Ni-Ga intermetallic compounds as novel catalysts for CO2 hydrogenation to methanol

Sharafutdinov, Irek; Elkjær, Christian Fink; Damsgaard, Christian Danvad; Gardini, Diego; Studt, Felix; Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Dahl, Søren

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Ni-Ga intermetallic compounds as novel catalysts for CO\textsubscript{2} hydrogenation to methanol

CASE

Catalysis for Sustainable Energy

Department of Physics Building 307, Technical University of Denmark, DK-2800 Lyngby, Denmark

SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA

Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA

Introduction and motivation

Synthesis of methanol from syngas (a mixture of carbon monoxide and hydrogen) with small amounts of carbon dioxide is performed on industrial scale at elevated temperatures and pressures up to 250\degree C and 60 bar respectively, which requires high operational and investment costs.

Synthesis of methanol from synthesis gas at lower temperature and pressure is desirable if methanol is to be synthesized as a sustainable fuel in decentralized units following biomass gasification or synthesis gas production by electrolysis.

DFT (Density Functional Theory) calculations

- A mixed aqueous solution of nickel and gallium nitrates was impregnated on high surface area silica (incipient wetness impregnation).
- Precursor dried and aged in air for 24 hours at 100-120\degree C.
- Reduced in pure hydrogen flow for 2 hours at 700\degree C to form the Ni-Ga alloy.
- For comparison, a conventional Cu/ZnO/Al\textsubscript{2}O\textsubscript{3} catalyst was synthesized following optimised co-precipitation method [1].

Transmission Electron Microscopy analysis

- Ni-Ga intermetallic nanoparticles with narrow size distribution were formed (post-reaction analysis).
- Complementary to XRD data, Energy Dispersive Spectroscopy both on single particle and large area confirmed that correct Ni/Ga ratio was achieved.

Stability of the Ni\textsubscript{5}Ga\textsubscript{3}/SiO\textsubscript{2} catalyst

- Stability test in a fixed bed reactor consisted of several activity testing/aging cycles. Aging temperature was increased from 300\degree C to 450\degree C with steps of 50\degree C. The gas mixture employed was 25% CO\textsubscript{2} and 75% H\textsubscript{2}.
- Activity was measured at 388\degree C after each aging step.

Identifying optimal Ni/Ga ratio in the alloy

- A range of alloys with varying Ni/Ga ratio was prepared (metal loading: 17 wt%).
- Reaction conditions: 25% CO\textsubscript{2} and 75% H\textsubscript{2}, P = 1 bar.
- Activity measurements revealed maximum CH\textsubscript{3}OH yield for Ni/Ga ratio of 1.7.
- Ex-situ X-Ray Diffraction showed that \(\alpha\), \(\beta\), and \(\gamma\) phases were formed, corresponding to Ni/Ga ratio in the impregnation mixture (Ni-Ga phase diagram taken from [2]).

Further insight into SiO\textsubscript{2}-supported \(\beta\)-NiGa, \(\delta\)-NiG\textsubscript{3}A, and \(\alpha\)-Ni\textsubscript{5}Ga catalysts

- At atmospheric pressure (1atm), methanol yield from Ni\textsubscript{5}Ga\textsubscript{3}/SiO\textsubscript{2} system is comparable to a Cu/ZnO/Al\textsubscript{2}O\textsubscript{3} catalyst.
- Ni\textsubscript{5}Ga\textsubscript{3} composition is close to the optimal in terms of activity.
- High-quality XRD data confirmed the formation of targeted phases [2].
- X-Ray Fluorescence confirmed adequate Ni/Ga ratio both before and after reduction/reaction cycle.

References

Acknowledgements

This research was supported by the Office of Science of the U.S. Department of Energy through the SUNCAT Center for Interface Science and Catalysis at SLAC Stanford, from the Danish Ministry of Science and Innovation through the Catalysis for Sustainable Energy Initiative (CASE) at DTU and by The Danish National Research Foundation through CINF at DTU.

The A.P. Moller and Christina Koch Moller Foundation is gratefully acknowledged for its contribution towards the establishment of the Center for Electron Nanoscopy in the Technical University of Denmark.
