Minimizing System Modification in an Incremental Design Approach

Pop, Paul; Eles, Petru; Pop, Traian; Peng, Zebo

Published in:
Ninth International Symposium on Hardware/Software Codesign. CODES 2001 (IEEE Cat. No.01TH8571)

Link to article, DOI:
10.1109/HSC.2001.924672

Publication date:
2001

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Minimizing System Modification in an Incremental Design Approach

Paul Pop, Petru Eles, Traian Pop, Zebo Peng
Department of Computer and Information Science
Linköpings universitet, Sweden
Incremental Design Process

- Start from an already existing system with applications
- Implement new functionality on this system

Mapping and Scheduling

- To reduce design and testing time:
 As few as possible modifications of the existing applications

- After the new functionality has been implemented:
 It should be easy to add functionality in the future
Mapping and Scheduling Problem

Map and schedule so that the future applications will have a chance to fit.

Modify (re-map) so that the current applications will fit.

Do not exist yet at Version N!
Problem Formulation

Input
- A set of existing applications modelled using process graphs.
- A current application to be mapped modelled using process graphs.
- Each process graph in the application has its own period and deadline.
- Each process has a potential set of nodes to be mapped on and a WCET.
- The system architecture is given.

Output
- A mapping and scheduling of the current application, so that:
 - Requirement a: constraints of the current application are satisfied and minimal modifications are performed to the existing applications.
 - Requirement b: new future applications can be mapped on the resulted system.

Notes
- Hard real-time applications
- Static cyclic scheduling of processes and messages
- Time-triggered protocol, TDMA
Mapping and Scheduling Strategy

- Initial mapping and scheduling

a) - Satisfying the constraints for the current application
 - Minimizing the modification cost

b) - Prediction of success in adding future applications
 - Minimizing the objective function

\[C = w_1^P (C_1^P) + w_1^m (C_1^m) + w_2^P \max(0, t_{\text{need}} - C_2^P) + w_2^m \max(0, b_{\text{need}} - C_2^m) \]
Characterizing Existing Applications

\[
R(\{\Gamma_7\})=20, \ R(\{\Gamma_3\})=50, \ R(\{\Gamma_3, \Gamma_7\})=70, \\
R(\{\Gamma_4, \Gamma_7\})=90 \text{ (the modification of } \Gamma_4 \text{ triggers the modification of } \Gamma_7), \\
R(\{\Gamma_2, \Gamma_3\})=120, \ R(\{\Gamma_3, \Gamma_4, \Gamma_7\})=140, \ R(\{\Gamma_1\})=150, \; \ldots
\]

The total number of possible subsets is 16.
Mapping and Scheduling, Requirement a)

- Mapping and scheduling of the current application, so that:
 Constraints of the current application are satisfied and minimal modifications are performed to the existing applications.

- Subset selection problem
 Select that subset Ω of existing applications which guarantees that the current application fits and the modification cost $R(\Omega)$ is minimized:

$$ R(\Omega) = \sum_{\Gamma_i \in \Omega} R_i $$
Mapping and Scheduling Strategy

- Initial mapping and scheduling

- Requirement a)
 Minimizing the modification cost $R(\Omega)$, subset selection:
 - Exhaustive Search (ES)
 - Ad-Hoc Solution (AH)
 - Subset Selection Heuristic (SH)

- Requirement b)
 Minimizing the objective function:

Experimental Results

Average Modification Cost $R(\Omega)$

- AH
- SH
- ES

Number of processes

320 400 480 560 640
Conclusions

- Mapping and scheduling of distributed embedded systems for hard-real time applications.

- Incremental design process
 - Already existing system,
 - Implement new functionality,
 - a) Existing system modified as little as possible,
 - b) new functionality can be easily added to the system.

- Mapping strategy
 - a) Subset selection to minimize modification cost,
 - b) Two design criteria, objective function.