

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 20, 2024

Model checking conditional CSL for continuous-time Markov chains

Gao, Yang; Xu, Ming; Zhan, Naijun; Zhang, Lijun

Published in:
Information Processing Letters

Link to article, DOI:
10.1016/j.ipl.2012.09.009

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Gao, Y., Xu, M., Zhan, N., & Zhang, L. (2013). Model checking conditional CSL for continuous-time Markov
chains. Information Processing Letters, 113(1-2), 44-50. https://doi.org/10.1016/j.ipl.2012.09.009

https://doi.org/10.1016/j.ipl.2012.09.009
https://orbit.dtu.dk/en/publications/c81f9b57-e7d3-4029-a3c5-f831d4ee8eb2
https://doi.org/10.1016/j.ipl.2012.09.009

Information Processing Letters 113 (2013) 44–50
Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Model checking conditional CSL for continuous-time Markov chains

Yang Gao a,1, Ming Xu b,2, Naijun Zhan a,1, Lijun Zhang c,∗,3

a State Key Lab. of Comp. Sci., Institute of Software, Chinese Academy of Sciences, China
b Department of Computer Science and Technology, East China Normal University, China
c Technical University of Denmark, DTU Informatics, Denmark

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 July 2012
Received in revised form 31 August 2012
Accepted 26 September 2012
Available online 28 September 2012
Communicated by J.L. Fiadeiro

Keywords:
Formal methods
Probabilistic systems
Continuous-time Markov chains
Continuous stochastic logic
Conditional logic

In this paper, we consider the model-checking problem of continuous-time Markov chains
(CTMCs) with respect to conditional logic. To the end, we extend Continuous Stochastic
Logic introduced in Aziz et al. (2000) [1] to Conditional Continuous Stochastic Logic (CCSL)
by introducing a conditional probabilistic operator. CCSL allows us to express a richer class
of properties for CTMCs. Based on a parameterized product obtained from the CTMC and
an automaton extracted from a given CCSL formula, we propose an approximate model
checking algorithm and analyse its complexity.

Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved.
1. Introduction

Continuous-time Markov chains (CTMC) have received
considerable attentions in network performance analysis,
model checking, and system biology. In [1], Continuous
Stochastic Logic (CSL) has been introduced, that has been
widely used to specify properties over CTMCs.

In the paper [1], Aziz et al. focused on the decidabil-
ity of the model-checking of CSL. Later, Baier et al. [2]
presented an approximate model checking algorithm for the
case restricted to binary until formulas. Recently, the ap-
proximate algorithm has been extended to handle nested
until formulas in [3]. The main idea is to exploit the no-
tion of stratified CTMCs, which are a subclass of CTMCs that
have the nice feature allowing one to obtain the desired
probability using a sequence of transient analysis. Then,
the product of the CTMC and a deterministic finite au-
tomaton (DFA) obtained from the nested until formula is

* Corresponding author.
E-mail addresses: gaoy@ios.ac.cn (Y. Gao), mxu@cs.ecnu.edu.cn

(M. Xu), znj@ios.ac.cn (N. Zhan), zhang@imm.dtu.dk (L. Zhang).
1 Supported in part by NSFC projects 91118007 and 60970031.
2 Supported by NSFC project 11071273.
3 Supported by IDEA4CPS and MT-LAB (a VKR Centre of Excellence).
0020-0190/$ – see front matter Crown Copyright © 2012 Published by Elsevier
http://dx.doi.org/10.1016/j.ipl.2012.09.009
constructed, which is guaranteed to be stratified by con-
struction. The product CTMC can then be analyzed effi-
ciently, in a similar manner as the approach in [2].

In this paper, we propose the conditional continuous
stochastic logic (CCSL), an extension of CSL with a condi-
tional probabilistic operator. CCSL allows one to express a
richer class of properties, such as:

The probability is at least 0.1, that the number of proteins
is more than 5 and the gene becomes inactive within time
interval [10,20), under the condition that the proteins in-
creasingly accumulated from 0 to k within the same time
interval [10,20).

Such property can be expressed as a state formula of
the form P�0.1(�[10,20) f ∧ g | f1 U [10,20) f2 U [10,20) · · · fk)

where f , g, f1, . . . , fk are appropriate atomic propositions.
We believe that such conditional properties are an impor-
tant extension because of the important role of conditional
probabilities in stochastic models [4].

Essentially, the model checking for the conditional
probabilistic operator deals with binary conjunction of
CCSL path formulas, which is not allowed in the classical
CSL, see [1,2]. Thus, in this paper, we extend the logic CSL
B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2012.09.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:gaoy@ios.ac.cn
mailto:mxu@cs.ecnu.edu.cn
mailto:znj@ios.ac.cn
mailto:zhang@imm.dtu.dk
http://dx.doi.org/10.1016/j.ipl.2012.09.009

Y. Gao et al. / Information Processing Letters 113 (2013) 44–50 45
with binary conjunction and disjunction operators for the
path formulas.

We discuss how to compute the probability of a con-
junctive path formula, and then present an approximate
model checking algorithm, following the approach in [3].
First, a DFA Aψ is constructed for a CCSL path formula ψ .
The next step is to construct the DFA A∧

i ψ
i for the con-

junction from the automata Aψ i . The first challenging step
is to construct the product of the CTMC and the au-
tomaton A∧

i ψ
i . A plain product construction turns out

to be insufficient: We have to pay special attention to
whether some conjuncts of the formula have been satis-
fied. We propose a notion of parameterized product con-
struction. The probability is then computed on this prod-
uct. The size of the automaton could be exponential in the
number of binary operators in the path formulas, arising
from the product construct, and the approximation calcu-
lation for the transient probability distributions is linear in
the size of the product.

Related work. There is a rich literature on model checking
techniques for CTMCs, see [1,2,5–8]. In [5,6], deterministic
timed automata (DTA) are used for specifying path proper-
ties. As discussed in [9], nested until CSL path formulas can
be expressed in DTA as well, however with a much larger
number of states. Real-time is considered in [8], with ex-
ponential complexity both in the size of the formula and
in the time bound appearing in it. In this paper, we extend
CSL path formulas by allowing conjunction and disjunction,
then accordingly extend state formulas by introducing the
conditional probabilistic operator.

The conditional probabilistic operator is directly in-
spired by the paper [10], in which the conditional prob-
abilistic operator is introduced and analyzed for Markov
decision processes (MDP). Path formulas considered there
are restricted binary path operators, and the challenge for
MDPs is to study the scheduler class guaranteeing the ex-
treme (maximal or minimal) probabilities.

2. Preliminaries

In this section, we define some basic notions that will
be used later. For details please refer to [2]. For con-
venience, we fix a set of propositions AP in the sequel,
ranged by f1, f2, g1, g2,

Definition 1. A labeled continuous-time Markov chain
(CTMC) is a tuple C = (S,R, L,α) where S is a finite set
of states, α : S → [0,1] is the initial distribution satisfy-
ing

∑
s∈S α(s) = 1, R : S × S → R�0 is a rate matrix, and

L : S → 2AP is a labeling function.

For A ⊆ S , define R(s, A) := ∑
s′∈A R(s, s′). We denote

the exit rate of s by E(s) := R(s, S). A state s is called ab-
sorbing if E(s) = 0. If R(s, s′) > 0, we say that there is a
transition from s to s′ .

Consider the CTMC in Fig. 1. If s1 is the current state
of the CTMC, the probability that some transition will be
triggered within time t is 1 − e−2t . Furthermore, there is
a competition between the transitions to s2 and s3: the
Fig. 1. C = (S,R, L,α).

probability to take the transition to s2 is R(s1,s2)
E(s1)

· (1−e−2t).
The labeling function L assigns to each state s a set of
atomic propositions L(s) ⊆ AP which are valid in s.

Transient probability. Starting with distribution α of C , the
transient probability vector at time t , denoted by πC(α, t),
is the probability distribution over states at time t . If t = 0,
we have πC(α,0)(s′) = α(s′). For t > 0, the transient prob-
ability [11] is given by: πC(α, t) = πC(α,0)eQt where Q :=
R−diag(E) is the generator matrix and diag(E) denotes the
diagonal matrix with diag(E)(s, s) = E(s).

Paths and probabilistic measures. A right continuous step
function ρ : R�0 → S is called a step function (or an infi-
nite (sample) path), where ρ(t) stands for the state at t . For
a given step function ρ and i ∈ N, we denote by ρS [i] = si
the state at the (i +1)-th step, and by ρT [i] the time spent
at ρS [i], i.e., the length of the step segment starting with
ρS [i]. Let PathC denote the set of all infinite paths, and
PathC(s) denote the subset of those paths starting from s.

Let I0, . . . , Ik−1 be nonempty intervals in R�0. The
cylinder set Cyl(s0, I0, s1, I1, . . . , sk−1, Ik−1, sk) is defined
by:{
ρ ∈ PathC

∣∣ ∀0 � i � k.

ρS [i] = si ∧ ∀0 � i < k. ρT [i] ∈ Ii
}
.

Let F(PathC) denote the smallest σ -algebra on PathC con-
taining all cylinder sets. For initial distribution α : S →
[0,1], a probability measure (denoted PrCα) on this σ -
algebra is introduced as follows: PrCα is the unique mea-
sure that satisfies: PrCα(Cyl(s)) equals α(s), and for k > 0,
PrCα(Cyl(s0, I0, . . . , Ik−1, sk)) equals

PrCα
(
Cyl(s0, I0, . . . , sk−1)

) · R(sk−1, sk)

E(sk−1)
· η(Ik−1),

where η(Ik−1) := e−E(sk−1) inf Ik−1 − e−E(sk−1) sup Ik−1 is the
probability to take a transition during Ik−1. If α(s) = 1 for
some state s ∈ S , we sometimes simply write PrCs instead
of PrCα . We omit the superscript C if it is clear from the
context.

3. Conditional continuous stochastic logic (CCSL)

This section is devoted to introducing a conditional con-
tinuous stochastic logic (CCSL) by extending the Continuous
Stochastic Logic (CSL) introduced by Aziz et al. [1] with a
conditional probabilistic operator. Let Ii be a nonempty
left-closed and right-open interval on R�0. Let 	
 ∈ {<,�,

�,>}, 0 � p � 1, and K > 1. The syntax of CCSL is defined
as:

46 Y. Gao et al. / Information Processing Letters 113 (2013) 44–50
Φ := f | ¬Φ | Φ ∧ Φ | P	
p(ϕ) | P	
p(ϕ | ϕ);
ϕ := ϕ ∧ ϕ | ϕ ∨ ϕ | Φ1 U I1 Φ2 U I2 · · ·ΦK

where f ∈ AP is an atomic proposition. The syntax of
CCSL consists of state formulas and path formulas. We
use Φ,Ψ and their indexed versions for state formulas.
The path formula Φ1 U I1 Φ2 U I2 · · ·ΦK with K > 1 is re-
ferred to as the atomic path formula. Obviously, each path
formula can be expressed into a disjunctive normal form
(DNF) ϕ = ∨

i

∧
j ψ

i j where ψ i j are atomic path formulas.
We use ψ for atomic path formulas and ϕ for general path
formulas in DNF.

Let C = (S,R, L,α) be a CTMC with s ∈ S . The semantics
of CCSL state formulas is standard: s |� true for all s ∈ S ,
s |� a iff a ∈ L(s), s |� ¬Φ iff s
|� Φ , s |� Φ ∧ Ψ iff s |� Φ

and s |� Ψ . For probabilistic formulas, we have:

s |� P	
p(ϕ) iff Prs
({ρ ∈ Path | ρ |� ϕ}) 	
 p,

s |� P	
p(ϕ1 | ϕ2)

iff
Prs({ρ ∈ Path | ρ |� ϕ1 ∧ ϕ2})

Prs({ρ ∈ Path | ρ |� ϕ2}) 	
 p

where Prs({ρ ∈ Path | ρ |� ϕ}), or Prs(ϕ) for short, de-
notes the probability measure of the set of all paths which
start from s and satisfy ϕ . Similarly, Prs(ϕ1 | ϕ2) denotes
the conditional probability Prs(ϕ1∧ϕ2)

Prs(ϕ2)
under the premise

Prs(ϕ2)
= 0.4

The semantics for the Boolean operators is standard,
and the semantics of the atomic path formula is given
by [1,3]:

ρ |� ϕ = Φ1 U I1 Φ2 U I2 · · ·ΦK iff there exist real num-
bers 0 � t1 � t2 � · · · � tK−1 such that ρ(tK−1) |� ΦK ,
and for each integer 0 < i < K we have (ti ∈ Ii) ∧ (∀t′ ∈
[ti−1, ti). ρ(t′) |� Φi), where t0 is defined to be 0 for nota-
tional convenience.

4. Model checking algorithm for CCSL

In this section, we present an algorithm for checking
CCSL properties. We first recall the deterministic finite au-
tomaton (DFA) construction for the atomic path formula ψ .
Then, we extend the construction to the conjunctive path
formula by introducing the notion of a parameterized prod-
uct construction for the given CTMC and the conjunctive
path formula. This is the key for computing the probability
of the set of paths satisfying the conjunctive path formula.
We further show how to compute the probabilities of gen-
eral path formulas. Finally we describe an algorithm for
model checking CCSL and analyze its complexity.

In the rest of the paper, let ψ i = f i
1 U Ii

1
f i
2 U Ii

2
· · · f i

Ki

with i = 1, . . . ,n be n special atomic path formulas. For
simplicity, as in [3,9] we assume that i) ai

k � ai
l and bi

k � bi
l

4 If Prs(ϕ2) = 0 for some state s, we say that Prs(ϕ1 | ϕ2) is undefined
for the CTMC C. In the rest of the paper, we assume all the condi-
tional probability formulas are defined in the model checking algorithm.
In fact, the proposed techniques of the paper suffice to check whether
Prs(ϕ2) = 0.
for any two intervals I i
k = [ai

k,bi
k) and I i

l = [ai
l ,bi

l) with
k < l; ii) all f i

k ∈ AP are pairwise distinct for i = 1, . . . ,n
and k = 1, . . . , Ki . We will drop the supscript in case n = 1.

4.1. Formula automata

In this subsection, we recall how to construct a de-
terministic finite automaton (DFA) for

∧n
i=1 ψ i . Firstly, we

consider the simple case when n = 1. So, the atomic path
formula ψ i describes the required order of f i

1-, . . . , f i
K -

states.

Definition 2 (Atomic path formula automaton). (See [3].) The
atomic path formula automaton Aψ = (Σ, Q ,qin, δ, F) is
defined as follows:

• Σ = 2{ f1,..., f K } .
• Q ={q1, . . . ,qK ,⊥} with qin = q1 and F = {q1, . . . ,qK }.
• For every a ∈ Σ , the transition relation δ is given by

δ(qK ,a) = qK , δ(⊥,a) = ⊥, and for the rest qi ∈ Q \
{qK ,⊥},

δ(qi,a) =
{

q j if j � i ∧ f i, . . . , f j−1 /∈ a ∧ f j ∈ a;
⊥ otherwise.

Both qK and ⊥ are absorbing states, i.e., with only transi-
tions leading to themselves. The former state is referred to
a good absorbing state, the latter a bad absorbing state.

The words accepted by Aψ are finite traces w ∈ Σ∗ ,
such that they can be extended to a trace w w ′ ∈ Σω that
satisfies the time–abstract (LTL) formula of the form f1 U
(f2 U (· · · (f K−1 U f K) · · ·)).

Transitions in Aψ go always from lower goal states to
higher goal states. The good state qK implies that any path
traversing qK satisfies the atomic path formula ψ under
suitable timing constraint; while the bad state ⊥ implies
that any path traversing ⊥ refutes the atomic path for-
mula ψ .

Below we define the automaton for the conjunction
of several atomic path formulas, which is essentially the
product construction.

Definition 3 (Conjunctive path formula automaton). Let ϕ =∧n
i=1 ψ i and Aψ i = (Σ i, Q i,qi

in, δi, F i) be the formula au-

tomata for ψ i respectively for i = 1, . . . ,n. Then the con-
junctive path formula automaton Aϕ = (Σ, Q ,qin, δ, F) is
defined as follows:

• Σ = 2
⋃n

i=1{ f i
1,..., f i

Ki
}
.

• Q = Q 1 × · · · × Q n with qin = (q1
in, . . . ,qn

in), and F =
F 1 × · · · × F n .

• δ((q1
k1

, . . . ,qn
kn

),a) = (δ1(q1
k1

,a1), . . . , δn(qn
kn

,an)),

where ai is the projection of a onto Σ i .

The state (q1
k1

, . . . ,qn
kn

) is good if all elements qi
ki

are

good; it is bad if at least one component qi
ki

is bad. Both
good and bad states are absorbing.

Y. Gao et al. / Information Processing Letters 113 (2013) 44–50 47
Fig. 2. The automaton Aψ1∧ψ2 .

Fig. 3. Cψ1∧ψ2 .

Example 1. In this example we consider the conjunctive
path automaton Aψ1∧ψ2 with ψ1 = f1 U f2 and ψ2 =
g1 U g2 (see Fig. 2). The initial state is (q1

1,q2
1), final states

are marked with a double circle. The transition labels in-
dicate which subsets of AP are acceptable. For example,
we have δ((q1

1,q2
1), { f2, g1}) = (q1

2,q2
1), and (q1

2,q2
2) is good.

The node labeled with ⊥ represents five bad absorbing
states (⊥,q2

1), (⊥,q2
2), (q1

1,⊥), (q1
2,⊥) and (⊥,⊥). Transi-

tions out of these two kinds of absorbing states are omit-
ted.

4.2. Product construction

We have defined the conjunctive path formula automa-
ton. Following the approach in [3], the next step would
be to construct the product of the CTMC and the automa-
ton. This step turns out to be more involved. Thus we first
start with an example illustrating that the plain product
does not work:

Example 2. Consider the CTMC in Fig. 1, and the con-
junction ψ1 ∧ ψ2 with two atomic path formulas ψ1 =
f1 U [0,2) f2 U [2,3) f3 and ψ2 = g1 U [1,3) g2. We con-
struct the product from the CTMC and the automaton
Aψ1∧ψ2 in a straightforward way: Its reachable part is
shown in Fig. 3. Notice that there is a transition from
the state (s1,q1

2,q2
1) to (s2,⊥,q2

1), since δ((q1
2,q2

1), L(s2)) =
(δ1(q1

2,∅), δ2(q2
1, {g1})) = (⊥,q2

1). Let us explain why this
plain product is not sufficient for our purpose. The valid
path ρ = s0, t0, s1, t1, s3, . . . — assuming timing constraints
are satisfied — is captured by this product, but not those
paths like ρ = s0, t0, s1, t1, s2, t2, s4, . . . , since (s2,⊥,q2
1) is

marked as a bad absorbing state.

The information missing in the product Cψ1∧ψ2 is

whether one of the atomic path formulas ψ1 (or ψ2) is
already satisfied, and the other still needs to be checked.
This motivates the definition of the parameterized prod-
uct CTMC, in which the parameter identifies such relevant
information.

Definition 4 (Parameterized product). Let C = (S,R, L,α) be
a CTMC and Aϕ be the formula automaton for
ϕ = ∧n

i=1 ψ i . Let Λ be a subset of all atomic path for-
mulas ψ i . Then the parameterized product CTMC CΛ

ϕ =
(̂S, R̂, L̂, α̂) is defined as follows:

• Ŝ = S × Q .
• The rate R̂((s,q), (s′,q′)) equals R(s, s′) if q = (q1

k1
,

. . . ,qn
kn

) is not bad, q′ = (q1
k′

1
, . . . ,qn

k′
n
), and for each

i = 1, . . . ,n,

qi
k′

i
=

{
qi

Ki
, if s′ |� f i

Ki
and ψ i ∈ Λ;

δi(qi
ki
, L(s′) ∩ { f i

1, . . . , f i
Ki

}), otherwise.

All other elements of R̂ are zero.
• The labeling function L̂(s,q) is defined in two steps:

1. If q = (q1
k1

, . . . ,qn
kn

) is not bad, L̂(s,q) equals L(s) ∩⋃n
i=1{ f i

ki
, . . . , f i

Ki
}; ∅ otherwise.

2. For i = 1, . . . ,n, add the label f i
Ki

to those states

(s,q) with qi
ki

= qi
Ki

.

• The initial distribution α̂ : S × Q → [0,1] is given by:
– α̂(s,q) equals α(s) if for i = 1, . . . ,n,

qi
ki

=
{

qi
Ki

, if s |� f i
Ki

and ψ i ∈ Λ;
δi(qi

in, L(s) ∩ { f i
1, . . . , f i

Ki
}), otherwise,

where q = (q1
k1

, . . . ,qn
kn

).

– All other elements of α̂(s,q) are zero.

In the product, each state is of the form (s, (. . . ,qi
ki
,

. . .)), in which qi
ki

from the path formula automaton of ψi

is relevant to the atomic propositions in ψ i that s satis-
fies. The parameter Λ is a set of path formulas ψ i . If a
transition in the product leads to a state s′ which satisfies
f Ki and Λ contains ψ i , the corresponding component of
the state should be marked with the good absorbing state
qi

Ki
of Aψi , i.e., (s′, (. . . ,qi

Ki
, . . .)). In what follows, we will

show that the set Λ plays an important role in keeping
track of the path formulas which have been satisfied dur-
ing the probability computation.

Example 3. The product C∅
ψ1∧ψ2 is shown in Fig. 1. Since

both ψ1 and ψ2 can be satisfied during [2,3), we need

to construct C{ψ1,ψ2}
ψ1∧ψ2 . Its reachable part is shown in Fig. 4.

Note that the previous state (s1,q1
2,q2

1) is now renamed to
(s1,q1,q2) according to the initial distribution. It is easy to
3 1

48 Y. Gao et al. / Information Processing Letters 113 (2013) 44–50
Fig. 4. The product C{ψ1,ψ2}
ψ1∧ψ2 .

see that the path ρ = s0, t0, s1, t1, s2, t2, s4, . . . , which was
recognized as a bad path in Example 2, is captured by the
new parameterized product CTMC during [2,3) (assuming
timing constraints are satisfied).

4.3. Probability computation

As in [3,9], the product CTMC stratifies the original
CTMC in the sense that (time–abstract) bad paths will be
uniformly directed towards the bad states. This allows us
to reduce the computation by standard transient probabil-
ity computation for CTMCs, which will be discussed in this
section.

We fix a conjunctive path formula ϕ = ∧n
i=1 ψ i to-

gether with a CTMC C = (S,R, L,α). Now we focus on how
to compute the probability of such a path formula starting
from an arbitrary initial distribution α in a forward way.
We first introduce some notation for convenience:

• For an interval I and a positive number h, let I �h de-
note the set {t − h | t ∈ I ∧ t � h}, and let ψ � h denote
the formula f1 U I1�h f2 U I2�h · · · f K .

• For 1 � i � j � K , define f i... j := ∨ j
k=i fk .

• For 1 � i < K , define f[i] := f i U Ii f i+1 U Ii+1 · · · f K .
• For a state formula Φ , let C[Φ] be derived from C by

making its states that satisfy Φ absorbing.

Definition 5 (Indicator matrix). Given a state formula Φ and
a subset Λ of {ψ i | i = 1, . . . ,n}, the indicator matrix IΛΦ is
defined by:

• If (s, (q1
k1

, . . . ,qn
kn

)) |� Φ ,

IΛΦ((s, (q1
k1

, . . . ,qn
kn

)), (s, (q1
k′

1
, . . . ,qn

k′
n
))) = 1, where qi

k′
i

is qi
Ki

if ψ i ∈ Λ; qi
ki

otherwise.

• All other entries of IΛΦ are zero.

Now we show how to compute the probability
PrCα(

∧n
i=1 ψ i) in a forward way.

Theorem 1 (Probability computation). Given a conjunctive path
formula ϕ = ∧n

i=1 ψ i and a CTMC C = (S,R, L,α) equipped
with the following notations:

• Let h be the least nonzero endpoint of all intervals I i
k occur-

ring in ϕ , and let Λ be the set {ψ i | h > ai
Ki−1}.

• If h < maxn
i=1{bi

Ki−1}, let h′ be the least endpoint of all in-

tervals I i
k greater than h, and let Λ′ be the set {ψ i | h′ >

ai }.
Ki−1
• For i = 1, . . . ,n, let ai
0 = 0, bi

0 = a1
1 , ai

Ki
= bi

Ki−1 , bi
Ki

= ∞
and f i

Ki+1 = f i
Ki

, and let ki, li be the unique indices such

that bi
ki−1 � h < bi

ki
and ai

li−1 < h � ai
li

.

The probability PrCα(ϕ) = Pr
CΛ

ϕ

α̂ (ϕ) is computed as follows:

1. If h < maxn
i=1{bi

Ki−1}, then

Pr
CΛ

ϕ

α̂ (ϕ) = π
CΛ

ϕ [¬∧n
i=1 f i

1...li
]
(α̂,h) · IΛ

′∧n
i=1 f i

ki ...li

· Pr
CΛ′

ϕ

(·)

(
n∧

i=1

f i
[ki] � h

)
, (1)

where PrC(·)(ϕ) stands for the vector (PrCs (ϕ))s∈S .

2. Otherwise h = maxn
i=1{bi

Ki−1}, then

Pr
CΛ

ϕ

α̂ (ϕ) = πCΛ
ϕ (α̂,h) · IΛ∧n

i=1 f i
Ki

· (1, . . . ,1)T. (2)

The proof is given in Appendix A for completeness,
which follows the same idea as the proof in [9]. Intu-
itively, the computation is performed by traversing through
the time intervals in a forward way in the product CTMC.
The time is partitioned into finitely many intervals using
endpoints appearing in the formula. With the initial dis-
tribution α̂, we compute the probability distribution of
all states at the time point h for the first interval [0,h),
which determines the parameter Λ. The indicator matrix
filters out all paths dissatisfying ϕ at the time point h. The
parameter Λ′ is determined by the next interval [h,h′).
We recursively compute the probability distribution at the
time point h′ , and repeat this until the last time point.

The parameter Λ will be repeatedly adjusted when we
push the time forward. We illustrate the theorem by com-
puting Prs0 (ψ

1 ∧ ψ2) in the following example.

Example 4. Let ψ1 = f1 U [0,2) f2 U [2,3) f3 and ψ2 =
g1 U [1,3) g2. We compute Prs0 (ψ

1 ∧ ψ2) in three phases.
Initially, a2

1 = 1 and b1
1 = a1

2 = 2 are the first two
least nonzero endpoints, so h = 1 and h′ = 2. Accord-
ingly, Λ = ∅ and Λ′ = {ψ2}. By Theorem 1, k1 = 1,
l1 = 2, k2 = 1 and l2 = 1, which means we should
pick out the states satisfying f1 ∨ f2 and g1 at time

point h. Then, we compute π
C∅

ψ1∧ψ2 [¬(f1∨ f2∧g1)]
(α,h) —

the probability distribution at time point h = 1 w.r.t. the
product CTMC equipped with parameter ∅ showed in
Fig. 3. The indicator matrix has only two nonzero entries

I{ψ
2}

f1...2∧g1...1
((s0,q1

1,q2
1), (s0,q1

1,q2
1)) = 1 and I{ψ

2}
f1...2∧g1...1

((s1,

q1
2,q2

1), (s1,q1
2,q2

1)) = 1. After this step, we push forward
the time, so ψ1 and ψ2 become f1 U [0,1) f2 U [1,2) f3 and
g1 U [0,2) g2 respectively.

In the next phase, h = 1, h′ = 2, accordingly, Λ = {ψ2}
and Λ′ = {ψ1,ψ2}. Then, we compute the probability
distribution at h = 1 w.r.t. the same CTMC in Fig. 3.
At the next phase, ψ1 and ψ2 may be fully satisfied,
we should relocate the state (s1,q1

2,q2
1) to (s1,q1

3,q2
1),

so the indicator matrix has only one nonzero entry

Y. Gao et al. / Information Processing Letters 113 (2013) 44–50 49
I{ψ
1,ψ2}

f2...2∧g1...2
((s1,q1

2,q2
1), (s1,q1

3,q2
1)) = 1. Now the formulas

become f2 U [0,1) f3 and g1 U [0,1) g2.
In the last phase, h = max{b1

K1−1,b2
K2−1} = 1, Λ =

{ψ1,ψ2}, and we get to the end of the computation. Then,
we compute the probability distribution at h = 1 w.r.t. the
CTMC in Fig. 4. Now the indicator matrix has only two

nonzero entries I{ψ
1,ψ2}

f3∧g2
((s3,q1

3,q2
2), (s3,q1

3,q2
2)) = 1 and

I{ψ
1,ψ2}

f3∧g2
((s4,q1

3,q2
2), (s4,q1

3,q2
2)) = 1.

The total computational results are

t 0 1 2 3

(s0,q1
1,q2

1) 1 e−2 0 0

(s1,q1
2,q2

1) 0 2e−2 0 0

(s1,q1
3,q2

1) 0 0 4e−4 0

(s3,q1
3,q2

2) 0 0 0 8
3 e−4 − 2e−5 − 2

3 e−7

(s4,q1
3,q2

2) 0 0 0 4
3 e−4 − 2e−5 + 2

3 e−7

Therefore, we have Prs0 (ψ
1 ∧ψ2) = 4e−4 −4e−5 by col-

lecting all desired probabilities.

Corollary 1. Given a path formula ϕ = ∨m
i=1

∧
j ψ

i j in DNF

and a CTMC C , the probability PrCα(ϕ) can be computed by
inclusion–exclusion principle.

4.4. Model checking algorithm and its complexity

Let C = (S,R, L,α) be a CTMC, s ∈ S , and Φ be a CCSL
state formula. The model checking problem is to check
whether s |� Φ . The standard algorithm to solve CTL-like
model checking problems recursively computes the sets of
states satisfying Ψ , denoted by Sat(Ψ), for all state subfor-
mulas Ψ of Φ . For CCSL, the cases where Ψ is an atomic
proposition, a negation or a conjunction are standard as
for CTL. The case when Ψ is a (conditional) probabilistic
formula is the challenging part. The model checking algo-
rithm for P	
p(ψ) has been discussed in [1,9], thus below
we discuss the case of Prs(ϕ | ψ).

Let Ψ = P	
p(ϕ | ψ) with ϕ = Φ1 U I1 Φ2 U I2 . . .Φk
and ψ = Ψ1 U J1 Ψ2 U J2 . . .Ψl . By definition, checking
Ψ is equivalent to checking whether Prs(ϕ | ψ)	
p, i.e.,
whether the quotient of Prs(ϕ ∧ ψ) and Prs(ψ) meets
the bound 	
p. Now we focus on the conjunction part.
Assume that the sets Sat(Φi) and Sat(Ψ j) have been cal-
culated recursively. We replace5 Φ1, . . . ,Φk and Ψ1, . . . ,Ψl
by fresh (pairwise disjoint) atomic propositions f1, . . . , fk
and g1, . . . , gl , and add the label f i (resp. g j) to the state s
if s ∈ Sat(Φi) (resp. s ∈ Sat(Ψ j)). Thus, after applying The-
orem 1 and Corollary 1 a finite number of times, Prs(ϕ | ψ)

is reduced to a product of transient probabilities. We can
now apply the results in [1] as follows: By definition,
Prs(ϕ | ψ) can be expressed as a quotient of finite sum of
the form

∑
k ηkeγk (with algebraic ηk and γk). Aziz et al.

proved that it is decidable whether such an expression is

5 If any state subformula is undefined, our algorithm will then report
undefined.
	
 p, for p ∈ Q, which implies directly the decidability of
the model checking problem of CCSL.

Finally we discuss the complexity of the approach for
approximating Prs(ϕ). The size of the product CTMC is ex-
actly the product of the sizes of the original CTMC and
the automaton obtained from the conjunctive path for-
mula, i.e. ‖C‖ · ∏

i ‖ψ i‖. Then, the usual numerical algo-
rithm can be used to approximate the transient distribu-
tions, for instance via uniformization [11], or Runge–Kutta
method, which is linear in the size of the product, the
largest exit rate and the largest finite time bounds. Hence,
the complexity for computing the probability of the con-
junctive path formula is linear in the product of the sizes
of the product CTMC and the conjunctive path formula, i.e.
O([∑i ‖ψ i‖] · ‖C‖ · [∏i ‖ψ i‖]). Furthermore, the complex-
ity for computing the probability of the path formula in
DNF as in Corollary 1 is bounded by O([∑i j ‖ψ i j‖] · ‖C‖ ·
[∏i j ‖ψ i j‖]). It is also the worst case complexity of our
model checking algorithm.

Appendix A. Proof of Theorem 1

The equation PrCα(ϕ) = Pr
CΛ

ϕ

α̂ (ϕ) can be proven by estab-
lishing mapping of the cylinder sets, similar as the proof
in [9] for atomic path formula. We provide the proof of
Eq. (1), by extending the proof in [9] for the parametrized
product CTMC. For s′ ∈ Ŝ , define the event Z(s′) := {σ |
σ@h = s′ ∧ ∀t ∈ [0,h). σ@t |� ∧n

i=1 f i
1...li

}, where σ@h
stands for the state of the path σ at time h. The follow-
ing inclusion holds:

{σ | σ |� ϕ} ⊆
⋃

s′|�∧n
i=1 f i

ki ...li

Z
(
s′).

Note this property holds for the product CTMC, but not
for general CTMCs. Intuitively, the deterministic automa-
ton stratifies the original CTMC in a way, such that those
paths σ with σ
|� ϕ will be directed to the bad absorbing
state ⊥. This is the crucial property allowing us to perform
a forward transient analysis. The formal argument is done
using the notion of stratification, and we refer to [3,9] for
details.

Now we fix first α̂s as an initial distribution with α̂s = 1
and s |� ∧n

i=1 f i
1...li

. By the law of total probability, we have

Pr
CΛ

ϕ
s (ϕ) =

∑
s′|�∧n

i=1 f i
ki ...li

Pr
CΛ

ϕ
s

(
Z
(
s′)) · Pr

CΛ
ϕ

s
(
ϕ

∣∣ Z
(
s′)).

By definition of Z(s′), we have

Pr
CΛ

ϕ
s

(
Z
(
s′)) = π

CΛ
ϕ [¬(

∧n
i=1 f i

1...li
)]
(s,h)

(
s′).

Now let σ ∈ Z(s′) be a path. σ |� ϕ implies that at time h,
σ has reached a state in a phase from q1

k1
, . . . ,q1

l1
,q2

k2
, . . . ,

q2
l2
, . . . ,qn

kn
, . . . ,qn

ln
. So the suffix path of σ starting at

time h satisfies
∧n

i=1 f i
[ki] � h. From the time point h, the

labels f 1
1...k1−1, f 2

1...k2−1, . . . , f n
1...kn−1 have been irrelevant

for checking the formula ϕ . Thus we could reconstruct
the product CTMC with parameter Λ′ for the next phase
and put forward the formula. By the Markov property of
CTMCs, we have

50 Y. Gao et al. / Information Processing Letters 113 (2013) 44–50
Pr
CΛ

ϕ
s (ϕ) =

∑
s′|�∧n

i=1 f i
ki ...li

π
CΛ

ϕ [¬(
∧n

i=1 f i
1...li

)]
(s,h)

(
s′)

· Pr
CΛ′

ϕ

s′

(
n∧

i=1

f i
[ki] � h

)

=
∑
s′∈S

π
CΛ

ϕ [¬(
∧n

i=1 f i
1...li

)]
(s,h)

(
s′) · 1Λ′

s′|�∧n
i=1 f i

ki ...li

· Pr
CΛ′

ϕ

s′

(
n∧

i=1

f i
[ki] � h

)
.

Hence Eq. (1) holds by Pr
CΛ

ϕ

α̂ (ϕ) = ∑
s∈ Ŝ α̂(s)Pr

CΛ
ϕ

s (ϕ).
At last, we prove Eq. (2). For s′ ∈ Ŝ , define the event

Z(s′) := {σ | σ@h = s′ ∧ ∀t ∈ [0,h). σ@t |� ∧n
i=1 f i

1...Ki
}.

Again, in the stratified product it can be shown that {σ |
σ |� ϕ} ⊆ ⋃

s′ |�∧n
i=1 f i

Ki
Z(s′). Fix first α̂s as an initial distri-

bution with α̂s = 1 and s |� ∧n
i=1 f i

1...Ki
. By the law of total

probability, we have

Pr
CΛ

ϕ
s (ϕ) =

∑
s′|�∧n

i=1 f i
Ki

Pr
CΛ

ϕ
s

(
Z
(
s′)) · Pr

CΛ
ϕ

s
(
ϕ

∣∣ Z
(
s′)).

By definition of Z(s′), Pr
CΛ

ϕ
s (Z(s′)) = πCΛ

ϕ (s,h)(s′) holds.
Thus,

Pr
CΛ

ϕ
s (ϕ) =

∑
s′|�∧n

i=1 f i
Ki

πCΛ
ϕ (s,h)

(
s′) · Pr

CΛ
ϕ

s
(
ϕ

∣∣ Z
(
s′)).

Now let σ ∈ Z(s′). We consider the two following cases.

• If h = maxi{bi
Ki−1} < ∞, then σ |� ϕ implies that at

time h, σ has reached a state labeled with f 1
K1

, . . . , f n
Kn

.
This state is good in the product CTMC. So

Pr
CΛ

ϕ
s (ϕ) =

∑
s′|�∧n

i=1 f i
Ki

πCΛ
ϕ (s,h)

(
s′).

It requires that the probability on the states labeled
with f 1

K1
, . . . , f n

Kn
should be added. So
Pr
CΛ

ϕ
s (ϕ) =

∑
s′∈S

πCΛ
ϕ (s,h)

(
s′) · 1Λ

s′|�∧n
i=1 f i

Ki

· 1.

Eq. (2) for general initial distribution α̂ follows as the
step 2 of this proof.

• Otherwise h = maxi{bi
Ki−1} = ∞, then Pr

CΛ
ϕ

s (ϕ) is the

probability to reach the states labeled with f 1
K1

, f 2
K2

,

. . . , f n
Kn

eventually. So we just need to pass the h to ∞
to obtain the probability. �

References

[1] A. Aziz, K. Sanwal, V. Singhal, R. Brayton, Model-checking continu-
ous-time Markov chains, ACM Trans. Comput. Log. 1 (1) (2000) 162–
170.

[2] C. Baier, B. Haverkort, H. Hermanns, J.P. Katoen, Model-checking
algorithms for continuous-time Markov chains, IEEE Trans. Softw.
Eng. 29 (6) (2003) 524–541.

[3] L. Zhang, D.N. Jansen, F. Nielson, H. Hermanns, Automata-based
CSL model checking, in: 38th International Colloquium on Inter-
national Colloquium on Automata, Languages and Programming
(ICALP), Part II, in: LNCS, vol. 6756, Springer, 2011, pp. 271–282.

[4] C. Langmead, Generalized queries and bayesian statistical model
checking in dynamic bayesian networks: Application to personalized
medicine, in: 8th Annual International Conference on Computational
Systems Bioinformatics (CSB), Life Sciences Society, 2009, pp. 201–
212.

[5] S. Donatelli, S. Haddad, J. Sproston, Model checking timed and
stochastic properties with CSLTA, IEEE Trans. Softw. Eng. 35 (2)
(2009) 224–240.

[6] T. Chen, T. Han, J.P. Katoen, A. Mereacre, Model checking of
continuous-time Markov chains against timed automata specifica-
tions, Logical Methods in Computer Science 7 (1) (2011) 1–34, Paper
No. 12.

[7] C. Baier, B.R. Haverkort, H. Hermanns, J.P. Katoen, Performance eval-
uation and model checking join forces, Commun. ACM 53 (9) (2010)
76–85.

[8] T. Chen, M. Diciolla, M. Kwiatkowska, A. Mereacre, Time-bounded
verification of CTMCs against real-time specifications, in: 9th Inter-
national Conference on Formal Modeling and Analysis of Timed Sys-
tems (FORMATS), in: LNCS, vol. 6919, Springer, 2011, pp. 26–42.

[9] L. Zhang, D.N. Jansen, F. Nielson, H. Hermanns, Efficient CSL model
checking using stratification, Logical Methods in Computer Sci-
ence 8 (2) (2012) 1–18, Paper No. 17.

[10] M.E. Andrés, P. van Rossum, Conditional probabilities over probabilis-
tic and nondeterministic systems, in: 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS), in: LNCS, vol. 4963, Springer, 2008, pp. 157–172.

[11] W.J. Stewart, Introduction to the Numerical Solution of Markov
Chains, Princeton University Press, Princeton, NJ, 1994.

	Model checking conditional CSL for continuous-time Markov chains
	1 Introduction
	2 Preliminaries
	3 Conditional continuous stochastic logic (CCSL)
	4 Model checking algorithm for CCSL
	4.1 Formula automata
	4.2 Product construction
	4.3 Probability computation
	4.4 Model checking algorithm and its complexity

	Appendix A Proof of Theorem 1
	References

