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Abstract

Weather radars provide valuable information on precipitation in the atmosphere
but due to the way radars work, not only precipitation is observed by the
weather radar. Weather radar clutter, echoes from non-precipitating targets,
occur frequently in the data, resulting in lowered data quality. Especially in the
application of weather radar data in quantitative precipit ation estimation and
forecasting a high data quality is important. Clutter detec tion is one of the key
components in achieving this goal.

This thesis presents three methods for detection of clutter. The methods use
supervised classi�cation and use a range of di�erent techniques and input data.

The �rst method uses external information from multispectr al satellite images
to detect clutter. The information in the visual, near-infr ared, and infrared
parts of the spectrum can be used to distinguish between cloud and cloud-free
areas and precipitating and non-precipitating clouds.

Another method uses the di�erence in the motion �eld of clutt er and precipi-
tation measured between two radar images. Furthermore, thedirection of the
wind �eld extracted from a weather model is used.

The third method uses information about the refractive index of the atmosphere
as extracted from a numerical weather prediction model to predict the propaga-
tion path of the radar's electromagnetic energy. This facilitates the prediction
of areas of clutter caused by anomalous propagation of the radar's rays.

The methods are evaluated using a large independent test set, and to illustrate
the performance on individual radar images three typical case examples are also
evaluated. The results of the evaluation of the methods showthat each method
has good skill in detection of clutter with an average classi�cation accuracy of
95 %. The methods thus have the potential for increasing the quality of weather
radar data in their operational use.
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Resum�e

Vejrradarer giver v�rdifuld information om nedb�r i atmosf �ren, men p�a grund
af virkem�aden af radarer, observerer en vejrradar ikke blot nedb�r. Radarekkoer
fra andre objekter end nedb�r, kaldet clutter, optr�der j�vnligt i data, hvilket
medf�rer en forringet datakvalitet. Specielt i anvendelsen af vejrradar-data til
kvantitativ bestemmelse og forudsigelse af nedb�r, er en h�j datakvalitet vigtig.
Detektering af clutter er en af hovedkomponenterne i opn�aelsen af denne.

Denne afhandling pr�senterer tre metoder til at detektere c lutter. Metoderne
benytter supervised klassi�kation og benytter r�kke forskellige teknikker og
datakilder.

Den f�rste metode benytter ekstern information fra multisp ektrale satellit-
billeder til at detektere clutter. Informationen i de synli ge, n�r-infrar�de og
infrar�de spektre muligg�r afskillelse af skyd�kkede og sk yfri omr�ader og sky-
omr�ader med og uden nedb�r.

En anden metode benytter forskellen i bev�gelsesm�nsteretfor nedb�r og clutter
m�alt i mellem to radarbilleder. Derudover benyttes inform ation om vindretnin-
gen fra en vejrmodel.

Den tredje metode benytter information om atmosf�rens refr aktive indeks,
bestemt af en numerisk vejrmodel, til at forudsige udbredelsen af radarens
elektromagnetiske energi. Dette muligg�r forudsigelsen af omr�ader med clut-
ter for�arsaget af anormal udbredelse af radarstr�alerne.

Metoderne evalueres ved brug af et st�rre, uafh�ngigt test- datas�t, og for at
illustrere metodernes ydeevne i anvendelsen p�a enkelte radarbilleder, bliver tre
typiske eksempelbilleder ogs�a evalueret. Resultaterne viser, at hver af de tre
metoder har gode muligheder for at detektere clutter med en gennemsnitlig
klassi�kationsn�jagtighed p�a 95 %. Metoderne har s�alede s potentiale for at
forbedre kvaliteten af vejrradardata i deres operationelle anvendelse.
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Chapter 1

Introduction

Precipitation has great inuence on the conditions of human activities and on
the Earth's natural environment in general. For this reason, observation of
precipitation is an important �eld in meteorological scien ce and operational
meteorology. The weather radar is an unique sensor for obtaining observations
of precipitation in the atmosphere.

The information available from weather radars play an important role in fore-
casting, planning, and decision-making in many areas of society, e.g., in meteo-
rology, hydrology, agriculture, and transportation (as il lustrated in Figure 1.1).
In hydrology, weather radars provide real-time input for prediction of ooding
and the management of wastewater. In agriculture, decisions on harvesting and
fertilization depend on the forecast of rain, and in transportation, the prediction
of the risk of icy roads depends on observations of precipitation. In general, for
all people, precipitation has a large impact on the conditions for many, mainly
outdoors, activities.

Precipitation is highly variable in both time and space (typ ical scales are in the
magnitudes of minutes and meters, respectively) and the weather radar is ca-
pable of providing information on precipitation on these time and space scales.
In meteorology, weather radar data are an important source of information for
very-short-term weather forecasting, also callednowcasting, which aims at pre-
cise forecasts for a few hours ahead in time. Especially in events of extreme and
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severe weather precise maps of precipitation patterns and intensities are indis-
pensable for issuing of warnings. Recent climate research predict an increasing
frequency of heavy precipitation as result of the trend of global warming [40],
which, of course, will put higher demand on remote sensing ofprecipitation as
provided by weather radar.

Outside forecasting, the preciseobservation of precipitation itself is important,
and the use of weather radar in combination with rain gauges (point measure-
ments of precipitation at ground level) are used for keepinga record of the fall
of rain, hail, and snow.

Figure 1.1: Weather radars provide information for weather forecastin g (top
left), planning of ourdoors activities (top right), tra�c ( middle and lower
right) and agriculture (lower left). Photos: DR TV-avisen, other photos under

Creative Commons licenses: http://flickr.com/photos/sekihan/2255090253/, http:/ /flickr.com/photos/driek/1172780201/,

http://flickr.com/photos/7232802@N06/623398013/, htt p://flickr.com/photos/markybon/212807141/ .
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Weather radars make use of the radar principle to measure thelocation and
properties of precipitation in the atmosphere. Due to the way radars work,
however, it is not guaranteed that only the phenomenon of interest (here: pre-
cipitation) is observed. On the contrary, it is very normal t hat other targets also
show up in radar data (Figure 1.2). The unwanted radar echoes are calledclut-
ter or false echoesand their presence lower the data quality for all applications
of the data. The poor data quality results in uncertainties which propagate
through the data analyses to the �nal decisions made upon these. This is espe-
cially a problem in automated and quantitative uses of weather radar data, for
example when used in hydrological models, nowcasting models, and numerical
weather prediction models, but also for the qualitative useof weather radar
data, in weather forecasting for example, clutter leads to unwanted uncertainty.

This motivates the development of methods for detection of weather radar clut-
ter and hereby facilitate the removal of clutter. This is the main purpose of the
work presented in this thesis.

Figure 1.2: Clutter is a common unwanted feature of weather radar data. T he
satellite image on the left (from a NOAA polar-orbiting weat her satellite) shows cloud-
free conditions, while the two radar images (middle and righ t), as presented on the
DMI website, show radar clutter (patches in yellow hues) in t he Baltic Sea.

Thesis organization

The thesis is structured in the following way: In Chapter 2, the weather radar
and data from weather radars are described. Clutter and the various types of
clutter are described and a review of current available methods for detecting
clutter is made.

Then follows the main chapters of the thesis which present three methods for
clutter detection: Chapter 3 presents a data fusion method which uses exter-
nal information on precipitation available in multispectr al satellite data. In
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Chapter 4, a spatio-temporal method is presented. The method makes use of
the di�erence in the motion �eld of clutter and precipitatio n. The next chap-
ter, Chapter 5, presents two methods both making use of data from numerical
weather models to predict the meteorological conditions which lead to clutter.
This is used to detect clutter in the radar data. In Chapter 6 the results are
compared and summarized, conclusions are drawn and looks atfuture work are
made.

In the Appendix A to D are found �gures and tables for completeness.



Chapter 2

Weather radar, clutter and
detection of clutter

2.1 Weather radar

Weather radars are radar systems designed for observation of precipitation in
the atmosphere [29], [25], [56]. Making use of the radar principle, they can de-
termine the location and properties of hydrometeors (precipitation particles) at
a given distance from the radar and height above the ground. Aradar is an ac-
tive sensor in that it transmits electromagnetic energy into its surroundings, the
energy is reected by objects in its path and a small part of the backscattered
energy is �nally received and recorded by the radar. Becausethe weather radar
is a calibrated radar, the received power can be translated into a measure of
reectivity of the precipitation using the radar equation. The reectivity (mea-
sured in dBZ) varies for di�erent precipitation intensitie s (low reectivity for
light precipitation and high reectivity for heavy precipi tation) and for di�erent
precipitation types (rain, hail, and snow). This is due to th e di�erence in drop
sizes and drop shapes of the hydrometeors.

A weather radar is typically a ground-based radar, and sensing of the entire
atmospheric volume around the radar is carried out by rotating the antenna
around its vertical axis and changing the pointing angle of the antenna (typi-
cally once for each revolution of the antenna). This is illustrated in Figure 2.1.
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Elevation

Azimuth

Range=
c�
2

Precipitation

Radar

Figure 2.1: The weather radar is normally mounted on a tower or a building to avoid
blockage of the radar rays by near-by buildings, trees and other obstacles. The range
to a target is computed from the round-trip time, � , and the speed of light, c.

The angle in the horizontal plane from geographical north inpositive clockwise
direction is called the azimuth angle and the tilt angle measured from horizon-
tal and positive upwards is called theelevation angle. The range to a target is
computed from the round-trip time of a pulse to the target and the speed of the
electromagnetic energy (i.e., the speed of light).

A complete radar system, is a complex system comprised of many compo-
nents [69]: From the hardware in the transmitter, antenna, and receiver, to
signal processors and data analysis and visualization software, all these play
together in the generation of weather radar data.

2.2 Weather radar data

The signal processor of the weather radar typically receives data from a number
of pulses which are integrated and sampled to a polar coordinate system, one
scan for each revolution and elevation angle. For a typical weather radar a
1 � azimuth resolution is used and in the range direction, a resolution of 500 m
or more is used (SeeFigure 2.2, left).

The resolution of weather radar images is a di�erent conceptthan aerial or
satellite images since the data are acquired in a polar coordinate system. The
1 � beam width means that the resolution in the azimuth direction varies from
meters close to the radar to kilometers at the maximum range of e.g., 240 km,
while the range resolution is constant throughout the data. When converted to
cartesian coordinates the data thus have a varying resolution even if the image
has a speci�ed pixel size.
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Displaying a scan in cartesian coordinates is called a PPI image (Plane Position
Indicator) as seen inFigure 2.2, right. Since the radar rays normally increase
with distance to the radar, the observed precipitation of course is close to the
ground near the radar in the center of the image and higher up in the atmosphere
at far range from the radar. By using the data from several PPIs, a CAPPI
(Constant-Altitude PPI) can be constructed which show the precipitation at a
given height. Typically, a stack of CAPPIs are produced at intervals of 1 km.
Other types of 2D image representations exist, for example what is called a
base productwhich contains the lowest precipitation value from each PPI [33].
Finally, the 2D image products, CAPPI or base products, are often mosaiced
into one image as seen inFigure 2.3.

Figure 2.2: Polar coordinate scan, 1 � � 500 m grid (left) and PPI cartesian product,
500 m� 500 m pixel size (right), for the radar at Stevns on 2006{05{1 9 12:00 UTC.

Figure 2.3: Mosaic of the image from Stevns shown in Figure 2.2 and the corre-
sponding images from two other radars.
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Most modern weather radars areDoppler radars which means that they are able
to measure the phases of the transmitted and received signals. The shift in phase
is used to derive the radial velocity of the precipitation particles. In meteorology
this is used to map the wind speed but it is also used in clutterdetection because
echoes from non-moving targets are unlikely to be precipitation (this is described
in greater detail in Section 2.4).

A new technology in the �eld of weather radar is dual-polarization radars. These
are radars with the capability to transmit and receive electromagnetic energy
in two polarizations. Normally, weather radars are operated with horizontal
polarization only (because falling rain drops are attened as they fall and the
backscatter is greater in the horizontal than the vertical). Dual-polarimetric
radars [21] provide a range of additional information besides radar reectiv-
ity and the Doppler velocity. The di�erential reectivity ( the ratio between
the horizontal (H) and vertical (V) power returns), the corr elation coe�cient
(correlation between H and V power returns), and the di�erential phase (phase
di�erence between H and V returns) enable improved hydrometeor classi�cation
(detection whether it is rain, hail, or snow) as well as better clutter/precipitation
discrimination.

2.3 The DMI weather radars

For this project, data from the weather radars of the Danish Meteorological
Institute (DMI) were used. The radar network is currently co mprised of four
C-band radars located in R�m�, Sindal, Stevns, and Bornholm (SeeFigure 2.4
for a map of the weather radar network). The �rst three are Doppler radars
and the latter is a dual-polarization radar installed in 2008 as an upgrade to
a non-Doppler radar. Because the data collection for this project was �nished
prior to 2008, the data from Bornholm were not used. The speci�cations of the
DMI radars are summarized in Table 2.2 and are also presented in [34].

2.4 Weather radar clutter

Ever since the invention of radar in the beginning of the twentieth century, over
its rapid developments during World War II to its meteorolog ical applications
after the war [6], radar clutter has been a challenge to the users and the uses
of radar data. As mentioned earlier, there is no guarantee that the radar only
observes the target of interest due to the design of the radarsystem, and when
non-targets are observedclutter echoes appear in the data.
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Figure 2.4: The DMI weather radar network. The range rings show the maximum
range (240 km) of each radar. Radar locations and heights are listed in Table 2.1

Table 2.1: Geographical locations of the DMI weather radars.

Radar name Geographical Height above
and abbrev. coordinates sea level

R�m� (EKXR) 55.173 � N, 8.552 � E 15:0 m
Sindal (EKSN) 57.450 � N, 10.136 � E 109:0 m
Stevns (EKXS) 55.326 � N, 12.449 � E 53:0 m
Bornholm (EKRN) 55.113 � N, 14.890 � E 171:0 m
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Table 2.2: Parameters of the DMI weather radars.

Parameter Value

Radar frequency 5:625 GHz (C-band)
Wavelength 5:3 cm
Radar peak power 250 kW
Beam width 1 �

Pulse length 2� s
Radar maximum range 240 km
Pulse repetition frequency 250 Hz
Nyquist velocity 3:3 m=s
Rotation speed 20� /s
Range gate size 500 m
Number of elevation angles 9
Elevation angles 0.5, 0.7, 1.0, 1.5, 2.4,

4.5, 8.5, 13.0, 15.0�
Temporal resolution 10 min

Clutter is not the same for all applications of radar, of course. For example, in
an airport, radars are used in multiple applications. One radar is employed for
tracking airplanes and hence airplanes are the target of theradar application.
To this radar application everything else but airplanes is clutter. Another radar
might be used for observing precipitation, e.g., to avoid take-o� during hail
storms, and to this radar application everything but echoesfrom precipitation
is clutter. In other words, and to rephrase a well-known proverb: \One man's
clutter is another man's target."
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Types of weather radar clutter

The types and sources of weather radar clutter are manifold and can be grouped
by where they occur and by what is causing the clutter.

Using the �rst approach, there is ground clutter (with the subsets sea clutter and
land clutter) and airborne clutter. This is illustrated by the sketch in Figure 2.5.
Land clutter can be man-made objects (e.g., houses, towers,and bridges) or the
natural environment (e.g., mountains, hills, or �elds). Sea clutter is caused
by backscatter from the surface of oceans or lakes, and shipsalso show up as
sea clutter. Airborne clutter is caused by reections from airplanes or other
man-made objects in the air, or biological targets like birds and insects.

D MI

2b

1a 4b 3a

1b
2a

3b
4a

1 Land clutter from (a) mountains/earth
surface or (b) buildings/windmills, etc.

2 Sea clutter from (a) sea surface or (b)
ships

3 Airborne clutter from (a) biological tar-
gets (birds/insects) or (b) airplanes

4 Interference clutter from (a) the sun or
(b) transmitting antennas

Figure 2.5: Types of clutter illustrated.

Using the second approach, to group clutter due to its causes, there is clutter
caused bybeam blocking. This occurs when objects or the topography are located
in the normal path of the radars signals causing ground clutter. This is typically
tall buildings or towers situated close to the radar site. In mountainous regions
beam blocking from mountains is very common, but due to the low topography
of Denmark this is not a major contributor to clutter there.

Another cause of clutter is related to the propagation path of the radars energy
in the atmosphere. Normally, the radar rays increase in altitude with distance
from the radar. This is due to the use of positive elevation angles of the antenna
combined with the refractive index of the atmosphere which normally cause the
rays to follow a curve which can be approximated with a spherewith a radius
of 4/3 of that of the Earth.

Anomalous propagation, also callednon-standard propagation, causes the radar
rays to deviate from the normal path. When the rays are bent toward the Earth's
surface they can produce clutter in the case of intersectionwith the land or sea
surface. This type of ground clutter is also calledanomalous propagation clutter,
anaprop, or simply AP. Anomalous propagation is in spite of its name, quite
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normal and occurs frequently in data from most weather radars. Anomalous
propagation is described in greater detail inChapter 5.

A third contributor to clutter is interference clutter caused by either solar radia-
tion or radio signals transmitted by other antennas entering the radars receiver.

AP clutter and ground clutter caused by beam blocking is very common in
weather radar data. In mountainous regions, land clutter from mountains is
a challenge to mitigate and correct for, and in coastal regions, radars situated
near the coast line are often prone to sea clutter.

The other types of clutter are mostly of less extent. The amount of airborne
clutter from airplanes, helicopters, etc., is occasional,however, clutter from
insects and birds are in certain regions quite severe. In Denmark, however,
clutter from birds and insects is not a major issue. Interference clutter is an
increasing problem in many places across the world due to theextended use of
wireless communication networks and the increasing numberof electromagnetic
devices in the environment.

Examples of weather radar clutter

In Figure 2.6 three examples of clutter in weather radar images are shown.
The image on the left shows AP land clutter on the mountains ofNorway and
Sweden caused by anomalous propagation of the radar's energy. Furthermore,
land clutter close to the radar is seen. In the middle image, an example of
interference clutter caused by solar radiation is seen and on the right image
strong sea clutter caused by anomalous propagation in the Baltic Sea is seen.

Figure 2.6: Three types of clutter: Land clutter (left), Interference c lutter from the
sun (the streak from the center pointing east, northeast) (m iddle), and sea clutter
(right).
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In Figure 2.7 an example of clutter caused by a wind farm o� the coast of
Jutland is seen. The windmills resemble the small convective cells around it,
but inspection of a radar animation reveals that the echoes from the wind farm
do not move with the wind.

(a) Horns Rev wind farm (Photo: Promo-
tional photo http://www.vattenfall.dk/).

(b) Radar image from R�m�.

Figure 2.7: Example of clutter caused by windmills in a wind farm.

2.5 Clutter detection methods

The body of research into detection of weather radar clutteris quite extensive
due to the relatively long time it has been dealt with and the complexity of
the problem. Hence many di�erent methods for detection of clutter have been
proposed.

Looking at clutter detection research as a whole, the treatment of clutter caused
by anomalous propagation seems to have received the most attention. This
supports the statement in the previous section that AP clutter is probably the
largest contributor to clutter and that it is also the most ch allenging to detect
successfully. Most methods aim at solving the problem of clutter detection for
one or a few clutter types, while few approaches deal with detecting multiple
clutter types in an integrated data analysis framework [62].

Recent reviews of clutter detection techniques as found in [70] and [16], provide
a good basis for grouping of methods. Grouping can be done according to the
level at which clutter detection is performed and according to which data and
features are used. Grouping based on the applied statisticalmethods can also
be done.
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Level grouping

Choice of radar site and hardware

Even before the radar is placed in the landscape, some precautions can be taken
to lower the risk of clutter. So rather than being a way to detect clutter, this is
a way to avoid clutter in the radar data in the �rst place. Many of the aspect s
of this are summarized in [70]: The choice of radar site is crucial to the amount
of expected clutter. It is important to avoid close-by build ings, trees, and hills.
This is achieved by �nding a highly elevated site and by placing the radar on
a tall tower or building. To this it can be added that a clear horizon is not
always enough to avoid enhanced risk of clutter: A radar withno blocking, but
placed near the ocean might result in increased clutter problems as well, due to
increased clutter from the antenna sidelobes. Finally, a suitable choice of radar
hardware parameters can help mitigate clutter problems. Ofcourse, the choices
of radar site and hardware are only made once per radar installation.

Low-level signal processing methods

These types of clutter detection methods are carried out in the radar's signal
processor, i.e., before the actual radar (image) product isgenerated. A long list
of methods are mentioned in [70], again. For Doppler radars, very e�cient are
�lters using the Doppler velocity and spectrum width. Targe ts with zero or very
low velocities are likely to be stationary ground targets (clutter). Precipitation,
on the other hand, usually have non-zero velocities. Doppler clutter �lters,
however, are not e�cient in detection of sea clutter echoes originating from the
ocean surface which have non-zero velocities due to the motion of the ocean
waves. Furthermore, clutter from other moving targets (e.g., windmills, birds,
etc.) is di�cult to detect using the Doppler velocity alone.

Pattern classi�cation techniques

The modi�cation of the radar's signal processor is an advanced task and is of-
ten only applicable using non-operational, research radars. Since many clutter
detection methods are developed and applied in an operational setting with
many users dependent on uninterrupted data delivery, thesemethods are based
on using the radar data products in the step after the signal processor. This
entails using the radar volumes, CAPPI products, mosaics ofCAPPIs or sim-
ilar products. From these data, various features are extracted which enable
clutter/precipitation discrimination. This is described in the next section.
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Data and features grouping

Radar data alone

These methods are based on analysis of the radar data itself.One of the simplest
ways to deal with ground clutter is to generate aclutter map. This is done by
observing ground clutter during times when no precipitation is present. The
observations are integrated over some time and a mean clutter map is generated.
This can subsequently be used to e�ciently remove ground clutter, of course at
the risk of eliminating precipitation echoes when mixed with clutter. Another
shortcoming of this approach is that it is in practice only e� cient in detection
of land clutter. Sea clutter caused by anomalous propagation is more variable
in time and space and a mean map of these can therefore not be generated.

A number of di�erent features derived from the radar data its elf are reviewed
and implemented in [16]. Some methods make use of the di�erence in the
spatial decorrelation time of clutter and precipitation si gnals [72], [71]. The
decorrelation is faster for clutter than for precipitation . This is reported to be
e�cient in removing land clutter but not very e�cient for sea clutter. Another
group of methods successfully use texture as a feature for clutter/precipitation
discrimination [49], [44], and [32] uses a 3D texture measure. In general, the
3D structure of the radar volume is a much used feature. The reason why this
feature is used is the fact that AP clutter only a�ects the low er radar elevations
(this is explained further in Chapter 5). Therefore geometric features of the
vertical extent, the gradient, and the variability of the ra dar echoes are usefull
[3], [70], [16], [24], and [48].

New radar technology

Recent advances in radar technology, especially dual-polarimetric radars [21],
have provided new methods for clutter detection. Operatingthe radar in more
than one polarization mode yields important information on the radar targets
which can be used in identi�cation of clutter as shown by [66], [65]. The cor-
relation coe�cient between horizontal and vertical power r eturns as well as the
di�erential phase shift are used as good features. The use ofdual polariza-
tion radars is still in its early days for operational use and single polarization
radars will be the standard for years to come. So improved methods for single
polarization radars are still needed.

Data fusion techniques

Another group of methods make use of data fusion in which the use of multiple
and complimentary data sources improve the detection of clutter. Two ma-
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jor groups of methods can be identi�ed: 1) those using multispectral satellite
observations to determine areas of precipitation/no precipitation and 2) those
using meteorological parameters from weather models or radiosondes to predict
areas of possible anomalous propagation clutter by modelling the propagation
conditions for a given radar site.

1. Satellite observation methods

Using multispectral satellite observations in the visible, infrared and thermal in-
frared spectra to map areas of precipitation [54], [23], has provided new ways to
detect clutter: Several methods using observations from geostationary satellites
have shown promising results [60], [31], [61] and [58]. These methods use �rst
generation geostationary satellites (Meteosat-7 and earlier, or GMS (Geosyn-
chronous Meteorological Satellite). More recent work [19], [18], and [55] use
Meteosat Second Generation with its improved resolution. Data fusion meth-
ods using multispectral satellite images are described in more detail in Chapter 3
where a new data fusion method is proposed and evaluated.

2. Propagation modelling methods

This group of methods use information from radiosondes or numerical weather
prediction (NWP) models to predict when anomalous propagation occurs. From
the parameters, temperature, air pressure, and humidity, the refractive index of
the atmosphere can be computed which determine the electromagnetic propa-
gation path. Some authors have used observations from radiosondes (weather
balloons, which measure the vertical atmospheric pro�le ofamongst other vari-
ables the temperature, pressure, humidity) [11] while others have used predic-
tions of the meteorological parameters using NWP model output [10], [12], and
[9]. Propagation methods are described further inChapter 5 where two methods
for clutter detection using propagation modelling are presented.

Statistical methods used

Clutter detection techniques employ a variety of techniques for deriving the
class memberships of the echoes in radar data. Most methods use supervised
classi�cation techniques and the techniques range from simple thresholding on
the input features [58], to application of classi�cation tree methods, neural net-
works [48], [61],[35], [26] and fuzzy logic classi�ers [16], [45], [24]. To compare
the performance of the statistical methods in clutter detection applications as
presented by the various authors is a di�cult task. The con�g uration of the
experiments di�er too much in their combination of input dat a, the applied
preprocessing, the amount of training and test data used. Furthermore, the
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methods do not report their performance in a consistent away.

Thesis context

In the context of clutter detection methods, this thesis presents three methods
from multiple of the above mentioned groups. In Chapter 3, a method using
data fusion with satellite images is presented, inChapter 4, a method using
radar data alone and in combination with wind �eld predictio ns from a weather
model is presented, and �nally Chapter 5 presents methods using propagation
modelling. The methods use the same weather radar dataset asinput which
makes it possible to compare the results of the methods with each other.

2.6 Database of radar data

A database of typical meteorological events was established for the development
and testing of methods. From 15 days in 2005 and 2006 data wereextracted
from the three C-band Doppler weather radars of Sindal, R�m� , and Stevns.
Data were extracted for four time points a day (at 01:00, 06:00, 12:00, and 18:00
UTC). The days showcase di�ering meteorological conditions with various com-
binations of clutter types and precipitation types (only ra in but both convective
and wide-spread precipitation). Table 2.3 describes each event andAppendix A
shows thumbnail images of each of the 60 images.

The raw radar volume data with a resolution of 1� � 500 m were processed into
2D images using an in-house DMI algorithm, DMI Base [33], and subsequently
mosaiced to a common stereographic map grid with a pixel spacing of 1000 m.
The temporal resolution of the data is 10 minutes.

Three case examples

Three case examples are selected to provide the means to describe in more
details the data as well as to evaluate the proposed methods on single images
of the complete data set. The three examples show the cases ofclutter only,
clutter and precipitation, and precipitation only. Case I is a case of land and
sea clutter practically without precipitation. Case II is a case of sea clutter
with more precipitation and �nally, Case III is a case of no clutter during an
event of mixed precipitation.
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Table 2.3: Metadata for radar data. Date and time and a short descriptio n of the
type of meteorological event. SeeAppendix A for thumbnail images of from each day.

Date Description

2005{07{11 Strong land clutter on Sindal radar and moderateto
strong sea clutter on Stevns radar. Small amounts
of precipitation on R�m� radar.

2005{07{13 Moderate land clutter on Sindal radar. Moderate
sea clutter on Stevns radar. Minor precipitation on
R�m� radar in the late afternoon and evening.

2005{07{15 Strong and extensive convective precipitationcoming
in from the south west. Minor land clutter on Sindal
radar. Moderate sea clutter on Stevns radar.

2005{08{25 Widespread precipitation system coming in fromthe
south west. Minor land and sea clutter on Sindal
and Stevns.

2005{09{06 Extensive land clutter on Sindal and Stevns radars.
Sea clutter on R�m� and Stevns radar. Minor pre-
cipitation on R�m� and Sindal radars.

2005{09{25 Strong sea and land clutter on Stevns radar. Precip-
itation fronts coming in from the south west.

2005{09{26 Strong sea and land clutter on Stevns radar. Precip-
itation fronts coming in from the south west.

2005{10{19 Strong and extensive land clutter on Sindal radar.
Minor sea clutter on Stevns radar. Precipitation on
R�m� radar coming in from the south.

2006{01{02 Minor precipitation event on Stevns radar. Minor
land clutter on Sindal radar.

2006{03{24 Precipitation on R�m� and Sindal radar. Sea clut ter
on Stevns radar. Land clutter on Sindal radar.

2006{05{05 Strong sea clutter on Stevns radar. Land clutteron
Sindal radar. Minor precipitation on R�m� radar.

2006{05{19 Extensive convective precipitation on all radars.
Some land clutter on Sindal radar.

2006{05{24 Precipitation on all radars and some clutter on
Stevns and Sindal radars.

2006{08{18 Sea and land clutter on Stevns radar. Land clut-
ter on Sindal radar. Precipitation front on all radar
coming in from the south west.

2006{08{29 Extensive precipitation on all radars.
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Figure 2.8: Case I. Radar reectivity, 2005{05{11 06:00 UTC. Clutter, v ery little
precipitation in the lower North Sea. Same colormap is used t hroughout the thesis for
radar images.

Case I. Clutter, no precipitation. 2005-05-11 06:00 UTC

In the months of spring, summer and fall in Denmark, anomalous propa-
gation conditions are quite frequent, giving rise to weather radar clutter due to
superrefraction and ducting of the radar beams. Especiallythe radar at Stevns
experiences AP clutter due to its location very close to the coast line of the
Baltic Sea. Temperature inversions occur frequently here due the ow of hot
and moist air masses over the colder ocean surface. Sea clutter is seen over a
large part of the Baltic Sea. The radar at Sindal, at the time, was operating
without applying the Doppler clutter �lter. Therefore pron ounced land clutter
is seen on the land areas of Sweden and Norway. Some close range land clutter
is also seen, especially on the northern most radar at Sindal. In the lower
North Sea a little precipitation is seen.
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Figure 2.9: Case II. Radar reectivity, 2005{09{25 18:00 UTC. Clutter a nd precipi-
tation.

Case II. Clutter and precipitation. 2005-09-25 18:00 UTC

This exempli�es the case of AP clutter echoes and precipitation areas in
the same radar image. Two precipitation areas are seen, one in the North
Sea and one over Jutland. Sea clutter is observed in the Baltic Sea caused by
anomalous propagation conditions caused by a temperature inversion which
lasted throughout the day and into the night. In the North of J utland, land
clutter is seen close to the radar site.
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Figure 2.10: Case III. Radar reectivity, 2006{05{19 12:00 UTC. Precipi tation only.

Case III. Precipitation, no clutter. 2006-05-19 12:00 UTC

This case shows an event of mixed precipitation moving north-east ex-
tending over most of the radar coverage. No signi�cant clutter was observed
during this event. Only minor areas of close range ground clutter and some
very minor mid to far range land clutter on the coasts of Norway and Sweden
on the northern most radar at Sindal. This was only visible in a few images in
the image sequence.
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Chapter 3

Data fusion method

3.1 Introduction

Determining whether a radar echo is clutter or precipitation is not a trivial
task and not possible using the radar reectivity values themselves (at least not
without making many errors). This can be realized by lookingat the distribu-
tions of radar reectivities for precipitation and clutter (Figure 3.1). The classes
overlap, especially the land clutter and precipitation classes. This shows that
other features are necessary to enable good discriminationof clutter and precip-
itation echoes, and in this chapter data from satellite images are used: 11 bands
from the Meteosat Second Generation satellite and an operational nowcasting
product derived from these called 'Precipitating Clouds'.

Previous studies using fusion of weather radar data and �rst generation Me-
teosat images have shown promising results. The improved spatio-temporal
resolution of Meteosat Second Generation (commissioned in2004) coupled with
its increased number of spectral bands, is expected to make better estimation
of precipitation possible [51], which potentially can yield improved clutter de-
tection by also delineating areas of no precipitation better.
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Figure 3.1: The distribution of radar reectivity for clutter and preci pitation classes.
Based on a total of 1,140,697 samples. Two classes (left) andthree classes (right).

3.2 Remote sensing work ow

For the development and the data analysis of the method, a remote sens-
ing/image analysis work ow is used as illustrated in the ow chart in Figure 3.2.
This chapter is structured to follow this ow:

Firstly, the input data (described in Section 3.3) are preprocessed (Section 3.5)
for the extraction of features (Section 3.6). Then for the model design, train-
ing data is extracted (Section 3.7), the best sets of features are selected (Sec-
tion 3.8), and the classi�cation model is trained (Section 3.10). The data are
then classi�ed (Section 3.9) and the classi�cation is evaluated (Section 3.11).
Subsequently, inSection 3.13, the results of the classi�cation are obtained.
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Figure 3.2: Flow chart of the general work ow for data analysis and model design.

3.3 Data: Meteosat Second Generation and Pre-
cipitating Clouds

Measuring and mapping of precipitation from space-borne platforms (in low-
earth or geostationary orbits) can be performed using passive sensing of the
visible and infrared parts of the electromagnetic spectrumas well as passive
and active sensing in the microwave region (See [51] for an overview of the
techniques). In this study, passive remote sensing in the visual and infrared
spectrum from Meteosat Second Generation (MSG) was used in the form of 1)
the raw 11 multispectral bands and 2) an operational meteorological product,
Precipitating Clouds, derived from these images in combination with surface
temperatures from a numerical weather prediction model.
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For operational, real-time detection of clutter, the temporal and spatial resolu-
tion of the satellite imagery is of importance. The characteristics of low-earth
orbiting platforms (typically in polar orbits of 800 km heig ht) are a relatively
high spatial resolution (e.g., values around 1 km for the NOAA and Metop mete-
orological platforms) but a low temporal resolution. For example, the temporal
resolution of satellite imagery of the latitudes of Denmark from the NOAA
polar-orbiting satellites is several hours. Such a low temporal resolution makes
it impossible to detect clutter in radar images with their te mporal resolution of
10 minutes. Therefore, a geosynchronous satellite platform is the only feasible
choice for clutter detection: Geosynchronous platforms provide excellent tempo-
ral resolution (15 minutes for Meteosat Second Generation)comparable to the
one of weather radars, but this is at the trade-o� of a lower spatial resolution
(a factor three or more lower than for low-earth orbiting satellites).

The SEVIRI (Spinning Enhanced Visible and Infra-Red Imager) sensor on board
Meteosat Second Generation (Meteosat-8 onwards) [68] provides multispectral
images from a geostationary orbit of 36:000km height. Both the spatial and tem-
poral resolution has been signi�cantly improved compared to Meteosat-7. The
spatial resolution at nadir is 3 km for the 11 visible, near infrared and thermal
infrared channels and 1 km for the panchromatic channel. Meteosat-7's �gures
were 6 km and 3 km respectively for only three channels (visual, infrared, and
water vapor). At the latitudes of Northern Europe (around 50 � N) the resolution
of MSG data decreases from the 3 km of the multispectral channels to approxi-
mately 5 km due to the imaging geometry. The temporal resolution of the data
is 15 minutes. For this study only the 11 low-resolution bands were used. Their
response curves over the electromagnetic spectrum can be see in Figure 3.3. The
visual channels 1 to 3 are measured in radiance (units mW=(m2 � sr � cm� 1)),
whereas the near infrared bands (channels 4 to 11) are measured in brightness
temperatures in units of Kelvin.

In Figure 3.4 an example of the visual channel 2 can be seen and the 11 MSG
bands can be seen inFigures 3.5, 3.6, and 3.7 for the three case examples.
The bands can be combined and visualized as false-color images as shown
in Figure 3.8, where the corresponding radar images for the same times are
shown for comparison.

Both the visual and infrared bands of Meteosat Second Generation imagery
provide very detailed information on clouds and precipitation in the atmo-
sphere [51]. From the reected sunlight in the visual/near-infred and the emit-
ted thermal energy, several parameters relating to precipitation can be derived:
cloud types, cloud water vapor, cloud heights, etc. Some of the uses of each MSG
band for precipitation mapping as reported by [51] are summarized inTable 3.1.
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Figure 3.3: MSG spectrum response functions.

Figure 3.4: MSG, visual channel 2. Same colormap is used throughout the thesis
for MSG images. The radar sites and coverages are also shown for easier comparison
with the radar case examples.
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Figure 3.5: Channels 1 through 11 of MSG from upper left, row-wise. The lo wer
right image is the Precipitating Clouds product. Case I, 200 5{07{11 06:00.
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Figure 3.6: Channels 1 through 11 of MSG from upper left, row-wise. The lo wer
right image is the Precipitating Clouds product. Case II, 20 05{09{25 18:00.
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Figure 3.7: Channels 1 through 11 of MSG from upper left, row-wise. The lo wer
right image is the Precipitating Clouds product. Case III, 2 006{05{19 12:00.
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2005{07{11 06:00 2005{09{25 18:00 2006{05{19 12:00

Figure 3.8: Radar reectivity images (top row) and MSG false color compo sites (As
red, green, and blue: Second row: channels 1, 2, 3. Third row: channels 3, 8, 9.
Bottom row: channels 5, 9, 10.
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Table 3.1: MSG bands. Channel number (Ch), center wavelength ( � ), and use for
precipitation and cloud mapping. After [ 51].

Ch � (� m) Description

1 0.6 Visible band (VIS) Valuable for discriminating be-
tween clouds and no clouds in
day time. The optical depth of
clouds can be inferred from the
visual channels.

2 0.8 Visible band (VIS) |"|
3 1.6 Near-infrared band (NIR) For discrimination between

snow and cloud, and ice and
water clouds. The IR re-
ectance holds information on
the cloud particle's e�ective
radius.

4 3.9 Infrared band (NIR) Detection of low clouds and fog.
Droplet mean radius. Clouds
with small precipitation parti-
cles reect more in this band
than clouds with larger parti-
cles.

5 6.2 Water vapor band (WV) Observation of water vapor in
upper troposphere.

6 7.3 Water vapor band (WV) |"|
7 8.7 Infrared band (IR) Optical depth of thin cirrus

clouds and discrimination be-
tween ice and water clouds.

8 9.7 Ozone band (O2) Observation of ozone. No im-
mediate use for precipitation es-
timation.

9 10.8 Infrared band (IR) Split window channel for cloud
detection and cloud top tempe-
rature.

10 12.0 Infrared band (IR) |"|
11 13.4 Carbon dioxide band (CO2) Usage in determining heights of

transmissive cirrus clouds men-
tioned.
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Precipitating Clouds product

Within the 'Nowcasting SAF (Satellite Application Facilit y)' of EUMETSAT 1

a range of meteorological products, e.g., cloud masks and cloud type products,
are developed and produced for short-term weather forecasting. Of special in-
terest for detection of weather radar clutter is the product named 'Precipitating
Clouds' which provides the probability of precipitation fo r each pixel in the MSG
pixel grid [59]. This is done by linear combination of the spectral bands ofMSG
together with surface temperatures extracted from a NWP model. The surface
temperature helps distinguish between land surface and clouds especially in the
winter time when snow covered areas resemble the cloud top temperature.

The 'Precipitating Clouds' algorithm consists of a day and a night part with
the latter excluding the visual channels. The parameters ofthe model were
developed and tuned using rain gauge data with the option of tuning to weather
radar data. The version of the 'Precipitating Clouds' algorithm used to generate
the data used in this study (version 1.1), however, was not tuned with radar
data [59]. Figure 3.9 shows the 'Precipitating Clouds' product corresponding to
Figure 3.4, 2006{05{19 12:00). The 'Precipitating Clouds' product is similarly
shown for the case example dates inFigures 3.5, 3.6, and 3.7.

Figure 3.9: Precipitating Clouds product example. Same colormap is used through-
out the thesis for this image type.

1European organization for collaboration on operational me teorological satellites.
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3.4 Method: Data fusion method

In the following section, the proposed data fusion method for clutter detection is
described. The method uses the above two sources of data 1) the 11 raw MSG
bands and 2) the 'Precipitating Clouds' product to detect clutter in weather
radar images. The method uses supervised classi�cation as outlined in the ow
chart in Figure 3.2. The MSG and 'Precipitating Clouds' data sets are evaluated
separately because the 'Precipitating Clouds' dataset is derived directly from the
other and to allow comparison of the results using the two data sets separately.
Furthermore, the 'Precipitating Clouds' product is univar iate and does not need
the feature selection procedure.

3.5 Preprocessing

The preprocessing step for the method includes the fusion ofthe data. Since
both radar and satellite data are images, the process isimage fusion, which
can be performed at various levels. A recent review of image fusion methods
[63] groups the methods into the categoriespixel level, feature level and deci-
sion level. For this study a pixel level image fusion was chosen. Fusing images
on the pixel level requires resampling of the images to a common grid, and
here a stereographic map grid with a grid spacing of 1000 m waschosen. This
means oversampling the satellite data from approximately 500 m to 1 km. As
described in the previous chapter the radar data has a varying resolution from
below 500 m to over 4000m and resampling to 1 km thus involves both over and
undersampling. All of the datasets, the radar data, the MSG images, and the
'Precipitating Clouds' image were resampled to this grid using bicubic interpo-
lation.

For remote sensing data fusion applications, the aspects ofalignment, both spa-
tially and temporally, is of concern. Using multi-sensor data, as is the case here,
it is for multiple reasons di�cult to achieve perfect alignm ent. Di�erence in
imaging geometry, di�erence in data acquisition timing, and di�erences in sens-
ing technique are the main reasons to the misalignment problems, as described
in the following.

Imaging geometry

The spatial alignment of the images from satellite and radar can be carried
out with good precision because the imaging geometry of the two sensors is
well-known. This can be seen by visual inspection by superimposing the fused



3.5 Preprocessing 35

images: the coastlines in the satellite image align well with observed land clutter
along the coastlines. However, for both radar and satellitethere are issues which
can lead to misalignments between the precipitation and clouds observed by the
two sensors (SeeFigure 3.10).

� 36000 km

Meteosat-8

Weather Radar

< 240 km

Figure 3.10: Sketch of the di�erence in sensing geometry of ground-basedradar and
space-borne multispectral observations.

For the radar, precise determination of the location of a radar echo depends
on the propagation path of the radar rays. Under standard propagation, the
propagation path is known, but non-standard propagation isquite common and
the location the radar echo is less certain (especially the height determination
is uncertain). However, the displacement error from non-standard propagation
is generally considered to be small.

For a geosynchronous satellite platform, however,parallax displacement will
cause the clouds to be o�set quite severely from their correct position in the
image. The displacement is a function of the height of the cloud and the lati-
tude [42] and for 50� N the displacement is approximately 1.6 times the height
of the cloud. For example, for a cloud of 2 km height the displacement is 3:2 km.
Methods for correction of the displacement due to the parallax are widely used
in the �eld of photogrammetry, but less widely used in remote sensing meteo-
rology.

Temporal misalignment

Temporally, the datasets are not always perfectly aligned due to non-synchronous
data acquisition. Therefore features in the images (precipitation and clouds) do
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not align since they have moved in between the time points of data collection.
The radar data are acquired every 10 minutes and the satellite data every 15
minutes as sketched inFigure 3.11. From the �gure it can be seen that for real-
time clutter detection, a temporal misalignment of 10 minutes will occur for two
of the six radar images per hour. Another two will experiencemisalignment of 5
minutes and the remaining two will have no misalignment. Forclutter detection
using archived data the maximum misalignment can be loweredto 5 minutes.

Radar

Satellite

T0 T10 T20 T30 T40 T50

R
ea

l-t
im

e

P
ostproc.

T15 T45T0 T30

Figure 3.11: Time schedule for radar and satellite data. For real-time an alysis the
most recent satellite image must be used. For postprocessing of archived data, the
image 5 minutes ahead in time can be used for better temporal alignment.

The actual misalignment of the clouds and precipitation in the data depends on
the velocity of those features. For a velocity of clouds of 10m � s� 1, for example,
the resulting mismatch between images that are 10 minutes misaligned will be
6 km. Correction of the temporal misalignment could be carried out by using
techniques from image extrapolation (e.g., using optical ow). However, this
was not pursued further.

Sensing di�erences

Besides spatial and temporal misalignment, also the fact that the two sensors
observe di�erent phenomena can contribute to the mismatching features in the
images. The radar measures backscatter from the precipitation itself whereas
the satellite measures the reected and emitted energy fromcloud top.

The combined e�ect of all these sources of misalignment cause a smaller or
greater misalignment in the images which eventually can result in degraded
performance of the clutter detection method.
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Scale-space misalignment mitigation

A number of fused image sets of satellite images and radar images|both of
perfect temporal alignment and of 10 minutes o�set|were ins pected visually
and the observed precipitation does not always align well with the location of
clouds in the MSG data or the estimated precipitation areas in the 'Precipitat-
ing Clouds' product. It is seen that the mismatch between radar and satellite
data is most pronounced at the borders of precipitation areas. In the paper [19],
a preliminary investigation of a pragmatic remedy to mitigate the border e�ects
of misalignment was presented. Before classi�cation, an expansion of the feature
space by application of a scale-space was performed. In manyapplications of
image analysis, a scale space approach can be fruitful for image segmentation,
feature extraction and classi�cation [53]. By including a scale-space representa-
tion of the satellite images (by smoothing of the images witha Gaussian kernel)
into the classi�cation it was possible to identify a unique scale which improved
the classi�cation accuracy. Although computed on a quite limited data set, the
work outlines a method for mitigating the misalignment problem.

3.6 Feature extraction

The feature extraction step for the method is limited to extraction of the 11
raw MSG bands and the 'Precipitating Clouds' product. The MSG data were
kept in their original values of digital numbers (DN) as stored in their 8 bit
data format. Conversion of the MSG data into physical units of radiance and
brightness temperatures could have been carried out by a linear scaling, however,
this was omitted as it would have no inuence on the classi�cation results. The
Precipitating Clouds product was converted into values of percentage from 0 to
100.

The visual and near-infrared MSG channels, of course, have little use in the
night time (See Figure 3.6, top row). Therefore the features were grouped into
the sets day features and night features. The day features contain all 11 bands
while the night features excludes the visual and near-infrared channels.

Some methods, e.g., [58] and [48], use in addition to the satellite data, the air
temperature at ground level from a numerical weather model.The motivation
for this is for the algorithm to work in cold climates where a snow covered
ground surface will have thermal infrared brightness temperatures comparable
to that of cloud top temperatures. For this study, however, this situation was not
taken into account, but extending the list of features with surface temperature
is possible.
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3.7 Training data

Supervised classi�cation requires a training set of input features to learn the
parameters of the classi�cation model. From the database ofradar data from
15 days of various meteorological events (listed inTable 2.3), four images per
day at the times 01:00, 06:00, 12:00 and 18:00 UTC were chosen. The times
for the training data (at the top of the hour) were selected to ensure the best
possible temporal alignment of the radar and satellite data. This ensures the
best training data for the model by eliminating the temporal misalignment.

The images were annotated by manual image inspection and areas of the three
classes, precipitation, sea clutter, and land clutter wereoutlined as shown in
Figure 3.12.

2005{07{11 06:00 2005{09{25 18:00 2006{05{19 12:00

Figure 3.12: Example of manually delineated training areas. Red is sea clutter, green
is land clutter, and blue is precipitation. Compare with rad ar images in Figures 2.8,
2.9, and 2.10

Training areas were drawn around as many pixels in every scene as possible and
covered also the edges of the precipitation areas. This is considered important
for the unbiased evaluation of the classi�cation in using multiple datasets with
the risk of misalignment (SeeFigure 3.13). Of course the extracted training data
for building the classi�cation models will be �tted to some e rroneous data but
the amount of these outliers is small compared to the total number of training
samples and the models will be able to disregard these outliers. Ideally, the
models should be built using training data from the interior of the features and
evaluated on the entire training set.



3.7 Training data 39

Training area

Training area

Feature 1

Feature 2

Figure 3.13: Left: The used approach to training areas includes also misaligned
areas between the features. Right: The common procedure of selecting training areas
includes only the overlap between the features.

The total number of training samples in the selected training areas is shown in
Figure 3.14. Notice how the sea clutter and land clutter classes can be combined
into a superset clutter class (for two-class classi�cation), and that each class is
�nally grouped into weak and strong radar echo classes. Thiswas done to enable
evaluation of the classi�cation methods for weak and strongprecipitation. Weak
echoes are echoes of radar reectivities below 15 dBZ.
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1.140.697 Training samples
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Figure 3.14: Number of training samples in total (top row), Two class case : clutter
and precipitation classes (second row), Three class case: Sea and land clutter and
precipitation (third row), and in bottom row the number of we ak and strong echoes
for these classes.
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3.8 Feature selection

This section deals with selecting the best combinations of the MSG bands for
classi�cation of clutter. Firstly, it is customary to const ruct histograms for the
features and classes to get insight in the distribution of the data.

3.8.1 Feature histograms

Using the training areas, training data were extracted from the satellite data
for the precipitation and clutter classes. For each band in the MSG data and
the Precipitating Clouds product, relative frequency histograms were made. In
Figures 3.15and 3.16, histograms for all 11 MSG and the 'Precipitating Clouds'
product can be seen for the three class and two class case for,day features, and
weak and strong echoes combined (calledall echoesin the following). For the
two class case, the land and sea clutter classes are simply treated as one class.

It is seen how the clutter classes generally have low radiance in the visual and
near-infrared (channels 1 to 3) and high temperatures in theinfrared (channels
4 to 11) while the opposite pattern is seen for precipitation. This is because the
clutter class mostly occurs in areas of no clouds, which means it is the reection
and transmitted energy from the land or sea surface which arewarmer and
darker than clouds. Noticed is also how some features, channel 1 for example,
show good separation of the classes while some overlap more (channel 5, for
example).

The 'Precipitating Clouds' product histograms in the lower right of the �gures,
show distinct spikes which are the result of the original data being quantized
into intervals of 10 percent.

Class conditional probabilities were computed from the feature histograms, see
examples inFigures 3.17and 3.18. These �gures show the probability of a given
sample value of a particular feature being precipitation orclutter. For example,
in Figure 3.18, the top left plot shows class conditional probabilities for MSG
Ch 01. The plot shows that for values in MSG Channel 1 below approximately
60 the probability of clutter is highest and for values above60 the probability
for the precipitation class is highest.

A complete collection of feature histograms and conditional probability curves
and can be found inAppendix B, Figures B.1 to B.14 and Appendix C,
Figures C.1 to C.14, where plots for all combinations of day and night features
and all, weak, and strong echoes, and the two and three class cases are shown.
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3.8.2 Feature selection

The contents of the feature histograms support the statements summarized in
Table 3.1 that some bands seem to provide more information on precipitation
than others. In this study, however, it was chosen to not makeany presumptions
of the usefulness of each feature. Instead, all were treatedas potentially useful
and an automated process of feature selection was employed.

The approach to simply lump all the features together into one large features
space might be tempting for reasons of ease. However, this might create an
unnecessarily complex model and it is often seen that using too many fea-
tures degrades the classi�cation accuracy. This is known asthe Hughes Phe-
nomenon which is the degradation of the classi�er performance with increasing
data dimensionality [64]. Therefore features which do little to improve|or even
degrade|the classi�cation accuracy should be left out of th e �nal classi�cation
model. This can be accomplished throughsubset selectionwhich aims at se-
lecting the best subset from a full set of features. A wide range of methods
for subset selection exists, see e.g., [36] and [64]. In this work, three methods
for feature selection were applied: forward selection, backward elimination, and
exhaustive search.

Forward selection

Forward selection is carried out by starting out with selection of the single best
features and then adding features one by one, choosing the one which improves a
selection criterion. Here the selection criterion was chosen to be the classi�cation
accuracy from using a quadratic discriminant function as classi�er. The model
was trained on 25,000 training samples for each class and evaluated for the same
number of test samples for each class. It is not guaranteed that forward selection
yields the best subset, because even if a feature is the best one to use on its
own, it is not necessarily the best one to use in combination with the other
subsequently added features.

Backward elimination

This method works the other way around. First, the classi�cation accuracy is
computed using the full set of features. Then, one by one, thefeatures which
decreases the accuracy the least (i.e., contribute the least to the classi�cation
accuracy) are removed. Like in the case of forward selection, backward elim-
ination does not guaranteed �nding the subset with the highest classi�cation
accuracy. Backward elimination was performed with the quadratic discriminant
function classi�er as selection criterion.
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Figure 3.15: Data Fusion feature histograms. Day features and all echoes. Three
classes.
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Figure 3.16: Data Fusion features. Day features and all echoes. Two classes.
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Figure 3.17: Data Fusion features. Day features and all echoes. Three classes.
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Figure 3.18: Data Fusion features. Day features and all echoes. Two classes.
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Exhaustive search

This method for feature selection simply evaluates all possible combinations of
features. Exhaustive search guarantees to �nd the optimal subset of features,
however, the method is very computationally heavy for a highnumber of features
since all possible combinations of all numbers of features are computed.

As selection criteria, the quadratic discriminant function was used as described
above as well as the Je�ries-Matusita distance:

Je�ries-Matusita distance

The Je�ries-Matusita distance [64] expresses the average distance between two
class density functions and is a measure of the separabilitybetween the two
features. For each number of features, the pairwise distances are computed
and the ones with the greatest distances are chosen. In comparison to using
the quadratic discriminant function as criterion, no classi�cation of the data is
carried out using the Je�ries-Matusita distance. However, as with the use of
the discriminant functions, a Gaussian distribution of the data is assumed.

Results

The three feature selection methods were applied to the training data for the
MSG bands and for the combinations of day features and night features, and
all, weak, and strong echoes. Furthermore, feature selection was performed for
the three class case (treating land and sea clutter as separate classes) and for
the two class case (where land and sea clutter are combined into one class).

An example of feature selection results for the data fusion method is shown in
Table 3.2. The top table lists the highest classi�cation accuracy in separation
of clutter and precipitation for increasing number of features. In italics are
highlighted the best classi�cation accuracy obtained and in bold is the chosen
accuracy highlighted which is either the highest accuracy or the feature com-
bination with the fewest number of features closer than 0.2 %to the highest
accuracy. The numbers in parenthesis are the features listed in the lower left
table (in this table the feature numbers which were chosen are shown in bold).

The �nally chosen subset, which is used in the further classi�cation, is selected
from the exhaustive search method and again the chosen subset selection is the
subset of features which is either the one with the single highest accuracy or
the one with the fewest features closer than 0.2 % to the highest accuracy. The
graph on the lower right shows the feature selection curves of each feature se-
lection method and can be used to compare the forward selection, backward
elimination, and exhaustive search methods.
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In Appendix D, Tables D.1 to D.12, the feature selection tables for all combi-
nations of day and night features and the di�erent echo strengths are shown.
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Table 3.2: Feature selection results. Data fusion method, day features, all echoes, two classes.

# of Classi�cation accuracy (Feature combination)

feats. Forward selection Backward elimination Je�ries-Matusita Exhaustive search

1 95.6 % (8) 95.0 % (10) (8) 95.6 % (8)

2 96.2 % (5 8) 96.1 % (5 10) (1 10) 96.2 % (5 8)

3 96.2 % (5 8 9) 96.5 % (5 9 10) (1 2 10) 96.5 % (5 9 10)

4 96.6 % (5 8 9 10) 96.8 % (5 6 9 10) (1 2 10 11) 96.8 % (5 6 9 10)

5 96.8 % (5 6 8 9 10) 96.9 % (1 5 6 9 10) (1 2 5 6 10) 96.9 % (1 5 6 9 10)

6 96.8 % (1 5 6 8 9 10) 97.0 % (1 3 5 6 9 10) (1 2 3 5 6 10) 97.0 % (1 3 5 6 9 10)

7 96.9 % (1 4 5 6 8 9 10) 97.0 % (1 2 3 5 6 9 10) (1 2 3 5 6 7 9) 97.0 % (1 2 3 5 6 9 10)

8 96.8 % (1 4 5 6 7 8 9 10) 97.0 % (1 2 3 5 6 8 9 10) (1 2 3 4 5 6 7 9) 97.0 % (1 23 5 6 7 9 10)

9 96.7 % (1 4 5 6 7 8 9 10 11) 97.0 % (1 2 3 5 6 8 9 10 11) (1 2 3 5 6 7 9 10 11) 97.0 % (1 2 3 5 6 8 9 10 11)

10 96.7 % (1 3 4 5 6 7 8 9 10 11) 96.9 % (1 2 3 5 6 7 8 9 10 11) (1 2 3 5 6 7 8 9 1011) 96.9 % (1 2 3 5 6 7 8 9 10 11)

11 96.8 % (1 2 3 4 5 6 7 8 9 10 11) 96.8 % (1 2 3 4 5 6 7 8 9 10 11) (1 2 3 4 5 6 7 89 10 11) 96.8 % (1 2 3 4 5 6 7 8 9 10 11)

Feat. # Feature name

1 MSG Ch 01 VIS0.6

2 MSG Ch 02 VIS0.8

3 MSG Ch 03 IR1.6

4 MSG Ch 04 IR3.9

5 MSG Ch 05 WV6.2

6 MSG Ch 06 WV7.3

7 MSG Ch 07 IR8.7

8 MSG Ch 08 IR9.7

9 MSG Ch 09 IR10.8

10 MSG Ch 10 IR12.0

11 MSG Ch 11 IR13.4
Number of features
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The points made in the above sections on the di�erences between the feature
selection methods are demonstrated in the �gures. For example, in Table 3.2
the selected feature in forward selection for using one feature only is feature 8.
This feature is not in the �nally chosen subset from exhaustive search (features
1 5 6 9 10). In fact, feature 8 is only good up to two features andthen it is not
introduced until the use of nine features. The Hughes Phenomenon is present
in the plot of number of features against classi�cation accuracy (the accuracy
increases until six features are used and stays constant until it drops o� slightly
at 10 and 11 features).

Looking at all the feature selection results it can be seen that from the chosen
day features, that the MSG channels 1, 5, and 8, are selected in almost all of the
combinations of echo types and two/three class. It is interesting to note that
channel 5, when seen in the relative feature histogram (Figure 3.16), shows a
large overlap of the clutter and precipitation classes. Thus, on its own channel
5 would not have a lot of skill at separating clutter and precipitation. However,
when using two features, it is the best combination togetherwith channel 8. To
illustrate this, a plot of the precipitation and clutter cla sses in this feature space
has been made (Figure 3.19).
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Figure 3.19: In 2D feature space MSG Ch 5 helps in the separation between clutter
and precipitation. Feature space for MSG, Ch 5 vs. Ch 8. Red symbols are sea clutter,
green symbols are land clutter, and blue symbols are precipitation.

For the chosennight features, the chosen feature combinations are dominated
by MSG channels 6, 7, 8, 10, and 11. It is noteworthy that channel 8 is selected
for both day and night features, and that it is one of the more signi�cant fea-
tures. As listed in Table 3.1, this is the ozone band of MSG and is described
to have no immediate use for precipitation estimation [51]. However, from the
feature selection it is shown that the band has use for precipitation and clutter
discrimination.
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3.9 Classi�cation

Classi�cation is the procedure of labelling observations of features, like the ones
described in the previous sections, into two or more classes[30], [64]. Two main
groups of classi�cation exist, supervised and unsupervised classi�cation, which
di�er in that for supervised classi�cation a set of input fea tures is available
for which the class membership is known. These training dataare used to
estimate the parameters of the classi�er and evaluate the performance of it. For
unsupervised classi�cation, a clustering process must be employed to discover
patterns in the data prior to classi�cation.

For this study, supervised classi�cation was chosen because detailed knowledge
on the classes and their appearance is available. This was used in Section 3.7
to collect the training data for the classi�cation.

Selection of the optimal classi�er for a given classi�cation problem is not triv-
ial. Careful study of the input features and their histograms might hint at an
appropriate model. Another approach is to make use ofensemble methods, also
known as multiple classi�er systems, where a range of classi�ers are applied in
parallel and their results combined. Ensemble methods [46] have the potential
to outperform the single classi�ers of the ensemble. This happens if each clas-
si�er makes mistakes in di�erent domains of the input featur e space and when
combined, the mistakes \cancel out". Another advantage of using an ensemble
classi�er is that the performance of each classi�er can be accessed and compared
at the same time.

In this work, �ve di�erent classi�ers were used and combined using a majority
vote between these to form the ensemble classi�er. The �ve classi�ers used to
classify the data were: linear and quadratic discriminant analysis, a decision
tree, k-nearest neighbor classi�cation, and a support vector machine. The crite-
rion for the choice of classi�ers was that the classi�ers should be from di�erent
families of classi�ers, e.g., linear discriminant functions are parametric classi�ers
which assume Gaussian distributions of the classes, while the k-nearest neighbor
method is non-parametric.

Linear and quadratic discriminant analysis

Linear and quadratic discriminant analysis for classi�cation involves estimating
the parameters of a discriminant function which is subsequently used to map
each input vector to a class label [17], [30].

Linear discriminant functions divide the feature space by linear decision bound-
aries while quadratic discriminant functions use quadratic decision boundaries.
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This is illustrated in Figure 3.20, where a subset of 200 training samples (100
clutter samples (red) and 100 precipitation samples (blue)) are plotted for MSG
Channels 1 and 4, and Channels 4 and 5, pairwise. The decisionboundaries are
plotted with black lines and the regions belonging to the clutter and precipita-
tion classes are colored in light red and light blue colors, respectively.

An important feature of the linear and quadratic discrimina nt functions is that
the classes are modelled by Gaussian distributions which isnot always a valid
assumption.

Figure 3.20: Disciminant analysis. Left column: Linear discriminant fu nction, Right
column: Quadratic discriminant function.

Decision tree

A decision tree [30], also called a classi�cation tree, is a di�erent approach to
supervised classi�cation. The class membership of an inputvector is found by
following a path through a tree structure based on thresholds on the values of
the input features. An example of a decision tree is shown inFigure 3.21, where
the �rst node partitions the features space on the thresholdof 48.8082 on MSG
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Channel 4. This way an input feature is assigned to its �nal class membership
at the bottom of the tree. A decision tree thus divides the features space using
planes which are perpendicular to the axes of the feature space. Classi�cation
trees are often used in remote sensing image classi�cation because of the way
the thresholds on the input features can be used to e�ciently convey any expert
knowledge on the domain of interest.

Precipitation Clutter

PrecipitationClutter Precipitation Clutter

   MSG Ch 04 IR3.9 < 48.8082

   MSG Ch 01 VIS0.6 < 46.7481    MSG Ch 01 VIS0.6 < 88.8633

   MSG Ch 04 IR3.9 < 25.0334    MSG Ch 04 IR3.9 < 99.3044

Figure 3.21: Decision tree example. Only the values of the �rst three tree nodes are
shown to in the attempt to increase the clarity of the �gure.

K-nearest neighbor

The k-nearest neighbor (KNN) classi�er [17] is non-parametric method for clas-
si�cation. As its name explains, it classi�es input vectors to the class of thek
nearest training vectors. This is illustrated in Figure 3.22 where classi�cation
is carried out using values ofk of 1 (left) and 11 (right). As it can be seen the
value k controls how smooth the class regions are and how well the classi�er
can capture small-scale structures in the feature space. However, low values of
k makes the method more sensitive to noisy data and outliers inthe training
data. Still, for further analysis a low value of k = 1 was chosen. Several higher
values ofk were applied without much change in the classi�cation accuracy but
at an increase of computation time.

Support vector machine

The last applied classi�er, was a support vector machine (SVM) classi�er. A
support vector machine divides the feature space by linear hyperplanes through
a process of maximizing the distance from the hyperplane to asubset of the
training points called support vectors. This is illustrated in Figure 3.23.
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Figure 3.22: K-nearest neighbor classi�cation. k = 1 is shown on the left, and k = 11
on the right. The color codes and features are the same as inFigure 3.20.
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Figure 3.23: Support vector machine. MSG Ch 01 vs. MSG Ch 04.

Ensemble classi�er

Following the classi�cation using each of the �ve classi�ers described above the
classi�cation results are combined to yield the ensemble classi�er result. Various
rules exists for the combination [46]. Here a majority vote rule was chosen: the
class selected by the majority of the classi�ers is chosen asthe �nal output class.
Since an odd number of classi�ers were used, no ties needed nobe broken.
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3.9.1 Precipitating Clouds classi�cation

The classi�cation method used for the 'Precipitating Clouds' image product
follows a di�erent procedure than for the MSG data since the 'Precipitating
Clouds' product contains only one variable. An optimal threshold was found by
incremental adjustment of a threshold on the 'Precipitating Clouds' value and
maximizing the classi�cation accuracy (SeeFigure 3.24).

Di�erent optimal thresholds were found for day and night par ts of the algorithm.
For the day algorithm a threshold on � 0.0 % was found optimal for clutter
detection of all, weak, and strong echoes. For the night algorithm, however,
the threshold takes the values� 28 %, � 18 %, � 38 % for all, weak, and strong
echoes respectively. The results are shown inTables 3.9and 3.10.

As it can be seen from those �gures, the probability of precipitation as contained
in the 'Precipitating Clouds' product is not calibrated to d ivide at 50 % for
distinguishing precipitating and non-precipitating events. [59] mentions a value
of 20 % or 30 %, which corresponds well with the results for thenight features
achieved above (thresholds between 18 % and 38 %), but not very well with the
results from the day features (optimal threshold at 0 %).

Clutter
Precipitation

Threshold

Figure 3.24: The optimal threshold for 'Precipitating Clouds' method is found by
incremental search.

3.10 Model training

After training the classi�ers, the performance of the classi�ers are computed
using an independenttest set taken from the original training samples. If the
data used for training the classi�er was used also to access the performance of
the classi�er, unrealistic high performance measures would be obtained, because
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the classi�ers are �tted to those data.

In many applications of supervised classi�cation, limited amounts of training
data are available, however, in this study this was not the case. Often, when
enough training data is available, the procedure is simple to split training data
into two equal parts, one for training and one for testing. Nevertheless, for this
work, it was found a study worth to investigate how the number of training
samples a�ects the classi�cation accuracy.

Varying amounts of training data was used (from 30 to 4000 samples per class)
and the data were classi�ed using the methods described above. For each num-
ber of training samples the classi�cation was carried out 11times, which makes
it possible to study the standard deviation in the classi�cation as results of the
number of training samples. The test set was 50,000 trainingsamples in total,
i.e., not the full remaining training set.

When the classi�cation accuracy is plotted as a function of the number of train-
ing samples,learning curves are produced. A couple of examples of these are
shown in Figures 3.25and Tables 3.3and Figure 3.26 and Table 3.4. Shown in
the table are the mean and standard deviation of the classi�cation accuracy for
each of the �ve classi�ers and their majority vote combinati on. In the graph,
the thick lines are the mean classi�cation accuracy and the thinner lines indicate
one standard deviation from the mean.

Learning curves were produced for all combinations of day and night features,
and in general, all learning curves attened out at between 1000 and 4000 train-
ing samples per class, as illustrated on the two �gures. Alsonoticed was that the
standard deviation of the classi�ers decrease to very low values (around 0.1 %)
for 4000 samples. Thus this was chosen to use this number of training samples
per class in the further analysis.

Regarding the individual classi�ers, k-nearest neighbor and the decision tree
methods were seen to achieve highest accuracies, followed by the support vector
machine and the discriminant analysis.
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Table 3.3: Learning curve results. Data fusion method, day echoes and day features,
strong/weak echoes, three classes.

# LDA QDA Dtree KNN SVM Majority

samples Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

30 96.6 0.88 95.6 1.87 92.0 2.97 95.9 1.38 96.4 0.78 96.8 0.64
50 96.8 0.61 96.8 0.68 92.8 4.15 96.8 0.67 96.8 0.68 97.2 0.36
100 97.4 0.16 97.5 0.46 96.5 0.82 97.0 0.89 96.8 0.55 97.6 0.05
500 97.3 0.10 98.1 0.19 97.7 0.33 98.8 0.34 97.7 0.11 98.2 0.20
1000 97.4 0.06 98.1 0.12 97.9 0.52 99.3 0.10 97.7 0.16 98.3 0.10
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Figure 3.25: Learning curves. Data fusion method, day echoes and day features,
strong/weak echoes, three classes.
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Table 3.4: Learning curve results. Data fusion method, day echoes and day features,
strong/weak echoes, two classes.

# LDA QDA Dtree KNN SVM Majority

samples Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

30 95.6 0.92 94.3 1.88 91.9 4.63 94.2 1.24 95.6 0.81 95.1 0.74
50 96.1 0.43 95.9 0.74 94.2 1.96 94.0 1.85 95.4 1.08 95.9 0.63
100 96.5 0.14 96.4 0.47 95.2 0.97 95.9 0.70 96.4 0.18 96.5 0.17
500 96.5 0.16 96.9 0.09 96.1 0.63 97.5 0.16 96.3 0.26 96.9 0.13
1000 96.5 0.19 97.0 0.09 96.8 0.44 98.1 0.22 96.4 0.20 97.2 0.22
2000 96.5 0.13 97.0 0.08 97.4 0.36 98.7 0.18 96.4 0.12 97.2 0.12
3000 96.5 0.08 97.0 0.04 97.9 0.12 98.8 0.11 96.4 0.08 97.2 0.10
4000 96.5 0.05 97.0 0.05 98.0 0.15 99.1 0.08 96.4 0.11 97.2 0.07
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Figure 3.26: Learning curves. Data fusion method, day echoes and day features,
strong/weak echoes, two classes.
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3.11 Classi�er evaluation

Upon building the classi�ers their performance need to be accessed using inde-
pendent test data to be able to know how well the classi�ers are expected to
perform when they are applied to new data.

3.11.1 Skill scores

Various skill scores [73] were used, namely the percent correct (PC), the false
alarm ratio (FAR), and the Hanssen-Kuipers skill score (HKS). The skill scores
are computed from the elements of the confusion matrix of theclassi�cation, as
shown in Figure 3.27. The confusion matrix contains the number of correctly
classi�ed samples (hits and correct rejections) and the number of incorrectly
classi�ed samples (misses and false alarms). In this study of detection of clutter,
clutter is the \target" of the classi�cation, and hence clut ter classi�ed as clutter
is counted ashits, whereas precipitation misclassi�ed as clutter is afalse alarm.
Precipitation correctly classi�ed as precipitation is a correct rejection and �nally
clutter misclassi�ed as precipitation is a miss. Confusion matrices for the cases
of three class classi�cation were made by pooling sea and land clutter classes
into a common clutter class.

Tr
ut

h

Classi�cation

Clutter Precipitation

Clutter Hit (A) Miss (C)

Precipitation False alarm (B) Correct rejection (D)

P C = A + D
N � 100 F AR = B

A + B HKS = A
A + C � B

B + D

P OD = A
A + C P OF D = B

B + D N = A + B + C + D

Figure 3.27: Confusion matrix for two-class discrimination between clu tter and
precipitation (top). Skill scores: Percent Correct (PC), F alse Alarm Ratio (FAR),
Hanssen-Kuipers Skill Score (HKS), Probability of Detecti on (POD), Probability of
False Detection (PODF), and total number of observations (N ).

Percent correct (PC) , is similar to classi�cation accuracy, and is the ratio
between the sum of the hits and correct rejections and the total number of
observations. The perfect classi�er would have only hits and correct rejections
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and no misses or false alarms. This would yield a Percent Correct score of 100 %.
PC ranges between zero (worst) and 100 % (best).

False alarm ratio (FAR) is the ratio between the number of false alarms and
the sum of hits and false alarms. It ranges between 0 (best) and 1 (worst) and
in this study it is a measure of how much precipitation is misclassi�ed out of
the total number of samples classi�ed as clutter.

Probability of detection (POD) is the ratio between the number of hits and
the sum of hits and misses, i.e., how much clutter was classi�ed correctly. Best
score is 1 and worst score is 0.

Probability of false detection (POFD) , is the ratio between number of
false alarms and the sum of false alarms and correct rejections, i.e., how much
precipitation was misclassi�ed. Best score is 0, worst score is 1.

Hanssen-Kuipers skill score (HKS) is computed as the di�erence between
the POD and the POFD. HKS thus takes values between -1 (worst)and 1
(best). HKS takes the value 1 when POD is 1 and POFD is 0, i.e., the perfect
classi�cation. A HKS value of 0 is obtained when the classi�cation has no skill,
i.e., it is no better than the random choice. HKS value smaller than 0 indicates
worse skill than the random choice, and a value of -1 is obtained when the
samples are consequently classi�ed into their opposite class.

3.11.2 Skill score results

In this section the data fusion method is evaluated on the full set of training
samples. The features chosen through feature selection were used to perform the
ensemble classi�cation. 4000 training samples per class were used for building
the classi�ers as chosen earlier as a su�cient number. The remaining samples
from the complete training data were subsequently classi�ed as test samples.
The exact number of test samples can be computed from the total number of
training samples listed in Figure 3.14 minus 4000 times the number of classes.

Upon classi�cation of the test set, the three skill scores, Precent Correct (PC),
False Alarm Ratio (FAR), and the Hanssen-Kuipers Skill (HKS) were computed.
The results are shown for MSG data inTables 3.5 to 3.8 and for the 'Precipi-
tating Clouds' product in Tables 3.9and 3.10. The scores are reported for each
individual classi�er (LDA and QDA, are the linear and quadra tic discriminant
analysis, Dtree is the decision tree, KNN is the k-nearest neighbor, and SVM is
the support vector machine).
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MSG classi�cation

Firstly, for percent correct it is seen (in Table 3.5) that for day features, all
echoes, the majority vote obtains a PC value of 95.64 %, i.e.,4.36 % of the test
samples were misclassi�ed. The value is better than the worst of the individual
classi�ers (The QDA with the score of 94.27 %). Looking at all the PC results
(Tables 3.5 to 3.8) it is seen that the majority vote consistently outperforms
the single worst classi�ers. This is in accordance with the purpose of using an
ensemble classi�er. Improvements by using the majority classi�er in comparison
with the worst single classi�er ranges from 0.78 % up to 12.1 %. The best one
improves the classi�cation accuracy from 85.50 to 97.58 % (LDA, night features,
strong echoes, two classes,Table 3.7).

The best majority vote PC result is obtained for night featur es, strong echoes,
and three classes with a score of 98.39 %. The worst score is 93.59 % for day
features, weak echoes, two classes. For all echoes the best result is 95.82 % for
day features and three classes, however, the other results di�er by small �gures
only.

Evaluating the performance of the individual classi�ers, it can be seen that the
k-nearest neighbor (KNN) classi�er almost consistently outperforms the other
classi�ers by approximately 1 %. The worst classi�er is, also almost consistently,
the linear discriminant analysis (LDA).

Looking at the false alarm ratio (FAR) for the majority vote c lassi�er, values
between a low 0.007 and 0.073 are seen. The best is obtained for night features
and strong echoes, two classes, and the worst for day features, weak echoes, three
classes. The FAR values indicate that between 0.7 and 7.3 % ofthe detected
clutter were false alarms. For all echoes, night features, two classes shows the
best performance (FAR of 0.013,Table 3.7). For day features the the best FAR
value was 0.054 using two classes.

The Hanssen-Kuipers skill score which, as described earlier, takes into account
both the probability of detection and the probability of fal se detection, scores
from 0.870 (day features, weak echoes, three classes) to 0.948 for day features,
strong echoes, three classes and a similar values for night features, strong echoes,
two classes. The single best all echoes classi�er for day features, is three class
classi�cation with a HKS of 0.919 and for night features 0.908 for two classes.

Echo types

Looking at the classi�cation performance for the echo type categories, weak, and
strong echoes, it can be seen that strong radar echoes are classi�ed consistently
better than weak echoes when considering all three skill scores. The classi�cation
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accuracy is between 1.48 % and 3.35 % better for strong echoescompared to
weak echoes.

Number of classes

The e�ect of using two or three classes can also be assessed from the table.
Looking at the results, it can be seen that a slightly better PC score is obtained
for the majority vote classi�er using three classes for day features (95.64 % to
95.82 %, 93.59 % to 93.93 % and 96.94 % to 97.05 % for all, weak and strong
echoes respectively). The opposite e�ect is observed (i.e., lowered PC) for night
features when using three classes.

For the FAR and HKS scores the same pattern is observed, however, the di�er-
ence of using two or three classes in the classi�cation is in general very small
considering also that the standard deviation for the ensemble classi�er was es-
timated to be around 0.1 % in Section 3.10.

Precipitating Clouds classi�cation

In Tables 3.9and 3.10, the performance of the 'Precipitating Clouds' classi�ca-
tion method can be seen as applied today features and night features respec-
tively. Classi�cation accuracies from 92.92 % to 96.95 % areobserved in the PC
scores with the best classi�cation being strong echoes in the day and the worst
being weak echoes also in the day. False alarm ratios from 0.030 to 0.078 are
obtained for weak echoes in night and day, respectively. TheHanssen-Kuipers
skill score highlights the day features for strong echoes asthe best (0.939) and
the strong echoes at night as the worst (0.701).



62
D

ata
fusion

m
etho

d
Table 3.5: Classi�cation results. Data fusion method, day echoes and day features, two classes.

Echo Percent correct (PC) False alarm ratio (FAR) Hanssen-K uipers skill (HKS)

type LDA QDA Dtree KNN SVM Majority LDA QDA Dtree KNN SVM Majority L DA QDA Dtree KNN SVM Majority

All 94.94 94.27 96.74 98.37 94.91 95.64 0.061 0.079 0.037 0.018 0.055 0.054 0.899 0.888 0.935 0.967 0.898 0.913
Weak 92.55 92.50 96.70 98.73 92.34 93.59 0.059 0.069 0.025 0.011 0.058 0.053 0.851 0.846 0.934 0.974 0.847 0.871
Strong 96.16 96.35 97.46 98.34 97.07 96.94 0.084 0.076 0.0490.029 0.057 0.063 0.933 0.934 0.952 0.966 0.945 0.944

Table 3.6: Classi�cation results. Data fusion method, day echoes and day features, three classes.

Echo Percent correct (PC) False alarm ratio (FAR) Hanssen-K uipers skill (HKS)

type LDA QDA Dtree KNN SVM Majority LDA QDA Dtree KNN SVM Majority L DA QDA Dtree KNN SVM Majority

All 94.38 94.36 97.40 98.75 95.28 95.82 0.081 0.085 0.036 0.020 0.075 0.067 0.890 0.890 0.949 0.976 0.909 0.919
Weak 91.88 92.17 96.44 98.53 93.09 93.93 0.086 0.083 0.042 0.018 0.082 0.073 0.830 0.836 0.924 0.968 0.852 0.870
Strong 95.79 96.11 97.46 98.46 97.05 97.05 0.096 0.087 0.0590.036 0.060 0.067 0.928 0.932 0.956 0.973 0.945 0.948

Table 3.7: Classi�cation results. Data fusion method, night echoes an d night features, two classes.

Echo Percent correct (PC) False alarm ratio (FAR) Hanssen-K uipers skill (HKS)

type LDA QDA Dtree KNN SVM Majority LDA QDA Dtree KNN SVM Majority L DA QDA Dtree KNN SVM Majority

All 89.03 94.31 96.90 98.12 91.57 95.28 0.013 0.027 0.010 0.004 0.025 0.013 0.830 0.861 0.935 0.965 0.834 0.908
Weak 91.86 94.82 97.66 98.83 93.58 96.10 0.009 0.022 0.007 0.002 0.023 0.009 0.873 0.877 0.953 0.979 0.860 0.926
Strong 85.50 96.84 98.28 99.35 91.63 97.58 0.009 0.021 0.0050.002 0.012 0.007 0.796 0.898 0.964 0.987 0.862 0.948

Table 3.8: Classi�cation results. Data fusion method, night echoes an d night features, three classes.

Echo Percent correct (PC) False alarm ratio (FAR) Hanssen-K uipers skill (HKS)

type LDA QDA Dtree KNN SVM Majority LDA QDA Dtree KNN SVM Majority L DA QDA Dtree KNN SVM Majority

All 90.71 93.45 96.19 96.99 93.50 94.28 0.023 0.029 0.014 0.009 0.025 0.022 0.829 0.848 0.918 0.939 0.859 0.874
Weak 93.42 94.78 97.19 97.74 94.61 95.49 0.022 0.029 0.010 0.007 0.024 0.021 0.863 0.862 0.939 0.954 0.872 0.891
Strong 87.51 98.21 98.97 99.82 93.44 98.39 0.019 0.019 0.0030.001 0.017 0.015 0.797 0.926 0.979 0.995 0.872 0.940
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Table 3.9: Classi�cation results and classi�cation thresholds. Data fusion, nowcasting
product method, day echoes.

Echo Threshold Percent correct False alarm ratio Hanssen-K uipers skill
type (Pct.) (PC) (FAR) (HKS)

All 0.0 94.81 0.069 0.898
Weak 0.0 92.92 0.078 0.849
Strong 0.0 96.95 0.053 0.939

Table 3.10: Classi�cation results and classi�cation thresholds. Data fusion, nowcast-
ing product method, night echoes.

Echo Threshold Percent correct False alarm ratio Hanssen-K uipers skill
type (Pct.) (PC) (FAR) (HKS)

All 28.0 93.46 0.044 0.790
Weak 18.0 94.88 0.030 0.837
Strong 38.0 93.28 0.040 0.701

3.12 Reject option

Misclassi�cation in the detection of clutter is, of course, always unwanted. How-
ever, for some applications it might be desirable to remove alarge proportion
of the clutter at the expense of removing small amounts of precipitation at the
same time (or vice versa). For example, for qualitative use of the data, in its
general use in operational weather forecasting or the display of the data for non-
scienti�c users, this might be the case. The confusion caused by large amounts
of clutter might be greater than the confusion from small amounts of missed
precipitation. On the contrary, if the radar data is used quantitatively in a
model to issue warnings of extreme thunderstorms then removing any precipita-
tion might be unwanted and instead more unclassi�ed clutter can be tolerated
(it might not matter if a couple of false thunderstorm warnin gs are issued).

Using a reject option it is possible to adjust the expected amount of clutter
classi�ed as clutter (hits) at the expense of how much precipitation is mistakenly
classi�ed as clutter (false alarms).
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The reject option makes it possible to avoid making classi�cations in the case of
uncertainty on the class membership of an input vector. Thisis done by applying
a threshold on the posterior probability of the classi�cati on. In Figure 3.28this is
illustrated: A threshold � is used to reject input vectors inside the reject region.
If � is 1 then all inputs are rejected (i.e., nothing is classi�edas anything but
precipitation) and if � is 0.5 (in general 1 divided by the number of classes) then
no inputs are rejected.

Reject region

PrecipitationClutter

�

0.0

1.0

Figure 3.28: The reject option. Inputs to the classi�er are rejected if it is in the
reject region, i.e., if the largest of the posterior probabi lities is smaller or equal to the
threshold � . After [ 17].

To illustrate how the reject option can be applied, reject thresholds from 0.5 to
0.99 were applied to the posterior probabilities from a quadratic discriminant
classi�er used to classify MSG channels 1, 5, 6, 9 10 (The day features, all
echoes, two classes case).

If the largest of the two posterior probabilities for the classes, clutter and pre-
cipitation, was smaller than the threshold, then the input vector was assigned
to the precipitation class. The POD and POFD scores were computed for each
reject threshold and a receiver operating characteristic (ROC) curve was plotted
(seeFigure 3.28). On the plot the reject threshold is plotted along the ROC
curve. It is seen how an increasing reject threshold lowers the probability of
false detection, i.e., fewer false alarms are made (less precipitation misclassi�ed
as clutter). This is at the trade-o� of a lower probability of detection of course
(more misses, i.e., more clutter misclassi�ed as precipitation). A good choice
for many application could be the operating point of the ROC curve (where the
tangent to the curve is 45 degrees).
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Figure 3.29: ROC curve for reject option. Day features, all classes, two class clas-
si�cation. Adjusting the reject threshold controls the tra de-o� between POD and
POFD.

3.13 Results

After the design and evaluation of the classi�cation model as described in the
earlier sections, the classi�er is ready to be applied to newdata in operational ap-
plications. To illustrate this, the three case examples (presented inSection 3.3)
were classi�ed using the classi�cation models developed and evaluated above.
The results are shown in for the MSG classi�cation method inFigure 3.30 and
for the 'Precipitating Clouds' method in Figure 3.31.

For Case I, the case with almost only clutter echoes, the result for theMSG
classi�cation ( Figure 3.30, �rst column) is very good with a classi�cation ac-
curacy of 99.3 % (The accuracy is shown in the bottom of the �gure and was
computed from the confusion matrix shown beneath it). Both the sea and land
clutter is classi�ed correctly which can be seen by comparison of the classi�ed
image in the middle row with the training areas (shown in Figure 3.12). The
small error of 0.7 % originated from the small amount of precipitation in the
lower North Sea of which two thirds were misclassi�ed. In the lower row of the
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�gure, a \cleaned" radar image is seen. By this is meant that the echoes which
were classi�ed as clutter have been removed.

Now turning to the 'Precipitating Clouds' method for Case I (Figure 3.31, �rst
column), the result is seen to be good also. The achieved classi�cation accuracy
is 97.1 %. The precipitation in the North Sea was not misclassi�ed to such a
great extent, but on the contrary a large patch of land clutter on the coast of
Norway was misclassi�ed as precipitation.

Classi�cation results for Case II is shown in the middle column of the �gures.
For the MSG method 95.9 % of the echoes were classi�ed correctly. The misclas-
si�cations are equally divided between missed clutter and false alarms (approx-
imately 1000 echoes each). The 'Precipitating Clouds' method shows similar
results with a accuracy of 95.0 % but a higher proportion of false alarms. The
false alarms are seen to be located on the Southwestern side of the precipitation
area in the middle of the image for both methods. The missed clutter is the
land clutter close to the radar on Sindal. The location of the misclassi�cation
indicates that it is caused by misalignment. Either due to a slight temporal mis-
alignment between the radar and satellite data (The precipitation was moving
Northeast for that case example). The location of the misclassi�cation could
also hint at a contribution from the parallax displacement (which results in
cloud and precipitating to be o�set away from the nadir of the satellite to the
north).

Case III is the all precipitation case and a high classi�cation accuracy of 98.5 %
and was achieved for the MSG method and a lower accuracy of 95.1 % for
the 'Precipitating Clouds' method. Again, the false alarms are located on the
Southwestern areas of the precipitation.
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2005{07{11 06:00 2005{09{25 18:00 2006{05{19 12:00

99.3 % 95.9 % 98.5 %
Cc Pc

Ct 39703 0
Pt 269 108

Cc Pc

Ct 15705 1065
Pt 1007 32299

Cc Pc

Ct 0 0
Pt 2074 134992

Figure 3.30: Classi�cation results using the MSG data fusion method on th e three
case examples. Top row: Radar images, Middle row: Classi�ed images (blue is pre-
cipitation and red is clutter), Bottom row: Filtered radar i mages. The classi�cations
accuracy and confusion matrix are found below (Subscript t meanstruth and subscript
c means classi�cation , cf. Figure 3.27)
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2005{07{11 06:00 2005{09{25 18:00 2006{05{19 12:00

97.1 % 95.0 % 95.1 %
Cc Pc

Ct 38583 1120
Pt 23 354

Cc Pc

Ct 15747 1023
Pt 1460 31846

Cc Pc

Ct 0 0
Pt 6708 130358

Figure 3.31: Classi�cation results using the 'Precipitating Clouds' da ta fusion
method on the three case examples. Top row: Radar images, Middle row: Clas-
si�ed images (blue is precipitation and red is clutter), Bot tom row: Filtered radar
images. The classi�cations accuracy and confusion matrix are found below (Subscript
t means truth and subscript c means classi�cation , cf. Figure 3.27)
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3.14 Summary and conclusion

In this chapter, a method using information from multispectral satellite images
to detect clutter in weather radar data was developed, evaluated, and applied.

The data used as input to the method was 1) the 11 bands of from the SEVIRI
sensor on board the Meteosat Second Generation platform and2) an operational
nowcasting product called 'Precipitating Clouds' which was derived from the 11
MSG bands. A di�erent classi�cation procedure was used for each of these.

Training data for the model was extracted from 60 pairs of co-located radar and
satellite data sets from 15 days of varying meteorological conditions.

For the MSG bands, a procedure of feature selection was used to select a subset
from the 11 bands which provided a high classi�cation accuracy and at the same
time was comprised of as few features as possible. The methodwas split into
a day and a night part due to the lack of visual features at night. For the day
features, MSG channels 1, 5, and 8, were consistently chosenas most signi�cant
in achieving a good classi�cation accuracy. For the night features the channels
6, 7, 8, 10, and 11 were chosen.

Supervised classi�cation was performed using �ve di�erent classi�ers. Linear
and quadratic discriminant analysis, a decision tree, k-nearest neighbor classi-
�cation, and a support vector machine. These were combined into an ensemble
classi�er using a majority vote between the results of each individual classi�er.
The amount of training data needed for building the classi�ers was estimated
from the construction of learning curves and 4000 samples per class were seen
to be su�cient to achieve maximum classi�cation accuracy.

The classi�cation system was evaluated by training the models using 4000 sam-
ples per class and classifying the remaining of the trainingdata as test data. The
performance of the method was accessed using the skill scores percent correct
(PC), false alarm ratio (FAR), and the Hanssen-Kuipers skill score (HKS).

The classi�cation accuracy for day features and all echoes (weak and strong
echoes combined) was estimated to be 95.82 % using the majority vote and
three classes (land and sea clutter and precipitation). Fornight features the
classi�cation accuracy was 95.28 % using (two classes). Thebest single classi�er
on day features was the k-nearest neighbor classi�er which scored 98.75 %. For
night features and all echoes, a classi�cation accuracy of 95.28 % was obtained
for the majority vote and the single best was the k-nearest neighbor again with
98.12 % accuracy. The worst classi�er was the linear discriminant function
which performed up to 12.1 % worse than the majority vote classi�er.



70 Data fusion method

The use of an ensemble classi�er was shown to improve the classi�cation per-
formance. The classi�cation accuracy was improved by 0.78 %up to 12.1 % in
comparison to the single worst classi�er, however, using the ensemble classi�er
the classi�cation accuracy was at the same time lowered in comparison to the
single best classi�er. Since it is unknown before classi�cation which classi�er
will perform the best, an ensemble classi�er can be an advantage.

For the 'Precipitating Clouds' method, a classi�cation accuracy of 94.81 % was
achieved for the day algorithm and 93.46 % for the night algorithm. This is
1.0 % and 1.8 % lower accuracy than for the MSG method. This di�erence
might be caused by the use of the untuned version of the 'Precipitation Clouds'
data set. If the 'Precipitation Clouds' product had been tuned to radar data, a
higher performance would be expected.

No large di�erence in classi�cation accuracy was observed from using two or
three classes, i.e., to split up the clutter class into separate land and sea clutter
classes, however, better clutter detection was obtained for strong precipitation
echoes than for weak echoes. This indicates a higher correlation between strong
precipitation and the multispectral features of the satellite data.

Finally, the method was applied to three case examples. Classi�cation accuracies
between 95.0 % and 98.5 % were obtained. Widespread clutter and precipitation
was classi�ed well, however, misclassi�cation occurs on the edges of precipitation
areas due to misalignment issues related to the use of multiple data sources from
multiple sensors.

In the publications of the preliminary results of these methods, classi�cation
accuracies between 92.1 % and 95.5 % were seen for the MSG method [19] and
91.9 % and 100 % for the 'Precipitating Clouds' method [18]. These results
were achieved on a limited size dataset, and it was concludedthat the methods
should be evaluated on longer time series of data, since it isexpected that high
performance of a method can be achieved easily using one or two images, but
as the gamut of the feature spaces expands the performance decreases. Thus,
in this study, a large dataset was used for training of the classi�ers and for the
evaluation of the classi�cation. It can be concluded that the methods perform
very well on a larger dataset as well and that the accuracies obtained (around
95 %) encourages the use of the methods in operational applications.



Chapter 4

Spatio-temporal method

4.1 Introduction

In qualitative operational use of weather radar images, a common way to visu-
ally distinguish ground clutter from precipitation is to in spect the evolution of
radar echoes in a series of consecutive radar images. Typically, clutter echoes are
static or display a random motion pattern (static clutter of ten originates from
non-moving targets like mountains and buildings and less static clutter often
originates from the sea surface). Precipitation, on the other hand, typically dis-
plays a more homogeneous motion pattern determined by the atmospheric wind
�eld and other meteorological processes like precipitation growth and decay.

This is illustrated in Figure 4.1, where radar images at intervals of 10 and 60
minutes show how precipitation echoes move steadily and land clutter echoes
remain in the same position.
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Figure 4.1: Radar images at times T (left), T+10 minutes (middle), and T+ 60
minutes (right). A precipitation area is moving in from the S outhwest towards a
stationary land clutter area. See also Figure 4.3.

The method proposed in this chapter is a heuristic, spatio-temporal method
making use of the characteristics described above for classi�cation of radar
echoes into precipitation and clutter classes.

Firstly, the motion �eld between two consecutive radar images is identi�ed us-
ing an optical ow technique. From the motion �eld, features are extracted
which enable the discrimination of areas of homogeneous motion and areas of
random (or no) motion. To make the classi�cation more robust, additional ex-
ternal information on the motion of the precipitation and cl ouds is taken from
a numerical weather prediction model.

The idea behind the method is similar to the methods that use the fact that
the uctuations and decorrelation of radar echoes is fasterfor clutter than for
precipitation. The application of optical ow for clutter d etection, however,
is not widespread. One method [57], used the root-mean-square between �ve
consecutive radar images to highlight areas of changes in motion and to detect
areas of clutter and precipitation. The Doppler velocity of the radar echoes was
used as an additional feature.

4.2 Data

Radar data

As input to the method the same radar images as used in the previous chapter
were extracted from the database. The next consecutive images 10 minutes
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after, i.e., at 01:10, 06:10, 12:10, and 18:10 UTC were also extracted to be able
to detect the motion �eld.

Wind vectors from NWP

Prior information on the motion of precipitation areas is available from numeri-
cal weather models. HIRLAM (HIRLAM is short for: HIgh Resolu tion Limited
Area Model) is an operational numerical weather prediction system used at
several European meteorological institutes. HIRLAM provides predictions of a
wide range of meteorological parameters (temperature, airpressure, humidity,
wind, etc.) on a grid consisting of 40 vertical levels (up to 40 km into the at-
mosphere) and a horizontal grid of 0.05� (approximately 5 km). HIRLAM is
described more in detail in Section 5.3.2in Chapter 5. From HIRLAM, the
wind vectors were extracted for the same times as the radar image pairs.

The atmospheric wind varies both in the vertical and horizontal direction. To
relate the NWP wind predictions to the motion of clouds and precipitation
the average wind velocity between 0:5 km and 3 km height (where the observed
precipitation occurs) was computed from the 3D grid of wind vectors. Of course
the motion of precipitation in weather radar images is not only determined by
the atmospheric wind but also by other atmospheric processes related to cloud
dynamics. The wind �eld is, however, probably the most signi�cant contributor
to the spatio-temporal evolution of radar echoes on short time scales such as
the one used in this study.

4.3 Feature extraction

Optical ow

To estimate the motion of radar echoes in between two images,an optical ow
technique is used. Several applications of optical ow techniques are found in
meteorological image analysis. It is applied, for example,in the determination
of atmospheric motion vectors (the wind �eld) by detection of the optical ow
in the water vapor channels of multispectral satellite images [38]. To improve
the temporal resolution in sequences of satellite images, optical ow has been
used to enable temporal interpolation in-between images [50], and in the �eld
of weather radar it is widely used in nowcasting of precipitation [37], [20].

Several methods for deriving the optical ow [39] in image series exists (cf. re-
views in [8] and [50]). The main groups aredi�erential methods , frequency-based
methods, and region-based matching methods. The �rst use the gradients of the
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image intensities to compute image motion and the second detects the ow in the
frequency domain. The third method is based on detection of the ow direction
and speed by matching of regions between images using for example the cross-
correlation. Matching-based methods are recommended for cases where a small
number of images exists (large motions and undersampled image sequences) in
comparison to gradient-based methods [8], and hence a region-based matching
method for computation of optical ow was chosen.

The widely used region-based matching method,Anandan's method [4], was
applied. The method computes the optical ow using a pyramidapproach. First,
the large scale motions are derived on a coarse scale and these are subsequently
propagated to �ner scales. The matching was done using a 5-by-5 pixels moving
window and the number of hierarchical pyramid levels were set to 4.

Experiments with preprocessing of the images by smoothing were carried out.
Smoothing is often applied prior to optical ow computation to remove noise.
However, in this study, if too much smoothing was applied then the features
which make precise identi�cation of the optical ow were removed as well and
the high frequency motion pattern of clutter was dampened. The pre-smoothing
provided no improvement to the results and was omitted. The reason why pre-
smoothing had no positive e�ect could also be due to the coarse-to-�ne ow
detection method which automatically involves some noise reduction on the
coarse levels.

From the detected ow in pixel coordinates the directions of the velocity �eld
were converted into azimuth angles and the speeds were converted from pixels
per 10 minutes into meters per second.

In Figure 4.2 the feature histograms are shown for the optical ow direction
and speed for the clutter and precipitation classes. For thedistribution of ow
direction it is noticed how for the training data used in this study, the preferred
ow direction of precipitation was around 240 degrees. This�ts well with the
fact that the prevailing wind directions in Denmark is West and Southwest (be-
tween 245 and 270 degrees). The clutter classes display nearly uniform feature
histograms, as would be expected. The distribution of optical ow speed shows
that the land clutter class has predominantly low speeds (peak value around
5 m=s. Of course, a value of 0 m=s would be expected for stationary land clut-
ter, but when watching land clutter in a radar animation some uctuations are
observed, which are detected as low speed motion by the optical ow algorithm.
The precipitation and sea clutter classes are quite similarwith average speeds
around 15 m=s. The overlap between all three classes is quite large and inspec-
tion of the conditional probabilities for the classes (Appendix C, Figures C.15
to C.20, top two plots) shows the little potential of using the detected speed
alone to remove clutter.
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Figure 4.2: The distribution of optical ow direction (left) and speed ( right) for
clutter and precipitation classes. Total number of samples : 1.140.697.

To show the potential of the spatio-temporal method, an example is presented.
For an area of precipitation and land clutter (Figure 4.3) the optical ow was
computed (shown in Figure 4.4). It is seen that the detected optical ow of
precipitation (in the left side of the image subset) has a homogeneous direction
(to the Northeast), but that the clutter area shows a much more chaotic pattern.
Comparison of the optical ow �eld with the predicted wind �e ld from the
numerical weather prediction model (Figures 4.5, 4.6, and 4.7) also highlights the
di�erence between clutter and precipitation. The di�erenc e in the distribution
of directions is clearly seen in rose diagrams of the two classes (Figure 4.8). The
di�erence in speed is also very di�erent (Figures 4.6and 4.7). The precipitation
area shows higher speeds than the clutter, which makes sensesince the land
clutter originates from stationary targets.

Figure 4.3: Study area for example of potential of optical ow features. 2005{09{25
18:00. The optical ow of the subset and its consecutive image is shown in Figure 4.4.
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