in the Hamilton mani-
fold, as we shall see below, is not the same as the intrinsic
curvature of that manifold, determined by �mH‘k, but rather,
due to the presence of torsion, a special curvature form
associated with the geodesics themselves.

Since the coefficients M‘
mn constitute a connection form,

they can be used to construct a covariant derivative. It is
this covariant derivative which must be used to compute
the rate of transport of the geodesic deviation �‘ � x0‘ �
x‘ along the (approximately common) motion of neighbor-
ing orbits in the Hamilton manifold, since it follows the
geometrical structure of the geodesics.

The second order geodesic deviation equations (substi-
tuting the conformal metric (7) into (22), and taking into
account the constraint that both trajectories x0‘ and x‘ have
the same energy E, one sees that (22) becomes the orbit
deviation equation based on (14))

 

�� ‘ � �2M‘
mn _xm _�n �

@M‘
mn

@xq
_xm _xn�q; (22)

obtained from (18), can be factorized in terms of this
covariant derivative,

 �‘;n �
@�‘

@xn
�M‘

nm�m: (23)

One obtains

 

D2
M

DMt
2
�‘ � R‘Mqmn _xq _xn�m; (24)

where the index M refers to the connection (19), and what
we shall call the dynamical curvature is given by

 R‘Mqmn �
@M‘

qm

@xn
�
@M‘

qn

@xm
�Mk

qmM
‘
nk �M

k
qnM

‘
mk: (25)

This expression, as remarked above, is not the curvature of

the Hamilton manifold (given by this formula with �‘Hqm in
place of M‘

qm), but a dynamical curvature which is appro-
priate for geodesic motion.

We give in the following a general formula for the
geodesic deviation in the Hamilton manifold in two di-
mensions (the resulting conditions can be easily general-
ized to three dimensions, for which they are also effective),
and then show results of computer simulation for Poincaré
plots showing a correspondence with the prediction of
instability from the geodesic deviation.

With the conformal metric in noncovariant form (7) and
(8), the dynamical curvature (25) can be written in terms of
derivatives of the potential V, and the geodesic deviation
Eq. (24) becomes

 

D2
M�

DMt2
� �VP�; (26)

where the matrix V is given by

 V ‘i �

�
3

M2v2

@V

@x‘
@V
@xi
�

1

M
@2V

@x‘@xi

�
: (27)

and

 Pij � �ij �
vivj

v2 ; (28)

with vi � _xi, defining a projection into a direction orthogo-
nal to vi.

We then find for the component orthogonal to the motion

 

D2
M�v? � ��
DMt2

� ���1cos2�� �2sin2�	�v? � �‘� (29)

where �1 and �2 are eigenvalues of the matrix V , and � is
the angle between v? and the eigenvector for �1.

Instability should occur if at least one of the eigen-
values of V is negative, in terms of the second covariant
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FIG. 1. (a) The dark area shows the region of negative eigen-
values for the matrix V for a Hamiltonian with potential (30).
The light area corresponds to physically allowable motion for
E � 1=6. The region of negative eigenvalues does not penetrate
the physically accessible region in this case. (b) The dark area of
negative eigenvalues for the matrix V is seen to penetrate deeply
into the light region of physically allowable motion for E � 3.
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derivatives of the transverse component of the geodesic
deviation.

One may easily verify that the oscillator potential is
predicted to be stable. Our criteria imply that the Duffing
oscillator (without perturbation, not a chaotic system)
clearly indicates instability in a neighborhood of the un-
stable fixed point. The potentials discussed by Oloumi and
Teychenne [6] also demonstrate the effectiveness of our
procedure; our results in these cases are in agreement with
theirs. The relation (29) provides a clear indication of the
local regions of instability giving rise to chaotic motion in
the Hénon-Heiles model (this result will be discussed in
detail elsewhere).

We take for a simple illustration here a slight modifica-
tion of the fifth order expansion of a two body Toda lattice
Hamiltonian (for which the fourth order expansion coin-
cides with the Hénon-Heiles model)

 V�x; y� �
1

2
�x2 � y2� � x2y�

1

3
y3 �

3

2
x4 �

1

2
y4: (30)

This provides a new Hamilton chaotic system for which
our criterion gives a clear local signal for the presence of
instability. Figure 1(a) shows that the region of negative
eigenvalues does not penetrate the physically accessible
region for E � 1=6; Fig. 2(a) shows a Poincaré plot in the
y, py plane for this case, indicating completely regular
orbits. In Fig. 1(b), the distribution of negative eigenvalues
for E � 3 is shown to penetrate deeply into the physical
region, and Fig. 2(b) shows the corresponding Poincaré
plot displaying a high degree of chaotic behavior. The
criterion for instability we have given depends sensitively
on the energy of the system. The critical energy for which
the negative eigenvalues begin to penetrate the physically
accessible region, in this example, is E 
 1=5, also the
energy of transition for the Poincaré plot.

The condition implied by the geodesic deviation
Eq. (26), in terms of covariant derivatives, in which the
orbits are viewed geometrically as geodesic motion, is a
new condition for instability, based on the underlying

geometry, for a Hamiltonian system of the form (6). This
geometrical picture of Hamiltonian dynamics provides,
moreover, new insight into the structure of the unstable
and chaotic behavior of Hamiltonian dynamical systems.

We wish to thank S. Shnider, A. Belenkiy, P. Leifer,
I. Aharonovitch, and Avi Gershon for helpful discussions.
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FIG. 2. (a) A Poincaré plot in the (y,
py) plane for E � 1=6, indicating regular
motion. (b) A Poincaré plot in the (y, py)
plane for E � 3, indicating a strongly
chaotic behavior.
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