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Local lattice relaxations in random metallic alloys: Effective tetrahedron model
and supercell approach

A. V. Ruban! S. I. Simalé S. Shallcrosé,and H. L. Skrivet
Center for Atomic-scale Materials Physics and Physics Department, Technical University of Denmark, DK-2800 Lyngby, Denmark
2Condensed Matter Theory Group, Physics Department, Uppsala University, Box-530, S-75121 Uppsala, Sweden
(Received 4 December 2002; published 20 June 003

We present a simple effective tetrahedron model for local lattice relaxation effects in random metallic alloys
on simple primitive lattices. A comparison with direah initio calculations for supercells representing random
NigsPl50 and Cu »5AUg 75 alloys as well as the dilute limit of Au-rich CuAu alloys shows that the model
yields a quantitatively accurate description of the relaxtion energies in these systems. Finally, we discuss the
bond length distribution in random alloys.

DOI: 10.1103/PhysRevB.67.214302 PACS nuni®er64.90+b, 75.47.Np

I. INTRODUCTION so-called special quasirandom structuf€€S'9,2 the en-
ergy of the local relaxations in random guAuU 25 and

In spite of the substantial progress made in understandinGug s¢Au ¢ 50 alloys is about 0.05 eV, which is half of the
the structural properties of different materials in genéral, value of theL1, ordering energy,and therefore a quantita-
quantitative description of lattice relaxation effects throughtively accurate theoretical description of the configurational
simplified models still remains a problem. There is, howevergnergetics of CuAu alloys is impossible without a proper
a class of systems where a simple and accurate solution maygcount taken of these lattice relaxation effects.
be found. In alloys of the late transition and noble metals In contrast, the isotropic volume relaxations associated
noncentral forcesor multiatom interactionsare quite small  with the change of the atomic configuration on the lattice are
due to an almost empiy band and a nearly fully occupietl  usually very small: For instance, the volume relaxation
band. The local lattice relaxations caused by a specific allognergy due to the order-disorder phase transition in
configuration on the lattice are therefore mainly determinedCug ;5Auy 55 alloy is about 2 meV for the theoretical change
by the atomic size mismatch of the alloy components and, asf the lattice spacing of 0.02 A obtained without short range
a result, one may expect to be able to derive a simple busrder and local atomic relaxations in random aftduch a
quite accurate model for the relaxation energies involved. change of the lattice spacing is in fact of the order of the

In general, one may distinguish between three differenthermal expansion of the GAu from O K to ambient tem-
types of lattice relaxations which may occur in metallic al- peratures, and the commonly used approximations for the
loys due to a specific atomic configuration on the underlyingexchange-correlation energy do not provide a better accuracy
lattice: (1) anisotropic lattice distortions leading to a changefor the enthalpies of formation of metallic alloysvhich
in the form of the unit cell(2) isotropic or volume relax- seems to be in itself related to the problem of the error in the
ations, and3) local displacements of atoms from the ideal, equilibrium lattice spacing—see belpw
underlying lattice positions. The anisotropic lattice distor- Despite the fact that the lattice relaxations can be quite
tions are caused by a reduction of the global symmetry of theccurately obtained in first-principles calculations, their gen-
underlying lattice due to a specific long range order. Theeral account in statistical thermodynamic calculations for
energy of such relaxations can be quite large and may easilandom and partially ordered alloys is still a problem. For
dominate the ordering energy itself. For instance, in the casimstance, the most widely used mixed-space cluster expan-
of the CuAuL 1, ordered alloy the energy of the tetragonal sion (MSCE) is not only cumbersome, but also has ill-
lattice distortion is only about 0.012 eV. However, in the casedefined limits: The so-called constituent strain energy term
of the Z2 “phase-separated”-like structure it reaches 0.143prescribes a constant value for the “strain” energy of all
eV? In the case oZ3-Au,Cu alloy the relaxation energy is concentration waves in a given direction. That is, according
0.08 eV, and this is sufficient to make tE& structure more to this model the “strain” energies of, for instance, thé,
stable tharL1, at 0 K2 At the same time, in a number of andZ3 (Z1) structures are the same, since their atomic con-
ordered phases such relaxations are either ab&dnt, (B2,  figurations are described by the concentration wave going in
andDQO3), or very small DO,,, DO,3, and so ohdue to  the [001] direction. However, there can be no relaxations
the symmetry. except isotropic volume relaxations in thel, structure,

If the global symmetry of the underlying lattice is pre- while the tetragonal distortions of th#&3 structure could be
served(on average in the case of random allpylsut the  quite substantial, as indeed is the case of thg@u alloy
point group of different sites is much lower than that of thementioned above.
underlying lattice due to the local atomic configuration, then An effort has been made in Ref. 4 to use another model
local displacements of atoms from the idgainderlying for the relaxation energy which, as in the concentration wave
primitive) lattice positions may occur. The energy of suchformalism, is determined in reciprocal space, but now the
local relaxations can also be quite large. For instance, aaelaxation interactions have been chosen to depend exclu-
cording to the results of first-principles calculations for thesively on the absolute value of the wave number of the con-
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centration wave. Nevertheless, the whole scheme, applied the total relaxation energy of an alloy may be expressed as a
the CuAu system, turned out to be quite complicated angdum over such clusters. Since the smallest cluster having
sensitive: It seems that it is necessary to do a lot of quitenon-zero volume is a tetrahedron the relaxation energy of a
accurate calculations of different ordered structures to get binary A.B;_. alloy can be written in the form
reasonable convergence of the expansion. 1

The main reason for the problems with the MSCE and the Eo=- E Vrel(Ci,Cj ,Ck,Cp), 2
approach of Ref. 4 is an attempt to account for the whole 407Kk
variety of lattice relaxation effects by using an analytically whereV,, is the relaxation interaction which is a function of
simple term taken from the static displacement formalism othe occupation numbe#g;}=c;, ¢;, ¢, andc, (¢;=1 if
Krivoglazz and Khachaturyah,which can in fact only be sitei is occupied by & atom; otherwise it is Dfor the
obtained due to some very specific assumptions about foragorresponding tetrahedron verticigg, k, andl. In the case
constants in the systefrHowever, there is na priori need  of the fcc lattice the tetrahedron of the nearest neighbors is
to take into consideration all kinds of relaxation effects if notthe smallest one. In this casg, depends only on the com-
all of them are simultaneously important in the description ofposition of the tetrahedron, which can Bg, A;B, A,B,,
the phenomena of interest. For example, in the simulations AB3;, and By, since all configurations are equivalent for a
order-disorder phase transitions in binary alloys, it makes ndixed number ofA andB atoms in the tetrahedron. Note, that
sense to include in the Hamiltonian a term which accountshis form may be transformed into the usual form of the
for inhomogeneous lattice distortions or the strain energy ofsing-type Hamiltonian, used in statistical thermodynamic
long-period superstructured,B,, if such structures are simulations(see the Appendixgsalthough it is also easily
known not to appear and the system does not undergo dmplemented directly in the Monte Carlo method.
inhomogeneous lattice distortion during the transition. What Given this definition of the relaxation energy, we now
should be taken into consideration in such a case, however, iged to find a method to obtai,., from first-principles
the local lattice relaxations. calculations. A simple way to proceed is the following

Just for this particular purpose we suggest in the preseritvhich conceptually is similar to the well-known average
paper an alternative effective tetrahedron modeTM),  t-matrix approximation in alloy theofy. Let us consider a
which greatly simplifies the inclusion of the local lattice re- random alloy given by “effective medium” atoms in the
laxation effects in statistical thermodynamic simulations. Al-ideal crystal lattice positions. Such an alloy is, for instance,
though its application is restricted to metallic alloys without given by the coherent potential approximatfon®ThenV,,
strong noncentral forces and anisotropic lattice distortions, its the relaxation energy of a given tetrahedron of real atoms
is extremely simple and durable, and, it appears, quite acciembedded in this rigid effective medium. Since it is hardly
rate. The ETM is based on the assumption that the locgbossible to obtainV,, defined in this way from first-
lattice relaxations in alloys are the result of the loealume  principles calculations, we follow another approach. We be-
relaxations. It is in fact similar to the effective-cluster vol- gin by noting that certain ordered structures consist of only
ume scheme proposed by Amadaral.” As we demonstrate one type of tetrahedron. In the case of an fcc binary alloy
in this paper, being extremely simple and easily adaptable tthey are: fccA for the A, tetrahedronL 1,-A3B for AzB,
configurational thermodynamic simulations, it yields quanti-L1,-AB; for AB5, L1, for A,B, and fccB for B,. In this
tatively accurate energetics of the local relaxations in latavay we may calculate the relaxation interactions asvible
transition metal alloys and nobel metal alloys. umerelaxation energy of some specialstructures:

Il. EFFECTIVE TETRAHEDRON MODEL Viel{1€iH) =E*[Qei({Ci}) ] - E“(Qy), (3

A starting point for the model is the division of the Hamil- whereE® i; the tot_al energy per atom of an ord_eraed;t_ruc—
ture associated with a given tetrahedron configurafigh,

tonian of a binaryA;_.B. alloy into two partgalthough the
model may easilsf\éecgecnerasl?zed to thgcase of mSIticompo90 the volume of the unrelaxed tetrahedron, @Q'({Ci.})
nent alloys, t_he volume of the fglly relaxed _tetrahed_ron with configura-
tion {c;} embedded in the effective medium.
H(Qo)=Eo(Qq) + Erei( Qo). (1) In the case of binary bcc alloys, where the smallest tetra-
hedron is formed by 4 sides connecting the nearest neighbor

where the first termio(Q), is the energy of the alloy with  atoms and two sides connecting the next nearest neighbor
a given atomic configuratiofand concentratioron the ideal  atoms, one has actually two nonequivalénB, tetrahedra:
primitive underlying lattice and the second terB}¢ (o),  one is present in th82 structure and the other one in the
the local relaxation energy, i.e., the energy which the systerg32 structure. Thé\;B andAB; tetrahedra in the bcc struc-
gains by fully relaxing all atomic position$), is the equi-  ture are given by thé O, structure and puré\, and B,
librium volume per atom for a given alloy compositiowe  tetrahedra by the bcc structure.
will neglect its configuration dependence, since in many
cases it is quite small, as has been discussed in the Introduc-, 4ARMONIC SPRING MODEL FOR A-A, A-B, AND
tion). . B-B BOND LENGTHS

Let us assume next that the relaxation energy of the small-
est cluster in the underlying alloy lattice is a function mainly ~ The volume of the fully relaxed tetrahedraf, . ({c;}),
of the change in volume of that cluster. If this is the case themay be obtained from the corresponding bond lengths which
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where we have used the fact that the spring consiagt, is
M A B M proportional to the corresponding bulk moduBgy .

IV. DETAILS OF THE CALCULATIONS

e I TR G e The parameters of the spring model and ETM have been
obtained in Korringa-Kohn-RostokdKKR) self-consistent

FIG. 1. (Color onling Schematic picture of the harmonic spring density functional calculations in the atomic sphere approxi-
model: The positions of effective medium atortld) are fixed, mation(ASA)," which has been corrected by the use of both
while A andB atoms are relaxed according to the initial equilibrium the muffin-tin correction for the Madelung energyneeded
bond lengths and spring constants. for obtaining an accurate description of ground state proper-

ties in the ASA, and the multipole moment correction to the
form the tetrahedron sides. The latter can be determined in Madelung potential and enerdywhich significantly im-
simple harmonic spring model, which takes into consider{roves the accuracy by taking into consideration the non-
ation only the interactions along a givé(B)-B(A) bond.  spherical part of polarization effects. Although we have used
Let us consider the chaid -A-B-M, whereM are the effec- the local density approximatiotLDA) with Perdew and
tive medium atoms. The positions of the effective mediumWang parametrization of the exchange-correlation
atoms are assumed to be fixed, while the positions of&the potential'® the total energies have been calculated in three
and B atoms are allowed to relax according to the initial different approximations for the exchange-correlation en-
equilibrium bond lengthsd%, and spring constantiy, for ~ ergy: LDA* local Airy gas;* and generalized gradient ap-
the individual pair ofX andY atoms(see Fig. 1 proximation (GGA).® The partial waves in the KKR-ASA

To solve the spring model for every pair of atoms onecalculations have been expanded uplfp, = 3 inside
needs to know the equilibrium lengths and spring constantgtomic spheres, although the multipole moments of the elec-
of the following bonds:A-A, A-B, B-B, M-M, M-A, and tron density have been determined upl&ﬁ)dX = 6 for the
M-B. It is clear that the parameters for theA, B-B, and  multipole moment correction to the Madelung energy. The
M-M bonds are given by the ground state properties of thgore states have been recalculated after each iteration.
pure A and B components and of the random allgy _.B. The ground state properties of random alloys have been
on the corresponding underlying crystal lattice. For a8  obtained in density functional theory single-site KKR-ASA
bond we suggest using the simplest ordefe structure  coherent potential approximatig@PA) calculations with the
having the lowest value of the Warren-Cowley short rangeCoulomb screening potentia¥i..,, and energyEqc,:*®
order parameter at the first coordination shell. This idthg
ordered structure in the case of fcc alloys. Vi =e2a&

The parameters for thisl-A and M-B bonds can be de- scr S
termined by an interpolation of the corresponding parameters

from the data for thé\-A, A-B, andM-M bonds. The sim- , B )
plest choice is just Zen's lawVegard's law may be used Eser=—¢ Z_SOZEi Cig; (6)
instead for the bond lengths, and a simple average of the
spring constants, i.e., whereq; andc; are the net charge of the atomic sphere and
(d, )3+ (dQ 03] 13 concentration of théth alloy componentSthe Wigner-Seitz
0 = | —M__AAL (4  radius, andr and 8 are screening constants determined from
2 supercell calculations using the locally self-consistent
1 Green’s function methodLSGP." For fcc-NiPt and fcc-
KMAzz(KMMJrKAA), CuAu alloys thea and 8 screening constants were 0.74 and
1.16, respectively.
whered, and Ky are the “equilibrium” length and the In Table | we show our results for the equilibrium Wigner-
spring constant between of ti-A bond. Seitz radii and bulk moduli of pure fcc Ni, Cu, Au and Pt

By solving the spring model one finally gets the following metals as well as ordereldl,-CuAu and NiPt alloys ob-
expressions for the equilibriurA-A (B-B) and A-B inter-  tained by the KKR-ASA(CPA) method in the different ap-
atomic distances in the tetrahedron: proximations for the exchange-correlation energy. It is obvi-
2(dy—dan) ous that none of these approximations provides the best

dpp= dgAJr , overall description of t_he ground state properties of _aII the

2& 1 systems: The LDA being good fordsmetals substantially

Bu underestimates the Wigner-Seitz radius far @etals, and

subsequently overestimates their bulk modulus of these met-

0 1 5 0 0 als. The GGA is, conversely, quite good for thd Betals,
2dym 5 (daat 2daptdge) although it overestimates significantly the Wigner-Seitz ra-
dap=d3g+ 5 B , (5)  dius of & metals and underestimates their bulk modulii. We
—_AB L TAB 4 would like to point out that this trend is general for the late

Buve Bwa transition metalgalso see Ref. 18
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TABLE 1. Equilibrium Wigner-Seitz radii and bulk modulin 3 : .
parenthesgs obtained in the KKR-ASA+M) calculations. The O 0d,8Qs 16
Wigner-Seitz radii in atomic units and the bulk moduli in Mbar. X d,SQS 48
,g 2.9 i Hl<d> SQS16
W <d> SQS48
System LDA LAG GGA Expt. % 55 % @spring model
fcc-Ni 2.516(2.66 2.552(2.30 2.584(1.90 2.60(1.879) 2 Gty
fcc-Cu 2.585(1.96 2.630(1.63 2.666(1.37) 2.66(1.42 < 57 ]
fcc-Pt 2.871(3.13 2.899(2.75 2.926(2.51) 2.89(2.79 ©
fcc-Au 2.990(1.94 3.034(1.57 3.071(1.37) 2.89(1.73 26 ]
L1,-CuAu 2.810(1.96 2.853(1.61) 2.889(1.43 2.85(-) &
L1,-NiPt  2.715(2.90 2.747(253 2.775(2.32 2.75(-) 2.5 q ' q q '
rand-NiPt 2.7232.81) 2.756(2.46) 2.784(2.26 NiNi NiPt PPt

FIG. 2. (Color online Nearest neighbor bond lengths in a “qua-

. . L . . sirandom” Nig 5Pty 50 alloy.
The direct first-principles calculations of the local lattice

relaxations in random fcc and bcc alloys modeled by super- As one can see in Fig. 2 the spring model described in the
cells have been performed by the Vierafainitio simulation ~ previous section works quite well for the average bond
packaggVASP), which is described in detail in Refs. 19 and lengths, although it does not reproduce a certain asymmetry
20. In these calculations we have assumed the local lattice the relaxations: The average local relaxations of the Ni-Ni
relaxations are well “screened” at distances beyond the théonds being measured from the equilibrium bond lengths in
first three or four coordination shells, and therefore we havéhe pure element is greater than that of Pt-Pt . This is, in fact,
used supercells of quite moderate size, which are called consequence of using the harmonic approximation to de-
SQSs following the terminology of Ref. 21. The atomic dis- scribe bond interactions in the spring model. In real systems,
tribution correlation functions, or the Warren-Cowley short- however, the interatomic bonding is anharmonic: It is usually
range order(SRO parameters were as in the real randommuch easier to expand the lattice from its equilibrium value
alloy in the first several coordination shells. than to squeeze it, an effect which is also the origin of the
The calculations were performed in a plane-wave basishermal lattice expansion. However, as will be demonstrated
utilizing  fully  nonlocal  Vanderbilt-type ultrasoft below, it turns out that the harmonicity of the spring model
pseudopotentiafd which allow the use of a moderate cutoff allows one to describe specific local environment effects in
for the construction of the plane-wave basis for the transitiothe ETM.
metals? The integration over the Brillouin zone was done  Using the values of the bond lengths for individual pairs,
on speciak-points determined according to the Monkhorst- one can now determine the volume of the corresponding re-
Pack schemé&" All necessary convergence tests were perdaxed tetrahedra in the alloy and calculate the relaxation in-
formed, and generally the required total energy convergenceeractions from Eq(3). Such interactions for the NPty 50
(within 0.2 mRy/atom was reached for 4—6points in the  alloy are given in Table Il. As one can expect the smallest
irreducible wedge of the Brillouin zone depending on thevalue of the relaxation energy corresponds to the tetrahedron
structure and total number of atoms. All the KKR-ASA and whose composition coincides with that of the alloy. It is, in
VASP calculations are scalar relativistic. fact, almost zero in this case, which provides a proper limit
for the local lattice relaxation energy: in the completely or-
dered (1,) state, the energy of the local lattice relaxations
should vanish. The greater the difference between the tetra-
hedron and alloy compositions, the greater the relaxation en-
ergy is. Moreover, one may also notice that there is a certain
We consider first the local lattice relaxations in the ran-asymmetry in the value of relaxation interactions: The relax-
dom Nig 5Pt 50 alloy, where the local lattice relaxations are ation energy for the Btis about 50% greater than that for
quite pronounced due to the substantial size mismatch of th)i,. Such an asymmetry is again the result of the anhar-
alloy components. The GGA nearest neighbor interatomienonic behavior of the equation of state.
distance in the random alloy on the locally unrelaxed lattice The local lattice relaxation energy of a randaw_ B,
given by the KKR-ASA-CPA calculations is 2.681 A. The alloy, without short-range order effects, will be given by
relaxed distances obtained in the supercell full potelfg)
calculations by VASP, are shown in Fig. 2. It is obvious

V. RESULTS

A. NigsPtgso random alloy

TABLE Il. Relaxation interactions in NjisPtyso alloy (in

that there is a substantial dispersion of bond lengths for af"®""

three different pairs, and that the Pt-Pt bond length can be Ve Ve Ve Ve v
much less than that of the alloy average, as well the Ni-Ni Nig NigPt NizPty NiPts Pl
bond being much longer. Nevertheless, the average values pba —-188.3 —585 ~0.0 -59.2 2703
the bond lengths follow the expected trend: They increase inAG ~1596 —499 ~0.0 ~-50.6 —235.4
the sequence of Ni-Ni, Ni-Pt and Pt-Pt: 2.646, 2.671, andsca —156.1 —44.9 ~0.0 —493 —2103

2.741 A.
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TABLE Ill. The local relaxation in a random NiJPt, 50 alloy
i 3.05 T T 5QS32"
(in meV/aton). « X d, $QS32
% !average, <d> SQS32
— X i del
Method LDA LAG GGA E 295 ST ]
= X
ETM -58 ~50 — 46 § %
CWM (Ref. 29 —54 < 285 " i
SQS-16 -58 — 46 < i 7
SQS-48 -58 —45 g 275 | ? .
2 | ©
A s ) 5 8 265 % g
Ere|=(1—C) VA4+4C(1_C) VABB+ 60 (1_C) VAZBZ | & X
+4c%(1—c)Vap, +C*Vg,. (7 250 ' ' '
8 4 dAuAu dAuCu dCuCu

In Table Il we compare the ETM, the cluster expansion F|G. 3. (Color onling Nearest neighbor bond lengths in a “qua-
results by Luet al,?®> and our direct 16- and 48-atom super- sirandom” Aug 7<Cu o5 alloy.
cell GGA calculations for Njstgs0. Although all these

H 4
results have been obtained by using entirely different methcalculation$” could be too small to reproduce correctly the

ods, the agreement between them is fairly good. This ingiStatistics of bond length distributions in the random alloy.
g W ! y 9 To check the bond length distribution in Au-rich Cu-Au

cates that the energy of the local lattice relaxations is quite -
insensitive to the details of the atomic displacements. random alloys we have performed FP VASP calculations for

There is, however, an important point here: while the en® 32-atom supercell of the GysAuo7s alloy described
ergy of the local lattice relaxations is insensitive to the de-220ve, which produces a much better representation of the

tails of the model, it is nevertheless quite affected by thg@ndom alloy than the SQS-1fb) cell used in Ref. 2. The
choice of approximation for the exchange-correlation energy/€/@xed bond lengths of the SQS-32 are presented in Fig. 3.
One can see from the results presented in Table IIl that th&S in the case of the NiPt random alloy, there is a huge
difference between LDA and GGA results is about 0.01 e\v/dispersion of all possible types of pairs. However, the aver-
which is approximately 20% of the the value of the relax-29€ interatomic distances follow the usual behaviby;a,

ation energy. At the same time, as has already been merz daucs™dcucy in accordance with the experimental déta.
tioned, none of the existing approximations for the The results of the spring model, which in fact yields a quite
exchange-correlation energy provides an accurate descriptig§asonable representation of the average bond lengths, also

of the ground state properties of both Ni and Pt. follow this trend. However, as in the case of thephPtoso
random alloy, the average Cu-Cu bond length is underesti-

mated due to the use of the harmonic approximation.

To investigate this problem further we have calculated by

As already discussed in Sec. |, lattice relaxation effectshe FP-VASP method the local relaxations in the dilute limit
play an important role in the phase equilibria of the CuAuof Au-rich alloys: a single Cu impurity and a pair of Cu
system. This system is also very interesting for studying latnearest neighbor atoms in pure Au. A 32-atom supercell has
tice relaxations since experiméhiand first-principles full-  been used in the case of a single impurity and a 72-atom
potential calculatiorfs' (also see the effective medium supercell for the pair of Cu atoms. We have again used the
theory?’ result$ report the effect of a “loosening” of the LDA, which provides the best ground state properties of pure
Cu-Cu bond in Au-rich random alloys leading to a specificAu. The FP-VASP result for the lattice spacing is 4.0633 A,
crossover when, with increasing concentration of Au, the avwhich corresponds to 2.8732 A for the nearest neighbor
erage Cu-Cu bond length becomes greater than that of Cuku-Au bond length. In the case of a single Cu impurity the
Au. Cu-Au bond length turned out to be 2.8254&reduction of

Note, however, that in fact neither the experimentalabout 1.66%
dat&® nor the theoretical results of Refs. 2 and 4 provide In Fig. 4 we show the atomic displacements of Cu and Au
a completely convincing picture of the existence of suchatoms for the pair of Cu atoms in Au. The Cu atoms are in
a phenomenon. First of all, they are not in quantitativethe (001) plane, and their positions as well as the positions of
agreement with each other: According to the experimentaihe Au atoms in this plane are shown by solid symbols. The
data the crossover occurs when the content of Au in the\u atoms in the next001) plane are shown by dotted sym-
random alloy exceeds about 86 at. %, although the theoretbols. In this way every square of nearest neighbors in the
cal calculations show that it has already happened in théigure corresponds to a tetrahedron of nearest neighbors in
random Cy »sAuq 75 alloy where the average Cu-Cu bond the underlying fcc structure. The indexes of the Au atoms
length is much greater than that of Cu-Au. Second, the untabel the nonequivalent positions. The final interatomic dis-
certainty in the experimental results for the Cu-Cu bondtances are given in Table IV together with the average Cu-Au
length is too large to make an accurate prediction of its valuelistance in this case.
relative to the Cu-Au bond length. At the same time, the The Cu-Cu bond length in the dilute limit is actually a
eight-atom supercellSQS-14) used in the first-principles little bit greater than that of the average Cu-Au bond for the

B. Cu-Au random alloys and the dilute limit of Cu in Au

214302-5



RUBAN, SIMAK, SHALLCROSS, AND SKRIVER PHYSICAL REVIEW B67, 214302 (2003

6 . . TABLE V. The local relaxation energgt. DA) in random CuAu
alloys (in meV/aton).
ideal Au,
4 6elaxed @ il Method Clh7sAUg25  ClUpsAUgso  Clg2sAUg 75
R Au, Cu ETM -51 -52 —36
g o | @ @ 1l SQS-8,5QS-14, —46 —54 —-34
= (Ref. 2
2 Cu Au, Au, SQS-32 —36
< of ® & :
= Au AU a_ctions. Let us consider the Cu-Au bond_s. There are four
ry @‘ @3 | different Cu-Au bond Iengths'presented in Table V. The
shortest Cu-Au bond, which is, by the way, substantially
shorter than the Cu-Cu one, is between Cu and Atoms.
g , ‘ , ‘ This is apparently due to specific positions of the,Aatoms
T4 _D 0 2 4 6 with respect to the Cu pair: In contrast to the rest of the Au

X (Angstrom) atoms they have both Cu atoms as the nearest neighbors.
That is, the large contraction of Cu-Albond is due to the

adpresence of another Cu-Auor the same Au atom, and thus

Jt can be viewed as a multisite effect.

On the other hand, this can be also described as a local
olume effect, since the AuCu bond belongs to the
u,Au, tetrahedron of nearest neighbors, the only one

which consists of two Cu atoms. There is in fact a quite
interesting point about the ETM here. In the real alloy the
Cu,Au, tetrahedron has the smallest volume due the short-
est Cu-Ay, bonds. In the ETM it also has the smallest vol-
ume, but the reason is different: It is due to the shortest
Cu-Cu bond, whose contraction is quite overestimated by the
harmonic approximation used in the spring model. That is,
uch an overestimation is very important, since it allows the
TM to “mimic” the appearance of very short Cu-Au bonds

FIG. 4. (Color online A view of the local relaxations of Au
atoms around a pair of the nearest neghbor Cu-Cu atoms in fcc
Due to the chosen geometry of the 72-atom supercell all the rela
ations occur in th€001) plane, shown in the figure. Atoms in the
plane are shown by symbols drawn by solid lines, and atoms in th
next (001 plane by dotted lines. Numbers mark equivalent Au at-
oms.

pair of Cu atoms, but it is still less than the Cu-Au bond
length in the case of a single Cu impurity. In the dilute limit
of the Au; _.Cu, random alloy, however, the last case will
be dominating since the probability of having two Cu atoms
as the nearest neighborsd$, even without taking into ac-
count the specific SRO effects at the first coordination shel

in the CUTAL! s_ystem, which _must decrease even more th'ﬁ] the CwAu, tetrahedron, and thereby to produce the cor-
v_alue, while it is onlyc(1—c) in the case of a single impu- rect contribution to the local lattice relaxation energy.
rltyI.n other words, our supercell calculations do not confirm This can be easily demonstrated, sin%ecin the ETM the
, . H H uCu__
the existance of the crossover for Cu-Cu and Cu-Au bond® 2xation energy of the C.u pair 'f,’e' _,6\/,’*“323
lengths in random Cu-Au alloys: The average Cu-Au bondt Vau,cu, While that of a single Cu impurity isEr,
length will never be less than that of the average Cu-Cu. OF4Vay.cu, i.e., the later does not contain tlde\uz(;uz inter-
course, one should notice that the actual atomic diSp'aC%Ction, which correspons to the Q)Nuz tetrahedron. There-
ments are only about 2% of the unrelaxed bond length.  fore, if the ETM reproduces correctly both energies, for the
The pair of Cu atoms in Au is a very interesting case sinc&ingle impurity and the pair impurity, it provides qualita-
it shows how the model is able to reproduce some specifigyely correct partition of the relaxation energy in terms of
effects connected with the existence of a quite large dispetthe effective relaxation interactions. Indeed, the ETM value
sion of the bond lengths and at the same time also make f@r the relaxation energy of a Cu impurity in Au is
reasonable partition of thg¢ onto the corresponding inter- —0.124 eV, which is in very good agreement with direct
supercell calculations;-0.12 eV, and at the same time the
TABLE IV. Cu-Cu and Cu-Au bond length distribution for the ETM relaxation energy for the pair of Cu atoms is
CuCu pair in pure Au. The relative change of the bond length is—0.304 eV which is again in fairly good agreement with the

given in parentheses. VASP result,—0.34 eV.

Finally, in Table V we compare the ETM and supercell
Type of bond Number Bond leng(h) results for the local lattice relaxation energies in random
Cu-Cu L 2.82301.75 % Cug7sAU 25, ClgscAUgse and CupsAUg 75 alloys. The

agreement is very good, even between SQggpl4and

Cu-Au 2 2.8402(1.15 9 . .

CU-AUl 8 5 832921 40 02 SQS-32 supercell calculations, despite the fact that they pro-
2 ' ' duce a quite different average picture of the local lattice re-

Cu-Aus 4 2.8201(1.85 % laxations(Fig. 3). Such an insensitivity to the geometry of

Cu-Au, 8 2.7671(3.69 % 9- 9. ty 9 Y

the relaxations is a clear indication that the local atomic re-
(Cu-Au) 22 2.8162(1.98 % laxations in these alloys, as in the case of MPtyso, IS
mostly the local volume relaxation effect.
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‘ works reasonably well, as it should, if the local lattice relax-

o8| O B WFP-KKR(LDA) 1/ V ation effects are indeed a volume effect.
V' /Eshelby theory
06| mO O--QETM (LDA) 1 VI. SUMMARY

@, : Q'O We have introduced an effective tetrahedron model for the
504 i o 8 B | local lattice relaxations in random metallic alloys and dem-
w onstrated that it provides a quantitatively accurate descrip-
0.2 v e) Q tion of the local lattice relaxation energetics in the case of
v 9 9 d random alloys of the late transition and noble metals. We
LY L believe that the success of this model is due to the fact that
Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn the local lattice relaxations in these random alloys is a local

volume effect. The ETM is very convenient in statistical
thermodynamic simulations since the corresponding contri-
bution can be represented in terms of the nearest neighbor
pair, triangle, and tetrahedron interactions. The ETM does
The fact that the volume effect dominates the energeticaot, of course, describe inhomogeneous lattice distortions,
of local lattice relaxations for @, 4d, 4sp, and Spimpu-  which should be brought into statistical thermodynamic
rities in Cu has in fact already been demonstrated in Ref. 2&imulations through another means.
Here it was shown that the relaxation energy scales rather \We have also performeab initio calculations of the local
well as the difference between the Wigner-Seitz radii of theattice relaxations in NjsdPtoso and Cuy 752U o5 random
host and impurity. On this basis a simple model was pro-alloys using 16-, 48-, and 32-atom supercells, respectively.
posed that showed good agreement with calculations pewe find that the local lattice relaxation energy is not sensi-
formed using both effective medium the&hand the full- tive to the size of the supercell, which again demonstrates the
potential ~ Korringa-Kohn-Rostoker ~ Green's  function |ocal character of the phenomenon. Moreover, our relaxation
method® It is therefore very interesting to check how the energy for a Cy7sAU ,5 alloy obtained in the 32-atom su-
ETM works here. The relaxation energy of a single impurity percell calculations is very close to that found in the eight-
can be obtained as a partial molar quarifiiy the following  atom calculations, despite the fact that the average bond

FIG. 5. Relaxation energies for thel4nd 5 p impurities in Cu.

C. Relaxation energies of Sp- and 4d impurities in Cu

way: length between different alloy components differs signifi-
cantly.

. JE e1(A1_.B i i - - -

Eimp— rel(A1-cBe¢) lo_o=Va +4Vs =4V, 5, (8) Finally, using a 32_ and 72 atom super(_;ells we have qal

re Jc 4 3 3 culated the local lattice relaxations for a single Cu impurity

and a pair of Cu nearest neighbor atoms in Au. From these

whereV,, andV, g are the relaxation interactions, obtained calculations we have deduced the average bond length of
as described above. Cu-Au and Cu-Cu pairs in the dilute limit of the Au-rich

We have calculated the local lattice relaxation energy folCu-Au alloys. According our results, the Cu-Au bond length
the same set ofd and S p impurities in Cu. We have used should be always larger than the average Cu-Cu length in
the LDA, which was also the functional used in the FP-KKR random Cu-Au alloys. This result is not in contradiction with
Green’s function calculatiorfS. In Fig. 5 we compare the the existing experimental dafdAs far as it concerns the
results of the ETM model with the corresponding FP-KKR existence of the crossover in the earli@b initio
Green’s function result® It is obvious that the agreement calculations;* we attribute it to the too small size of the
between both calculations is very good for the late transitiorsupercell used in those calculations.
andsp metals, while the relaxation energies for earlier tran-
sition metals are substantially overestimated. It is difficult to ~ APPENDIX A: TRANSFORMATION OF THE ETM
speculate about the origin of the discrepancy for the relax- INTERACTIONS TO THE ISING TYPE HAMILTONIAN
ation energies_ in the Iatterl case. One of the reasons could be | ot us show how Eq(2) can be transformed to the usual
that the ETM is oversimplified for these systems because ofjng-type Hamiltonian in the simplest case, when relaxation
the presence of the multiatom forces due to the apshell. —jneractions depend only on the number/obr B atoms in
This will mean that specific local environment effects be-i,q binary alloyA, .B.. For this purpose we will use the

come_important, S0 that the energetics can no longer be Wegpin—representation in whidg, ., (per atom is determined as
described as a simple volume effect.

In the figure we have also included the results of the Es- 1.
helby theory***? according to which Ere=V+ Z v, +5 IEJ V@aia;

ZB G Q _Q 2 ! !
B A( A B) (9) 1 @ 1 @
+§ijzkvr O'iO'jO'k‘f‘Zi%lVr O'iO'jO'kO'|

imp_

el 3BgOA+4GAQg

whereB,, Q, andBg, Qg are the bulk modulii and equi-
librium volume of the host and impurity respectively, &g _

1
=— V,el(Ci,Ci ,Cy,Cy), Al
the shear modulus of the host. It appears that this theory also 4 %u rei(Ci€yC,©1) (A1)
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where,o;=2c;—1 is the spin-variabley(" the n-site effec-  wherea s the fcc lattice constant angl = 2. TheA atoms
tive relaxation interaction, and the number of atoms in the lie at sites with Cartesian coordinatés » a units):
system.

In the case of the fcc lattice the one gets the following 3 3
expressi o) ina thi i Ar=|—/50,\3

pressions for th& " by solving this set of equations for
some particular chosen tetrahedron with all possible occupa-

tion numbers and taking into consideration the number of 3 3
tetrahedra shared by every geometrical element: Ar= §,0,— Z\/§ '
V(O)—_(VA —|—4VA B+6VA B, +4VAB +VB ) A3: \/E,O,_ E\/g ,
8 4
v(”:—i(v +2Vapg—2Vag.— Vi) 1
r 4" A AsB ABg  YBy)» A4=(—\/§8,OZ\/§),
o (B2)
V——V =2V tVg), A2 1 /811
( A, AB,1Ve,) (A2) As= __\ﬁ,_,_\@ '
8 4’3
v<3>——— Va —2Va.g+2Vags,— Vg, 1 /8 11
( A, AzB AB, 34) Ag= __\ﬁ’__,_\@ ,
8 V3 4’3
V(4)__(VA4 AV 5+ 6V~ Vg + V). (1 \ﬁ 11 f)
7 8 3!41 3 1

The first term in Eq.(Al) is just a constant shift and
therefore can be neglected. The second term can be also 1\ﬁ 1 1
omitted in configurational thermodynamic simulations at a 8= 3 4 33
fixed concentration.

The B atoms lie at sites with Cartesian coordinafesr, a
APPENDIX B: SPECIAL QUASIRANDOM STRUCTURES units):

Special quasirandom structurdSQSs (Ref. 21 are 1 /8 1
N-atom per cell periodic structures designed in such a way B1=( \/; 15 )
that their distinct correlation functiond ., (Ref. 21) best
match the ensemble-averagéd, ,, of the random alloy. 1 /8 1
Here (k,m) corresponds to the figure defined by the number Bz_( \[

k of atoms located on its verticek€2,3,4 ... are pairs, 3
triangles, tetrahedra, etavith m being the order of neighbor
distances separating themm¢1,2... arefirst, second :(E\ﬁ 1 }\/—)
neighbors etg. Obviously, all(II ,,) of the perfectly ran- 3 \8

dom binary alloy equal to (2— 1)k wherex is the alloy
concentration. The SQSs used in the present work are the 1\/§ 11
following. Bs= 3 4'6

1. SQsS-16 1 /81 1
. : Bs=( ——\ﬁ,—,——@» (B3)
SQS-16 is a supercell designed #g,Bs, fcc-based al- 8 V34" 6
loys and has the space gro@2/m (space group No. 12 in
the International Tables for Crystallographgnd a base- 1\F 1 1
centered monoclinic unit cell. Its basis vectors are Be=| — 3

1\/§ 1 10
V55 153] 7 . _1\ﬁ 7
2V3 2" 12 B, 5 3,0.12@,

1\F 7
g V30" 1—2@

c=(0,0,\/§) na, Several first correlation functiorld, ,, of SQS-16 are

7a, (B1) Bg=
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I1, {6]=0.000, 11
AG_ (Z,Z,O),
IT, £3]=0.000,
I1,412]=0.000 A;= 10l
Z’i ]_ . 1 7 Z! !Z 1
IT, {6]=0.000, 11
A = - _1_70 L
1, 4 12]=0.000, 8 ( 22 )
I1, { 3]=0.000, a|f_ 11
9— 21 4 ] 4 I}
IT,418]=0.000,
1 1
115 8]=0.000, A1o= Z'_Z’O ,
113 412]=0.000, 1 1
Al]_: ( o!_l - _) ]
11, { 2]=0.000, 4" 4
1,4 12]=0.000, _(_t1?
. A1z ( 272 (B5)
where the square brackets nextliq ,, give the degeneracy
factor for the corresponding figufé Notice that for the per- 1 1
fectly randomAsBs, alloy all (I1,,,), (I35, and(Il,,) A13=( - -0~ —),
are equal to zero. 4 4
11 1
2. SQS-48 |- > _=
A14 ( 2 Il 4 ) 4) )

SQS-48 is a supercell designed #g,Bs, fcc-based al-
loys and has the space gro&d (space group No. 1 in the 3 1
International Tables for Crystallographgnd a triclinic unit A15=( 0,— )

cell. Its basis vectors are 4 4
3 A 1 01
a= 5,0,0 a, 16=| 505
b=(0,1,0)a, (B4) (111
17— ZyZvE I
¢c=(0,0,Da.
. . . . L 1 1
The A atoms lie at sites with Cartesian coordinatgsa Ag=|-,0——/,
units): 4 4
11 11
Al—(O, ’Z)' Agg (0.5,2),
11 A 0 1 1
A2: _Zazvo ’ 20 ’ 41 4 ’
1 1 A 11
A3_ _Zyoyz ] 21— 41 Z!z 3
A 111 A 11 1
4 _Evzaz l 22— _ZIE!_Z l
A 111 A 3 11
s=\2'2a) 2 \3 " 72)
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A 11 1
|72 a)

The B atoms lie at sites with Cartesian coordinatesa

units)

B]_: (01010)1

1
82: - E,0,0 ’

PHYSICAL REVIEW B67, 214302 (2003

B (111
23— El Z! Zl

)
4 42
Several first correlation functiorid, ,, of SQS-48 are
I1,6]=0.000,
IT, 4 3]=0.000,
1T, 4 12]=0.000,
11, /6]=0.000,
11, 4 12]=0.000,
IT,{3]=-0.083,
11, {18]=—0.056,
113 8]=0.000,
115 412]=—0.056,
(B6)
I, [2]=-0.167,
I1,412]=—0.056.

3. SQS-32

SQS-32 is a supercell designed f&ysB,5 fcc-based al-
loys and has the space gro®d (space group No. 1 in the
International Tables for Crystallographgnd a triclinic unit
cell. Its basis vectors are

Vao- s
3073

b=(0,1,0 7a, (B7)

a= 74,

c=(0,0,4/3) 7a,
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wherea is the fcc lattice constant ang= \/§ TheA atoms

lie at sites with Cartesian coordinatés » a units): A1g
Al:(01010)1 l 1
1 A20_ Ol_! Z\/§ Il
A2: 01510 i

1\ﬁ 11
Azs—(z 5"2'1—2@'

1\/§ 11
A5_<_Z 51_251_2\/5>1

1 \/§ 11
L1 A24—(‘z 3233
AGZ 0,_2._2\/5 ’
TheB atoms lie at sites with Cartesian coordindiess a
1 1 units):
A7: 01_1__\/§ ]
4" 4 5 1 \ﬁ 1 1 A
=laVz 2 %)

el

el 39 b

1 /81 1
BSZ(E\[@?‘E@)'
1 /81 5
o [5V5 5 39 ®9)
B —(oolﬁ)
- 1\F 101 R
SRR I ® 1 811
o (3V3 356
1 /81 1
872(5\@’2’1_2\/5)’

1\/51 5

mer5V5 529
1\/501\/5

4 N33 '

BBZ
1 /8 15
A15:(_\/:1__;_\/§>| X i .
4NV3 4712 Several first correlation functiorid, ,, of SQS-32 are
1 /8 1 IT, {6]=0.250,
Are= (5\@,0,5\/5) ,
IT, 43]=0.250,
1 /811
A17=<§\[§,§,§\/§), I1,412]=0.229,
I1, {6]=0.250,
- 1\/5 1 7\/§ 2,4[ ]
Me=| ~ 3 N3~ 3 12V3) 11, 4 12]=0.250,
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11, { 3]=0.286,
11, {18]=0.244,
Il; {8]=0.125,

11, {12]=0.0625,

PHYSICAL REVIEW B67, 214302 (2003
11, [ 2]=0.000,
11, {12]=0.0417.

Notice that for the perfectly random;sB,s alloy all
(II,my=0.25, all(Il3,,)=0.125, and al(Il,,)=0.0625.
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