Understanding the Environmental Transmission Electron Microscope

Wagner, Jakob Birkedal

Publication date:
2012

Link back to DTU Orbit

Citation (APA):
Understanding the Environmental Transmission Electron Microscope

Jakob B. Wagner

Acknowledgements:

Filippo Cavalca, Linus D. L. Duchstein, Christian D. Damsgaard, Thomas W. Hansen, DTU Cen, Technical University of Denmark

Rafal E. Dunin-Borkowski, Institute for Microstructure Research, Forschungszentrum Jülich, Germany

Jörg R. Jinschek, FEI Europe, Eindhoven, The Netherlands

DTU Cen
Center for Electron Nanoscopy
Towards Understanding the Environmental Transmission Electron Microscope

Jakob B. Wagner

Acknowledgements:

Filippo Cavalca, Linus D. L. Duchstein, Christian D. Damsgaard, Thomas W. Hansen, DTU Cen, Technical University of Denmark

Rafal E. Dunin-Borkowski, Institute for Microstructure Research, Forschungszentrum Jülich, Germany

Jörg R. Jinschek, FEI Europe, Eindhoven, The Netherlands

DTU Cen
Center for Electron Nanoscopy
Where are We?
DTU Center for Electron Nanoscopy

- Realized by a generous donation from the A.P. Møller og Hustru Chastine McKinney Møller’s Fond til Almene Formaal
- DKK 100,000,000 ~ €14,000,000
- Grant announced in January 2006
- “Establish a World Class Facility with a unique suite of advanced electron microscopes, in a purpose-built building”
- Inaugurated in December 2007

- Hosting 7 electron microscopes
 - 2 high-end TEMs (1 ETEM)
 - 1 work horse TEM
 - 2 dual beam SEM/FIB
 - 2 SEM
What is *In Situ* Microscopy

- ...depends on who you ask...
- “The class of experiments allowing observations of materials’ dynamic response to an externally applied stimulus as it happens inside the microscope”
- The *in situ* observations may be accompanied by simultaneous measurements of the materials’ properties to directly establish structure-functionality relationships
In Situ Microscopy
- Many flavors

STM

Conductivity

Nano-indentation

Light

ETEM

Heating/annealing

FEBID

...probably many more...
What are We Trying to Achieve?

- Obtain high-resolution information
- Dynamic responses of materials as they are exposed to reactive gases at elevated temperatures
- Surface structure of materials in various environments
- Morphology of materials in different surroundings

A Look Inside the Catalytic Reactor

Reactants

Reactants

T: RT-1000° C+
P: 10^2bar

Catalyst pellets

10mm

Supported metal particles

100nm

Active surfaces

2nm

Products
Why do We Want to do *In Situ* Microscopy? Equilibrium shapes versus gas composition

H₂/H₂O
- Cu(111), d=0.21nm
- ZnO(012), d=0.19nm

H₂
- Cu(200), d=0.18nm
- Cu(111), d=0.21nm
- ZnO(011), d=0.25nm

H₂/CO
- Cu(111)
- ZnO(011)

1.5mbar, H₂/H₂O=3/1, 220°C
1.5mbar, 220°C
1.5mbar, H₂/CO=95/5, 220°C

Why do We Want to do *In Situ* Microscopy? ...continued

- Conventional electron microscopy does not always tell the full story
 - Samples are (usually) not in their operational environment
- Materials respond dynamically to changes in environment
 - Surface reconstruction due to gas adsorption
 - Phase transitions
 - Growth
- Lack of temporal resolution
- Essential for establishing structure-activity correlations

b_5 sites on the (105) surface of Ru. These sites were proposed to be the active sites for N$_2$ splitting (van Hardeveld and von Montfoort Surf. Sci. 4 (1966) 396. Figure from T.W. Hansen *et al.* *Catal Lett.* **84**, 7 (2002).
In Situ Techniques

- **In situ XRD**
 - Phase determination
 - Good for large areas

- **In situ EXAFS, FTIR**
 - Coordination
 - Chemical bonding

- **Average values**
 - No local information

- **In situ TEM**
 - Gives local information

- Etc...

Evolution of activity of industrial HDS catalysts,
B.M. Moyse, World Refining Jan/Feb (2001) 28
Imaging in the fog of gas

Can we get a clear view...?
Windowed Design

J. F. Creemer et al., Ultramicroscopy 108, 993 (2008)

N. de Jong et al., Nano Letters 10, 1028 (2010)
Differentially pumped Column

• FEI Titan 80-300
 – Highly stable platform
 – Variable high tension 80, 200, 300kV
 – Field emission electron source (XFEG)
 – Monochromator
 – Objective lens aberration corrector
 – De-contaminator (plasma cleaner)
• Differential pumping system
 – Gas is leaked in
 – Two sets of diffusion limiting apertures
 – Turbo molecular pump (TMP)
 – Ion getter pump (IGP)

The Environmental Cell
- not really a cell...

- Main purpose: to confine the gas to the vicinity of the sample thus making the gas path length along the direction of the electrons as short as possible

![Diagram of the Environmental Cell]

- Reactive gas
- Resistive heating
- e\(^{-}\) beam
- Pumping
- Capillary for residual gas analysis via QMS
- Resistive heating
- 7mm
Quantitative ETEM !?

• Obtain high-resolution information
• Dynamic responses of materials as they are exposed to reactive gases at elevated temperatures
• Surface structure of materials in various environments
• Morphology of materials in different surroundings
• Adsorbed molecules

D. S. Su et al., Angew. Chem. 47, 5005 (2008)

Loss of Intensity

- Main effect of imaging in gas is loss of intensity
- Intensity measured on a bottom mounted camera as a function of argon pressure in the sample region
- At high Ar pressure, >1400Pa, the intensity passing through the objective lens has decreased by more than a factor of 2 at 300kV
- Increasing pressure leads to loss of temporal resolution
Loss of Intensity

- Main effect of imaging in gas is loss of intensity
- Intensity measured on a bottom mounted camera as a function of argon pressure in the sample region
- At high Ar pressure, >1400Pa, the intensity passing through the objective lens has decreased by more than a factor of 2 at 300kV
- As high a primary energy is desired due to a longer mean free path in the gas phase
- Increasing pressure leads to loss of temporal resolution
Apparent Mean Cross Sections and Mean Free Paths

• Intensities fitted to:

\[
\frac{I}{I_0} = e^{-x/\lambda}
\]

• Mean free path:

\[
\lambda = \frac{1}{\sigma n}
\]

• Assuming ideal gas:

\[
pV = NRT \Rightarrow n = \frac{N}{V} = \frac{P}{RT} \Rightarrow \lambda = \frac{RT}{\sigma P}
\]

• Fit function becomes:

\[
\frac{I}{I_0} = e^{-\sigma P \times 7.5 \times 10^{-3} m}
\]

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Gas</th>
<th>(\sigma [m^2])</th>
<th>(\lambda (500 Pa) [10^{-3} m])</th>
</tr>
</thead>
<tbody>
<tr>
<td>80kV, H(_2)</td>
<td>1.8E-22</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>80kV, He</td>
<td>9.7E-23</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>80kV, N(_2)</td>
<td>8.9E-22</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>80kV, O(_2)</td>
<td>9.1E-22</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>80kV, Ar</td>
<td>1.3E-21</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>200kV, N(_2)</td>
<td>4.1E-22</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>200kV, O(_2)</td>
<td>4.1E-22</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>200kV, Ar</td>
<td>6.0E-22</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>300kV, N(_2)</td>
<td>3.2E-22</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>300kV, O(_2)</td>
<td>3.0E-22</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>300kV, Ar</td>
<td>4.5E-22</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>
Contrast and Loss of intensity (Bright field imaging)

- How does the contrast of BF images change with gas pressure?
- 2.7mrad objective aperture (semiangle)
- Illumination conditions kept constant
Contrast and Loss of intensity (Bright field imaging)

- How does the contrast of BF images change with gas pressure?
- 2.7mrad objective aperture (semiangle)
- Illumination conditions kept constant

![Graph showing relative intensity vs. position with different gas pressures: Vacuum, 460Pa Ar, 980Pa Ar, 1240Pa Ar. The graph displays a decrease in relative intensity with increasing gas pressure.]
Contrast and Loss of intensity (Bright field imaging)

- Carbon Film
- Compared to N_2 gas
- 1000 Pa N_2 between pole pieces corresponds to approx. 10nm thick solid

- Very little dependence on the objective aperture for the gas related intensity loss
- The ‘contrast’ from the gas scattering appears higher than for corresponding area density of solid
Geometry of scattering

- Scattering takes place over several millimeters.
- Back focal plane and image plane not well-defined for gas scattering.
Resolution and contrast in the presence of gas (Phase contrast)

- Effects of imaging in gas can be observed from the power spectrum of amorphous carbon film

![Image of carbon film with resolution scale and power spectrum graph]
CTF in the Presence of Ar (300kV)

- In high vacuum (red), the power spectrum is almost identical to that calculated from ctfExplorer (purple).
- At low pressures, the effect is not observable (green).
- With increasing pressure, the damping becomes increasingly visible (blue and cyan).
- With lighter gas molecules, this effect is significantly lower.
- An image was acquired in vacuum after the series (red) to ensure that the aC was not significantly damaged.
Fitting of Damping of FFTs in Ar (300kV)

- The step height in the power spectrum is plotted as a function of k.
- Each plot is fitted to an exponential decay.
- At increased pressure, the step height decreases considerably faster.
Gas composition and pressure by EELS

- Pressure (Low-loss EELS)
- Gas composition (Core-loss EELS)
- CO – EELS acquired in image mode
- IMFP is collection angle dependent

900Pa CO (300kV)
Gas composition and pressure by EELS

- CO – EELS acquired in image mode
- The collection angle is measured in the eucentric height

![Graph showing C K-edge and O K-edge](image1.png)

![Graph showing C/O quantification vs. Collection angle (mrad)](image2.png)

Legend:
- Diffraction mode (Obj. lens on)
- Image mode (Obj. lens on)
- Diffraction mode (Obj. lens off - Lorentz)
Apparent / mean collection angle (300kV)

- The measured collection angle makes little sense as the scattering occurs all over the pressurized volume.

- The atomic ratio between carbon and oxygen calculated from the acquired spectra fits the theoretical value for small (~1 mrad) collection angles.

- Consistent with the small ‘scattered contribution’ of gas to the image intensity – ‘high contrast of gas’.
Angle resolved EELS

- Angle resolved EELS are acquired in Lorentz mode (objective lens off) to simplify scattering geometry

Broadening of scattering is usually less than 5%
Spectrum imaging (300kV) - Argon

- 1100Pa of Argon – no specimen
- Spectrum imaging with 0.3eV energy-selecting slit width
- Rotationally averaged
Beam Effects

• Electrons can ionize gas molecules making them more reactive
• Surfaces can be etched by reactive gas atoms, ions and molecules
• Local heating in the electron beam
• Knock-on damage altering atomic structure
• Sample ionization
• Sample charging and de-charging
 – Removal of charge from sample as in ESEM
Is aberration correction needed / useful in Environmental TEM?

• Yes, as interface regions (including surface regions) are not disturbed by delocalisation

• Au on graphene, $P_{H_2} = 430$Pa, RT

• Dynamics at interface / surface
Outlook and Challenges (Wish list)

• More to be done to understand the gas-electron interaction in the imaging process
• Detector efficiency
• Sample heating holders
 – Drift-free environment
 – Investigations while ON the heating ramp
 – Interference with electron beam
• Sealing technology
• Complementary *in situ* techniques
 – Light (Visible, IR, UV)
 – XRD (Transfer system)
• Sample heating and local temperature
 – The local temperature is a multi-parameter problem involving multiple sources and sinks