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Dimensional enhancement of kinetic energies

W. P. Schleich1 and J. P. Dahl1,2,*
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2Chemical Physics, Department of Chemistry, Technical University of Denmark, DTU 207, DK-2800 Lyngby, Denmark
~Received 27 December 2001; published 18 April 2002!

Simple thermodynamics considers kinetic energy to be an extensive variable which is proportional to the
numberN of particles. We present a quantum state ofN noninteracting particles for which the kinetic energy
increases quadratically withN. This enhancement effect is tied to the quantum centrifugal potential whose
strength is quadratic in the number of dimensions of configuration space.

DOI: 10.1103/PhysRevA.65.052109 PACS number~s!: 03.65.Yz, 03.75.2b
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I. INTRODUCTION

The intensity of light radiated from independent dipoles
the numberN of dipoles times the intensity of a single on
However, when the dipoles are located within a wavelen
of the radiation the total intensity isN2 times the intensity of
a single dipole@1#. This superradiance effect is due to co
structive interference between the individual dipoles. In
present article, we propose an enhancement effect of a s
lar strength for the kinetic energy of matter waves confin
to a region whose radial extension in hyperspace is es
tially independent of the number of particles.

According to simple thermodynamics, kinetic energy is
extensive variable, that is, in general the average kinetic
ergy of an ensemble ofN particles is linear inN @2#. A
similar dependence holds for the kinetic energy of an o
nary Bose-Einstein condensate~BEC! of N particles. How-
ever, we now show that for a special quantum state oN
nonrelativistic particles the kinetic energy increases asN2.
This quantum state is completely symmetric under excha
of the coordinates of the particles, but there is no interac
between the particles.

For the enhancement effect to occur, all particles nee
have the same mass, but they do not necessarily have
identical particles. Nevertheless, the state could also co
spond toN identical particles. In this case, it would be th
state ofN bosons which are strongly entangled.

Dimensional enhancement of kinetic energies is due to
wave nature of the atoms. It results from the form of t
Laplacian in D dimensions, giving rise to the quantum
centrifugal potential. We illustrate this phenomenon usingN
nonrelativistic particles of identical massM in three space
dimensions. Here, we concentrate on the motional degree
freedom, but do not take into account the internal structur
the particles. Hence, we deal with a (D53N)-dimensional
configuration space, and the wave functionC
5C(x1 ,x2 , . . . ,xD) depends onD coordinates.

The proposed effect is most conspicuous fors states, that
is, when the wave function depends on the hyperradiur
5(x1

21x2
21•••1xD

2 )1/2, only. In this case, the wave func
tion is completely symmetric under exchange of coordina

*Electronic address: jpd@kemi.dtu.dk
1050-2947/2002/65~5!/052109~6!/$20.00 65 0521
h

e
i-

d
n-

n
n-

i-

e
n

to
be
e-

e

of
of

s

of the particles, corresponding to a bosonic state. We s
consider onlys states in the present work.

Our paper is organized as follows. In Sec. II, we lay t
groundwork for the calculation of the kinetic energy of a
ensemble of particles, by introducing the concept of the
dial wave function in hyperspace. We illustrate it by usi
two examples related to a BEC in an isotropic harmonic tr
In Sec. III, we then turn to the discussion of the operator
kinetic energy and cast it into a form which brings out t
quantum-centrifugal potential. The latter is proportional
the square of the number of dimensions. It is this poten
that may cause the kinetic energy to be quadratic in the n
ber of particles, as discussed in Sec. IV.

In Sec. V, we evaluate the kinetic energy of three differe
radial wave functions. The two motivated by BEC, and d
noted byu0 andu1, show a linear dependence on the numb
of particles. However, for the third radial wave functionu2,
which is independent of dimensions, we find a kinetic ene
that depends on the square of the number of particles.
dedicate Sec. VI to a discussion of the origin of this enhan
ment effect.

In Sec. VII, we then turn to a discussion of the quantu
dynamics, starting from the wave functionsu0 , u1, andu2.
We evaluate the time dependence of the average radial
mentum following from these initial conditions. We note th
the momentum corresponding to the BEC wave functio
increases with a steepness that is proportional to the sq
root of the number of particles. In contrast, for the wa
function u2 we obtain the remarkable result, that the stee
ness depends quadratically on the number of particles.
conclude in Sec. VIII with a brief summary.

II. WAVE FUNCTIONS

For ans state, the motion of theN particles is described
by the normalized wave functionC5C(r ) or, equivalently,
by the radial wave functionu(r ) defined by the relation

C~r !5
1

ASD

u~r !

r (D21)/2
, ~1!

whereSD denotes the total solid angle inD dimensions,
©2002 The American Physical Society09-1
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SD5
2pD/2

G~D/2!
, ~2!

andu(r ) is normalized such that

E
0

`

uu~r !u2dr51. ~3!

We shall look look at three particular wave functions
the above type. The first one may be constructed from
normalized Gaussian wave function,

w~x!5S k2

p D 1/4

e2k2x2/2, ~4!

in one dimension, by forming the product function

C0~r !5w~x1!w~x2!•••w~xD!5S k2

p D D/4

e2k2r 2/2, ~5!

with r being the hyperradius. This wave function describ
the state of a BEC ofN5D/3 noninteracting particles in a
isotropic magnetic trap at zero temperature@3#. The value of
k is determined by the harmonic potential of the trap.

Our secondN-particle wave function,C1(r ), may be con-
structed by retaining the wave functionw(x) for D21 space
directions, while taking a wave function of the formx2w(x)
for the last direction. Symmetrization by forming the coh
ent sum( i 51

D xi
2 exp(21

2k
2r2) and subsequent normalizatio

gives in fact

C1~r !5
2k (D14)/2

pD/4AD~D12!
r 2e2k2r 2/2. ~6!

The radial wave functions associated withC0(r ) and
C1(r ) are

u0~r !5N 0r (D21)/2e2k2r 2/2, ~7a!

u1~r !5N 1r (D13)/2e2k2r 2/2, ~7b!

with the normalization factorsN0 andN1 being

N05F 2

G~D/2!G
1/2

kD/2, N15F 2

G~D/212!G
1/2

kD/212.

~8!

We defer the presentation of the thirdN-particle wave
function to Sec. V B.

III. OPERATOR OF KINETIC ENERGY

We now consider the kinetic energies corresponding to
two above wave functions. The kinetic-energy operator

T̂52
\2

2M
D (D) ~9!

is determined by the Laplacian@4#
05210
a

s

-

e

D (D)5
]2

]r 2
1

D21

r

]

]r
1

L̂2

r 2
~10!

in D dimensions. The operatorL̂2, which involves deriva-
tives with respect to theD21 angles of hyperspace, is pro
portional to the angular momentum operator in configurat
space@5#.

As discussed in Ref.@6#, we may also write

T̂5
p̂r

2

2M
1VQ~r !2

\2

2M

L̂2

r 2
. ~11!

Here, we have introduced the radial momentum

p̂r5
1

2 S r

r
•p̂1p̂•

r

r D5
\

i

1

r (D21)/2

]

]r
r (D21)/2, ~12!

and thequantum fictitious potential

VQ~r !5
\2

2M

~D21!~D23!

4r 2
. ~13!

We emphasize that the quantum fictitious potential a
emerges directly from acting with theD-dimensional Laplac-
ian of Eq. ~10! on the wave functionC(r ) of Eq. ~1!. This
yields, in fact,

D (D)C5
1

ASD

1

r (D21)/2F2
]2

]r 2
1

~D21!~D23!

4r 2 Gu~r !.

~14!

SinceVQ is proportional to the square of Planck’s co
stant, it is a quantum potential with no classical anal
Moreover,VQ depends inversely on the square of the hyp
radius. This feature reminds us of the classical centrifu
potential, which gives rise to the noninertial centrifug
force. Indeed, forD>4 the potentialVQ given by Eq.~13! is
positive and thus corresponds to a repulsive force. This pr
erty suggests the namequantum-centrifugal potential. In ac-
cordance with this, some authors@7# absorb it into the last
term of Eq.~11!. This, however, conceals the fact that it is
genuine part of the radial kinetic energy.

We note that forD52 the potentialVQ is negative corre-
sponding to an attractive force. This centripetal force
unique to two dimensions and counterintuitive to the clas
cal notion of the centrifugal force always being repulsive.
capture this contradiction, we have coined the phr
quantum-anticentrifugal potentialfor the potentialVQ in the
case ofD52. In Refs.@8# and@9# we have focused on con
sequences of this attractive potential. However, in the pre
work we concentrate on the repulsive case correspondin
D>4.

We recognize that one and three dimensions are also
cial: the potentialVQ vanishes.
9-2
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IV. AVERAGE KINETIC ENERGY

The average kinetic energy

^T̂&52
\2

2ME
0

`

dr r D21E dVD C* D (D)C ~15!

of the particles described byC involves the Laplacian Eq
~10! and integrations over the hyperradiusr and the solid
angleVD in theD-dimensional hyperspace. WithC5C(r ),
as in the present work, the angular part of the Laplacian,
is, the operatorL̂2/r 2, does not contribute to the integra
Hence, the kinetic energy may be said to be purely radia
hyperspace, and therefore also in the state spaces of th
dividual particles.

When we introduce the radial wave functionu(r ), the
average kinetic energy defined by Eq.~15! takes the form

^T̂&[T5Tr1TV . ~16!

Here the contribution

Tr5E
0

`

dr u* ~r !F2
\2

2M

d2

dr2Gu~r ! ~17!

is the average value of the operatorp̂r
2/2M . We shall refer to

it as thepararadial kinetic energy.
Furthermore, the contribution

TV5E
0

`

drVQ~r !uu~r !u2 ~18!

results fromVQ .

V. EXAMPLES

The dimensionD of configuration space entersVQ qua-
dratically. Hence, the total kinetic energy resulting fromTV
could in principle be quadratic inD. We recall that in the
case ofN particles in three space dimensions we deal wit
(D53N)-dimensional configuration space. Consequen
for N@1, the strengthS[(D21)(D23)5(3N21)(3N
23).9N2 of the quantum noninertial potential is quadra
in the number of particles. According to Eq.~18!, the same
thing may hold for the contributionTV to the kinetic energy.

A. Thermodynamic case

However, this feature strongly depends on the form a
in particular, on theD dependence of the radial wave fun
tion u. For example, the wave functionsu0 andu1 given by
Eqs. ~7a! and ~7b!, respectively, yield the radial kineti
energies

Tr
(0)5F11

1

2~D22!Ge, Tr
(1)5F11

1

2~D12!Ge,

~19!

and the quantum fictitious potential energies
05210
at

in
in-

a
,

,

TV
(0)5S D

2
212

1

2

1

D22D e, ~20a!

TV
(1)5S D

2
231

15

2

1

D12D e. ~20b!

Here, we have introduced the kinetic energye
[(\k)2/(2M ).

Hence, the total kinetic energies

T(0)5
D

2
e, T(1)5S D

2
221

8

D12D e ~21!

are linear inD. In addition, the expression forT(1) involves
correction terms independent of and inversely proportio
to D.

In the limit of a large number of particles, that is,D
53N@1, we recover the thermodynamic result

T. 1
2 De5 3

2 Ne ~22!

for both states.
It is interesting to note that the linear dependence onD

shown in Eq.~21! is due to the contributionTV , Eqs.~20a!
and ~20b!, which emerges from the quantum-centrifugal p
tential. The contribution from the pararadial kinetic ener
is, according to Eq.~19!, only weakly dependent onD.

B. Enhancement case

We now introduce the wave function

u2~r !5N2 expF2
1

2 S b

r
1kr D G , ~23!

with the normalization constant

N25~bk!21/4S k

2K1~2Abk!
D 1/2

. ~24!

Here,

Kn~z!5
1

2E0

`

r nexpF2
z

2 S r 1
1

r D Gdr

r
~25!

denotes the modified Bessel function@10# of ordern.
In contrast tou0(r ) and u1(r ), Eqs. ~7a! and ~7b!, the

wave functionu2(r ) is independent of the dimensionD, that
is, independent of the number of particles@11#. As a conse-
quence, the cancellation of one power ofD in the contribu-
tion TV to the kinetic energy which appears foru0 and u1
cannot take place foru2. Indeed, when we substitute th
wave functionu2 into the definitions Eqs.~17! and ~18! of
the energiesTr and TV , and perform the integrations, w
arrive at

Tr
(2)5

1

2Abk

K2~2Abk!

K1~2Abk!
e ~26!
9-3



tu
w
th

s

le
ce

r.
e

ga

n
th
e

th

er
lo
th
th
ia

w
n

e

f

r t

o
m

e
l

ter-
the
q.

nd

ion

-

rgy.
n

we
ree

ls
e
cles,

v-

W. P. SCHLEICH AND J. P. DAHL PHYSICAL REVIEW A65 052109
and

TV
(2)5

~D21!~D23!

4bk
e. ~27!

The pararadial contributionTr
(2) is independent ofD. In

contrast,TV
(2) involvesD and hence the numberN of particles

quadratically. This enhancement results from the quan
centrifugal potential and reflects the constraint that as
squeeze more particles into the state we do not alter
radial wave functionu2. Indeed,u2 is independent ofD, and
thus independent ofN. Forcing additional particles into thi
state leads to a strong increase in energy.

This situation is, to some extent, analogous to the prob
of confining charged particles to a given domain of spa
Due to their Coulomb interaction

VC~r !5
q1q2

r
, ~28!

two chargesq1 andq2 of the same polarity repel each othe
This repulsion is proportional to the product of the charg
and inversely proportional to their separation.

In the case of neutral particles, the quantum-centrifu
potential of Eq.~13! is proportional to the product (D21)
3(D23) of the dimensions. Hence, the dimension of co
figuration space plays the role of the charge. However,
analogy betweenVQ andVC breaks down in the dependenc
on the separation. Indeed, the hyperradiusr enters the de-
nominator in a square, whereas in the Coulomb potential
separation enters only linearly.

VI. ORIGIN OF ENHANCEMENT

This discussion suggests that we can interpret the en
TV

(2) associated with the quantum noninertial potential as
calization energy. The localization energy is defined as
energy necessary to localize a quantum particle, with
original energyTr

(2) , in a domain of hyperspace whose rad
extension is essentially independent ofD. This energy obvi-
ously depends on the dimension of the space in which
want to localize the particle, because the volume of the u
sphere inD dimensions decreases strongly for largeD. In-
deed, the expression~2! for SD , together with an integration
over r, easily gives the following expression for the volum

VD5
2p (D/2)

DG~D/2!
~29!

of the unit sphere. ForD.5 this is a decreasing function o
D.

It is interesting that in two dimensionsTV
(2) becomes

negative. Hence, we do not need to perform work in orde
localize the particle in this case, but rather gain energy.

It is instructive to compare this quadratic dependence
the kinetic energy on the number of particles to the sa
scaling property of the total energy ofN fermions in a har-
05210
m
e
e

m
.

s
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e

e
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e
e
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e
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monic trap@12# of frequencyV. Indeed, when we assum
that the fermions occupy the firstN states of the trap the tota
energy reads

E5\V (
j 50

N21 S j 1
1

2D5
\V

2
@N~N21!1N#5

N2\V

2
. ~30!

This simple calculation shows that theN2 dependence
arises from the fact that the particles are trapped in an ex
nal classical potential with a linear energy spectrum. In
case of theN particles described by the wave function of E
~23!, there is no classical potential present. Here, theN2

effect results from the quantum centrifugal potential, a
from the fact that the strengthS of this potential depends
quadratically on the number of dimensions of configurat
space.

Nevertheless, there exists a potentialV25V2(r ) for which
the wave functionu2, Eq. ~23!, is an energy eigenstate. In
deed, when we differentiateu2 twice with respect tor we
find thatu2 satisfies the time independent Schro¨dinger equa-
tion

d2u~r !

dr2
1

2M

\2
@E2V2~r !#u~r !50 ~31!

with energyE50 and the potential

V2~r !5
\2

2M F1

4

b2

r 4
2

bk

2r 2
2

b

r 3
1S k

2D 2G . ~32!

Sinceu2 is independent ofD, the potentialV2 also has to be
independent ofD.

We recall from Eq.~17! that d2u(r )/dr2 determines the
pararadial kinetic energy rather than the total kinetic ene
To get the Schro¨dinger equation for the wave functio
C2(r ), as related tou2(r ) through Eq.~1!, we draw on the
expressions~11! and ~14!, and get

2
\2

2M
D (D)C2~r !1@V2~r !2VQ~r !#C2~r !5EC2~r !.

~33!

The confining potential in hyperspace is accordinglyV2(r )
2VQ(r ).

VII. QUANTUM DYNAMICS

So far, we have focused on quantum kinematics. Now
turn to a discussion of the dynamics resulting from the th
radial wave functionsu0(r ), u1, andu2, considered as initial
wave functions when we switch off the confining potentia
at timet50, and hence allow for free-particle motion of th
systems. Here we concentrate on the case of many parti
that isD53N@3.

The dynamics of this ensemble of free particles is go
erned by the Schro¨dinger equation

i\
]

]t
C~r ,t !52

\2

2M
D (D)C~r ,t !. ~34!
9-4
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By exploiting the relation~14! for C we obtain the following
expression for the time evolution of the radial wave functio

i\
]

]t
u~r ,t !5F2

\2

2M

]2

]r 2
1VQ~r !Gu~r ,t !. ~35!

For short times, we may obtain a first approximation
u(r ,t) by replacing Eq.~35! with the equation

i\
]

]t
u~r ,t !5@W~r !1VQ~r !#u~r ,0!, ~36!

where

W~r !5
1

u~r ,0! F2
\2

2M

]2

]r 2Gu~r ,0!. ~37!

This quantity is similar to Bohm’s quantum potential@13#.
Integration gives

u~r ,t !.expH 2
i

\
@W~r !1VQ~r !#tJ u~r ,0!. ~38!

The formula~38! allows us to derive an analytical expre
sion for the short-time behavior of the average radial m
mentum

^pr&~ t !5E
0

`

drr D21E dVDC* ~r ,t ! p̂rC~r ,t !. ~39!

By means of the definition Eq.~12! of the radial momentum
p̂r and the ansatz Eq.~1! for the radial wave function, this
expression reduces to

^pr&~ t !5E
0

`

dru* ~r ,t !S \

i

]

]r Du~r ,t !. ~40!

When we substitute the approximate solution Eq.~38! into
this formula, we observe thatW(r ) does not contribute to the
integral becauseu(r ,0) is real valued. Hence, we arrive at

^pr&~ t !.E
0

`

drFQ~r !uu~r ,0!u2t, ~41!

where

FQ~r !52
dVQ

dr
5

\2

2M

~D21!~D23!

2r 3
. ~42!

This quantity, determined by the derivative of the poten
VQ , is the quantum-centrifugal force. The fact that the e
pression for̂ pr&(t) is independent ofW(r ) implies that we
obtain the correct result for the short-time behavior
^pr&(t) by neglecting the pararadial kinetic energy opera
compared to the potentialVQ in Eq. ~35!. The result of doing
so is known as the Raman-Nath approximation@14#. We also
note that the integral precedingt in Eq. ~41! is nothing but
d^pr&(t)/dt evaluated att50. The expression~41! may
05210
:

-

l
-

f
r

therefore also be obtained by differentiating both sides of
~40! with respect tot, while applying Ehrenfest’s theorem
@15#.

To sum up, we have found that the initial average rad
momentum increases linearly in time. The slope of the
crease is determined by the average centrifugal force of
initial state.

Let us now consider the specific wave functionsu0 , u1,
andu2. We start our discussion with the wave functionsu0
andu1 of Eqs. ~7a! and ~7b!, respectively. Substitution into
the expression~41! for the average radial momentum yield

^pr&
(0)~ t !.~D21!

G„~D21!/2…

G~D/2! S et

\ D\k,

^pr&
(1)~ t !.

1

2
~D21!~D23!

G„~D11!/2…

G„~D14!/2… S et

\ D\k.

~43!

With the help of the asymptotic formula@10#

G~az1b!;A2pe2az~az!az1b21/2, ~44!

we can evaluate the ratios

G„~D21!/2…

G~D/2!
;S 2

D D 1/2

,
G„~D11!/2…

G„~D14!/2…
;S 2

D D 3/2

~45!

in the limit D@3. For both wave functions, this yields

^pr&~ t !;A2DS et

\ D\k. ~46!

Hence, in the case of the initial wave functionu0 andu1, the
slope of the momentum increase is governed by the sq
root of the number of dimensions@16#.

Next, we turn to the wave functionu2, Eq. ~23!. In this
case, the average radial momentum Eq.~40! takes the form

^pr&~ t !.
~D21!~D23!

2~bk!3/2

K2~2Abk!

K1~2Abk!
S et

\ D\k. ~47!

Thus, the momentum corresponding to the wave functionu2
increases asD2, and hence depends quadratically on t
number of particles.

The explosion of the particles may be compared with
phenomenon of a Coulomb explosion@17#. Molecular bound
atoms passing through a foil get stripped of some their e
trons and become positively charged ions. Due to their C
lomb interaction, they repel each other and fly apart. In
case of neutral particles, it is the quantum-centrifugal pot
tial VQ , Eq. ~13!, which causes the explosion.
9-5
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VIII. SUMMARY

We conclude by summarizing our main results. We ha
analyzed the kinetic energy and the dynamics ofN noninter-
acting particles in free space. We have found a quantum s
for which the average kinetic energy increases quadratic
with the number of particles. Moreover, this kinetic ener
stored in the state gets transferred into outgoing radial
mentum in the time evaluation pursuant to the preparatio
the wave function. In the case ofu2 the explosion is more
violent than foru0 andu1, since the increase of momentu
is proportional toN2 rather thanN1/2 . Both effects—the
,

e

k

m

-
sk

A:

,

d

05210
e

te
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dimensional enhancement of kinetic energies and theN2

explosion—are consequences of the quantum-centrifu
potential.
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