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Hyperbolic metamaterials: Nonlocal response regularizes broadband supersingularity
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We study metamaterials known as hyperbolic media that in the usual local-response approximation exhibit
hyperbolic dispersion and an associated broadband singularity in the density of states. Instead, from the
more microscopic hydrodynamic Drude theory we derive qualitatively different optical properties of these
metamaterials, due to the free-electron nonlocal optical response of their metal constituents. We demonstrate
that nonlocal response gives rise to a large-wavevector cutoff in the dispersion that is inversely proportional to
the Fermi velocity of the electron gas, but also for small wavevectors we find differences for the hyperbolic
dispersion. Moreover, the size of the unit cell influences effective parameters of the metamaterial even in the
deep subwavelength regime. Finally, instead of the broadband supersingularity in the local density of states, we
predict a large but finite maximal enhancement proportional to the inverse cube of the Fermi velocity.
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I. INTRODUCTION

Metamaterials, consisting of subwavelength artificial unit
cells, show a great potential in optical applications, such as
perfect lenses1 and invisibility cloaks.2,3 Hyperbolic metama-
terials (HMM) are of special interest because of their unusual
hyperbolic dispersion curves4–14 that support radiative modes
with unbounded wavenumbers. Because of the diverging ra-
diative local density of states (LDOS), a point emitter in such a
medium would exhibit instantaneous radiative decay.6–12 This
broadband “supersingularity”6,9 is indeed broadband, since the
hyperbolic dispersion does not rely on specific resonances.
The prediction by Jacob et al.6 that hyperbolic media thereby
form a new route to enhanced light-matter coupling recently
found experimental support.9,10 These measured lifetimes
were nonzero, and state-of-the-art theories explain this from
three parameters: the nonvanishing damping γ , the size a of
the unit cell, and the size D of the emitter.6–8 In particular, as
a function of these parameters the radiative LDOS scales as
γ −3/2 (Ref. 6), a−3 (Ref. 7), and D−3 (Ref. 8), respectively.
Usually unit cells are larger than emitter sizes, which makes a

the more important limiting factor to the radiative LDOS.
Owing to the great recent progress in nanofabrication

techniques, the scale on which metamaterials can be patterned
is entering the nanometer regime, where nonlocal response
of the metal becomes important.15–25 For example, nonlocal
response can significantly blueshift the localized surface
plasmon polariton (SPP) resonance peak and modify the field
enhancement of a nanoscale plasmonic structure.18–22,26

In this paper, we discuss the effects of nonlocal response
on the optical properties of hyperbolic metamaterials. It is
shown that the nonlocal response gives rise a large-wavevector
cutoff in the dispersion, inversely proportional to the Fermi
velocity of the electron gas. In fact, the dispersion in hyperbolic
media becomes no longer strictly hyperbolic. Accordingly, we
identify a new and fundamental limit on the enhancement of the
radiative emission rates of HMMs. In particular, we show that
the radiative LDOS does not grow arbitrarily large even in the
ideal limiting case that all three aforementioned parameters
γ , a, and D vanish, since the intrinsic nonlocal response
turns the “supersingularity” into a finite broadband LDOS
enhancement. On a more general level, our results illustrate

the need, as for metallic nanoparticles,25,26 to take nonlocal
response into account in homogenization theories, where the
goal is to predict the effective properties of metamaterials with
ever decreasing unit cell sizes.

The paper is organized as follows: In Sec. II, we introduce
the linearized hydrodynamic Drude model within the Thomas-
Fermi approximation. In Sec. III, the unusual dispersion curves
of the HMMs and their effective parameters are discussed. In
Sec. IV, to understand better the HMM dispersion found in
Sec. III, we discuss the SPP supported by a single metal layer.
In Sec. V, we investigate the LDOS of the HMMs, before
discussing our results and concluding in Sec. VI. Finally,
details of the calculations can be found in Appendices A-C.

II. HYDRODYNAMIC DRUDE MODEL

We consider a similar multilayer HMM geometry as in the
recent experiments by Tumkur et al.,10 see Fig. 1. The unit cell
is a subwavelength dielectric-metal bilayer, which is relatively
simple and cheap to fabricate10 and allows analytical analysis.
For an effective-medium description of such a metamaterial,
a local-response approximation (LRA) is usually employed,
i.e., spatial dispersion is neglected. This gives the effective
dispersion relation

k2
z

εloc
zz

+ k2
‖

εloc
‖

= ω2

c2
, (1)

where εloc
zz = a(ad/εd + am/εm)−1, aεloc

‖ = adεd + amεm, and
k‖ = (k2

x + k2
y)1/2. Below the plasma frequency ωp, where

εm < 0 in the Drude model of a pure plasma, the dielectric
tensor elements εzz and ε‖ can have opposite signs by a
proper choice of the filling factor am/a. Then the dispersion
becomes hyperbolic, meaning that an isofrequency contour
becomes a hyperbola rather than the usual ellipse in the (kz,k‖)
plane. The length of this contour diverges, and so does the
radiative LDOS. Although we discuss metal-dielectric bilayer
structures, we want to point out that our theory may also be
applied to structures where the metal is replaced by other
materials with a Drude response.27

In the present paper, we go beyond the LRA, and dis-
cuss the optical properties of the HMMs in the linearized
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FIG. 1. (Color online) Sketch of a multilayer hyperbolic metama-
terial consisting of periodic dielectric-metal bilayers. The dielectric
and metal layer thicknesses are ad and am, respectively, and their sum
equals the period a of the unit cell. Corresponding permittivities are
εd and εm. The red arrow is a dipole emitter located in the middle of
a dielectric layer.

hydrodynamic Drude model (HDM) within the Thomas-Fermi
approximation.15–17 In the HDM, the metal supports both
the usual divergence-free (“transverse”) and rotation-free
(“longitudinal”) waves. Above the plasma frequency both
types of waves can propagate. The dispersion kT(ω) of the
transverse waves is given by εT

m(ω)ω2 = k2c2 while kL(ω) of
the longitudinal waves follows from εL

m(k,ω) = 0, in terms of
the dielectric functions

εT
m(ω) = 1 − ω2

p

ω2 + iωγ
(2a)

εL
m(k,ω) = 1 − ω2

p

ω2 + iωγ − β2k2
. (2b)

Here, γ is the Drude damping, ωp is the plasma frequency,
and the nonlocal parameter β is equal to

√
3/5vF with vF

representing the Fermi velocity. While εT
m is the familiar Drude

dielectric function, εL
m depends on vF and describes nonlocal

response.

III. DISPERSION AND EFFECTIVE MATERIAL
PARAMETERS

To calculate the exact dispersion equation for the infinitely
extended HMM, we employ a transfer-matrix method for both
transverse and longitudinal waves combined. Our method is
quite similar to the one developed by Mochán et al.,28 but
we corrected the additional boundary condition (ABC) that in
Ref. 28 was employed for simplicity. An ABC is required to
complement the usual Maxwell boundary conditions, and all
boundary conditions together make the solution to the coupled
Maxwell and hydrodynamic equations unique. Details how to
derive the correct ABC and a consistency check can be found
in Appendix A.

For arbitrary unit cell size a and metal and dielectric filling
fractions, we find the exact dispersion relation for the infinite

z p
p

||

FIG. 2. (Color online) Dispersion curves of the HMM for ω =
0.2ωp, on (a) small and (b) large wavevector intervals. Red curves
for a = λF, green curves for a → 0, black curves for a → 0 in the
LRA. The unit cell of the HMM is a free-space-Au bilayer with
ad = am = a/2. Material parameters for Au: h̄ωp = 8.812 eV, h̄γ =
0.0752 eV, and vF = 1.39 × 106 m/s.

HMM to be

cos θb
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{
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(3)

with

θb = kza, θd = kdzad, θm = kT
mzam θl = kL

mzam, (4)

zd = kdz

k0εd
, wd = k‖

k0
, zm = kT

mz

k0εT
m

, wd = k‖
k0εT

m

, (5)

where k2
dz + k2

‖ = ω2εd/c
2, (kT

mz)2 + k2
‖ = ω2εT

m/c2, and
(kL

mz)2 + k2
‖ = k2

L with k2
L = (ω2 + iγ ω − ω2

p)β2. This disper-
sion equation looks very similar to the one found in Ref. 28,
but the essential difference is that the parameter wd here is
wd/εd in Ref. 28.

As an example we consider a HMM with free-space-Au
bilayer unit cell with ad = am = a/2, and we include the
Au Drude loss. Figure 2 depicts HMM dispersion curves at
ω = 0.2ωp. Figure 2(a) shows hyperbolic dispersion in the
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small wavevector regime, whereas Fig. 2(b) zooms out and
shows strong deviations from hyperbolic dispersion for large
wavevectors.

First, in Fig. 2(a) we observe three noncoinciding hyper-
bolic dispersion curves in the small-k region, one for local
and two for nonlocal response. This tells us that the HDM is
not just a local theory with a large-wavevector cutoff added,
since then the curves for local and for nonlocal response would
have coincided for small wavevectors. Furthermore, the two
nonlocal hyperbolic curves do not coincide, the one for a
strongly subwavelength unit cell a = λF and the other for
a → 0. This illustrates that the size of the unit cell affects
effective-medium properties, even in the deep subwavelength
limit, which goes against common wisdom obtained in the
LRA. The reason for this is that in the HDM the longitudinal
wave in the metal layer has a large vector kL(ω) � 2π/λ, so
that typically the condition |kL(ω)|a � 1 is not satisfied even
in the deep subwavelength limit. Thus, the longitudinal wave
can probe the finite size of the unit cell even though a � λ, and
this gives rise to the periodicity-dependent dispersion curve of
Fig. 2(a).

Zooming out, Fig. 2(b) shows that nonlocal response
gives rise to closed nonhyperbolic dispersion curves, for
both considered values of a, in stark contrast to the familiar
hyperbolic curve in the LRA which is also shown. (We
still call these media hyperbolic because of their hyperbolic
small-wavevector dispersion.) Both k‖ and kz are bounded
on the curve for a = λF. For smaller values of a, we do not
expect the hydrodynamic Drude model to apply,17,22 but as we
shall see below it is useful to also consider the limit a → 0.
The curve for a → 0 shows a turning point at k‖ = kc

‖. In the
lossless limit, no radiative modes exist above kc

‖, as we explain
shortly. The wavevector kc

‖ is found to be

kc
‖ = ω

β
∝ ω

vF
. (6)

To analyze the dispersion curves of Fig. 2, we derive the
effective material parameters of the HMM by a mean-field
theory that can be applied to many geometries. In the limit
of vanishing unit-cell size, we obtain the effective material
parameters

εnloc
zz = εd

zz, εnloc
‖ = εd

‖
k2
Lεloc

‖ /εd
‖ − k2

‖ε
T
m

k2
L − k2

‖εT
m

, (7)

where εd
zz and εd

‖ represent the effective parameters of the
metamaterials when the metal layer is replaced by a free-space
layer, with εd

zz = a(ad/εd + am)−1, and aεd
‖ = adεd + am. Both

nonlocal effective material parameters of Eq. (7) differ
from the corresponding parameters for local response. The
derivations leading to Eq. (7) are presented in Appendix B.
Neglecting loss at first, we find from Eq. (7) that εnloc

‖ has a
resonance at k‖ = kc

‖ where both εnloc
‖ and kz diverge. The

value of kc
‖ is independent of εd (unlike what one would

find when using the incorrect ABC of Refs. 25 and 28).
Increasing k‖ beyond kc

‖, the εnloc
‖ changes sign from negative

to positive. Since εnloc
zz is always positive, it follows that no

mode exists above kc
‖. Thus, nonlocal response gives rise to a

large-wavenumber cutoff at k‖ = kc
‖. With loss, the resonance

is smoothed out and modes exist also above kc
‖. However, for

k‖ → ∞, the corresponding kz approaches i∞, which shows
that such large-wavevector modes are purely evanescent. This
explains why the dispersion curves in Fig. 2 are closed.

We stated in Eq. (7) that unlike in the LRA, in the HDM
the effective parameter εnloc

zz simply equals the (positive)
permittivity εd

zz. This outcome is fixed for a → 0 by the
continuity of the normal components of the displacement
field and the ABC of Eq. (A1) with εother = 1.17 In particular,
the different boundary conditions explain why the local and
nonlocal a → 0 curves in Fig. 2(a) exhibit different hyperbolic
small-wavevector dispersion.

Above the plasma frequency, the HDM and the LRA
also exhibit qualitatively different dispersion. In the LRA no
hyperbolic dispersion exists for frequencies above the plasma
frequency, not even for small wavevectors, since then both εd

and εm are positive. By contrast, hyperbolic dispersion can
exist in the HDM for ω > ωp, because the effective-medium
parameter εnloc

‖ given in Eq. (7) can assume negative values
above ωp.

IV. SURFACE PLASMON POLARITON SUPPORTED
BY A SINGLE METAL LAYER

In Sec. III, it was demonstrated that the dispersion curves
in the LRA and HDM differ significantly. To understand this
better, here we relate these essential differences to the different
properties of single metal layers in both theories, knowing
that the bulk modes of the HMM result from the coupling
of SPPs of neighboring metal layers. So we investigate the
SPPs supported by a single metal layer, first analytically in the
quasistatic limit. With respect to the magnetic field, the SPPs
can be classified as even and odd modes. In the HDM, the
dispersion relations of the even and odd modes are found to
be

tanh

(
kspam

2

)
= −εT

m

εd
+ ksp

(
1 − εT

m

)
klz

tanh

(
klzam

2

)
, (8a)

coth

(
kspam

2

)
= −εT

m

εd
+ ksp

(
1 − εT

m

)
klz

coth

(
klzam

2

)
, (8b)

where ksp represents the SPP wavevector, and klz = (k2
sp −

k2
L)1/2. In the limit am → 0, the dispersion equation of the

even mode has no solution, but the odd mode always has one,
even above ωp. Its dispersion is such that ksp has kc

‖ as an
upper bound in the limit a → 0. So we can now understand
that it is this nonlocal “ceiling” for the single-layer SPP
wavenumber that leads to a cutoff of k‖ for the bulk modes
of the metamaterial, as we saw in Fig. 2.

In Fig. 3 we analyze numerically the effect of retardation on
the SPP dispersion of a single Au layer in free space, for local
and nonlocal response. With retardation, near the light cone
also even-mode solutions exist. Only for nonlocal response
do we find modes above ωp. Again we find that nonlocal
response gives rise to a forbidden region ksp > kc

‖ for the odd
SPP mode, see Fig. 3(b). By contrast, in Fig. 3(a) for the
LRA, both even and odd modes have finite-frequency solutions
with ksp approaching infinity, which leads to the characteristic
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p
p

psp

FIG. 3. (Color online) Dispersion curves of the SPP mode sup-
ported by a single lossless Au layer with a thickness am in free space,
in the (a) local-response approximation, and (b) the hydrodynamic
Drude model. Dashed and solid curves correspond to even and
odd modes, respectively, with red curves for am = 0.1λp, green for
am = 0.01λp, and black curves for am → ∞ (single-interface SPP).
The gray areas are forbidden regions for the SPP modes, with light
cones on the left.

hyperbolic curve of the HMM that extends to infinitely large
wavevectors.

V. LOCAL DENSITY OF STATES

The discussed dramatic modification of the metamaterial
dispersion due to nonlocal response will also strongly affect
the broadband supersingularity known to occur in the local-
response LDOS, as we shall see. In general, the LDOS is
proportional to the spontaneous-emission rate averaged over
all solid angles, and defined as

LDOS(r0,ω) = − 2k0

3πc
Tr{Im[G(r0,r0,ω)]}, (9)

where G is the dyadic Green function of the medium and r0

the position of the emitter. The Green function G is defined by

−∇ × ∇ × G(r,r′) + k2
0

∫
dr1 ε(r,r1)G(r1,r′) = Iδ(r − r′),

(10)

where I represents the unit dyad, and ε represents the dielectric
function, which is a position-dependent delta function for the
local dielectric medium, and a tensorial nonlocal operator

defined by Eq. (2) for the metal. For the multilayered HMM, G
can be decoupled into separate contributions from TM and TE
modes. TM modes support the hyperbolic dispersion curve,
and greatly dominate the LDOS, so we will neglect the TE
contribution to the LDOS.

If we first neglect loss, then only radiative modes contribute
to the LDOS. For an electric dipole with moment μ, the
contribution to the LDOS of a single radiative mode is
proportional to |μ · ak(r0)|2/|∇kω|, where ak is the properly
normalized mode function.29 In the LRA, for the limiting
case of a → 0, the single-mode contribution to the LDOS
scales linearly in k as k‖ and kz tend to infinity. This
results in a diverging radiative LDOS, the broadband LDOS
supersingularity of hyperbolic media.

Let us now consider the LDOS in the HDM instead. If
we again take the limit a → 0, and let k‖ tend to kc

‖ and
kz to infinity, then this time the single-mode contribution
to the LDOS scales as 1/kz

2, which we derived using the
effective parameters of Eq. (7). Radiative modes with large
wavenumbers are therefore negligibly excited. As a main
result of this paper, we consequently find that in the HDM
the radiative LDOS converges to a finite value as a → 0, even
though the integration area in k-space diverges. We find the
numerically exact value and its analytical approximation

LDOS(ω) = ω2

6π2β3
η, (11)

where

η = 1√
εd
zz

∫ π/2

θ0

dθ
cos2 θ + (

εd
‖/ε

d
zz

)
[sin2 θ − εloc

‖ /εd
‖ ]√

sin2 θ − εloc
‖ /εd

‖
(12)

with θ0 equal to arcsin(εloc
‖ /εd

‖ ) for εloc
‖ > 0 and vanishing

otherwise. The derivations leading to Eq. (11) are presented in
Appendix C. As illustrated below, Eq. (11) entails that nonlocal
response leads to a large upper bound to the radiative LDOS of
the HMM, proportional to ω2/v3

F. This exceeds the free-space
radiative LDOS approximately by c3/v3

F, which is of order 107

for most metals.
When taking metallic Drude loss into account, then the

LDOS has contributions both from radiative modes and from
nonradiative quenching, the latter due to loss. For the limiting
case of a → 0, we already discussed that εnloc

‖ tends to εd
‖ , see

Eq. (7). For large wavevectors k‖ also the other component
εnloc
zz tends to εd

zz. Thus, to the extent that εd is lossless, the
evanescent mode with large k‖ does not contribute to the
nonradiative LDOS, which therefore stays finite. As a result,
the total LDOS containing both radiative and nonradiative
contributions in the HDM converges as a → 0. In the low-loss
case, where the radiation LDOS is dominant, Eq. (11) is
an accurate expression of the total LDOS, as we verify by
numerically exact simulation below.

We calculate the LDOS numerically exactly by merging two
methods: the local-response transfer matrix method by Tomaš
to calculate the Green function of arbitrary multilayer media,30

and the aforementioned HDM extension of the transfer matrix
method.28 The details can be found in Appendix D.

Figure 4(a) depicts the LDOS enhancement, defined as the
ratio between LDOS in the HMM and in free space, as a
function of the periodicity a. Clearly, in the HDM the LDOS
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11

FIG. 4. (Color online) (a) LDOS versus the periodicity a at
the center of the free space layer of the hyperbolic metamaterial
for ω = 0.2ωp. (b) The a → 0 limiting value of the LDOS in the
hydrodynamic Drude model as a function of vF/c. Parameters of the
hyperbolic metamaterial as in Fig. 2.

converges to a finite value as a → 0. This proves that both
the radiative and nonradiative LDOS in the HDM are finite.
By contrast, in the LRA the LDOS diverges as 1/a3, where
the nonradiative LDOS has a dominant contribution.6,31–33

The HDM ceases to be valid for a < λF, but the LDOS
enhancement value in the limit a → 0 is a useful upper bound.

We also calculated the LDOS for the lossless case [not
shown Fig. 4(a)], and we find smaller values for the LDOS
owing to the missing nonradiative contribution, but the same
trend for a → 0. This proves that nonlocal response rather
than loss is responsible for removing the singularity of
the radiative LDOS. In Fig. 4(b) we compare the limiting
LDOS for the numerically exact method in the lossy case
with the lossless analytical approximation of Eq. (11), when
artificially varying the Fermi velocity. The value from the
exact method is only larger than that from Eq. (11) by
around 6%. We attribute the small difference in LDOS to
the nonradiative LDOS due to the Drude loss. Thus, the loss
acts as a small perturbation to the radiative LDOS.

VI. DISCUSSION AND CONCLUSIONS

For finite-sized unit cells, small loss gives rises to a regular
perturbation of the radiative LDOS, both in the local and in
the nonlocal response theories. However, the theories start to
differ dramatically in the limit of infinitely small unit cells.
In particular, in the nonlocal hydrodynamic Drude model the
small variation of the radiative LDOS with small loss is quite
different from the previously found radiative LDOS scaling
with loss in the local theory as γ −3/2 for infinitely small unit
cells.6

The small increase of the total LDOS due to loss is also
quite different from spontaneous-emission rates of a point
emitter inside a homogeneous absorbing medium, where the
loss induces nonradiative quenching that can dramatically
decrease the radiative decay efficiency.6,31–33 In this sense,
the nonlocal response regularizes the singularity not only of
the radiative but also of the nonradiative LDOS of a lossy
HMM. One can interpret this finite nonradiative LDOS as due
to a nonlocal screening of the electron scattering loss.34 In

a certain high wavevector region the reverse can also occur,
namely the enhancement of the nonradiative LDOS by the
nonlocal response, when not only taking Drude loss into
account, as we do here, but also electron-hole pair absorption.
By neglecting any dielectric response of the metal apart from
the (hydrodynamic) Drude response, we underestimate the
nonradiative LDOS of real metals. However, the important
conclusion that the nonlocal response removes the singularity
of nonradiative LDOS is still valid.34

In conclusion, we have shown that the hydrodynamic
Drude model gives closed nonhyperbolic dispersion relations
for hyperbolic metamaterials, with a fundamental wavevector
cutoff ∝ ω/vF. These effective dispersion relations have hy-
perbolic limits for small wavevectors, but the precise hyperbola
depends on the subwavelength size of the unit cell, contrary
to consensus based on the local-response approximation. We
find that the hydrodynamic model regularizes the broadband
supersingularity of the radiative LDOS, and provides a large
physical upper bound proportional to ω2/v3

F. In practice, con-
sidering the finite values of a and D, i.e., the finite sizes of the
unit cell and the emitter, we usually have 1/a < 1/D < ω/vF.
This indicates that the size effects have a dominant role in
limiting the LDOS enhancement. Thus, under an upper bound
set up by the nonlocal response, hyperbolic metamaterials
have plenty of room for improvement in boosting light-matter
interactions by decreasing the sizes of the unit-cell and the
emitter.
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APPENDIX A: BOUNDARY CONDITIONS

Since the hydrodynamic dynamics allows the excitation of
longitudinal waves, the unambiguous solution of the nonlocal-
response dynamics requires additional boundary conditions
(ABCs), complementing the Maxwell boundary conditions.
As is well known, the Maxwell boundary conditions are
a consequence of Maxwell’s equations themselves, in the
sense that the derivation of the boundary conditions only
involves Maxwell’s equations plus mathematics (the Gauss
and Stokes theorems). Quite analogously, ABC’s are not a
matter of choice but can be derived from the (linearized)
hydrodynamic equations, at least for a given equilibrium
free-electron density profile n0.17,35 When assuming a simple
zero-to-nonzero step profile of n0 at the dielectric-metal
interfaces, this unambiguously leads to one and only one
required ABC, namely the continuity of the normal component
of the free-electron current J.17,35

Let us now write the relative permittivity of the dielectric
medium as εd, and the dielectric response of the metal as
εm(ω). We assume that εm(ω) is given by the sum of a nonlocal
hydrodynamic Drude free-electron response plus εother

m (ω),
the latter describing the remaining dielectric response of the
metal. Since one of the Maxwell boundary conditions is the
conservation of the normal component of the displacement
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field, the ABC is equivalent to the condition

εother
m Em · n̂ = εdEd · n̂, (A1)

where Em,d represent the electric fields in the metal and
dielectric, respectively, and n̂ is the unit vector normal to the
boundary. From Eq. (A1), we see that the normal electric field
is discontinuous across the boundary when εother

m 
= εd . A jump
in the electric field occurs due to the surface charge produced
by polarization of the bound electrons both in the dielectric
and in the metal.

We discuss the ABC in some detail, because Mochán
et al.,28 whose pioneering transfer matrix method we employ
here, and also recently Ciracı̀ et al.25 used instead the
continuity of the normal component of the electric field as
the ABC,

Em · n̂ = Ed · n̂, (A2)

or equivalently the continuity of the normal component of the
displacement current. There is no derivation of the latter ABC
in Refs. 25 and 28. It happens to be only correct, in agreement
with Eq. (A1), if εother

m = εd, for example in case the dielectric is
vacuum (εd = 1) and the metal is a pure Drude metal (εother

m =
1). Mochán et al.28 applied their ABC for simplicity and write
that they thereby ignore the discontinuity of the electric field,
due to the accumulation at the surface of bound charges. Our
main point here is that without additional complication the
correct ABC can be implemented, and that many physical
predictions of the hydrodynamic Drude model are sensitive to
implementing the ABC correctly.

To understand the ABC physically, recall that in the HDM
the dynamics of the free electrons is described by the equation
of motion

me

[
∂v
∂t

+ v · ∇v
]

= −∇pdeg

n
+ e (E + v × B) , (A3)

where pdeg is the pressure from the ground state energy of
the degenerate quantum Fermi gas, and n is the free-electron
density. The pressure force −∇pdeg/n ∝ −∇n/n drives the
free electrons diffusing from the high-density region to the
low-density region. It is this force that prevents the free-
electron charge from accumulating on the boundary surface,
since the existence of a free-electron surface charge would
cause an infinitely large pressure force, which is unphysical.
The nonexistence of the surface free-electron charge indicates
that the free-electron current should be continuous across the
boundary, as the ABC (A1) indeed describes. By contrast,
in the ABC of Eq. (A2), there exists no surface charges at
all. This indicates that the pressure force somehow smears
out not only the surface free-electron charge in the metal but
also the surface polarization charges in both the metal and
the dielectric. However, one cannot expect the smearing out
of the surface polarization charges in the HDM, since the
pressure force only acts on the free electrons in the metal.
In this sense, the ABC of Eq. (A2) is not consistent with the
assumed dynamics and thus not physically sound.

There is another perhaps simpler argument, a consistency
check that confirms that the ABC of Eq. (A2) is more
problematic. Assume there is a thin free-space layer with
subwavelength thickness δ between the nonlocal metal and the
local dielectric medium. At the boundary between the metal

and free space, the ABC of Eq. (A2) gives Em · n̂ = Ef · n̂,
where Ef represents the electric field in the free-space layer.
At the boundary between free space and the dielectric medium,
we have Ef · n̂ = εdEd · n̂ by the standard Maxwell boundary
condition of the continuity of the normal component of the
displacement field. In the limit of an infinitely thin free-
space middle layer (δ → 0), the three-layer system essentially
becomes the two-layer system where the metal and the
dielectric medium touch, and for which we find Em · n̂ =
εdEd · n̂ by combining the previous two identities. However,
this contradicts with Eq. (A2) for the metal-dielectric interface.
Thus, the ABC of Eq. (A2) can not be applied consistently.
For the ABC of Eq. (A1), we obtain instead consistent results
when following the above thin-layer argument.

APPENDIX B: EFFECTIVE MATERIAL PARAMETERS
OF HYPERBOLIC METAMATERIAL

When the unit cell has a thickness a that is much smaller
than an optical wavelength λ0, then the optical properties
of such an infinite multilayer structure can be macroscop-
ically described by a diagonal effective dielectric tensor
ε = diag[ε‖,ε‖,εzz] with tensor components

ε‖ = 〈Dx,y〉
〈Ex,y〉 , εzz = 〈Dz〉

〈Ez〉 , (B1)

and where 〈. . .〉 denotes spatial averaging over a unit cell.
The unit cell can be chosen symmetric, identical for left-

and right-traveling waves. Consider a unit cell positioned at
−a/2 < z < a/2, with the metal layer at −am/2 < z < am/2,
which is symmetric in z = 0. The total fields in such a unit cell
are generated by waves incident both from the left (“l”) and
from the right “r”, and the average fields can be split into two
terms, 〈E〉 = 〈E〉l + 〈E〉r. However, by symmetry of the unit
cell it follows that ε = 〈D〉/〈E〉 = 〈D〉l/〈E〉l = 〈D〉r/〈E〉r. To
obtain the effective material parameters, we can simply replace
the average fields in the periodic structure by the average fields
in a single unit cell.

Before spatially averaging the fields, we first need to find
them as solutions of Maxwell’s equations. We focus solely on
TM-polarized waves since the hyperbolic dispersion occurs for
those waves only. Since k0am � 1, we can make the quasistatic
approximation, where E = −∇φ. Consider an incident electric
field with the electric potential φ = exp(ik‖x − k‖z). The
electric potential in the whole system can then be written as

φ1 = exp(ik‖x)[exp(−k‖z) + r exp(k‖z)],

φT
2 = exp(ik‖x)[A1 exp(−k‖z) + A2 exp(k‖z)],

(B2)
φL

2 = exp(ik‖x)[B1 exp(−kLzz) + B2 exp(kLzz)],

φ3 = t exp(ik‖x) exp(−k‖z),

where kLz =
√

k2
‖ − k2

L. By matching boundary conditions at
the two metal-dielectric interfaces, the above equations can
be solved. After obtaining the field distributions, we can
average the fields from −a/2 < z < a/2 to obtain the effective
material parameters using Eq. (B1).

First consider the case in which the metal layers are
much thicker than the wavelength of the longitudinal waves
(kLzam � 1), but where the unit cell is much thinner than
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an optical wavelength. Here we expect an effective (ho-
mogenized) description to apply and nonlocal response to
be negligible. Following the above described scheme, the
effective material parameters, to the zeroth-order in the small
parameters k‖a and 1/(kLzam), are found to be

εloc
zz = 1

fd

εd
+ fm

εT
m

, εloc
‖ = fdεd + fmεT

m, (B3)

in terms of the filling factors fd = ad/a and fm = am/a.
Indeed, the effective material parameters are just as what one
would find in the local response approximation (LRA).

Second, we consider the limiting case of am → 0 with
kLzam � 1, where the nonlocal response is extremely strong.
As before, we keep the filling fractions fm,d constant when
taking the limit. The effective material parameters, to zeroth
order in both k‖a and kLzam, become

εnloc
zz = εd

zz, εnloc
‖ = εd

‖
k2
Lεloc

‖ /εd
‖ − k2

‖ε
T
m

k2
L − k2

‖εT
m

, (B4)

Eq. (B4) characterizes how the nonlocal response can modify
the effective material parameters to the largest extent.

APPENDIX C: LIMITING LDOS OF HYPERBOLIC
METAMATERIALS

Here we provide the calculation details of the LDOS in the
hydrodynamic Drude model in the limit of infinitely small unit
cells (a → 0). We employ the effective material parameters
derived in Eq. (B4). Since the by far dominant contribution
to the LDOS stems from TM waves, we will neglect the TE
contribution. In k space, the diagonal components of G, in
an effective medium with material parameters expressed in
Eq. (B4) for TM polarization, are found to be

Gk
TM,jj = 1

k2
‖ε

nloc
‖

k2
x

[
1 − k2

‖/
(
k2

0ε
nloc
zz

)]
k2

0 − k2
‖/εnloc

zz − k2
z /ε

nloc
‖

for j = x,y,

Gk
TM,zz = 1

εnloc
zz

1 − k2
z /

(
k2

0ε
nloc
‖

)
k2

0 − k2
‖/εnloc

zz − k2
z /ε

nloc
‖

. (C1)

When inserting these diagonal components for the Green
tensor into expression (9) for the LDOS, we obtain

lim
a→0

LDOS = − 2k0

3πc

1

(2π )3
Im

∫
d3k

∑
j=x,y,z

Gk
TM,jj

= − k0

6π2c
Re

⎡
⎢⎣

∫ ∞

0
dk‖

k‖ − k3
‖

k2
0

1−εnloc
‖ /εnloc

zz

εnloc
zz√

k2
0ε

nloc
‖ − k2

‖ε
nloc
‖ /εnloc

zz

⎤
⎥⎦

≈ k0

6π2c
Re

⎡
⎣∫ ∞

0
dk‖

k2
‖

k2
0

1−εnloc
‖ /εnloc

zz

εnloc
zz√

−εnloc
‖ /εnloc

zz

⎤
⎦

= ω2

6π2β3
η, (C2)

where η is expressed in Eq. (12). In the derivation, we neglected
losses in the metal. To arrive at the second line of Eq. (C2), we
use the principal-value identity lim

↓0

1
x±i

= P 1
x

± iπδ(x). The

final identity then follows immediately by inserting the a → 0
limiting expressions for εnloc

zz and εnloc
‖ given in Eq. (B4).

APPENDIX D: GREEN FUNCTION OF HYPERBOLIC
METAMATERIAL

Consider an emitter positioned in the dielectric layer of
the HMM. The HMM can be divided into three regions:
(i) the central dielectric layer where the emitter is located;
(ii) the left semi-infinite HMM; (iii) the right semi-infinite
HMM. The distance between the emitter and the left (right)
boundary of the dielectric layer is zl (zr ). The Green function
G in the central layer could be separated into two terms

G(r,r0) = Gd(r,r0) + Gs(r,r0), (D1)

where Gd represents the Green function for the emitter in the
homogenous dielectric medium, while Gs represents the Green
function owing to the scattering between central layer and the
left and right semi-infinite HMM. In the plane wave basis, Gd

is expressed as30

Gd(r,r0) = −δ(z − z0)

kd
2 ẑẑ

∫
d2k‖ exp[ik‖ · (r‖ − r0‖)]

+ i

8π2

∫
d2k‖

[eTEeTE + e±
TMeTM

±]

kz

× exp[ik‖ · (r‖ − r0‖) + ikz|z − z0|], (D2)

with

eTE = k‖
k‖

× ẑ,

e±
TM = k‖ ± kzẑ

kd

× eTE, (D3)

where k‖ = kxx̂ + kyŷ, kd = ω
√

εd/c, k2
z + k2

‖ = k2
d, and e±

TM
correspond to z > z0 and z < z0, respectively. The terms con-
taining eTE and eTM represent TE and TM waves, respectively.

The scattering part Gs of the Green function is expressed
as

Gs(r,r0) = i

8π2

∫
dk‖

1

kz

exp[ik‖ · (r‖ − r0‖)]

×{[r++
TE eTEeTE + r++

TM e+
TMe+

TM

+ r+−
TE eTEeTE + r+−

TM e+
TMe−

TM] exp[ikz(z − z0)]

+ [r−+
TE eTEeTE + r−+

TM e−
TMe+

TM

+ r−−
TE eTEeTE + r−−

TM e−
TMe−

TM]exp[−ikz(z − z0)]},
(D4)

where r±±
TE,TM

is the reflection coefficient, in which the left
superscript “±” represents the scattering wave in the ±ẑ

direction, and the right superscript “±” represents the incident
wave in the ±ẑ direction. The r±±

TE,TM
are found to be

r++
TE,TM = r−−

TE,TM = R2
TE,TM exp(2ikzad)

1 − R2
TE,TM exp(2ikzad)

,

r−+
TE,TM = RTE,TM exp(2ikzzr )

1 − R2
TE,TM exp(2ikzad)

,

r+−
TE,TM = RTE,TM exp(2ikzzl)

1 − R2
TE,TM exp(2ikzad)

, (D5)
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where RTE,TM denote the reflection between the dielectric
medium and the semi-infinite HMM for TE and TM waves,
respectively, zr (zl) represents the distance between the point

emitter and the right (left) semi-infinite HMM. RTE,TM can be
calculated by the transfer matrix method as demonstrated in
Ref. 28.
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