Frequency analysis for planned islanding operation in the Danish distribution system - Bornholm

Chen, Yu; Xu, Zhao; Østergaard, Jacob

Published in:
UPEC 2008

Link to article, DOI:
10.1109/UPEC.2008.4651467

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Frequency Analysis for Planned Islanding Operation in the Danish Distribution System – Bornholm

Yu Chen
zy@elektro.dtu.dk
Centre for Electric Technology, Department of Electrical Engineering
Technical University of Denmark, Kgs. Lyngby, Denmark

Zhao Xu
zx@elektro.dtu.dk

Jacob Østergaard
djoe@elektro.dtu.dk

Abstract—The power system in the Danish island Bornholm is a distribution system with a high penetration of wind generation, which is representative for expected future power systems. During the period from 11th to 14th September 2007, the Distribution System Operator (DSO) Østkraft in Bornholm conducted a planned islanding operation test. To evaluate the test and achieve useful experience for future similar operations in Bornholm or even in other similar systems, the frequency data before, during and after this period, were recorded by Phasor Measurement Units (PMUs), supplied by Centre for Electric Technology (CET), Technical University of Denmark (DTU). Statistical analysis of frequency data has been performed and the results reveal that the frequency quality during the islanding period was significantly decreased, indicating the need for enhancing frequency control of such systems in the future.

I. INTRODUCTION

As shown in Fig. 1, Bornholm is a Danish island in the Baltic Sea, which is situated in the east of Denmark, the south of Sweden and the north of Poland. According to [1], the electric power system in Bornholm is a distribution network consisting of three voltage levels: 60 kV, 10 kV and 0.4 kV. At 60 kV level, the network has 18 nodes, 23 60/10 kV transformers with On-Load Tap Changer (OLTC), 22 cables and overhead lines. Besides, there is one 60 kV sea cable with 60 MW capacity [2], connecting the Bornholm system to the Swedish system. This cable makes Bornholm a part of the Nordic power system that covers Sweden, Finland, Norway and Eastern Denmark. The Bornholm system is normally inter-connected with the Nordic system.

The peak load in Bornholm is 63 MW while the minimum load is 13 MW in 2007. The generators include 14 Diesel (Oil) units with a total capacity of 35 MW, 1 steam plant (BLOK 5) with 25 MW capacity, 1 Combined Heat and Power plant (CHP) (BLOK 6) with 37 MW capacity, 35 Wind Turbines (WTs) with a total capacity of 30 MW and one 2 MW Biogas plant (BLOK 7) [1], [3]. Given so many wind turbines in Bornholm, the maximum penetration level of wind power with respect to minimum load can reach 231% in 2007, and 32.4% of electricity supply was already from wind energy, compared to 19.7% for the whole Denmark [4]. This percentage will be even higher, in that “A Visionary Danish Energy Policy 2025”, published by the Danish government on 19th January 2007, has highlighted that at least 30% of total energy consumption in Denmark should be supplied by renewable resources [5]. To fulfill this goal, the new policy expects that 50% of total electricity demand should be supplied by wind power by 2025. Since Bornholm already has a high share of electricity supplied by renewable energy, particularly wind power, its system can be a representative of future systems, so as the challenges that have appeared in system operation and control.

From time to time, the sea cable to Sweden was disrupted by the anchor of ships that passed around the island, which forced Bornholm system to run into islanding mode in periods of several weeks. During those periods, frequency control of the system became fairly difficult and the Distribution System Operator (DSO) Øskraft had to shut down most WTs. The experiences of those islanding operations in practice reveal that the existing technology failed to operate such system with high penetration of WTs. In order to achieve clear understanding of the challenge, the system performance during islanding operation periods should be analyzed carefully, which is the main focus of this paper. Such analysis will provide useful insights into the nature of the problem and then facilitate the research and development of new technologies in need.

In this paper, the system performance analysis is based on the data from a planned islanding operation in Bornholm, since it has not been possible to collect all needed data during previous islanding accidents. Those system data, including frequency, voltage, current, power, phase angle, etc., were collected by three measurement systems: the SCADA system for monitoring and operation [6], SonWin system for business transactions [7] and two Phasor Measurement Units (PMUs) [8]. In addition, there is a measurement system for six Vestas WTs [9]. Details of these systems are presented in Table I.
islanding operations, BLOCK 6 was unable to follow up with
First, most WTs were shut down. This is because in previous
planned operations have been conducted in sequence.
sea cable, WTs and BLOK6. Before disconnection, several
electricity market. The demand was supplied mainly by the
Nordic system and participated in Nord Pool, i.e., the Nordic
grid-connection mode, where it was synchronized to the
system’s capability to go into islanding operation mode and to
accumulate operation experience. Centre for Electric
Technology (CET) at Technical University of Denmark
(DTU) was invited to participate and the task was to collect
operation data and perform analysis subsequently. (DTU) was invited to participate and the task was to collect
operation data and perform analysis subsequently.

Since frequency control is the challenge in focus and the
PMUs have high accuracy and fine time resolution (20ms)
[10], we mainly analyzed the PMU frequency data. The
measurement of PMUs is synchronous to Universal Time
Coordinated system or UTC. (UTC is 2 hours later than
Central European Summer Time, or CEST.) The data
therefore can accurately reflect the system status at exactly
the same moment. Section III explains the PMU frequency
data in detail after Section II, which describes the planned
islanding operation. In Section VI, relevant analysis results
are presented. Finally, Section V draws several conclusions.

II. THE PLANNED ISLANDING OPERATION
From 11th to 14th September 2007, DSO Østkraft conducted
a planned islanding operation. The purposes are to test the
system’s capability to go into islanding operation mode and to
accumulate operation experience. Centre for Electric
Technology (CET) at Technical University of Denmark
(DTU) was invited to participate and the task was to collect
all measurement data and perform analysis subsequently.
The whole operation was conducted in three major stages.
At the first stage, Bornholm system was operated under the
grid-connection mode, where it was synchronized to the
Nordic system and participated in Nord Pool, i.e., the Nordic
electricity market. The demand was supplied mainly by the
sea cable, WTs and BLOK6. Before disconnection, several
planned operations have been conducted in sequence.
First, most WTs were shut down. This is because in previous
islanding operations, BLOCK 6 was unable to follow up with
the fluctuations of wind power if too much was integrated.
Second, in order to replace the power supplied by the sea
cable, the normally out-of-service BLOK5 was gradually
started to produce power. This, together with other
generators, limited the power flow in the cable to the least
level, preparing for a smooth transition later on.

The second stage includes the disconnection operation and
the following islanding operation mode. Once the sea cable
was disconnected, Bornholm system was asynchronous to
Nordic system and became a separated 60 kV Medium
Voltage Microgrid [11]. It did not participate in Nord Pool
any more; instead, the electricity was traded in a regulated
way at a fixed or contracted price. After around one day, three
large WTs with 6 MW capacity in total were started and
continued produce power afterwards. At this stage, BLOK5
and BLOK6 supplied the most demand while the three WTs
only supplied less than 4% of the total demand, which was
much lower than the level under grid-connection mode.

Bornholm system was synchronized and returned to grid-
connection mode by reconnecting the sea cable. Subsequently,
the power from BLOK5 was gradually decreased to zero, and the power through the sea cable was
increased to the normal level within around one hour after
reconnection. Meanwhile, all WTs were in service and
Bornholm system can participate in Nord Pool again. This is
the last stage.

Those three stages have been summarized in Table II.

III. FREQUENCY DATA
A. Extracting Data from PMUs
The frequency in Bornholm was measured by the PMU
-BORNH1, which is installed on the low voltage side of the
machine transformer of BLOK5. The frequency data from
PMU - HVE400, which is installed on the 400 kV high
voltage side of a substation in Zealand (within Eastern
Denmark), are used for comparison purpose, since they are
the frequency of the Nordic system.

Due to a calibration problem of BORNH1, the frequency
data are not complete for the whole islanding period, except
phase angle data. Nevertheless, the missing frequency data \(f \)
can be calculated from the phase angle difference \(\Delta \theta \)
using
\[
\Delta \theta = \frac{2 \pi}{f} - \frac{\Delta \theta}{2 \pi}
\]

TABLE I
MEASUREMENT SYSTEMS IN BORNHOLM

<table>
<thead>
<tr>
<th>System</th>
<th>Supplier</th>
<th>Time resolution</th>
<th>Data items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settlement system-SONWIN</td>
<td>SONLINC</td>
<td>15 minutes</td>
<td>Average Active Power (MW) and Reactive Power (Mvar)</td>
</tr>
<tr>
<td>SCADA system - Network</td>
<td>ABB</td>
<td>10 seconds</td>
<td>Current (A), Voltage (kV), Power Factor (Cos phi), Tap Position, Frequency (Hz, only in HASLE station), Active Power (MW) and Reactive Power (Mvar) in sea cable (only in HASLE station)</td>
</tr>
<tr>
<td>PMU system</td>
<td>CET, DTU</td>
<td>20 ms</td>
<td>UTC, Voltage (kV), Current (A), Phase Angles (degree) of Voltage and Current, Frequency (Hz), Change rate of Frequency (df/dt)</td>
</tr>
<tr>
<td>VestasOnline® Business SCADA system for 6 wind turbines</td>
<td>VESTAS</td>
<td>instant</td>
<td>Status, Power, Wind Speed, Voltage, Current, Temperatures and Alarms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-minute average</td>
<td>Mean Values, Standard Deviations, Minimum and Maximum Values</td>
</tr>
</tbody>
</table>

TABLE II
STAGES OF THE ISLANDING OPERATION IN SEPTEMBER, 2007

<table>
<thead>
<tr>
<th>Stage</th>
<th>Operation</th>
<th>Time (CEST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>Nordic Grid-connection</td>
<td>Before 07:25, 11-09</td>
</tr>
<tr>
<td>Two</td>
<td>Disconnection</td>
<td>At 07:25, 11-09</td>
</tr>
<tr>
<td></td>
<td>Islanding operation</td>
<td>From 07:25, 11-09 to 13:00, 14-09</td>
</tr>
<tr>
<td>Three</td>
<td>Reconnection</td>
<td>At 13:00, 14-09</td>
</tr>
</tbody>
</table>

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 11, 2009 at 04:54 from IEEE Xplore. Restrictions apply.
with acceptable approximation. Thus, the frequency data in Bornholm for analysis consist of two parts: one includes the frequency calculated from phase angle; the other is directly from BORNH1. Their availability within the islanding operation period is shown in Fig. 2.

Equation (1) approximates the frequency based on phase angle. To validate such approximation, we compared the calculated frequency data with PMU frequency data in the part with both angle and frequency data. The results showed that approximation by (1) would introduce additional noise into the resultant frequency data. Such noise, due to the difference between interpolation to frequency and interpolation to phase angle, has been analyzed. To smooth out the noise, one 4-sample moving average filter was applied to the data. The selected filtering algorithm can provide satisfactory performance. This will not be analyzed in detail herein, since it is not the focus of this paper. The filter used can be expressed as:

\[
y(n) = \frac{1}{4} x(n) + \frac{1}{4} x(n-1) + \frac{1}{4} x(n-2) + \frac{1}{4} x(n-3)
\]

where \(x\) represents the data before being filtered and \(y\) is the resultant data.

B. Time Plots of the Frequency Data

The frequencies in Nordic system and Bornholm during the islanding operation period are shown together in Fig. 3, which corresponds to Fig. 2. Bornholm was disconnected from Sweden at 05:25, Sept. 11\(^{th}\) and reconnected back at 11:00, Sept. 14\(^{th}\), 2007 UTC.

Compared with the Nordic system, the Bornholm frequency fluctuated much more and several severe high/low frequency spikes were observed. To attain clear pictures of the critical transition process, the 20 min time plots of frequency around both disconnection and reconnection moments have been presented in Fig. 4 and 5, respectively. At the moment of disconnection, there was some power exported to Nordic system since Bornholm frequency jumped from 49.90 Hz to around 50.18 Hz. Before the reconnection moment in Fig. 5, the power production in Bornholm was adjusted gradually to make the frequency as close to the Nordic system frequency as possible. Once reconnected, the Bornholm system was fully synchronous to the Nordic system, as shown in Fig. 6. However, due to the inrush current at the reconnection moment, the bus voltages in the relatively weak Bornholm system experienced fluctuations, resulting in less than 2s fluctuation of Bornholm frequency measured by BORNH1.

As summarized in Table III, 3 complete days' frequency data have been abstracted from the islanding period for comparison studies in section VI.
IV. Statistical Analysis

The analysis has been performed using Statistical Analysis System or SAS software [12]. Maximal, minimal and mean frequency have been calculated and shown in Fig. 7 for each day, based on 4,320,000 data points per day. Besides, the histograms for both Nordic and Bornholm system during 3 days are compared in Fig. 8.

From Fig. 7 and 8, it is obvious that Bornholm had larger maximal and smaller minimal frequency for each day and the frequency deviated much more than its counterpart in Nordic system. This is understandable since the islanded Bornholm system had less inertia and less reserve for frequency control, resulting in higher vulnerability to small disturbances. According to Nordic Grid code 2007 [13], the normal frequency range should be within 49.90-50.10 Hz. During the 3-day's period, the frequency probability within that range in Bornholm is 91.29%, which is lower than 98.77% in the Nordic system. In addition, the goal for the duration of system operation outside 50±0.1 Hz in the Nordic system is suggested to be less than 1200 min/year, or correspondingly less than 0.228% in a one year period [14]. It is clear that the frequency quality in Bornholm was considerably decreased in Fig. 9, indicating that the Nordic Grid code can not be well fulfilled.

To further probe the feature of low/high frequency (f<49.90 Hz / f>50.10 Hz) events, we have plotted the durations of such events versus their counts in Fig. 10 and 11. As observed in both figures, Bornholm has more short and long events of both low and high frequency. This reconfirms the findings in previous figures that the frequency control under the islanding mode becomes more challenging due to insufficient inertia and reserve.

In addition, the probabilities of low frequency (f<49.90 Hz) have been plotted versus the minute of the hour in Fig. 12 and 13 for Bornholm and Nordic system, respectively. In the authors’ previous work [15], strong correlation between time and low frequency probability has been proved due to the hourly market operation, based on a large amount of frequency data. However, the similar pattern could not be observed in Fig. 12 and 13. This is mainly due to insufficient data amounts for Nordic system.
As an effective attempt, the Demands as Frequency controlled Reserve (DFR) technology has been investigated with promising results achieved [16]. It has been found that many end-user demands, like refrigerators, freezers and electric heating, can be interrupted for short durations with little effects to customers. Therefore, the DFR is able to support frequency control under various conditions, including the islanding operation. Other technologies that can facilitate flexible islanding operations should also be investigated, including frequency control of WTs, storage devices, etc.

ACKNOWLEDGMENT

The authors would like to thank Associate Professor Knud Ole Helgesen Pedersen with Siemens - Measurement Systems department and Associate Professor Arne Hejde Nielsen with CET, DTU, for providing detailed information of PMUs. The authors would also like to thank Associate Professor John Eli Nielsen with CET, DTU for contributions about the Bornholm system.

REFERENCES