Understanding the Environmental Transmission Electron Microscope

Wagner, Jakob Birkedal

Publication date:
2012

Citation (APA):
Understanding the Environmental Transmission Electron Microscope

Jakob B. Wagner

Acknowledgements:

Filippo Cavalca, Linus D. L. Duchstein, Christian D. Damsgaard, Thomas W. Hansen, DTU Cen, Technical University of Denmark

Rafal E. Dunin-Borkowski, Institute for Microstructure Research, Forschungszentrum Jülich, Germany

Jörg R. Jinschek, FEI Europe, Eindhoven, The Netherlands
Towards Understanding the Environmental Transmission Electron Microscope

Jakob B. Wagner

Acknowledgements:

Filippo Cavalca, Linus D. L. Duchstein, Christian D. Damsgaard, Thomas W. Hansen, DTU Cen, Technical University of Denmark

Rafal E. Dunin-Borkowski, Institute for Microstructure Research, Forschungszentrum Jülich, Germany

Jörg R. Jinschek, FEI Europe, Eindhoven, The Netherlands

DTU Cen
Center for Electron Nanoscopy
Where are We?
DTU Center for Electron Nanoscopy

- Realized by a generous donation from the A.P. Møller og Hustru Chastine McKinney Møller’s Fond til Almene Formaal
- DKK 100,000,000 ~ €14,000,000
- Grant announced in January 2006
- “Establish a World Class Facility with a unique suite of advanced electron microscopes, in a purpose-built building”
- Inaugurated in December 2007

- Hosting 7 electron microscopes
 - 2 high-end TEMs (1 ETEM)
 - 1 work horse TEM
 - 2 dual beam SEM/FIB
 - 2 SEM
What is *In Situ* Microscopy

- ...depends on who you ask...
- “The class of experiments allowing observations of materials’ dynamic response to an externally applied stimulus as it happens inside the microscope”
- The *in situ* observations may be accompanied by simultaneous measurements of the materials’ properties to directly establish structure-functionality relationships
In Situ Microscopy
- Many flavors

STM

Conductivity

Nano-indentation

Light

In situ TEM

ETEM

Heating/annealing

FEBID

...probably many more...
What are We Trying to Achieve?

• Obtain high-resolution information
• Dynamic responses of materials as they are exposed to reactive gases at elevated temperatures
• Surface structure of materials in various environments
• Morphology of materials in different surroundings

A Look Inside the Catalytic Reactor

Reactants

T: RT-1000°C
P: 10^2 bar

Catalyst pellets

10mm

Supported metal particles

100nm

Active surfaces

2nm

Products
Why do We Want to do In Situ Microscopy? Equilibrium shapes versus gas composition

\[\text{H}_2/\text{H}_2\text{O} \quad \text{H}_2 \quad \text{H}_2/\text{CO} \]

1.5 mbar, \(\text{H}_2/\text{H}_2\text{O}=3/1 \), 220°C
1.5 mbar, 220°C
1.5 mbar, \(\text{H}_2/\text{CO}=95/5 \), 220°C

Why do We Want to do *In Situ* Microscopy? ...

...continued

- Conventional electron microscopy does not always tell the full story
 - Samples are (usually) not in their operational environment
- Materials respond dynamically to changes in environment
 - Surface reconstruction due to gas adsorption
 - Phase transitions
 - Growth
- Lack of temporal resolution
- Essential for establishing structure-activity correlations

\[b_5 \] sites on the (105) surface of Ru. These sites were proposed to be the active sites for \(\text{N}_2 \) splitting (van Hardeveld and von Montfoort Surf. Sci. 4 (1966) 396. Figure from T.W. Hansen *et al.* *Catal Lett.* **84**, 7 (2002).
In Situ Techniques

- *In situ* XRD
 - Phase determination
 - Good for large areas
- *In situ* EXAFS, FTIR
 - Coordination
 - Chemical bonding
- Average values
 - No local information
- *In situ* TEM
 - Gives local information
- Etc...

Imaging in the fog of gas

Can we get a clear view...?
Windowed Design

J. F. Creemer et al., Ultramicroscopy 108, 993 (2008)

N. de Jong et al., Nano Letters 10, 1028 (2010)
Differentially pumped Column

- FEI Titan 80-300
 - Highly stable platform
 - Variable high tension 80, 200, 300kV
 - Field emission electron source (XFEG)
 - Monochromator
 - Objective lens aberration corrector
 - De-contaminator (plasma cleaner)

- Differential pumping system
 - Gas is leaked in
 - Two sets of diffusion limiting apertures
 - Turbo molecular pump (TMP)
 - Ion getter pump (IGP)

The Environmental Cell
- not really a cell...

- Main purpose: to confine the gas to the vicinity of the sample thus making the gas path length along the direction of the electrons as short as possible
Quantitative ETEM !?

- Obtain high-resolution information
- Dynamic responses of materials as they are exposed to reactive gases at elevated temperatures
- Surface structure of materials in various environments
- Morphology of materials in different surroundings
- Adsorbed molecules

D. S. Su et al., *Angew. Chem.* 47, 5005 (2008)

Loss of Intensity

- Main effect of imaging in gas is loss of intensity
- Intensity measured on a bottom mounted camera as a function of argon pressure in the sample region
- At high Ar pressure, >1400Pa, the intensity passing through the objective lens has decreased by more than a factor of 2 at 300kV
- Increasing pressure leads to loss of temporal resolution
Loss of Intensity

- Main effect of imaging in gas is loss of intensity
- Intensity measured on a bottom mounted camera as a function of argon pressure in the sample region
- At high Ar pressure, >1400Pa, the intensity passing through the objective lens has decreased by more than a factor of 2 at 300kV
- As high a primary energy is desired due to a longer mean free path in the gas phase
- Increasing pressure leads to loss of temporal resolution
Apparent Mean Cross Sections and Mean Free Paths

- Intensities fitted to:
 \[\frac{I}{I_0} = e^{-x/\lambda} \]

- Mean free path:
 \[\lambda = \frac{1}{\sigma n} \]

- Assuming ideal gas:
 \[pV = NRT \Rightarrow n = \frac{N}{V} = \frac{P}{RT} \Rightarrow \lambda = \frac{RT}{\sigma P} \]

- Fit function becomes:
 \[\frac{I}{I_0} = e^{-\frac{\sigma P}{RT} \times 7.5 \times 10^{-3} m} \]

<table>
<thead>
<tr>
<th></th>
<th>σ [m²]</th>
<th>λ (500Pa) [10⁻³ m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>80kV, H₂</td>
<td>1.8E-22</td>
<td>46</td>
</tr>
<tr>
<td>80kV, He</td>
<td>9.7E-23</td>
<td>85</td>
</tr>
<tr>
<td>80kV, N₂</td>
<td>8.9E-22</td>
<td>9</td>
</tr>
<tr>
<td>80kV, O₂</td>
<td>9.1E-22</td>
<td>9</td>
</tr>
<tr>
<td>80kV, Ar</td>
<td>1.3E-21</td>
<td>7</td>
</tr>
<tr>
<td>200kV, N₂</td>
<td>4.1E-22</td>
<td>20</td>
</tr>
<tr>
<td>200kV, O₂</td>
<td>4.1E-22</td>
<td>20</td>
</tr>
<tr>
<td>200kV, Ar</td>
<td>6.0E-22</td>
<td>14</td>
</tr>
<tr>
<td>300kV, N₂</td>
<td>3.2E-22</td>
<td>26</td>
</tr>
<tr>
<td>300kV, O₂</td>
<td>3.0E-22</td>
<td>28</td>
</tr>
<tr>
<td>300kV, Ar</td>
<td>4.5E-22</td>
<td>19</td>
</tr>
</tbody>
</table>
Contrast and Loss of intensity (Bright field imaging)

- How does the contrast of BF images change with gas pressure?
- 2.7mrad objective aperture (semiangle)
- Illumination conditions kept constant

![Graph showing intensity vs. position for different gas pressures.](image)

- Vacuum
- 460Pa Ar
- 980Pa Ar
- 1240Pa Ar
Contrast and Loss of intensity (Bright field imaging)

- How does the contrast of BF images change with gas pressure?
- 2.7mrad objective aperture (semiangle)
- Illumination conditions kept constant
Contrast and Loss of intensity (Bright field imaging)

- Carbon Film
- Compared to N_2 gas
- 1000 Pa N_2 between pole pieces corresponds to approx. 10nm thick solid

- Very little dependence on the objective aperture for the gas related intensity loss
- The ‘contrast’ from the gas scattering appears higher than for corresponding area density of solid
Geometry of scattering

- Scattering takes place over several millimeters.
- Back focal plane and image plane not well-defined for gas scattering.
Resolution and contrast in the presence of gas (Phase contrast)

• Effects of imaging in gas can be observed from the power spectrum of amorphous carbon film
CTF in the Presence of Ar (300kV)

- In high vacuum (red), the power spectrum is almost identical to that calculated from ctfExplorer (purple).
- At low pressures, the effect is not observable (green).
- With increasing pressure, the damping becomes increasingly visible (blue and cyan).
- With lighter gas molecules, this effect is significantly lower.
- An image was acquired in vacuum after the series (red) to ensure that the aC was not significantly damaged.
Fitting of Damping of FFTs in Ar (300kV)

- The step height in the power spectrum is plotted as a function of k.
- Each plot is fitted to an exponential decay.
- At increased pressure, the step height decreases considerably faster.
Gas composition and pressure by EELS

- Pressure (Low-loss EELS)
- Gas composition (Core-loss EELS)
- CO – EELS acquired in image mode
- IMFP is collection angle dependent

900Pa CO (300kV)

![Graph showing energy loss vs. intensity and pressure vs. t/IMFP at 80kV and 300kV](image-url)
Gas composition and pressure by EELS

- CO – EELS acquired in image mode
- The collection angle is measured in the eucentric height
Apparent / mean collection angle (300kV)

- The measured collection angle makes little sense as the scattering occurs all over the pressurized volume.

- The atomic ratio between carbon and oxygen calculated from the acquired spectra fits the theoretical value for small (~1 mrad) collection angles.

- Consistent with the small ‘scattered contribution’ of gas to the image intensity – ‘high contrast of gas’.
Angle resolved EELS

- Angle resolved EELS are acquired in Lorentz mode (objective lens off) to simplify scattering geometry.

Broadening of scattering is usually less than 5%
Spectrum imaging (300kV) - Argon

- 1100Pa of Argon – no specimen
- Spectrum imaging with 0.3eV energy-selecting slit width
- Rotationally averaged

![Graph showing normalized intensity vs. energy loss for different scattering angles.](image)
Beam Effects

- Electrons can ionize gas molecules making them more reactive
- Surfaces can be etched by reactive gas atoms, ions and molecules
- Local heating in the electron beam
- Knock-on damage altering atomic structure
- Sample ionization
- Sample charging and de-charging
 - Removal of charge from sample as in ESEM
Is aberration correction needed / useful in Environmental TEM?

• Yes, as interface regions (including surface regions) are not disturbed by delocalisation

• Au on graphene, $P_{H_2} = 430\text{Pa}$, RT

• Dynamics at interface / surface
Outlook and Challenges (Wish list)

• More to be done to understand the gas-electron interaction in the imaging process
• Detector efficiency
• Sample heating holders
 – Drift-free environment
 – Investigations while ON the heating ramp
 – Interference with electron beam
• Sealing technology
• Complementary in situ techniques
 – Light (Visible, IR, UV)
 – XRD (Transfer system)
• Sample heating and local temperature
 – The local temperature is a multi-parameter problem involving multiple sources and sinks