DTU Library # Environmental radioactivity in the North Atlantic Region. The Faroe Islands and Greenland included. 1984 Aarkrog, A.; Boelskifte, S.; Buch, E.; Christensen, G.C.; Dahlgaard, Henning; Hallstadius, L.; Hansen, Heinz Johs. Max; Holm, Elis Publication date: 1985 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Aarkrog, A., Boelskifte, S., Buch, E., Christensen, G. C., Dahlgaard, H., Hallstadius, L., Hansen, H. J. M., & Holm, E. (1985). *Environmental radioactivity in the North Atlantic Region. The Faroe Islands and Greenland included.* 1984. Risø National Laboratory. Denmark. Forskningscenter Risoe. Risoe-R No. 528 #### General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. - Users may download and print one copy of any publication from the public portal for the purpose of private study or research. - You may not further distribute the material or use it for any profit-making activity or commercial gain - You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. # Environmental Radioactivity in the North Atlantic Region. The Faroe Islands and Greenland included. 1984 A. Aarkrog, S. Boelskifte, E. Buch, G.C. Christensen, H. Dahlgaard, L. Hallstadius, H. Hansen, and E. Holm ENVIRONMENTAL RADIOACTIVITY IN THE NORTH ATLANTIC REGION. THE FAROE ISLANDS AND GREENLAND INCLUDED. 1984 - A. Aarkrog, S. Boelskifte, E. Buch^O, G. C. Christensen*, H. Dahlgaard, L. Hallstadius**, H. Hansen, and E. Holm***, - o The Greenland Fisheries and Environmental Research Institute, Denmark - * Institute for Energy Technology, Kjeller, Norway - ** University of Lund, Sweden - *** International Laboratory of Marine Radioactivity, Monaco Abstract. Measurements of fallout radioactivity in the North Atlantic region including the Faroe Islands and Greenland are reported. Strontium-90 and cesium-137 was determined in samples of precipitation, sea water, vegetation, various foodstuffs (including milk in the Faroes) and drinking water. Estimates are given of the mean contents of 90 Sr and 137 Cs in human diet in the Faroes and Greenland in 1984. Results from samplings of surface sea water and seaweed in the Norwegian and Greenland Seas and along the Norwegian and Greenland west coasts are (continued) December 1985 Risø National Laboratory reported. Beside radiocesium and ⁹⁰Sr some of these samples have also been analysed for tritium, polonium, plutonium and americium. Finally technetium-99 data on seaweed samples collected in the North Atlantic region since the beginning of the sixties are presented. INIS Descriptors AMERICIUM 241; ANIMALS; ATMOSPHERIC PRECIPITATIONS; BONE TISSUES; CESIUM 134; CESIUM 137; DIET; DRINKING WATER; ENVIRONMENT; FAROE ISLANDS; FOOD CHAINS; GLOBAL FALLOUT; GREENLAND; LEAD 210; MAN; MILK; MOLLUSCS; POLONIUM 210; PLANTS; PLUTONIUM 238; PLUTONIUM 239; RADIOACTIVITY; SEAWATER; SEAWEEDS; SEDIMENTS; SHRIMP; STRONTIUM 90; TECHNETIUM 99. UDC 614.73 (491.2) ISBN 87-550-1129-2 ISSN 0106-2840 # CONTENTS | | | | Page | |------|-------|---|------| | 1. | GENER | RAL INTRODUCTION | 9 | | 2. | ENVIR | RONMENTAL RADIOACTIVITY IN THE FAROE ISLANDS | | | | IN 19 | 984 | 10 | | | 2.1. | Introduction | 10 | | | 2.2. | Results and discussion | 11 | | | | 2.2.1. Strontium-90 in Faroese precipitation | 11 | | | | 2.2.2. Strontium-90 and Cesium-137 in Faroese | | | | | grass | 14 | | | | 2.2.3. Strontium-90 and Cesium-137 in Faroese | | | | | milk | 14 | | | | 2.2.4. Strontium-90 and Cesium-137 in Faroese | | | | | terrestrial animals | 20 | | | | 2.2.5. Strontium-93 and Cesium-137 in Faroese | | | | | sea animals | 22 | | | | 2.2.6. Strontium-90 and Tritium in Faroese | | | | | drinking water | 23 | | | | 2.2.7. Strontium-90 and Cesium-137 in | | | | | miscellaneous Faroese samples | 24 | | | | 2.2.7.1. Faroese soil (No samples) | 24 | | | | 2.2.7.2. Faroese sea water | 24 | | | | 2.2.7.3. Faroese sea plants | 24 | | | | 2.2.7.4. Faroese vegetables | 27 | | | | 2.2.7.5. Faroese bread | 28 | | | | 2.2.7.6. Faroese eggs | 29 | | | | 2.2.8. Humans from the Paroes | 29 | | | | 2.2.8.1. Stronium-90 in human bone | 29 | | | 2.3. | Estimate of the mean contents of 90Sr and 137Cs | | | | | in the Faroese human diet in 1984 | 30 | | | 2.4. | Conclusion | 35 | | APPE | NDIX | 2A Predictions and observations of 90Sr and | | | | | 137Cs in Faroese samples in 1984 | 36 | | 3. | PNVII | RONMENTAL RADIOACTIVITY IN GREENLAND IN 1984 | 37 | | | 3 1 | Introduction | 37 | | | | | Page | |----|-------|---|------| | | 3.2. | Results and discussion | 38 | | | | 3.2.1. Strontium-90 in Greenland precipitation | 38 | | | | 3.2.2 Radionuclides in Greenland sea water | 41 | | | | 3.2.3. Strontium-90 and Cesium-137 in Greenland | | | | | terrestrial animals | 41 | | | | 3.2.4. Strontium-90 and Cesium-137 i Greenland | | | | | sea animals | 43 | | | | 3.2.5. Radionuclides in Greenland vegetation | 45 | | | | 3.2.6. Strontium-90 and Tritium in Greenland | | | | | drinking water | 46 | | | 3.3. | Estimate of the mean contents of 90 Sr and 137 Cs | | | | | in the human diet in Greenland in 1984 | 48 | | | 3.4. | Conclusion | 54 | | | | | | | 4. | MARI | NE ENVIRONMENTAL RADIOACTIVITY IN THE NORTH | | | | ATLAI | NTIC REGION | 55 | | | 4.1. | The CSS Baffin cruise to Thule in | | | | | July-August 1984 | 55 | | | | 4.1.1. Sea water | 55 | | | | 4.1.2. Sediments | 51 | | | | 4.1.3. Sea plants | 68 | | | 4.2. | The F/S Polarstern cruise in July 1984 to the | | | | | Fram Strait | 69 | | | | 4.2.1. Surface sea water | 69 | | | 4.3. | Samplings by The Greenland Fisheries and | | | | | Environmental Research Institute | 74 | | | | 4.3.1. Surface sea water | 74 | | | | 4.3.2. Sea plants from the Godthåb Fjord 1980-82 | 80 | | | | 4.3.3. Shrimps, Thule 1984 | 81 | | | 4.4. | Norwegian samplings | 8 ; | | | | 4.4.1. Surface sea water collected at Svalbard | | | | | in 1984 | 83 | | | | 4.4.2. Sea plants from the Norwegian west coast, | | | | | Svalbard and Jan Mayen | 24 | | | 4.5. | Polonium-210 studies | 88 | | | | 4.5.1. Introduction | 88 | | | | 4.5.2. Sea plants | 89 | | | | 4.5.3. Mussels | 91 | | | | A.S. A. Chrimne | 0.2 | | | Page | |------------------------------------|------------| | 4.5.5. Fish | 9 5 | | 4.5.6. Mammals | 96 | | 4.5.7. Polonium-210 diet estimates | 97 | | ACKNOWLEDGEMENTS | 98 | | REFERENCES | 99 | #### ABBREVIATIONS AND UNITS ``` J: joule: the unit of energy; 1 J = 1 Nm (= 0.239 cal) gray: the unit of absorbed dose = 1 \text{ J kg}^{-1} (= 100 rad) Gy: sievert: the unit of dose equivalent = 1 \text{ J kg}^{-1} (= 100 rem) Sv: becquerel: the unit of radioactivity = 1 \text{ s}^{-1} (= 27 pCi) Bq: annual limit of intake (according to ICRP) ALI: cal: calorie = 4.186 J rad: 0.01 Gy 0.01 Sv rem: curie: 3.7 \cdot 10^{10} Bq (= 2.22 \cdot 10^{12} dpm) Ci: exa: 10^{18} E: peta: 10¹⁵ P: tera: 10¹² T: qiqa: 10⁹ G: mega: 10⁶ M: kilo: 10^3 k: milli: 10⁻³ m : mikro: 10^{-6} u: nano: 10⁻⁹ n: pico: 10^{-12} p: femto: 10^{-15} f: atto: 10⁻¹⁸ a: pro capite: per individual TNT: trinitrotoluol; 1 Mt TNT: nuclear explosives equivalent to 10^9 kg TNT. a⁻¹: per annum observed ratio OR: concentration factor CF: micro-roentgen, 10⁻⁶ roentgen uR: S.U.: pCi ^{90}Sr (g Ca)^{-1} O.R.: observed ratio M.U.: pCi ^{137}Cs (q K)^{-1} ``` V: vertebrae m: male f: female nSr: natural (stable) Sr eqv. mg KCl: equivalents mg KCl: activity as from 1 mg KCl $(\sim 0.88 \text{ dpm})$. 1 g K $\sim 756 \text{ pCi} \sim 28 \text{ Bq}$. S.D.: standard deviation: $\sqrt{\frac{\Sigma(\bar{x}-x_{\cdot})^2}{(n-1)}}$ S.E.: standard error: $\sqrt{\frac{\Sigma(\bar{x}-x_i)^2}{n(n-1)}}$ U.C.L.: upper control level L.C.L.: lower control level Δ: one standard deviation due to counting S.S.D.: sum of squares of deviation: $\Sigma(\bar{x}-x_i)^2$ f: degrees of freedom s²: variance v2: ratio between the variance in question and the residual variance P: probability fractile of the distribution in question n: coefficient of variation, relative standard deviation anova: analysis of variance Counting errors: given as relative standard deviation: no indication: < 20% A: 20-33% B: >33%, such results are not considered significantly different from zero activity B.D.L.: below detection limit In the significance test the following symbols were used: * : probably significant (P > 95%) **: significant (P > 99%) ***: highly significant (P > 99.9%) ### 1. GENERAL INTRODUCTION Since 1962 we have published separate annual reports for the Environmental Radioactivity in the Faroes¹⁾ and in Greenland²⁾. The reports on and after 1983 are contained in the new series: "Environmental Radioactivity in the North Atlantic Region. The Faroe Islands and Greenland included" of which the present report is the second. Chapter 2 in this report corresponds to the earlier report for the Faroes and Chapter 3 to the Greenland report. In Chapter 4 we report on marine environmental radioactivity studies from other parts of the North Atlantic region and, furthermore, include sea water data from the Faroe Islands and Greenland. Chapter 4 also includes results from samplings carried out in earlier years. 1.1 # 2. ENVIRONMENTAL RADIOACTIVITY IN THE FAROE ISLANDS IN 1984 # 2.1. Introduction ## 2.1.1. The fallout programme for the Faroes, which was initiated in 1962¹⁾ in close co-operation with the National Health Service and the chief physician of the Faroes, was continued in 1984. Samples of human bone were obtained in 1984 from Dronning
Alexandrine's Hospital in Thorshavn. Fig. 2.1. The Faroese Islands #### 2.1.2. The present report will not repeat information concerning sample collection and analysis already given in Risø Reports Nos. 64, 86, 108, 131, 155, 181, 202, 221, 246, 266, 292, 306, 324, 346, 361, 387, 404, 422, 443, 470, 488 and 510¹⁾. #### 2.1.3. The estimated mean diet of the Faroese as used in this report is still based on the estimate given by the late Professor E. Hoff-Jørgensen, Ph.D., in 1962. ### 2.1.4. The present investigation was carried out together with corresponding examinations of fallout levels in Denmark and Greenland, described in Risø Report No. 527 and in Chapter 3 of this report, respectively. # 2.2. Results and discussion # 2.2.1. Strontium-90 in Paroese precipitation Table 2.1 shows the ⁹⁰Sr content in precipitation collected at Højvig (near Thorshavn) and Klaksvig in 1984. The amount of fallout at Højvig was a factor of 2.5 greater than that found at Klaksvig, although the precipitation at Højvig was only 40% of that observed at Klaksvig. The reason to this was the inexplicably high concentration found at Højvig in Jan-April 1984. The 90 sr fallout in 1984 was similar to that in 1983. In Denmark the 1984 levels were 0.8 times the 1983 levels²⁾. <u>Table 2.2.1.1</u>. Strontium-90 in precipitation in the Paroes in 1984 (sampling area = 0.02 m^2) | | н | öjvig | Klaksvig | | | |-----------|--------------------|--------------------------------|--------------------|--------------------------------|--| | - | By m ⁻³ | Bq m ^{−2} | 8q m ⁻³ | Bq m ^{−2} | | | Jan-April | 14.1 | 4.6 | 1.18 | 1.00 | | | May-Jone | 2.7 A | 0.18 A | 1.2 B | 0.06 B | | | July-Aug | 3.1 A | 0.25 A | 1.6 B | 0.10 8 | | | Sept-Dec | 1.68A | 0.60 A | 0.95 | 1.07 | | | 1984 | 6.A | Σ 5.63
Σ _m 0.830 | 1.07 | Σ 2.23
Σ _m 2.090 | | Fig. 2.2.1. Accumulated 90 Sr at Klaksvig and Højvig calculated from precipitation measurements since 1962. The accumulated fallout by 1962 was estimated from the Danish fallout data (cf. Risø Report No. 527³⁾, Appendix D) and from the ratio between the 90 Sr fallout at the Faroese stations and the fallout in Denmark in the period 1962-1984 (cf. Table 2.2.1.2). Table 2.2.1.2. Pallout rates and accumulated failout (Bg 90 Sr m⁻²) in the Faroes 1950-1984 | | Höj | viq | Klaksvig | | | |------|----------------|---------------------|----------------|---------------------|--| | | d _i | A _{1 (29)} | đ _i | A ₁ (29) | | | 1950 | 1.08 | 1.06 | 2.15 | 2.10 | | | 1951 | 5.21 | 6.12 | 10.34 | 12.14 | | | 1952 | 10.21 | 15.94 | 20.27 | 31.64 | | | 1953 | 25.78 | 40.74 | 51.18 | 80.87 | | | 1954 | 98.02 | 135.48 | 194.58 | 268.94 | | | 1955 | 128.96 | 258.20 | 256.00 | 512.54 | | | 1956 | 159.90 | 408.22 | 317.41 | 810.34 | | | 1957 | 159.90 | 554.70 | 317.41 | 1101.12 | | | 1958 | 221.82 | 758.18 | 440.34 | 1505.05 | | | 1959 | 314.64 | 1047.48 | 624.58 | 2079.33 | | | 1966 | 58.78 | 1080.14 | 116.69 | 2144.16 | | | 1961 | 76.36 | 1129.19 | 151.59 | 2241.52 | | | 1962 | 383.01 | 1476.48 | 760.31 | 2930.93 | | | 1963 | 913.90 | 2333.05 | 1503.00 | 4329.21 | | | 1964 | 544.00 | 2809.10 | 1363.00 | 5557.77 | | | 1965 | 181.00 | 2919.48 | 436.00 | 5852.21 | | | 1966 | 112.00 | 2959.88 | 289.00 | 5996.17 | | | 1967 | 94.70 | 2982.44 | 182.00 | 6032.25 | | | 1968 | 44.00 | 2954.96 | 55.50 | 5943.97 | | | 1969 | 41.10 | 2925.30 | 65.10 | 5867.15 | | | 1970 | 53.60 | 2908.54 | 141.00 | 5866.25 | | | 1971 | 101.00 | 2938.46 | 156.00 | 5880.02 | | | 1972 | 34.40 | 2902.65 | 55.10 | 5794.94 | | | 1973 | 24.20 | 2857.73 | 26.50 | 5683.95 | | | 1974 | 33.80 | 2823.23 | 58.80 | 5607.12 | | | 1975 | 34.40 | 2790.14 | 47.80 | 5521.36 | | | 1976 | 8.88 | 2732.91 | 21.60 | 5412.05 | | | 1977 | 27.40 | 2695.12 | 34.40 | 5317.81 | | | 1978 | 37.30 | 2667.89 | 47.60 | 5238.69 | | | 1979 | 13.90 | 2618.45 | 22.20 | 5136.64 | | | 1980 | 11.70 | 2568.03 | 12.60 | 5027.63 | | | 1981 | 22.50 | 2529.35 | 26.70 | 4934.95 | | | 1982 | 7.75 | 2477.18 | 4.79 | 4823.08 | | | 1983 | 3.37 | 2421.96 | 2.75 | 4711.85 | | | 1984 | 6.78 | 2371.38 | 1.07 | 4601.61 | | 1950-1961: are estimated values based upon HASL data (HASL Appendix 291, 1975) considering that the mean ratio between 90 Sr fallout in Denmark and New York was 0.7 in the period 1962-1974 and that the mean ratios between 90 Sr fallout in Höjvig and Denmark and between Klaksvig and Denmark are 1.39 and 2.76, respectively $^{5)}$. # 2.2.2. Strontium-90 and Cesium-137 in Faroese grass Grass samples were collected near Thorshavn in 1984. Table 2.2.2 shows the results. The 1984 137 Cs mean level in grass was 1.16 times the 1983 level. As compared with Danish grass in 1984³⁾ we found the 90 Sr level (Bq (kg Ca) $^{-1}$) in the Faroese grass to be higher by a factor of approximately 8.5 in the summer months, which is in agreement with the observations in previous years. Table 2.2.2. Strontium-90 and Cesium-137 in grass from Thorshavn 1984 | Month | Ba ⁹⁰ Sr ka ⁻¹ | Bq ⁹⁰ Sr (kq Ca) ⁻¹ | Pσ 137Cs kσ ⁻¹ | Rα ¹³⁷ Cs (kα K) ⁻¹ | 137 _{Cs/90} sr | |--------|--------------------------------------|---|---------------------------|---|-------------------------| | June | 1 | 4400 | 7.6 | 1970 | 1 | | August | } 1.94 | 4400 | 13.1 | 3700 | { 5.3 | # 2.2.3. Strontium-90 and Cesium-137 in Paroese milk As previously¹⁾, weekly samples of fresh milk were optained from Thorshavn, Klaksvig, and Tværå. Strontium-90 and ¹³⁷Cs were determined in bulked monthly samples. Table 2.2.3.1 shows the results and Tables 2.2.3.2, 2.2.3.3 and 2.2.3.4 the analysis of variance of the Bg 90 Sr (kg Ca) $^{-1}$, Bg 137 Cs (kg K) $^{-1}$, and Bg 137 Cs m $^{-3}$ figures, respectively. As also observed earlier, the variation between locations was significant for 137 Cs and probably also for 90 Sr. The highest levels were found in the milk from Tværå and Klaksvig, and the lowest in Thorshayn milk. Figure 2.2.3.1 shows the quarterly Bg 90 Sr (kg Ca) $^{-1}$ values and Fig. 2.2.3.2 the quarterly Bg 137 Cs m $^{-3}$ levels since 1962. The annual mean values for 1984 were 159 Bg 90 Sr (kg Ca) $^{-1}$ (4.3 S.U.) and 4100 Bq 137 Cs m $^{-3}$ (111 pCi 137 Cs l $^{-1}$), i.e. the 90 Sr levels in 1984 were 81% of the 1983 concentration, while the 137 Cs levels were approximately 96% of the 1983 mean levels. In Danish milk the 90 Sr concentration in 1984 was equal to the 1983 level, and the 137Cs 1984 level was also unchanged. Table 2,2,3,1. Strontium-90 and Cesium-137 in milk from the Parces in 1984 | | Thorshavn | | Rlaksvig | | T /mrå | | | Mean | | | | | |-------|-------------------------------|----------|---|----------------------|----------|---------------------------------|-----------------------------------|----------|--------------------------------|-----------------------------------|----------|--------------------------------| | Month | Rq 90 _{Sr} (kg Ca)-1 | Bq 137Cs | _{Во 137_{С5}
(kq к) Т} | RG 90Sr
(kg Ca)-1 | Bq 137Cs | Rq 137 _C 3
(kg K) | Bq ⁹⁰ Sr -1 (kg Ca) -1 | Bq 137Cs | Bq ¹³⁷ Cs
(kg K) | Bq ⁹⁰ Sr
(kg Ca) -1 | Bq 137Cs | Bq ¹³⁷ C#
(kg K) | | Jan | 119 | 1690 | 970 | 137 | 7040 | 3770 | 373 | 3140 | 2100 | 210 | 4000 | 2300 | | Feb | 99±1 | 1490 | 900 | 210±2 | 3560 | 2090 | 190±16 | 3290 | 2100 | 166 | 2800 | 1700 | | March | 115±2 | 1330 | 820 | 212±14 | 6160 | 3150 | 160±7 | 3350 | 2320 | 162 | 3600 | 2100 | | April | 220 | 1130 | 680 | 129 | 7030 | 4080 | 152 | 3490 | 2240 | 168 | 3900 | 2300 | | May | 127 | 1150 | 760 | 182 | 6550 | 3950 | 131 | 3150 | 1810 | 147 | 3600 | 2200 | | June | 129 | 1870 | 1150 | 151 | 7200 | 4500 | 189 | 3590 | 2190 | 156 | 4200 | 2600 | | July | 205 | 2330 | 1560 | 160 | 6130 | 3670 | 190 | 4260 | 2700 | 185 | 4200 | 2600 | | Aug | 139 | 3230 | 1890 | 136 | 6640 | 4330 | 219 | 7140 | 4470 | 165 | 5700 | 3600 | | Sept | 107 | 2090 | 1200 | 165 | 5250 | 3810 | 215 | 4950 | 2730 | 162 | 4100 | 2600 | | Oct | 102±4 | 1080 | 620 | 96±19 | 7870 | 5090 | 123±23 | 3460 | 2040 | 107 | 4100 | 2600 | | Nov | 102 | 1430 | 1010 | 160 | 9780 | 5590 | 124 | 3110 | 1930 | 129 | 4800 | 2800 | | Dec | 74±8 | 1400 | A 10 | 250±25 | 5880 | 3500 | 114 | 3970 | 2430 | 146 | 3800 | 2200 | | Mean | 128 | 1680 | 1030 | 166 | 6600 | 3960 | 182 | 3900 | 2420 | 159 | 4100 | 2500 | The error term is 1 S.E. of the mean of double determinations. <u>Table 2.2.3.2</u>. Analysis of variance of $\ln Bq^{90}Sr (kq Ca)^{-1}$ in Faroese milk in 1984 (from Table 2.2.3.1) | Variation | SSD | f | s ² | v ² | P | |-------------------|-------|----|----------------|----------------|---------| | Between months | 1.217 | 11 | 0.111 | 0.857 | - | | Between locations | 1.395 | 2 | 0.698 | 5.403 | > 97.5% | | Month × loc. | 2.841 | 22 | 0.129 | 6.416 | > 99.5% | | Remainder | 0.221 | 11 | 0.020 | | | Table 2.2.3.3. Analysis of variance of $\ln \log^{-137} \text{Cs} (\log K)^{-1}$ in Paroese milk in 1984 (from Table 2.2.3.1) | Variation | SSD | f | s ² | v ² | P | |-------------------|--------|----|----------------|----------------|----------| | Between months | 1.298 | 11 | 0.118 | 2.171 | - | | Between locations | 11.966 | 2 | 5.983 | 110.086 | > 99.95% | | Remainder | 1.196 | 22 | 0.054 | | | <u>Table 2.2.3.4.</u> Analysis of variance of $\ln Bq^{-1.37}Cs m^{-3}$ in Faroese milk in 1984 (from Table 2.2.3.1) | Variation | SSD | f | s ² | _v 2 | P | |-------------------|---------|----|----------------|----------------|----------| | Between months | 1.159 | 11 | 0.105 | 1.743 | - | | Between locations | 12, 181 | 2 | 6.091 | 100.736 | > 99.951 | | Remainder | 1.330 | 22 | 0.060 | | | Fig. 2.2.3.1. Strontium-90 in Faroese milk, 1962-1984. Fig. 2.2.3.2. Cesium-137 in Faroese milk, 1962-1984. Fig. 2.2.3.3. N.U. ratios in Parcese and Danish milk, 1963-1984. Fig. 2.2.3.4. A comparison between Paroese and Danish milk levels, 1962-1984. The annual mean values of the ratio: Bq 137 Cs (kg K)
$^{-1}$ /Bq 90 Sr (kg Ca) $^{-1}$ in Faroese milk are shown in Fig. 2.2.3.3. The annual mean ratio in 1984 for the three locations was 15.1±4.7 (1 S.E.). Figure 2.2.3.4 shows a comparison between the 90 Sr and 137 Cs levels in Paroese- and Danish-produced milk. It is evident that indirect contamination plays an important role for the 137 Cs levels in the Paroes, because the ratio between 137 Cs in Paroese and Danish milk increases when the fallout rate decreases. The ratios between the 90 Sr levels in Paroese and Danisk milk have shown a slight tendency to decrease through the years. # 2.2.4. Strontium-90 and Cesium-137 in Paroese terrestrial animals The mean concentration in lamb meat was 39 Bg 137 Cs kg $^{-1}$ in 1984. The 90 Sr mean level in bone was 2600 Bg 90 Sr (kg Ca) $^{-1}$ and in meat we found 0.12 Bg 90 Sr kg $^{-1}$. As it appears from Pigs. 2.2.4.1 and 2.2.4.2 the 1984 concentrations followed the decreasing trend seen in the previous years. A sample of puffins contained 0.31 Bg 137 Cs kg $^{-1}$ meat and 1.1 (A) Bg 90 Sr (kg Ca) $^{-1}$ in the bones. In meat the concentration was 0.003 Bg 90 Sr kg $^{-1}$ (B). Table 2.2.4. Strontium-90 and Cesium-137 in lamb collected in the Faroes in October 1984 | Location | Sample type | Bq ⁹⁰ Sr kg ⁻¹ | Bg ⁹⁰ Sr (kg Ca) ⁻¹ | 8g 137 _{Cs} kg-1 | Ba ¹³⁷ Cs (kg K) ⁻¹ | |-----------|-------------|--------------------------------------|---|---------------------------|---| | Thorshavn | Meat | 0.116 | 1460 (3300) | 31 | 10900 | | Tvarå | Meat | 0.196 | 2400 (2900) | 44 | 16600 | | Astera | Meat | 0.050 | 820 (1730) | 41 | 11200 | Fig. 2.2.4.1. Strontium-90 (Bq (kg Ca)⁻¹)) in lamb bone collected in the Faroes, 1962-1984. <u>Pig. 2.2.4.2.</u> Cesium-137 (Bq $(kg\ K)^{-1}$) in lamb meat collected in the Parces, 1962-1984. # 2.2.5. Strontium-90 and Cesium-137 in Faroese sea animals Table 2.2.5.1 shows the 137 Cs levels in fish collected in 1984 in the Faroes. The mean levels in Gadus aeglefinus and Gadus callarias were 0.29 Bq 137 Cs kg $^{-1}$ and 0.001 Bq 90 Sr kg $^{-1}$. Whale meat from August 1984 contained 0.046 Bg 90 Sr kg $^{-1}$ and 0.09 (A) Bg 137 Cs kg $^{-1}$ (83 (A) Bg 137 Cs (kg K) $^{-1}$). <u>Fig. 2.2.5.1.</u> Cesium-137 levels in meat of cod (Gadus callarias) and Haddock (Gadus aeglefinus) collected in the Faroes, 1962-1984. Table 2.2.5.1. Strontium-90 and Cesium-137 in fish flesh from the Faroes in 1984 | Sampling
month | Species | Sample type | Bg ⁹⁰ Sr kg ⁻¹ | Bg ⁹⁰ Sr (kg Ca) ⁻¹ | Bq 137Cs ks =1 | Ra ¹³⁷ Cs (kg K) | |-------------------|------------------|---------------|--------------------------------------|---|----------------|-----------------------------| | March | Gadus callarias | Cod flesh | | | 0.30 | 82 | | June | -•- | - • - | | | 0.44 | 115 | | Sept | - • - | - • - | 0.001 B | 12 B | 0.29 | 71 | | Dec | - • - | - • - | | | 0.29 | 73 | | March | Gadus aeglefinus | Haddock flesh | | | 0.29 | 77 | | Sept | -•- | - • - | B.D.L. | 8.D.L. | 6.24 | 62 | | Dec | - • - | - • - | | | 0.199 | 55 | # 2.2.6. Strontium-90 and Tritium in Faroese drinking water Drinking-water samples were collected as previously but the samples were combined before the analysis as shown in Table 2.2.6.1. As in previous years, drinking water from Thorshavn contained more 90 Sr than that from Klaksvig and Tværå (cf. the explanation in Risø Report No. 181^{1}). The mean level in 1984 was 3.9 Bq 90 Sr m⁻³ (0.11 pCi l⁻¹), i.e. lower than in 1983. Figure 2.2.6.1 shows the annual mean levels of 90 Sr in drinking water from the three locations since 1962. <u>Table 2.2.6.1</u>. Strontium-90 in drinking water from the Paroes in 1984 (Unit: $Bq\ m^{-3}$) | | Thorshavn | Klaksvig | Tveri | |----------|-----------|----------|-------| | Jan-June | (7.3) | 1, 19 | 4.7 | | July-Dec | 5,5 | 0.80 | 4,0 | | 1984 | 6.4 | 1.00 | 4.4 | <u>Table 2.2.6.2.</u> Tritium in drinking water from the Faroes in 1984 (Unit: $kBq\ m^{-3}$) | | Thorshavn | Flaksvig | Tverå | |----------|-----------|----------|---------| | JaJune | B.D.L. | A.D.F. | 2.5:0.7 | | July-Dec | A.D.L. | | | The error term is 1 S.E. of the mean of double determinations. Fig. 2.2.6.1. Strontium-90 in drinking water from the Faroes, 1962-1984. # 2.2.7. Strontium-90 and Cesium-137 in miscellaneous Faroese samples # 2.2.7.1. Paroese soil No samples in 1984. # 2.2.7.2. Paroese sea water Cf. Chapter 4, Fig. 2.2.7.2 and Table 2.2.7.2. # 2.2.7.3. Faroese sea plants Table 2.2.7.3. shows the 90Sr and 137Cs contents in Laminaria and Alaria esculenta in 1984. Fig. 2.2.7.2. Strontium-90 and Cesium-137 in Faroese sea water 1962-1984. Table 2.2.7.2. Strontium-90, Cesium-137 and Tritium in surface sea water from the Faroes in 1984 | Sampling month | Bq 90Sr m-3 | Bq 137 _{Cs m} -3 | kBq ³ H m ⁻³ | Salinity
0/00 | |----------------|-------------|---------------------------|------------------------------------|------------------| | April | 2.7 | 4.1 | B.D.L. | 35.0 | | August | 2.6 | 4.0 | | 35.0 | | December | 2.4 | 3.1 | | 34.0 | | 1984 | 2.6 | 3.7 | | 34.7 | Fig. 2.2.7.3. Strontium-90 (Bq (kg Ca)⁻¹) in sea plants collected at Thorshavn, 1962-1984. Table 2.2.7.3. Radionuclides in Paroese seaweed collected in 1984 | Species | Date | Ba ⁹⁰ Sr ka ⁻¹
dry | 89 ⁹⁰ Sr
(kg Ca) ⁻¹ | Bg ¹³⁷ Cs kg ⁻¹
dry | Rq ¹³⁷ Cs
(kg K) — 1 | |------------------|-------|---|--|--|------------------------------------| | Laminaria | April | 0.68 A | 50 A | 0.78 A | 11.0 A | | _ # _ | Aug | 0.83 | 59 | 1.16 | 18.3 | | Alaria esculenta | April | 0.53 | 50 | 0.53 A | 8.6 A | | - " - | Aug | 0.66 | 40 | 0.42 B | 10.2 B | # 2.2.7.4. Faroese vegetables Two samples of potatoes were analysed in 1984. The mean content was 0.46 Bg 90 Sr kg $^{-1}$ (17000 Bg 90 Sr (kg Ca) $^{-1}$) and 3.7 Bg 137 Cs kg $^{-1}$ (990 Bg 137 Cs (kg K) $^{-1}$). <u>Table 2.2.7.4.</u> Radionuclides in Faroese potatoes collected in November 1984 | Location | Bg 90sr
kg-1 | Bg ⁹⁰ Sr
(kg Ca) 1 | Bq 137Cs
kg-1 | Bq 137Cs (kg K) | |-----------|-----------------|----------------------------------|------------------|-----------------| | Thorshavn | 0.54 | 16200 | 3.1 | 810 | | Klaksvig | 0.38 | 17800 | 4.2 | 1170 | Fig. 2.2.7.4.1. Cesium-137 in Faroese potatoes, 1962-1984. Fig. 2.2.7.4.2. Strontium-90 in Faroese potatoes, 1962-1984. # 2.2.7.5. Faroese bread Rye bread and white bread were collected at Thorshavn in June. The levels in white bread were 0.14 Bg 90 Sr kg $^{-1}$ and 0.04 Bg 137 Cs kg $^{-1}$. The rye bread collected in 1984 contained 0.35 Bg 90 Sr kg $^{-1}$ and 0.07 Bg 137 Cs kg $^{-1}$. The bread levels were similar to those in 1983. The ^{137}Cs and ^{90}Sr (kg $^{-1}$) levels in Faroese rye bread in 1984 were similar to the corresponding Danish 3). Table 2.2.7.5. Strontium-90 and Cesium-137 in Parcese bread in June 1984 | Sort | Bq ⁹⁰ Sr kg ⁻¹ | Bg ⁹⁰ Sr (kg Ca) ⁻¹ | Bq ¹³⁷ Cs kg ⁻¹ | Bq 137Cs (kg K)-1 | |-------------|--------------------------------------|---|---------------------------------------|-------------------| | White bread | 0.138 | 63 | 0.04 A | 26 A | | Rye bread | 0.35 | 101 | 0.07 A | 30 A | # 2.2.7.6. Faroese eggs Eggs were collected from Thorshavn in June 1984. The levels of hens eggs were 0.021 Bg 90 Sr kg $^{-1}$ (35 Bg (kg Ca) $^{-1}$ and < 0.04 Bg 137 Cs kg $^{-1}$. # 2.2.8. Humans from the Faroes # 2.2.8.1. Strontium-90 in human bone In 1984 three human bone samples were obtained from Dronning Alexandrine's Hospital in Thorshavn. Table 2.2.8.1 shows the results. The mean content of femur samples was 59 Bq 90 Sr (kg Ca) $^{-1}$ (1.6 pCi 90 Sr (g Ca) $^{-1}$). Compared to Danish vertebrae in 1984^{2}) the Faroese samples of femur contained approximately 2 times as much 90Sr. <u>Table 2.2.8.1</u>. Strontium-90 in human bone collected in the Faroes in 1984 | Age | Bone type | | Sex | Bg ⁹⁰ Sr (kg Ca) ⁻¹ | |-----------|-----------|------------|-----|---| | 82 years | Femur | Amputation | F | 77 | | 84 years | Femur | _ # _ | F | 48 | | 87 years | Femur | _ # _ | M | 52 | | *41 years | | | М | 44 | # 2.3. Estimate of the mean contents of 90Sr and 137Cs in the Faroese human diet in 1984 # 2.3.1. Annual quanticies The annual quantities are still based on the estimate made by the late Professor E. Hoff-Jørgensen, Ph.D., in 1962¹⁾ assuming a daily pro capite intake of approximately 3000 calories (12.6 MJ). # 2.3.2. Milk and cream 75% of the milk consumed in the Faroes is assumed to be of local origin, and 25% comes from Denmark. Hence the 90 Sr content in milk consumed in the Faroes in 1984 was $1.2\times(0.75\times0.159 + 0.25\times0.080) = 0.167$ Bg 90 Sr k $_{7}^{-1}$, and the 137 Cs content was $0.75\times4.1 + 0.25\times0.085 = 3.10$ Bg 137 Cs kg $^{-1}$ (cf. 2.2.3 and Ref. 3). 1 kg milk contains 1.2 g Ca. #### 2.3.3. Cheese Nearly all cheese consumed in the Faroes is of Danish origin, and the Danish figures from ref. 3 were used: 0.68 Bg 90 Sr kg $^{-1}$ and 0.061 Bg 137 Cs kg $^{-1}$. ## 2.3.4. Grain products As most grain products are imported from Denmark, the Danish figures for 1984^{3}) were used in the calculation of the Faroese levels. The mean daily consumption of grain products in the Faroes is, as in Denmark, 80 g rye flour, 120 g wheat flour, and 20 g grits. Hence the mean concentration of 90 Sr in grain products consumed in the Faroes in 1984 is 0.24 Bq 90 Sr kg⁻¹ and 0.094 Bq 137 Cs kg⁻¹. #### 2.3.5. Potatoes All potatoes consumed in the Faroes are assumed to be of local origin. The values from 2.2.7.4 were used, i.e. 0.46 Bq 90 Sr kg-1 and 3.7 Bq 137Cs kg-1. # 2.3.6. Other vegetables and fruit As the amount of vegetables and fruit grown in the Faroes is limited, the
Danish figures from 1984^{3}) were used. Thus the mean contents in vegetables other than potatoes were 0.31 Bq 90 Sr kg $^{-1}$ and 0.052 Bg 137 Cs kg $^{-1}$, and the mean contents in fruit were 0.050 Bq 90 Sr kg $^{-1}$ and 0.014 Bq 137 Cs kg $^{-1}$. # 2.3.7. Meat and eggs Meat and egg consumption in the Faroes is estimated to consist of 50% locally produced mutton (or lamb), 25% local whale meat, and 25% sea birds and eggs. For lamb we use the mean of the samples obtained in 1984, i.e. 0.12 Bq 90 Sr kg $^{-1}$ and 39 Bq 137 Cs kg $^{-1}$. Whale meat contained 0.046 Bq 90 Sr kg $^{-1}$ and 0.09 Bq 137 Cs kg $^{-1}$, sea birds contained 0.003 Bq 90 Sr kg $^{-1}$ and 0.31 Bq 137 Cs kg $^{-1}$, and eggs (cf. 2.2.4 and 2.2.7.6): 0.021 Bq 90 Sr kg $^{-1}$ and 0.04 Bq 137 Cs kg $^{-1}$. Hence we estimate the mean content of 90 Sr in meat and eggs consumed in 1984 to be $0.50 \cdot 0.12 + 0.25 \cdot 0.046 + 0.25 \cdot (\frac{0.003 + 0.021}{2}) = 0.075 \text{ Bg}^{90} \text{Sr kg}^{-1}$ and the 137Cs content to be $0.50 \cdot 39 + 0.25 \cdot 0.09 + 0.25 \cdot (\frac{0.31 + 0.04}{2}) = 19.57 \text{ Bg}^{-1} \cdot \text{Cs}^{-1}$ ## 2.3.8. Pish All fish consumed in the Faroes is of local origin, and the mean contents in fish, obtained from subsection 2.2.5, were 0.001 Bg 90 Sr kg $^{-1}$ and 0.29 Bg 137 Cs kg $^{-1}$. ### 2.3.9. Coffee and tea The Danish figures for 1984^{3}) were used, i.e. 1.23 Bg 90 Sr kg $^{-1}$ and 1.53 Bg 137 Cs kg $^{-1}$. # 2.3.10. Drinking water The mean value found in Table 2.2.6.1 was used, i.e. 0.0039 Bq 90 Sr kg⁻¹. The 137 Cs content was estimated to be approximately one fourth (the ratio found in New York tap water in 1964⁴)) of the 90 Sr content, i.e. 0.001 Bq 137 Cs kg⁻¹. Tables 2.3.1 and 2.3.2 show the diet estimates of 90 Sr and 137 Cs, respectively. Table 2.3.1. Estimate of the mean content of 90Sr in the human diet in the Faroe Islands in 1984 | Type of food | Annual
guantity
in kg | Ba ⁹⁰ Sr
per ka | Total
Bg ⁹⁰ Sr | Percentage of
total Bg ⁹⁰ Sr
in food | |----------------|-----------------------------|-------------------------------|------------------------------|---| | Milk and cream | 146 | 0.167 | 24.38 | 21.9 | | Cheese | 7.3 | 0.68 | 4.96 | 4.4 | | Grain products | 80 | 0.24 | 19.20 | 17.2 | | Potatoes | 91 | 0.46 | 41.86 | 37.6 | | Vegetables | 20 | 0.31 | 6.20 | 5.6 | | Fruit | 18 | 0.050 | 0.90 | 0.8 | | Meat and eggs | 37 | 0.075 | 2.78 | 2.5 | | Fish | 91 | 0.001 | 0.09 | 0.1 | | Coffee and tea | 7.3 | 1.23 | 8.98 | 8.0 | | Drinking water | 548 | 0.0039 | 2.14 | 1.9 | | Total | | | 111.49 | | The mean annual calcium intake is estimated to be 0.6 kg (approx. 200-250 g of creta praeparata). Hence the ratio: Bq 90Sr (kg Ca) $^{-1}$ in total Faroese diet was 186 (5.0 pCi 90Sr (g Ca) $^{-1}$). Fig. 2.3.1. Strontium-90 in Faroese diet, 1962-1984. Table 2.3.2. Estimate of the mean content of ¹³⁷Cs in the human diet in the Faroe Islands in 1984 | Type of food | Annual guantity in kg | Ra ¹³⁷ Cs
per kg | Total
Rq 137Cs | Percentage of
total Bu 137C:
in food | |----------------|-----------------------|--------------------------------|-------------------|--| | Milk and cream | 146 | 3.10 | 452.6 | 29.0 | | Cheese | 7.3 | 0.061 | 0.4 | 0 | | Grain products | 80 | 0.094 | 7.5 | C.5 | | Potatoes | 91 | 3.7 | 336.7 | 21.6 | | Vegetables | 20 | 0.052 | 1.0 | 0.1 | | Pruit | 18 | 0.014 | 0.3 | 0 | | Meat and eggs | 37 | 19.57 | 724.1 | 46.4 | | Fish | 91 | 0.29 | 26.4 | 1.7 | | Coffee and tea | 7.3 | 1.53 | 11.2 | 0.7 | | Drinking water | 548 | 0.001 | 0.5 | 0 | | Total | | | 1560.7 | | The mean annual intake of potassium is estimated to be approx. 1.2 kq. Hence the ratio: Bq 137 Cs (kg K) $^{-1}$ becomes 1301 (35.1 pCi 137 Cs (g K) $^{-1}$). Fig. 2.3.2. Cesium-137 in Faroese diet, 1962-1984. # 2.3.11. Discussion Figures 2.3.1 and 2.3.2 show the Paroese diet levels since 1962. The 1984 90 Sr level in the total Paroese diet was 115% of the 1983 concentration, and the 137 Cs level was 89% of that observed in 1983. The main contributors to the 90 Sr content in the Paroese diet were milk products, cereals and potatoes, which together accounted for approximately 80% of the total 90 Sr content in the diet in 1984. As regards 137 Cs, potatoes, milk products and meat (lamb) were the most important contributors. In 1984, 97% of the total 137 Cs content in the diet originated from these products. The Paroese mean diet contained 1.6 times as much 90 Sr and approximately 18 times as much 137 Cs as the Danish diet in 1984 $^{3)}$. As earlier $^{1)}$ mentioned, the year-to-year variations in the ^{137}Cs estimates for Paroese diet are markedly influenced by the mutton and potato samples obtained for analysis. # 2.4. Conclusion # 2.4.1. The 90 Sr fallout rate in the Paroes in 1984 was approximately 4 Bq 90 Sr m⁻² (0.1 mCi km⁻²). The accumulated fallout by the end of 1984 was estimated at approximately 3500 Bq 90 Sr m⁻² (94 mCi km⁻²) (the mean at Thorshavn and Klaksvig). # 2.4.2. The mean level of 90 Sr in Paroese milk was 159 Bq (kg Ca) $^{-1}$ (4.3 pCi (g Ca) $^{-1}$). The 137 Cs concentration was 4100 Bq 137 Cs m $^{-3}$ (111 pCi $^{1-1}$). Lamb contained 39 Bq 137 Cs kg $^{-1}$ (1050 pCi kg $^{-1}$) in 1984. Fish showed a mean level of 0.29 Bq 137 Cs kg $^{-1}$ (7.8 pCi kg $^{-1}$). The mean content of 90 Sr in drinking water was 3.9 Bq m⁻³ (0.11 pCi 1⁻¹). The mean daily pro capite intakes resulting from the Paroese diet in 1984 were estimated at 0.31 Bg 90 Sr (8.2 pCi d $^{-1}$) and 4.3 Bg 137 Cs (115 pCi d $^{-1}$). # 2.4.3. From the measurements on Faroese human bones (only femur), the Paroese bone level in 1984 was estimated at 59 Bg 90 Sr (kg Ca) $^{-1}$ (1.6 pCi (g Ca) $^{-1}$). The mean content of 137 Cs in the Paroese adult was estimated at approximately 3900 Bg 137 Cs (kg K) $^{-1}$ (105 pCi (g K) $^{-1}$). This estimate is based on the diet estimate. # APPENDIX 2A # Predictions and observations of ⁹⁰Sr and ¹³⁷Cs in Faroese samples in 1984 The models used for the predictions shown in Table 2A were based on data collected $1962-1976^{5}$). If the predictions for previous years $1977-1982^{1}$) were considered too, we conclude that the model for 90Sr in milk overestimates the level and so do the model for 137Cs in milk from Tværå. The following models underestimate the concentrations: 90Sr in cod fish and 137Cs in milk from Klaksvig. Table 2A. Comparison between observed and predicted 90 Sr and 137 Cs concentrations in Faroese samples collected in 1984 | Sample | Unit | Observed
11 S.E. | Number
of
samples | Predicted | Obs./pre.
t1 S.E. | Model in ref. 5 | |---------------------------|---|---------------------|-------------------------|-----------|----------------------|-----------------| | Drinking water, Thorshawn | Bq ⁹⁰ Sr m ⁻³ | 6.4 | 1 | 10.7 | 0.60 | C.1.4.1 No. 9 | | - " - , Klaksvig | - • - | 1.0 20.2 | 2 | 2.4 | 0.4210.08 | - * - No. 10 | | - " - , Tverå | - • - | 4.4 ±0.4 | 2 | 2.8 | 1.57±0.14 | - " - No. 11 | | Sea water | - • - | 2.6 10.09 | 3 | 2.1 | 1.24±0.04 | C.1.5.1 No. 3 | | Rye bread | Bq ⁹⁰ Sr kg ⁻¹ | 0.35 | 1 | 0.32 | 1.09 | C.2.3.1 No. 6 | | White bread | - • - | 0.14 | 1 | 0.12 | 1.17 | - * - No. 7 | | Rye bread | Bq ¹³⁷ Cs kg ⁻¹ | 0.07 | 1 | 0.07 | 1.00 | - " - No. 8 | | White bread | - * - | 0.04 | 1 | 0.024 | 1.67 | - * - No. 9 | | Grass | Bq ⁹⁰ Sr (kg Ca) ⁻¹ | 4400 | 1 | 5600 | 0.79 | C.2.4.1 No. 4 | | - • - | Bg ¹³⁷ Cs (kg K) ⁻¹ | 2800 ±900 | 2 | 560 | 5.00:1.61 | C.2.4.2 No. 3 | | Potatoes | Bg ⁹⁰ Sr kg ⁻¹ | 0.46 ±0.08 | 2 | 0.21 | 2.1920.38 | C.2.5.1 No. 11 | | - • - | Bq ¹³⁷ Cs kq ⁻¹ | 3.6 ±0.6 | 2 | 1.5 | 2.40:0.40 | C.2.5.3 No. 8 | | Milk | 89 ⁹⁰ Sr (kg Ca) ⁻¹ | 159 17 | 12 | 315 | 0.50±0.02 | C.3.3.1 No. 1 | | Hilk Thorshavn | Bq ¹³⁷ Cs m ⁻³ | 1680 ±180 | 12 | 1060 | 1.59±0.17 | C.3.3.2 No. 7 | | Milk Wlaksvig | | 6600 ±430 | 12 | 2200 | 3.00±0.20 | - * - No. 9 | | Milk Tverå | . • . | 3900 ±330 | 12 | 9200 | 0.42 20.04 | - * - No. 11 | | Cod fish | Ng ⁹⁰ Sr (kg Ca) ⁻¹ | 13 | 1 | 24 | 0.54 | C.3.5.1 No. 3 | | - • - | Bq ¹³⁷ Cs kg ⁻¹ | 0.29 ±0.03 | 7 | 0.21 | 1,3820,14 | C.3.5.2 No. 2 | | Lamb meat | 90 gr (kg Ca) =1 | 1560 ± 460 | 3 | 1320 | 1.18:0.35 | C.3.4.1 No. 5 | | - * - | Bq ¹³⁷ Cs (kg K) ⁻¹ | 12900 ± 1850 | 3 | 3500 | 3.69:0.53 | C.3.4.2 No. 5 | | Lamb bone | Bq ⁹⁰ Sr (kg Ca) ⁻¹ | 2600 ± 470 | 3 | 2200 | 1.18:0.21 | C.3.4.3 No. 1 | | Whale | Bq ⁹⁰ Sr kg ⁻¹ | 0.046 | 1 | 0.014 | 3.29 | C.3.6.1 No. 3 | | - • - | 8q ¹³⁷ Cs kg ⁻¹ | 0.09 | 1 | 0.38 | 0.24 | C.3.6.2 No. 2 | | Sea birds | . • . | 0.31 | 1 | 0.06 | 5.17 | C.3.6.2 No. 8 | #### 3. ENVIRONMENTAL RADIOACTIVITY IN GREENLAND IN 1984 # 3.1. Introduction ## 3.1.1. In 1984 the sampling programme was similar to that used in previous years but for a few minor modifications. ## 3.1.2. As hitherto, samples were collected through the local district physicians and the head of the telestations. However, we have also obtained samples collected by the Greenland Fisheries and Environmental Research Institute. # 3.1.3. The estimated mean diet in Grenland was the same as that in 1962, i.e., it agreed with the estimate given by the late Professor E. Hoff-Jørgensen, Ph.D. ## 3.1.4. The environmental studies in Greenland were carried out together with corresponding investigations in Denmark (cf. Risø Report No. 5273) and in the Faroes (cf. Chapter 2 in this report). # 3.1.5. The present report does not repeat information concerning sample collection and analysis already given in ref. 2. Fig. 3.1. Greenland # 3.2. Results and discussion # 3.2.1. Strontium-90 in Greenland precipitation Table 3.2.1.1 shows the results of the measurements. The 90 Sr fallout in 1984 at the Greenland stations were generally lower as compared with 1983. In Denmark³⁾ and the Faroes (cf. 2.2.1) the fallout in 1984 was
approximately 80% of that in 1983. Figure 3.2.1 shows the accumulated 90 Sr at the various stations in Greenland, since measurements began in 1962. Table 3.2.1.). Strontium-90 in precipitation in Greenland in 1984. (Sampling area: $0.02\ m^2$) | Location
m precipitation | Unit | Jan-March | April-June | July-Sept | Oct-Dec | 1984 | |-----------------------------|---------------------|-----------|------------|-----------|---------|-------| | Upernavik | Bq m ⁻³ | 5. | , | 15. | 4 | 11.2 | | I 0.196 | Bq m ⁻² | 0. | 51 | 1. | 60 | 2,19 | | Godthåb | Bq m ⁻³ | 8.2 A | 4.2 B | 0.8 B | 1.9 B | 2.6 | | E 0.771 | Bq m ⁻² | 0.77 A | 0.55 % | 0.20 B | 0.20 | 1.98 | | Prins Chr. Sund | Ba m ^{−3} | (4.5) | 14.1 | 1.21 A | 1.24 | (2,1) | | £ (0.977) | Bd m ⁻² | (0.71) | 0.33 | 0.45 A | 0.53 | (2.0) | | Scoresbysund | Piα π ^{−3} | 0.8 P | 1.93 A | 0.9 P | 0.7 B | 1.0 | | E 1.042 | B¢ m ^{−2} | n,30 P | 0.39 A | 0.14 B | 0.24 P | 1.07 | | Danmarkshavn | Bq m ⁻³ | 7.6 | 11.5 A | 4.7 | 3.0 p | 5.9 | | £ 0.214 | Bq m ⁻² | 0.46 | 0.31 A | 0.33 | 0.17 8 | 1.27 | Fig. 3.2.1. Accumulated ⁹⁰Sr at Prins Chr. Sund, Godthåb, Scoresbysund (Kap Tobin) and Upernavik calculated from precipitation measurements since 1962. The accumulated fallout by 1962 was estimated from the Danish data (cf. Risø Report No. 509³⁾, Appendix D) and from the ratio between the ⁹⁰Sr fallout at the Greenland stations and the fallout in Denmark in the period 1962-1984. Table 3.2.1.2. Fallout rates and accumulated fallout (BG m^{-2}) in Greenland 1950-1984 | | Scoresbysund
(Kap Tobin) | | Pr.Chi | r.Sunđ | Gođt | håb | Upernavik | | |------|-----------------------------|--------------------|---------|-----------|--------|---------|--------------|---------| | _ | đi | Ai ₍₂₉₎ | đi | Aì(29) | đi | Ai(29) | đi | Ai (29) | | 1950 | 0.37 | 0.36 | 2.04 | 1.99 | 0.57 | 0.56 | 0.20 | 0.20 | | 1951 | 1.76 | 2.06 | 9.79 | 11.50 | 2.77 | 3.25 | 0.97 | 1.14 | | 1952 | 3.44 | 5.38 | 19.19 | 29.97 | 5.42 | 8.46 | 1.90 | 2.97 | | 1953 | 8.70 | 13.74 | 48.47 | 76.59 | 13.69 | 21.63 | 4.81 | 7.60 | | 1954 | 33.06 | 45.69 | 184.28 | 254.71 | 52.05 | 71.94 | 18.29 | 25.28 | | 1955 | 43.49 | 87.08 | 242.45 | 485.41 | 68.48 | 137.10 | 24.36 | 48.17 | | 1956 | 53.93 | 137.67 | 300.61 | 767.46 | 84.91 | 216.76 | 29.83 | 76.16 | | 1957 | 53.93 | 187.08 | 300.61 | 1042.85 | 84.91 | 294.54 | 29.8 | 103.49 | | 1958 | 74.81 | 255.70 | 417.04 | 1425.40 | 117.79 | 402.59 | 41.39 | 141.45 | | 1959 | 106.11 | 353.27 | 591.53 | 1969.29 | 167.07 | 556.21 | 58.70 | 195.43 | | 1960 | 19.82 | 364.28 | 110.51 | 2030.68 | 31.21 | 573.55 | 10.97 | 201.52 | | 1961 | 25.75 | 380.83 | 143.57 | 2122.90 | 40.55 | 599.60 | 14.25 | 210.67 | | 1962 | 129.17 | 497.95 | 720.07 | 2775.83 | 203.38 | 784.01 | 71.46 | 275.46 | | 1963 | 290.45 | 769.78 | 1545.12 | 4218.89 | 475.45 | 1229.72 | 160.58 | 425.75 | | 1964 | 180.93 | 928.26 | 929, 97 | 5026.38 | 258.63 | 1453.19 | 100.27 | 513.59 | | 1965 | 68.82 | 973.53 | 383.32 | 5281.93 | 166.50 | 1581.44 | 38.11 | 538.67 | | 1966 | 37.37 | 987.02 | 207.94 | 5360.21 | 43.29 | 1586.36 | 20.72 | 546.18 | | 1967 | 18.13 | 981.41 | 73.63 | 5305.51 | 32.56 | 1580.68 | 12.21 | 545.20 | | 1968 | 24.42 | 982.08 | 136.16 | 5313.15 | 37.00 | 1579.48 | 13.32 | 545.33 | | 1969 | 18.13 | 976.59 | 72.89 | 5258.83 | 22.20 | 1563.85 | 6.73 | 539.03 | | 1970 | 33.30 | 986.03 | 59.20 | 5192.43 | 34.41 | 1560.51 | 12.58 | 538.58 | | 1971 | 15.17 | 977.56 | 122.84 | 5189.73 | 32.56 | 1555.44 | 8.14 | 533.81 | | 1972 | 12.58 | 966.75 | 55.50 | 5121.35 | 15.17 | 1533.52 | 4.07 | 525.17 | | 1973 | 3.40 | 947.24 | 17.91 | 5017.88 | 6.92 | 1504.06 | 2.78 | 515.48 | | 1974 | 12.21 | 936.79 | 45.88 | 4944.16 | 18.83 | 1486.92 | 13.14 | 516.13 | | 1975 | 4.48 | 919.04 | 86.21 | 4911.57 | 19.57 | 1470.91 | 8.44 | 512.18 | | 1976 | 3.00 | 900.26 | 11.17 | 4806.47 | 4.85 | 1440.91 | 2.44 | 502,40 | | 1977 | 5.18 | 884.06 | 34.78 | 4726.91 | 14.06 | 1420.60 | 7.03 | 497.46 | | 1978 | 10.36 | 873.29 | 54.39 | 4668.38 | 14.43 | | 7.77 | 493.30 | | 1979 | 2.81 | 855.41 | 10.36 | 4568.24 | 9.99 | 1377.80 | 3.70 | 485.26 | | 1980 | 3.15 | 83R • 2R | 7.03 | 4467,21 | 4.74 | 1349.89 | 3.70 | 477.41 | | 1981 | 5.51 | A23.86 | 34.04 | 4394.94 | 12.95 | 1330.65 | 5.55 | 471.55 | | 1982 | 2.41 | 806.75 | 6.36 | 4394.34 | 2.63 | 1301.79 | 1.55 | | | 1983 | 1.44 | 767.10 | (12.4) | (4207.96) | 3.65 | 1274.60 | | 461.93 | | 1984 | 1.07 | 771.51 | | (4207.56) | 1.98 | 1246.43 | 1.88
2.19 | 452.86 | # 3.2.2. Radionuclides in Greenland sea water The detailed results are shown in Chapter 4. Table 3.2.2 shows the samplings carried out from land by local people in 1984. The high 90 Sr value from Prins Christians Sund was unaccountable. Further sea water data are shown in Chapter 4 of this report. <u>Table 3.2.2.</u> Radionuclides in surface sea water collected in Greenland in July-August 1984 | Location | $Bq 90 Sr m^{-3}$ | Bq 137 _{Cs m} -3 | Salinity in o/oo | |----------------|-------------------|---------------------------|------------------| | Danmarkshavn | 5.51 | 5.81 | 29.0 | | Prins Chr.Sund | 9.14 | 6.40 | 26.5 | | Upernavik | 3.46 | 3.45 | 30.4 | # 3.2.3. Strontium-90 and Cesium-137 in Greenland terrestrial animals Reindeer samples were obtained from Greenland in 1984. The mean levels in reindeer meat were 0.91 Bq 90 Sr kg $^{-1}$ and 98 Bq 137 Cs kg $^{-1}$. The levels in reindeer were higher than those observed in lamb. Table 3.2.3.1. Cesium-137 in reindeer meat collected in Greenland in 1984 | Location | | Month | Bg ¹³⁷ Cs kg ⁻¹ | Bq ¹³⁷ Cs (kg K) ⁻ | |---------------|-----|--------|---------------------------------------|--| | Holsteinsborg | | March | 75 | 23000 | | - * - | 1 | July | 22 | 5900 | | - * - | II | | 24 | 6700 | | Sukkertoppen | I | Winter | 149 | 48000 | | - " - | 11 | -*- | 229 | 71000 | | - * - | 111 | -*- | 190 | 61000 | | - * - | IV | -*- | 146 | 49000 | | K.G.H. | I | | 25 | 6400 | | - " - | 11 | | 24 | 7000 | | Mean | | | 98 | 31000 | | Median | | | 75 | 23000 | Table 3.2.3.2. Strontium-90 in reindeer samples collected in Greenland in 1984 | Location | | Month | Bq ⁹⁰ Sr kg ^{−1} | $Bq^{90}Sr (kg Ca)^{-1}$ | |---------------|---------------|--------|--------------------------------------|--------------------------| | Holsteinsborg | . | March | 0.33 (1780) | 2600 | | | I | July | 0.11 (840) | 800 | | _ " _ | 11 | - · · | 0.72 (1360) | 2200 | | Sukkertoppen | I | Winter | 1.81 (5400) | 3600 | | - " - | 11 | -"- | 1.15 (4100) | 2800 | | - " - | III | _*_ | 0.75 (4300) | 7200 | | - " - | IV | _*_ | 1.35 (5200) | 6900 | | K.G.H. | I | | 0.55 (1200) | 2000 | | - • - | 11 | | 1.44 (1270) | 4000 | | Mean | | | 0.91 (2800) | 3600 | | Median | | | 0.75 (1780) | 2800 | Fig. 3.2.3. Cesium-137 in Greenlandic mutton, 1962-1984. 3.2.4. Strontium-90 and Cesium-137 in Greenland sea animals The results are shown in Tables 3.2.4.1 and 3.2.4.2. It appears that we only got one fish sample in 1984, a trout, which is not very typical for the fish caught at Greenland. We shall therefore use the fish data from 1982 in our calculation of diet intakes in 1984. Table 3.2.4.1. Cesium-137 in sea animals collected in Greenland in 1984 | Species | Location | $Bq^{-137}Cs kg^{-1}$ | Bq ¹³⁷ Cs (kg K) ⁻¹ | |---------|---------------|-----------------------|---| | Seal I | Sukkertoppen | 0.53 | 178 | | " II | - * - | 0.79 | 300 | | Whale I | - " - | 0.44 | 210 | | " II | - " - | 0.64 | 240 | | | Holsteinsborg | 0.56 | 210 | | Shrimps | Jacobshavn | 0.07 | 76 | | Trout | Holsteinsborg | 0.82 | 290 | Table 3.2.4.2. Strontium-90 in sea animals collected in Greenland in 1984 | Species | Location | Bq ⁹⁰ Sr kg ⁻¹ | $Bq^{90}Sr (kg Ca)^{-1}$ | |-------------|---------------|--------------------------------------|--------------------------| | Seal I | Sukkertoppen | - | - (11.2) | | " II | - " - | 0.016 | 240 (6.6) | | Whale I | _ • _ | 0.012 | 210 | | " II | - 4 - | 0.014 B | 500 B | | | Holsteinsborg | 0.011 A | 73 A | | Shrimps | Jacobshavn | 0.044 | 91 | | Trout | Holsteinsborg | 0.064 | 1800 | Bone levels are shown in brackets. Whale meat contained 0.012 Bq 90 Sr kg $^{-1}$, and 0.55 Bq 137 Cs kg $^{-1}$, and seal meat 0.016 Bq 90 Sr kg $^{-1}$ and 0.66 Bq 137 Cs kg $^{-1}$. Fig. 3.2.4 shows that the 137 Cs levels in seals and whales from Greenland decay with an effective half-life of 8-9 years. This is in agreement with the effective half-life of 90 Sr and 137 Cs observed in the surface waters of the North Atlantic ocean 21). Fig. 3.2.4. Cesium-137 in seal- and whale meat from Greenland 1962-1984. # 3.2.5. Radionuclides in Greenland vegetation Samples of lichens and other terrestrial vegetation were obtained from Prins Christians Sund in 1984 (Tables 3.2.5.1 and 3.2.5.2). The 90 Sr and 137 Cs were similar to those seen previously (cf. Fig. 3.2.5). Table 3.2.5.1. Cesium-137 and other y-emitters in vegetation (dry weight) collected in Prins Chr. Sund in Greenland in the summer 1984. | Sample | Bq 137 _{Cs} | Bq ⁶⁰ Co
kg ⁻¹ | Bq ¹⁴⁴ Ce
kg ⁻¹ | Bg ²⁰⁷ Bi
kg-1 | g K kg ⁻¹ | |--------------------|----------------------|---|--|------------------------------|----------------------| | Cetraria nivalis I | 315 | 0.18 B | 6.5 A | 0.52 | 4.9 | | - • II | 510 | 0.39 A | 5.2 B | 0.74 | 11.3 | | Grey lichen | 134 | 0.15 B | - | 0.19 B | 13.2 | | Lichen | 1140 | - | - | - | 55 | | Crowberry twigs | 198 | - | _ | - | 14.1 | Table 3.2.5.2. Strontium-90 in vegetation (dry weight) collected in Prins Chr. Sund in Greenland in the summer 1984. | Sample | Bq ⁹⁰ Sr kg ⁻¹ | Bq ⁹⁰ Sr (kg Ca) | | |--------------------|--------------------------------------|-----------------------------|--| | Cetraria nivalis I | 79 | 35000 | | | - " " - II | 256 | 350000 | | | Lichen | 138 | 100000 | | | Crowberry twigs | 0.06 B | 44 | | Fig. 3.2.5.
Cesium-137 and Strontium-90 in lichen (fresh weight) collected along the Greenlandic coast, 1962-1984. The contents of 207 Bi and 60 Co were similar to that found in samples collected at Narssaq in 1979 (if the data all were decay-corrected back to 1961) 20 . Data on seaweed samples are shown in Chapter 4 of this report. # 3.2.6. Strontium-90 and Tritium in Greenland drinking water Quarterly samples of drinking water were collected from a number of locations in Greenland. Table 3.2.6.1 shows the results from 1984, and Fig. 3.2.6 the geometric annual means of all samples for the period 1962-1984. As in previous years, we found it most expedient to choose the geometric mean of all figures, i.e. $16~\text{Bq}^{-90}\text{Sr}^{-3}$ (0.42 pCi 1⁻¹) as representative of the mean level of ⁹⁰Sr in Greenland drinking water in 1984, this level was higher than that observed in 1983 (Fig. 3.2.6). The levels in drinking water are still surprisingly high as compared to present rain concentrations (cf. Table 3.2.1.1). We have suggested that evaporation from the drinking water reservoirs was responsible for the higher ⁹⁰Sr levels. Tritium measurements show (Table 3.2.6.2) that the Greenland drinking water shows similar tritium levels as rain from Denmark³⁾, hence evaporation seems to be a possible explanation. The high ⁹⁰Sr levels may, however, also be due to extraction of old deposited ⁹⁰Sr activity from the soil by the water collected for drinking. This would also be compatible with "normal" tritium concentrations. <u>Table 3.2.6.1</u>. Strontium-90 in drinking water collected in Greenland in 1984. (Unit: Bg m^{-3}) | Location | Jan-March | April-June | July-Sept | Oct-Dec | |----------------|-----------|------------|-----------|---------| | Danmarkshavn | 44 | 17 | 9 | 98 | | Scoresbysund | 9 | 16 | 11 | 9 | | Prins Chr.Sund | | 21 | 21 | 30 | | Godthåb | | 10 | 7 | | | Upernavik | | 12 | 7 | | Table 3.2.6.2. Tritium in drinking water collected in Greenland in 1984. (Unit: $kBg\ m^{-3}$) | Location | Jan-March | April-June | Oct-Dec | |----------------|-----------|------------|---------| | Danmarkshavn | 3 | | - | | Scorebysund | 2 | | | | Prins Chr.Sund | | 1 | n | | Gođtháb | | 2 | | | Upernavik | | 3 | | An empirically found tritium background of 1.2 kBg has been subtracted from all results (cf. the discussion in Rise-R-509, Chapter 7) 3). Fig. 3.2.6. Strontium-90 in Greenlandic drinking water (Geometric mean), 1962-1984. # 3.3. Estimate of the mean contents of 90 Sr and 137 Cs in the human diet in Greenland in 1984 # 3.3.1. The annual quantities The estimate of the daily pro capite intake of the different foods in Greenland is still based on the figures given in 1962 by the late Professor E. Hoff-Jørgensen, Ph.D., in Risø Report No. 65^{2} . # 3.3.2. Milk products All milk consumed in Greenland was imported as milk powder from Denmark. The mean radioactivity content in milk prepared from Danish dried milk produced in 1984 was 0.096 Bg 90 Sr kg $^{-1}$ and 0.085 Bg 137 Cs kg $^{-1}$ 3). Cheese was also imported from Denmark and contained 0.68 Pg 90 Sr kg⁻¹ and 0.061 Bg 137 Cs kg⁻¹. # 3.3.3. Grain products All grain was imported from Denmark. It is assumed that only grain from the harvest of 1983 was consumed in Greenland during 1984. The daily pro capite consumpt on was: rye flour (100% extraction): 80 g, wheat flour (75% extraction): 110 g, rye flour (70% extraction): 20 g, biscuits (rye, 100% extraction): 27 g, and grits: 25 g. The content of 90 Sr in these five products was 0.47, 0.10, 0.09, 0.36 and 0.29 Bg kg⁻¹, respectively. Hence the mean content of 90 Sr in grain products was 0.26 Bg kg⁻¹. The content of 137 Cs in the five products was 0.12, 0.034, 0.06, 0.09 and 0.10 Bg kg⁻¹. Hence the mean content of 137 Cs in grain products was 0.07 Bg kg⁻¹. The activity levels in rye flour (100% extraction), wheat flour (75% extraction), and grits were all taken from Tables 5.9.1 and 5.9.2 in Risø Report No. 509³⁾. The ⁹⁰Sr level in rye flour (70% extraction) was calculated analogously with the level in wheat flour (75% extraction), i.e. as one-fifth of the whole-grain activity. The ¹³⁷Cs content in rye flour (70% extraction) was calculated as one half of the whole-grain level in rye in analogy with the ratio between ¹³⁷Cs in whole wheat grain and in wheat flour (75% extraction)³⁾. The ⁹⁰Sr and ¹³⁷Cs contents in biscuits were calculated by dividing the levels of the rye flour (100% extraction) by 1.35, since 1 kg flour yields 1.35 kg bread³⁾. # 3.3.4. Potatoes, other vegetables, and fruit The Danish mean levels for 1984 were used³⁾ since the local production is insignificant compared with imports from Denmark. The Danish mean levels were: in potatoes 0.048 Bg 90 Sr kg $^{-1}$ and 0.043 Bg 137 Cs kg $^{-1}$, in other vegetables 0.31 Bg 90 Sr kg $^{-1}$ and 0.05 Bg 137 Cs kg $^{-1}$, and in fruit 0.05 Bg 90 Sr kg $^{-1}$ and 0.014 Bg 137Cs kg $^{-1}$. ## 3.3.5. Meat Nearly all meat consumed in Greenland is assumed to be of local origin. Approximately 10% comes from sheep, 5% from reindeer, 60% from seals, 5% from whales, and 20% from sea birds and eggs. The activities in lamb were estimated from the 1983 data²⁾. Reindeer, seal and whale were estimated from 3.2.3. The levels of sea birds and eggs were taken from the 1978 analyses²⁾. Hence the mean levels in Greenland meat from 1984 were 0.08 Bg 90 Sr kg⁻¹ and 12.3 Bg 137 Cs kg⁻¹. $$(^{90}\text{Sr}: 0.1\times0.23 + 0.05\times0.91 + 0.6\times0.016 + 0.05\times0.012 + 0.2\times0.007 = 0.08 \text{ Bq kg}^{-1})$$ $$(^{137}Cs: 0.1\times68.7 + 0.05\times98 + 0.6\times0.66 + 0.05\times0.55 + 0.2\times0.35$$ = 12.3 Bq kq⁻¹) # 3.3.6. Pish All fish consumed was of local origin, and the mean levels from 1983 (cod and salmon meat) were used, i.e. 0.015 Bg 90 Sr kg $^{-1}$ and 0.28 Bg 137 Cs kg $^{-1}$. # 3.3.7. Coffee and tea The Danish figures for 1984^{3}) were used for coffee and tea, i.e. 1.23 Bq 90 Sr kg⁻¹ and 1.53 Bq 137 Cs kg⁻¹. # 3.3.8. Drinking water The geometric mean calculated in 3.2.6 was used as the mean level of 90 Sr in drinking water, i.e. 16 Bq 90 Sr m $^{-3}$. The 137 Cs content was as previously $^{2)}$ estimated at 1/4 of the 90 Sr content, i.e. approximately 4 Bq 137 Cs m $^{-3}$. Tables 3.3.1 and 3.3.2 show the diet estimates of 90 Sr and 137 Cs, respectively. # 3.3.9. Discussion The most important 90 Sr source in the Greenland diet is still grain products, which contribute 40% of the total 90 Sr content in the diet. Approximately 75% of the 90 Sr in the food consumed in Greenland in 1984 originated from imported (Danish) food. Meat is still the most important 137 Cs source in the Greenland diet, contributing 90% of the total content in 1984. Approximately 95% of the 137 Cs in the Greenland diet in 1984 came from local products. The ⁹⁰Sr contents in the total diet in 1984 was approximately 70% of the 1983 level. The 137 Cs level was 105% of that found in 1983. As earlier discussed²⁾ the great variations from year to year are primarily due to the variations in the 137 Cs levels in the meat samples obtained. To estimate the maximum pro capite intakes of 90 Sr and 137 Cs in Greenland in 1984 we assume $^{2)}$ that the only grain product consumed by a person is dark rye bread, and that he only eats reindeer meat. His daily intake of 90 Sr is thus 0.33 Bq and his 137 Cs intake 12.4 Bq day $^{-1}$ (using the quantities in Tables 3.3.1 and 3.3.2). At the lower limit we can imagine a person eating white bread and seal and drinking water with hardly any activity (e.g. water formed by the melting of old ice). In this case the daily intakes are 0.12 Bq 90 Sr and 0.25 Bq 137 Cs. Hence the ratios between the levels in the maximum and minimum diets become 3 for 90 Sr and 50 for 137 Cs. The 90 Sr content of the Greenland diet in 1984 was 87% of the estimated Danish mean content³⁾, and 55% of the Faroese level¹⁾. The 137 Cs level in the total diet in Greenland was 7.4 times that of the Danish diet and 40% of the Faroese diet level. Table 3.3.1. Estimate of the mean content of $^{90}\mathrm{Sr}$ in the human diet in Greenland in 1984 | Type of food | Annual guantity in kg | Bq ⁹⁰ Sr
per kg | Total
Bq ⁹⁸ Sr | Percentage of
total Bg 90Sr
in food | |----------------|-----------------------|-------------------------------|------------------------------|---| | Milk and cream | 78 | 0.096 | 7.49 | 12.2 | | Cheese | 2.5 | 0.68 | 1.70 | 2.8 | | Grain products | 95.6 | 0.26 | 24.86 | 40.5 | | Potatoes | 32.8 | 0.048 | 1.57 | 2.6 | | Vegetables | 5.5 | 0.31 | 1.71 | 2.8 | | Fruit | 13.5 | 0.05 | 0.68 | 1.1 | | Meat and eggs | 45.6 | 0.08 | 3.65 | 6.0 | | Fish | 127.6 | 0.015 | 1.91 | 3.1 | | Coffee and tea | 7.3 | 1.23 | 8.98 | 14.6 | | Drinking water | 548 | 0.016 | 8.77 | 14.3 | | Total | | | 61.32 | | The mean annual calcium intake is estimated to be 0.56 kg (approx. 0.2-0.25 kg creta praeparata). Hence the 90 Sr/Ca ratio in Greenland total diet in 1984 was 110 Bg 90 Sr (kg Ca) $^{-1}$ or 3.0 pCi 90 Sr (g Ca) $^{-1}$ and the daily intake was 0.17 Bg 90 Sr or 4.5 pCi 90 Sr. Fig. 3.3.1. Strontium-90 in Greenlandic diet, 1962-1984. Table 3.3.2. Estimate of the mean content of 137 Cs in the human diet in Greenland in 1984 | Type of food | Annual
quantity
in kq | Ba ¹³⁷ Cs
per ka | Total
Bg 137Cs | Percentage of
total Ru 137Cs
in food | |----------------|-----------------------------|--------------------------------|-------------------|--| | Milk and cream | 78 | 0.085 | 6.63 | 1.1 | | Cheese | 2.5 | 0.061 | 0.15 | 0.0 | | Grain products | 95.6 | 0.07 | 6.69 | 1.1 | | Potatoes | 32.8 | 0.043 | 1.41 | 0.2 | | Vegetables | 5.5 | 0.05 | 0.28 | 0.0 | | Fruit | 13.5 | 0.014 | 0.19 | 0.0 | | Meat and eggs | 45.6 | 12.3 | 560.88 | 89.7 | | Fish | 127.6 | 0.28 | 35.73 | 5.7 | | Coffee and tea | 7.3 | 1.53 | 11.17 | 1.8 | | Drinking water | 548 | 0.004 | 2.19 | 0.4 | | Total | |
 625.32 | | The mean annual potassium intake is estimated to be approx. 1.2 kg. Hence the 137 Cs/K ratio becomes 521 Bq 137 Cs (kg K) $^{-1}$ or 14.1 pCi 137 Cs (g K) $^{-1}$. The daily intake in 1984 from food was 1.71 Bq 137 Cs or 46 pCi 137 Cs. Fig. 3.3.2. Cesium-137 in Greenlandic diet, 1962-1984. # 3.4. Conclusion ## 3.4.1. The 90 Sr fallout rates in 1984 were the following: Prins Chr. Sund: approximately 2.0 Bq 90 Sr m⁻²; Godthåb: 2.0; Scoresby Sund: 1.1; Upernavik: 2.2 and Danmarkshavn: 1.3. The accumulated fallout levels by the end of 1984 were estimated at approximately 1250 Bq 90 Sr m⁻² at Godthåb, 4100 at Prins Chr. Sund, and 440 at Upernavik. # 3.4.2. The food consumed in Greenland in 1984 contained on the average 90 Sr (kg Ca) $^{-1}$, and the daily mean intake of 137 Cs was estimated at 1.73 Bg. The most important 90 Sr contributor to the diet were grain products accounting for approximately 40 8 of the total 90 Sr content of the diet. Cesium-137 originated mainly from meat (reindeer and lamb) and fish, contributing approximately 95% of the total 137 Cs content of the diet. ## 3.4.3. No 90 Sr analyses of human bone samples have hitherto been carried out on the population of Greenland. Considering the estimated 90 Sr levels in the diet, it seems probable $^{4)}$, however, that the 1984 90 Sr levels of humans in Greenland were on the average rather similar to those found in Denmark, i.e. the mean levels in human bone in Greenland were approximately 30 Bq 90 Sr (kg Ca) $^{-1}$ (vertebrae). From diet measurements the 137 Cs content in Greenlanders was estimated at 1500 Bg 137 Cs (kg K) $^{-1}$. # 4. MARINE ENVIRONMENTAL RADIOACTIVITY IN THE NORTH ATLANTIC REGION # 4.1. The CSS Baffin cruise* to Thule in July-Aug 1984 # 4.1 1. Sea water During the cruise from Sct. Johns on Newfoundland to Thule in NW-Greenland we collected daily seawater samples from the fire hose on board the ship. In order to avoid old rusty water in the samples, the water ran continuously during the cruise. Each day we took two 1800 l samples and one 50 l sample. The big samples were collected in our tanks placed on the fordeck; one sample was used for radiocesium and the other one for transuranics. The 50 l sample was used for 90 Sr, and 137 Cs, and salinity. The radiocesium in the big tank was collected by 100 g or 200 g AMP. The transuranics were collected by a hydroxide precipitation after addition of 242 Pu and 243 Am spikes. The yield of the AMP precipitation was found from the determination of 137 Cs in the 45 l sample, where we used 134 Cs as yield determinant. The radiocesium activity from the 1800 l samples were further concentrated by a Cs2PtCl6 precipitation in order to determine $^{134}Cs^{11}$. The counting time for these precipitates was usually 1 week. The results are shown in Tables 4.1.1.1-4.1.1.4 and in Figs. 4.1.1.1, and 4.1.1.2. Between 60° and 66° N the 137 Cs as well as the 90 Sr levels were enhanced. It was in the same region that we observed 134 Cs. Hence we see a signal from Sellafield along the Greenland west coast in August 1984. If we calculate the transfer factors from Sellafield to West Greenland waters we find between 60° and 66° N: 0.9 Bq m⁻³ per PBq a⁻¹ discharged from Sellafield and between 60° and 72° N the transfer factor for radiocesium is 0.4. ^{*}Scientific leader: Dr. John Norton Smith, Bedford Institute of Cceanography. Table 4.1.1.1. Radionuclides in surface sea water collected from Newfoundland to Thule in July-August 1984 | Posi
N | tion
W | Can
No. | Dat | e | Salinity
o/no | Temp. | 90 _S z 3 | 134 _{C8}
Bq m 3 | 137 _{Cs}
Bq m 3 | 239,240 Pu
mBq m ⁻³ | 238 _{Pu}
239,240 _{Pu} | 241 _{Am}
239,240 _{Pu} | Remarks | |----------------------|---------------------|------------|------|----|------------------|-------|---------------------|-----------------------------|-----------------------------|-----------------------------------|--|--|--| | 54 ⁰ 12' | 55 ⁰ 13' | 1101-02 | July | 31 | 30,7 | 7.4 | 4.0 | <0.01 | 5.3 | 9.5 | - | 0.084 | | | 570181 | 540401 | 1104-05 | Aug | 1 | 33.9 | 8.5 | 3.3 | - | 5.1 | - | - | - | | | 50 ⁰ 42' | 54 ⁰ 111 | 1111-12 | Aug | 2 | 31.8 | 7.7 | 3.2 | 0.056 | 5.1 | 7.9±0.4 | 0.06±0.04 | 0.12±0.01 | Pu determination on 200 1 and 1800 1 (± 1 S.E. | | 61 ⁰ 161 | 54°02' | | Aug | 2 | 31.8 | 7.7 | - | - | - | 2.3 | 0.060 | 0.49 | 2500 1 water filtered | | 53 ⁰ 29' | 53°38' | 1116-17 | Aug | 3 | 32.0 | 1.9 | 4.2 | - | 5.9 | - | - | - | | | 64 ⁰ 261 | 54 ⁰ 171 | 1121 | Aug | 3 | 32.3 | 3.0 | 3,7 | 0.034 | 6.6 | - | | - | | | 55 ⁰ 56 ' | 54 ⁰ 311 | 1124 | Aug | 3 | 33.3 | 3.6 | 3.5 | 0.052 | 6.8 | - | - | - | | | 58 ⁰ 131 | 57 ⁰ 09' | 1133 | Aug | 4 | 32.6 | 3.5 | 3.0 | 0.014 | 4.7 | • | - | - 1 | Combined 134Cs | | 59°38' | 58 ⁰ 091 | 1134 | Aug | 4 | 31.6 | 2 | 2.7 | 0.023 | 4.8 | 8.0 | 0.052 | 0.079 | determination gave 0.017 | | 710481 | 59 ⁰ 13' | 1140 | Aug | 5 | 31.3 | 3.0 | 3, 1 | 0.028 | 4.7 | - | - | - | | | 74 ⁰ 321 | 66 ⁰ 25' | 1145-46 | Aug | 6 | 32,5 | 5.3 | 4,3 | - | 4.1 | 7.1 | 0.053 | 0.091 | | | 740321 | 66 ⁰ 25' | | Aug | 6 | - | - | - | - | - | 1.66 | 0.129 | - | 2700 l water filtered | | 6 ⁰ 151 | 69 ⁰ 51' | 1161 | Aug | 7 | - | 2.3 | - | - | - | 6.7 | 0.21 | 0.113 | | | 76 ⁰ 10 ' | 70 ⁰ 481 | 1433 | Aua | 11 | 32.0 | - | _ | - | _ | 7.5 | 0.031 | 0.096 | | Table 4.1.1.2. Radionuclides in sea water collected at various depths in the Baffin Bay $74^{\circ}32$ 'N $66^{\circ}25$ 'W, August 6 1984 | Can
No. | Depth
in m | Salinity
o/oo | 90 <u>sr</u> 3 | 137 _{Cs}
Bq m ⁻ 3 | |------------|---------------|------------------|----------------|--| | 1158 | 19 | 33.2 | 4.1 | 3.0 | | 1150 | 100 | 33.5 | 3.3 | 4.2 | | 1155 | 500 | 34.5 | 2.5 | 2.1 | | 1154 | 1000 | 34.5 | 0.40 | 0.83 | | 1151 | 1500 | 34.5 | 0.64 | <1.4 | | 1152 | 1765 | 34.5 | 0.39 | <0.6 | Table 4.1.1.3. Radionuclide in sea water from the Thule area; point of impact location V (cf. Pig. 4.1.2). Position 76°31'3N 69°17'4W. August 10 1984 | Can
No. | Salinity
o/oo | Depth
in m | 90 _{SE} 3 | 137 _{Cs} 3 | 239,240 Pu
mBg m ⁻³ | 238 _{Pu}
239,240 _{Pu} | 241 _{Am} 239,240 _{Pu} | Remarks | Sample | |------------|------------------|---------------|--------------------|---------------------|-----------------------------------|--|---|-----------------|-------------| | 1361 | 31.5 | 7-8 | 3.4 | 4.0 | 8.8 | 0.042 | 0.066 | 1800 1 | total water | | • | • | • | - | - | 3.3 | 0.019 | 0.22 | 1800 l filtered | filter | | 1365 | 33.7 | 185 | - | - | 51 | 0.023 | 0.070 | 200 1 | total water | | 1367 | 33.7 | | - | - | 34 | 0.026 | 0.100 | 200 l filtered | filter | Table 4.1.1.4. Radionuclides in sea water collected at various depths south of Thule $76^{\circ}10^{\circ}N$ $70^{\circ}48^{\circ}W$, August 11 1984 | Can
No. | Depth
in m | Salinity
o/oo | 90sr3 | 137 _{Cs}
Bq m | 239,240 _{Pu}
mBg m ⁻³ | 238 _{Pu}
239,240 _{Pu} | |------------|---------------|------------------|-------|---------------------------|--|--| | 1432 | 58 | 34.0 | 3.2 | 4.5 | | | | 1430 | 250 | 34.1 | 2.6 | 2.9 | | | | 1415 | 615 | 34.5 | 1.27 | 1.8 | 17 | 0.053 | <u>Pig. 4.1.1.1</u>. Radiocesium and ⁹⁰Sr in surface water collected during the CSS Baffin cruise from Newfoundland to Thule in August 1984. • surface (7-8 m); A: 58 m. Fig. 4.1.1.2. Radionuclides in surface water collected from Newfoundland to Thule in August 1984 (along 55° - 70° W). The abscissa shows the latitude of the samples. The increase observed in the 90 Sr levels in the northern part of Baffin Bay is somewhat surprising. Table 4.1.1.2 shows that the enhanced 90 Sr also is seen at 19 m depths. First at 100 meters the 90 Sr level approaches what we would have expected to see in surface water. The surface samples may have contained run-off enriched with 90 Sr relative to 137 Cs, but the salinities do not suggest any significant contribution of fresh water in the two upper layer samples from Baffin Bay. The plutonium concentrations in surface water from Newfoundland to Thule varied between 6.7 and 9.5 mBq 239,240 Pu m⁻³. The 241 Am/ 239,240 Pu mean ratio was $^{0.097\pm0.016}$ (N=6, $^{\pm1}$ S.D.). The 238 Pu/ 239,240 Pu ratio varied between 0.03 and 0.06. An outlier showed a ratio of 0.21. Three surface samples were analysed for particulate Pu and Am activity. We found that 23-38% of the 239,240 Pu and nearly 100% of the 241 Am were particulates. The surface concentrations of ^{239,240}Pu in Thule sea water were not significantly different from those found in water distant from Thule at this cruise. Compared with 1979 16) the sea water levels at Thule had decreased by a factor of two. As in 1979 we found that the surplus ^{239,240}Pu activity seen in bottom water over the point of impact is contained mainly in particulates (Table 4.1.1.2). There may be a small contribution of accident Pu in the filtered seawater. Compared with the filtered surface water, the bottom water filtrated contained Pu levels 3 times higer. However, bottom water (unfiltered) collected at 615 metres (Table 4.1.1.4) south of Thule contained 17 mBg 239,240 Pu m^{-3} , i.e. the same as the filtrate of the bottom water from the point of impact $(51-34 \approx 17)$ (Table 4.1.1.2). If we compare the 241 Am/ 239 , 240 Pu mean ratio found at Thule (point of impact, station V) in bottom and surface total water with that found in the samples of total water in Table 4.1.1.1, i.e. outside Thule, the Thule ratio is probably lower (P ~ 95%). This may indicate a small contribution of nonfallout transuranics in the water at
Thule. But we are most inclined to stick to our conclusion from 1979 16) that we can see no accident-derived Pu in solution in the sea water at Thule (cf. also 4.1.3). # 4.1.2. Sediments The measurements on the sediment samples collected at Thule in August 1984 are not completed, but Tables 4.1.2.1-4.1.2.16 show the results obtained hitherto. The tables are arranged after increasing distance from the point of impact (cf. Fig. 4.:.2). As observed earlier 16) the 137 Cs levels (Bq m $^{-2}$) were in general higher close to the point of impact than farther away. This was due to the higher sedimentation in the proximity of the point of impact. From the ^{239,240}Pu results obtained until now we may calculate the distance relation from the point of impact: $$B_{G}$$ 239,240 P_{u} m⁻² = 8500 e^{-0.2} km This relation is within the range (95% confidence limits) given for the data from 1974 and 1979¹⁶). At location 76°10'N, 70°48'W (55.9 km from the point of impact) (see Table 4.1.2.16) the fallout background was 23.4 Bq 239 , 240 Pu m⁻². This is two times lower than the background estimated in 1979¹⁶). However, the 137 Cs background was 1.5 times that estimated in 1979 for a similar distance. This may imply that the estimated 239 , 240 Pu/ 137 Cs ratio in fallout of 0.36±0.17 (1 S.D.) estimated in 1979 has been too high. Table 4.1.2.1. Radionuclides in marine sediments collected with a 145 cm² corer at Thule in August 1984. Location: South of J (cf. Pig. 4.1.2) ('325). Position: 76^O31'N 69^O27'N. Depth: 150 m. Distance from point of impact: 4.2 km | Depth
in cm | 239,2
Bg kg ⁻¹ | 140 _{Pu}
Bq m-2 | 131
Ag kg ⁻¹ | Cs
Bq m-2 | 241 Am 2
Bg m | 137 _{Cs} | 241 _{AB} | 238 _{Pu}
239,240 _{Pu} | Total | |----------------|------------------------------|-----------------------------|----------------------------|--------------|------------------|-------------------|-------------------|--|-------| | 0-3 | 23.9 | 380 | 4.0 | 63 | 37 | 5 98 | 0.097 | 0.023 | 230 | | 3-6 | 54.5 | 1160 | 4.2 | 68 | 134 | 12.98 | 0.116 | 0.017 | 308 | | 6-9 | 30.4 | 900 | 4.4 | 128 | 90 | 6.91 | 0.099 | 0.012 | 426 | | 9-12 | | | 2.4 | 68 | | | | | 411 | | t | | | | 347 | | , | | | | Fig. 4.1.2. Sampling locations at Thule in August 1984. <u>Table 4.1.2.2</u>. Radionuclides in marine sediments collected with a 145 cm² corer at Thule in August 1984. Location: North of \$2 (cf. Fig. 4.1.2) (1345). Position: 76°32'M 69°85'M. Depth: 220 m. Distance from point of impact: 5.5 km | Depth
in cm | 239,240 _{Pu}
pq kq ⁻¹ bq n ⁻² | 13'
8q kq ⁻¹ | Cs
Bq m ⁻² | 241 Am.
Bq m | 239,240 _{Pu} | 241 _{Am}
239,240 _{Pu} | 230 _{Pu}
239,240 _{Pu} | Total | |----------------|---|----------------------------|--------------------------|-----------------|-----------------------|--|--|-------| | 0-3 | | 13.4 | 02 | | | | • | #9 | | 3-6 | | 15.8 | 225 | | | | | 207 | | 6-9 | | 17.2 | 285 | | | | | 241 | | 9-12 | | 13.4 | 220 | | | | | 239 | | 12-15 | | 4.9 | 96 | | | | | 286 | | 15-18 | | 1.0 | 20 | | | | | 208 | | 18-20 | | 3.3 | 35 | | | | | 155 | | Ε | | | 963 | | | | | | <u>Table 4.1.2.3</u>. Radionuclides in marine sediments collected with a 145 cm 2 corer at Thule in August 1984. Location: J (cf. Fig. 4.1.2) (1305). Position: $76^{\circ}32^{\circ}N$ 69 $^{\circ}30^{\circ}N$. Depth: 100 m. Distance from point of impact: 5.6 km | Depth | 239,240 _{Pu}
Bq kg ⁻¹ Bq m ⁻² | | 137 _{Cs}
Bg kg ⁻¹ Bg m ⁻² | | 241 _{AE.} | 239,240 _{Pu} | 241 _{Am}
239,240 _{Pu} | 238 _{Pu} | Total | |--------|---|--------------------|---|--------------------|--------------------|-----------------------|--|-----------------------|-------| | in con | Bg kg T | Bq m ^{−2} | Bg kg 1 | Bq m ⁻² | Bq m ⁻² | 137 _{Cs} | 239,240 _{Pu} | 239,240 _{Pu} | 9 | | 0-3 | 12.9 | 300 | 4.5 | 105 | 32 | 2.87 | 0.137 | 0.011 | 336 | | 3-6 | 24.8 | 800 | 3.6 | 115 | 68 | 6.89 | 0.085 | 0.026 | 468 | | 6-9 | 3.4 | 124 | 1.5 | 56 | 14.6 | 2.27 | 0.118 | 0.041 | 523 | | E | | 1224 | | 276 | 115 | | | | | Table 4.1.2.4. Radionuclides in marine sediments collected with a 145 cm² corer at Thule in August 1984. Location: Retween O & P (cf. Pig. 4.1.2) (1317), Position: 76°30'N 69°32'W. Depth: 176 m. Distance from point of impact: 6.8 km | Depth
in cm | 239,:
Baj ka ⁻¹ | 240 _{Pu}
Rg #-2 | 13
Bg kg ⁻¹ | ⁷ Cs
Pa s ⁻² | 241 _{Am}
Ba m | 239,240 _{Pu} | 241 _{Am}
239,240 _{Pu} | 238 _{Pu}
239,240 _{Pu} | Tota: | |----------------|-------------------------------|-----------------------------|---------------------------|---------------------------------------|---------------------------|-----------------------|--|--|------------------| | 0-3 | 32.0 | 105 | 0.0 | 29 | 10 | 3.64 | 0.090 | 0.012 | 48 | | 3-6 | 15.1 | 306 | 4.5 | 91 | 31 | 3.36 | 0.100 | 0.013 | 2 9 5 | | 6-9 | 4.3 | 144 | 1.3 | 44 | 18 | 3. 30 | 0.126 | 0.027 | 487 | | 9-12 | | | 1.2 | 27 | | | | | 339 | | ı | | | | 191 | | | | | | Table 6.1.2.5. Radionactides in marine sediments collected with a 145 cm² corer at Thule in August 1986, Location: West of G (cf. Fig. 6.1.2) (1336). Position: 76°35'M 69°10'M. Depth: 198 m. Distance from point of impact: 7.6 km | Depth | 239, | 249 _{Ps} | 1) | 7 _{Cs} | 241 _{Am} | 239,240 _{Pe} | 241 _{Am} | 230 _{P4} | Total | |-------|---------------------|-------------------|----------|-----------------|-------------------|-----------------------|-----------------------|-----------------------|-------| | in co | Sq bq ⁻¹ | Dq =-2 | Sq bg -1 | Sq a-2 | 34 3 2 | 137 _{C8} | 239,200 _{Pe} | 239,240 _{Pu} | 9 | | 0-3 | 116 | 100 | 17.9 | 92 | | 9.7 | | 0.015 | 112 | | 3-6 | 114 | 2060 | 12.7 | 228 | | 9.0 | | 0.016 | 261 | | 6-9 | 40 | 725 | 4.2 | 167 | | 4.3 | | 0.017 | 264 | | 9-12 | 25 | 475 | 5.0 | 111 | | 4.3 | | 0.014 | 274 | | 12-15 | | | 3.0 | 73 | | | | | 205 | | 15-10 | 10 | 210 | 2.7 | 56 | | 3.7 | | 0.012 | 299 | | τ | | | | 727 | | | | | | Table 6.1-2.6. Radionuclides in marine sediments collected with a 145 cm² corer at Thule in Amoust 1984. Location: North of 59 (cf. Fig. 4.7.21 (1183). Position: 76°29'8 69°32'W. Depth: 244 m. Distance from point of impact: 7.6 km | Depth | 239,240 _{pu}
Bq ka ⁻¹ Bq n ⁻² | | 137 _{Cs}
Ba ka 1 Ba s-2 | | 241 Am 2 | 239,240 _{Pu} | 241 Am | 230 _{Pu} | Total | |-------|---|------|-------------------------------------|--------|----------|-----------------------|-----------------------|-------------------------|-------| | in CP | Ba ke | Rq m | Ba ke | Bq 2 " | No p | 137 _{C\$} | 2?9,240 _{Pu} | 2 39, 240 _{Pu} | | | 0-3 | 35.5 | 673 | 9.4 | 177 | | 3.78 | | 0.015 | 275 | | 3-6 | 44.5 | 1047 | 9.2 | 217 | | 4.84 | | | 341 | | 6-9 | 3.24 | 95 | 2.0 | 40 | | 1.42 | | 0.012 | 424 | | 9-12 | 0.73 | 19 | <1 | < 30 | | >0.73 | | 0.043 | 384 | | ı. | | 1034 | | -480 | | tPu/ICs: 3.8 | 2 | | | Table 4.1.2.7. Radionuclides in marine sediments collected with a 145 cm² corer at Thule in August 1984. Location: South of S1 (cf. Fig. 4.1.2) (1271). Position: 76°33'# 69°01'W. Depth: 227 m. Distance from point of impact: 7.8 km | Depth | 239,240 _{Pu}
Bq kq ⁻¹ Bq m ⁻² | 1) | 7 _{Cs} | 24188 | 239,240 _{Pu} | 241 _{Am} | 230 _{Pu} | Total
9 | |-------|---|---------------------|---------------------------------------|-------|-----------------------|------------------------|-----------------------|------------| | in cm | Bq kq 1 Bq m 2 | Dq kg ⁻¹ | ⁷ Cs
Bq m ⁻² | Bq m | 137 _{Cs} | 239, 240 _{Pu} | 239,240 _{Pu} | | | 0-3 | | 14.2 | 112 | | | | | 115 | | 3-6 | | 17.3 | 298 | | | | | 251 | | 6-9 | | 20.6 | 301 | | | | | 26# | | 9-12 | | 15.7 | 274 | | | | | 253 | | 12-15 | | 4.9 | 0) | | | | | 24R | | ī | | | 1148 | | | | | | Table 4.1.2.8. Radionuclides in marine sediments collected with a 145 cm² corer at Thule in August 1984. Location: Between GaST (cf. Fig. 4.1.2) (1348). Position: 76⁰38'H 69⁰02'M. Depth: 168 m. Distance from point of impact: 8.3 km | Depth | 239,240 _{Pu}
bq kq ⁻¹ Bq m ⁻² | | 137 _{Cs}
Bq kq ⁻¹ Bq s ⁻² | | 241 _{Am} _2 | 239,240 _{Pu} | 241 _{Am} | 238 _{Pu} | Total | |-------|---|--------|---|--------|----------------------|-----------------------|-----------------------|-----------------------|-------| | in cm | pd ga | Bq a . | Bq kq | Bq = " | Pq m | 137 _{Cs} | 239,240 _{Pu} | 239,240 _{Pu} | 9 | | Q-) | 42.4 | 530 | 11.7 | 146 | | 3,6 | | 0.017 | 181 | | 3-6 | 5.5 | ** | 5.7 | •2 | | 0.96 | | 0.011 | 2 34 | | 6-9 | 1_43 | 25 | 1.45 | 25 | | 1.00 | | - | 252 | | 9-12 | 0.70 | 6 | 1,44 | 12 | | 0.50 | | - | 120 | | £ | | 649 | | 275 | | | | - : | | Table 4.1.2.9. Radionuclides in marine sediments collected with a 145 cm 2 corer at Thule in August 1984. Location: G (cf. Fig. 4.1.2) (1282). Position: $76^{\circ}35^{\circ}8$ 69 $^{\circ}05^{\circ}8$. Depth: 187 m. Distance from point of impact: 8.7 km | Depth
in c# | 239,2
Ba ka ⁻¹ | 740 _{Pu}
3q 4-2 | 13'
Ba ka ⁻¹ | 7 _{Cs} -2 | 241 Am 2 | 239,240 _{P2} | 24TAM
239, 240 _{Pu} | 238 _{Pu}
239,240 _{Pu} | Total
g | |----------------|------------------------------|-----------------------------|----------------------------|--------------------|----------|-----------------------|---------------------------------|--
------------| | | -, -, | | | | | | | - Pu | | | 0-3 | 42 | 450 | 13.1 | 139 | | 3.2 | | | 154 | | 3-6 | 33 | 540 | 10_4 | 176 | | 3.0 | | | 235 | | 6-9 | 27 | 519 | 2.8 | 52 | | 4.6 | | | 272 | | 9-12 | 1.2 | 25 | .0.4 | ₹20 | | >1,3 | | | 30 3 | | 12-15 | 0.15 | 4 | /O.9 | - 25 | | ·0.2 | | | 396 | | | | 1524 | | r412 | | | | | | Table 4.1.2.10. Radionuclides in marine sediments collected with a 145 cm² corer at Thule in August 1984, Location: S11 (cf. Fig. 4.1.2) (1181), Position: 76°28'N 69°41'M, Depth: 285 m. Distance from point of impact: 11.9 km | Depth | 239,240 _{PU}
Rq ka ⁻¹ Bq m ⁻² | | 137 _{Ce} | | 241 _{Am.} | 239,240 _{P3} | 241 _{Am} | 23A _{Pu} | Total | |-------|---|--------------------|---------------------|------|--------------------|-----------------------|---|---|-------| | in co | Ng ka ⁻¹ | Bq m ⁻² | Ba ka ⁻¹ | Rq m | Bq m 2 | 137 _C s | 241 _{Am}
239, 240 _{Pu} | 239,240 _{Pu} | 9 | | 0-3 | 5.64 | 42 | 4.2 | 46 | , | 1.34 | | 0.013 | 159 | | 1-6 | 5.72 | 163 | 4.5 | 127 | | 1,27 | | 0.016 | 414 | | 6-9 | 7.21 | 195 | 4.7 | 128 | | 1.53 | | 0.017 | 39 3 | | r | | 420 | | 301 | | EPu/ICs:1.4 | 3 | * ************************************ | | Table 4.1.2.11. Radionuclides in marine sediments collected with a 145 cm 2 corer at Thule in August 1984. Location: 512 (cf. Pig. 4.1.2) (1177). Position: $76^{\circ}27^{\circ}N$ $69^{\circ}42^{\circ}N$. Depth: 285 m. Distance from p. nt of impact: 13.3 km | Depth | 239,2 | 240 _m , | 13 | 37 _{Cs}
1 Bq s-2 | 241 | 239,240 _{Pu} | 241 _{Am}
239,240 _{Pu} | 238 _{Pu} | Total | |-------|---------------------|--------------------|---------------------|------------------------------|------|-----------------------|--|-----------------------|-------| | in cm | Bq kg ⁻¹ | Bq m ⁻² | Bq kg ⁻¹ | Bq E ⁻² | Bq m | 137 _{Cs} | 239,240 _{Pu} | 239,240 _{Pu} | 9 | | 0-3 | 18.8 | 80 | 5.1 | 22 | | 3.69 | | 0.018 | 62 | | 3-6 | 13.2 | 342 | 5.0 | 129 | | 2.64 | | 0.019 | 376 | | 6-9 | 43.5 | 1539 | 5.2 | 182 | | R. 37 | | 0.017 | 513 | | τ | | 1961 | | 333 | | IPu/ICs:5.89 |) | | | Table 4.1.2.12. Radionuclides in marine sediments collected with a 145 cm² corer at Thule in August 1984. Location: 513 (cf. Fig. 4.1.2) (1170). Position: 76^o26'N 69^o43'W. Depth: 300 m. Distance from point of impact: 14.8 km | Depth | 239,240 _{Pu}
Ba ka ⁻¹ Rq n ⁻² | | 137 _{Cs}
Raka 1 Ram = 2 | | 241 _{Am} | 239,240 _{Pu} | 241 _{Am} | 238 _{Pu} | Total | |-------|---|---------|-------------------------------------|---------------------|-------------------|-----------------------|-----------------------|-----------------------|-------| | in cm | Ba ka | Piq m 2 | Ng ka ' | Rcy m ^{−4} | Rq # * | 137 _{Cs} | 239,240 _{Pu} | 239,240 _{Pu} | q | | 0-3 | 20.4 | 180 | 5.2 | 46 | | 3.92 | | 0.019 | 128 | | 3-6 | 4.3 | 149 | 3.0 | 131 | | 1.13 | | 0.030 | 504 | | 6-9 | 4.0 | 82 | 4.2 | 86 | | 0.95 | | 0.025 | 296 | | τ | | 411 | | 263 | | IPu/ICs:1.5 | 5 | | | Table 4.1.2.13. Radionuclides in marine sediments collected with a 145 cm 2 corer at Thule in August 1984. Location: D (cf. Fig. 4.1.2) (1402). Position: 76^039^*M 69^000^*M . Depth: 85 m. Distance from point of impact: 16.1 km | Depth | 239,240 _{Pu}
Bq kg ⁻¹ Bq m ⁻² | | 137 _{Cs} | | 241Am2 | 239,240 _{Pu} | 241 Am | 238 _{Pu} | Total | |-------|---|--------------------|---------------------|--------------------|--------------------|-----------------------|-----------------------|-----------------------|-------| | in cm | Bq kg ⁻¹ | Bg m ⁻² | Bg kg ⁻¹ | Bg m ⁻² | Bq m ⁻² | 137 _{C8} | 239,240 _{Pu} | 239,240 _{Pu} | g | | 0-3 | 3.8 | 62 | 3.0 | 49 | | 1.27 | · | | 240 | | 3-6 | | | 1.7 | 36 | | | | | 308 | | 6-9 | 0.22 | 5.1 | 0.7 B | 16 | | 0.3 | | | 330 | | 9-12 | 0.14 | 12.5 | 0.9 R | 27 | | 0.15 | | | 455 | | 12-15 | 0.36 | 11.7 | 1.0 B | 32 | | 0.4 | | | 467 | | 15-18 | 0.091 | 3.8 | 0.4 B | 17 | | 0.2 | | | 604 | | τ | | | | 178 | | | *** | | | Table 4.1.2.14. Radionuclides in marine sediments collected with a 145 cm 2 corer at Thule in August 1984. Location: S14 (cf. Fig. 4.1.2) (1169), Position: $76^{\circ}25^{\circ}N$ 69 $^{\circ}43^{\circ}W$, Depth: 250 m. Distance from point of impact: 16.1 km | Depth
in cm | 234, 7
Ba su -1 | 140 _{Pu} -2 | 137
Ba ka ⁻¹ | Cs -2 | 24 1 Am 2 | 239,240 _{Pu} | 241 _{Am} 239,240 _{Pu} | 238 _{Pu}
239,240 _{Pu} | Total | |----------------|--------------------|----------------------|----------------------------|-------|-----------|-----------------------|---|--|-------| | | | | | | | | | | | | 0-3 | 12.8 | 142 | 5.5 | 61 | | 2.33 | | 0.007 | 161 | | 3-6 | 2.5 | 75 | 2.3 | 70 | | 1.09 | | 0.042 | 435 | | 6-9 | 1.62 | 38 | 1.4 | 33 | | 1,16 | | - | 343 | | τ | | 255 | | 164 | | EPu/ECs:1.50 | 6 | | | Table 4.1.2.15. Radionuclides in marine sediments collected with a 145 cm² corer at Thule in August 1984. Location: C (cf. Fig. 4.1.2) (1404). Position: 76°40'N 69°30'W. Depth: 110 m. Distance from point of impact: 17.0 km | Depth | 239,240 _{Pu}
Bq kg ⁻¹ Bq m ⁻² | | 137 _{Cs}
Bq kg ⁻¹ Bq m ⁻² | | 241 _{Am2} | 239,240 _{Pu} | 241 _{Am} | 238 _{Pu} | Total | |-------|---|--------------------|---|--------------------|--------------------|-----------------------|-----------------------|-----------------------|-------| | in cm | Bq kg ⁻¹ | Bq m ⁻² | Bq kg ⁻¹ | Bq m ^{−2} | Bq m | 137 _C s | 239,240 _{Pu} | 239,240 _{Pu} | 9 | | 0-3 | 36 | 470 | 9.8 | 130 | | 3.7 | | | 192 | | 3-6 | 4.9 | 97 | 6.5 | 1 30 | | 0.75 | | | 289 | | 6-9 | 1.7 | 32 | 3.6 | 68 | | 0.47 | | | 275 | | 9-12 | 0.17 | 3 | <0.9 | <18 | | >0.2 | | | 292 | | Σ | | 602 | _ | <346 | | | | | | Table 4.1.2.16. Radionuclides in marine sediments collected with a 145 cm² corer at Thule in August 1984. Location: SW. Kap Athol1 (cf. Fig. 4.1.2) (1412). Position: 76°10'N 70°48'W. Depth: 625 m. Distance from point of impact: 55.9 km | Depth
in cm | 239,2
Ra ka ⁻¹ | 240 _{Pu}
Bq m-2 | 131
Ba kg ⁻¹ | Cs
Bq m ⁻² | 241 _{Am}
Bq m ⁻ 2 | 239,240 _{Pu} | 241 _{Am}
239,240 _{Pu} | 238 _{Pu}
239,240 _{Pu} | Total
g | |----------------|------------------------------|-----------------------------|----------------------------|--------------------------|--|-----------------------|--|--|------------| | 0-3 | 1,24 | 10.3 | 6.3 | 52 | | 0.20 | | , | 120 | | 3-6 | 0.50 | 5.9 | 4.2 | 49 | | 0.12 | | | 170 | | 6-9 | 0.21 | 2.9 | 2.9 | 39 | | 0.07 | | | 199 | | 9-12 | 0.17 | 2.5 | 1.4 | 21 | | 0.12 | | | 214 | | 12-15 | 0,107 | 1,8 | 1.2 | 20 | | 0.09 | | | 241 | | Σ | | 23.4 | | 181 | | IPu/ICs:0.1 | 3 | , | | 4.1.3. Seaplants The ^{239,240}Pu concentrations (Bq kg⁻¹ dry weight) in Fucus and Laminaria from Thule (Table 4.1) were similar to those observed in 1979 (0.40±0.16 (1 S.D.) and 0.18±0.10, respectively)¹⁶⁾. As the sea water concentrations were lower in 1984 than in 1979 (cf. 4.1.1) the observed concentration factors between water and seaplants rose in 1984. Compared with Fucus from Grise Fjord at Ellesmere Island the Thule samples did not show enhanced levels and we thus see no indication of accident-derived Pu in the Thule seaweed. The most interesting observation is the enhanced ⁹⁹Tc in the two Fucus samples from Thule. Compared with 1979¹⁰) we notice an increase by a factor of four, and compared with Grise Fjord the Thule samples contained 2-3 times more ⁹⁹Tc. We conclude that the West Greenland Current has transported Sellafield ⁹⁹Tc up to Thule since 1979, but no surplus ⁹⁹Tc has yet shown up on the Canadian coast. The ⁹⁰Sr concentration in the Fucus sample from Grise Fjord was higher than expected when we compare it with the other locations and radionuclides. Alaria esculenta does not concentrate Pu, Am, Tc as efficiently as Fucus. | Table 4.1.3. Seaweed samples collected in Canada and Greenland during | the | Baffin | cruise | in | |---|-----|--------|--------|----| | July-August 1984. (Unit: Bq kg ⁻¹ dry weight) | | | | | | Posi
N | tion
W | Location | Species | Date | 40 _{K**} | 90 _{Sr} | 99 _{TC} | 137 _C s | 239,240 _{Pu} | 241 _{Am} | |---------------------|----------------------|---------------------|------------------|---------|-------------------|------------------|------------------|--------------------|-----------------------|-------------------| | 48° | 530 | Sct. Johns | Fo us ves/dis | July 28 | 39.5 | 0.50 | 0.96 | 0.79 | 0.033 | 0.010 | | • | • | -•- | Alaria esculenta | - • - | 52.1 | 0.63 | 0.058 | 0.45B | 0.057A | 0.0046A | | 76 ⁰ 30′ | 70°06' | Eiderduck
Island | Fucus ves/dis | Aug 11 | 27.8 | 0.34 | 2.58 | 0.64 | 0.43 | 0.038 | | 76 ⁰ 34' | 68 ⁰ 48' | Dundas | Pucus ves/dis | - • - | 46.7 | 0.54 | 2.34 | 1.07 | 0.32 | 0.046 | | 76 ⁰ 30' | 70 ⁰ 0 1' | Bylot
Sound | Laminaria sac. | Aug 9 | 234 | 0.68 | - | 0.91B | 0.11 | 0.014 | | 76 ⁰ 11' | 820501 | Grise Pj. | Fucus ves/dis | Aug 13 | 22.4 | 1.87 | 1.02 | 1.01 | 0.45 | 0.104 | | 74 ⁰ 42' | 94 ⁰ 551 | Resolute | Fucus distichus* | Aug 16 | 3.7 | • | - | 1.82 | - | - | ^{*} Washed up on peach. ^{**}Unit: g kg⁻¹ dry weight # 4.2. The F/S Polarstern cruise in July 1984 to the Fram Strait # 4.2.1. Surface sea water The transit time of waterborne pollution from Sellafield to Svalbard is approximately five years ¹¹⁾. The discharges of ¹³⁷Cs from Sellafield were reduced by a factor of 1.6 from 1978
to 1979 ^{12,13)}. Hence we would expect to see a decrease from 1983 to 1984 in the Norwegian Sea beteen Norway and Svalbard. Figure 4.2.1.2 shows that such a decrease did in fact occur in the case of ¹³⁷Cs, but not so evidently for ⁹⁰Sr. This was to be expected, because the fallout background of ⁹⁰Sr is relatively more important than for ¹³⁷Cs. Hence variations in the Sellafield contributions are more easily obscured for ⁹⁰Sr. In the Fram Strait the 137 Cs concentrations east of 0° were higher than in 1984, whereas the opposite was the case west of this longitude (Fig. 4.1.2.3). The 134 Cs levels around 0° increased from 0.06 in 1983 to 0.10 Bg m⁻³ in 1984 (decay corrected to 1983) 9,10). Both sets of observations suggest that that radiocesium from Sellafield was transferred from Atlantic to Polar water in the Fram Strait from 1983 to 1984. The 239,240 Pu concentrations in the Fram Strait were significantly higher (12.6±1.8 mBq m⁻³) than those observed in West Greenland waters (7.9±1.0 Bq m⁻³) (cf. 4.1.1). However, the 241 Am/ 239,240 Pu ratios did not differ significantly, (0.112 and 0.104, respectively). These observations support earlier conclusions $^{19)}$ that 239,240 Pu and 241 Am in arctic water nearly exclusively originate from fallout. <u>Table 4.2.1</u>. Radionuclides in surface sea water collected from N-Norway, via Svalbard to NE-Greenland in in July-Aug 1984. (Unit: $Rg\ m^{-3}$) | Position
N E or W | Station
No. | Date | Salinity
o/oo | Temp. | 90 _{Sr} | 134 _{Cs} | 137 _{Cs} | 239,240 _{Pu*} | 241 _{Am} 239,240 _{Pu} | |--|----------------|---------|------------------|--------|------------------|-------------------|-------------------|------------------------|---| | B0°34' 7°16'E | 319 | July 20 | 32.4 | -1.1 | 3.6 | 1 | 9.7 | 14.7 | 0.044 | | 80 ⁰ 44' 13 ⁰ 00'E | 321 | July 21 | 29.6 | -1.0 | 4.5 | | 8.7 | 12.2 | 0.175 | | 80°08' 4°44'E | 327 | July 23 | 32.2 | 1.6 | 4.0 | 0.126 | 10.0 | 14.1 | 0.178 | | 81 ⁰ 19' 15 ⁰ 22'E | 325 | July 22 | 28.4 | -1.3 | 4.1 _ | J | 9.7 | 13.4 | 0.094 | | 80 ⁰ 55' 18 ⁰ 35'€ | 322 | July 21 | 34.0 | 3.2 | 4.0 | - | 10.4 | - | ~ | | 81 ⁰ 46' 10 ⁰ 42'₩ | 329 | July 26 | 31.9 | -0.8 | 5.6 | | 5.4 | 12.4 | 0.140 | | 81 ⁰ 30' 2 ⁰ 03'W | 354 | July 29 | 32.4 | -1.6 | 5.2 | 0.016A | 7.4 | 12.5 | 0.114 | | 82 ⁰ 16' 8 ⁰ 38'W | 333 | July 27 | 32.1 | -1.4 | 5.9 | | 6.1 | 9.8 | 0.040 | | 81 ⁰ 54' 11 ⁰ 00'₩ | 331 | July 26 | 32.0 | -0.4 | 7.2 | - | 6.1 | - | - | | 82 ⁰ 32' 6 ⁰ 16'W | 334 | July 27 | 32.3 | -1.9 | 6.2 | - | 6.1 | - | - | | 82 ⁰ 46' 9 ⁰ 41'W | 335 | July 28 | 32.2 | -2.0 | 4.2 | - | 7.9 | - | - | | 80 ⁰ 42' 4 ⁰ 37'W | 359 | July 30 | 32.0 | -t . B | 7.0 | - | 6.2 | - | - | | 77 ⁰ 40' 4 ⁰ 56'W | 363 | Aug 1 | 31.4 | -0.6 | 5.8 | 0.015B | 7.6 | 10.0 | 0.111 | | 77 ⁰ 30' 4 ⁰ 13'W | 365 | Aug 2 | 32.1 | 1.2 | 4.9 | - | 8.4 | - | - | | 77 ⁰ 40' 2 ⁰ 30'W | 366 | Aug 2 | 31.9 | -0.6 | 4.9 | 0.074 | 9.0 | 14.5 | 0.112 | | 77°40' 0°32'W | 367 | Aug 2 | 34.6 | 4,1 | 3.6 | - | 8.9 | • | - | | 77°40' 2°30'E | 371 | Aug 3 | 34.9 | 3.1 | 2.9 | - | 7.2 | - | - | | 77 ⁰ 40' 5 ⁰ 16'E | 375 | Aug 3 | 35.0 | 5.0 | 2.5 | - | 7.1 | - | - | | 77°40' 7°34'E | 381 | Aug 4 | 35.0 | 5.6 | 3.6 | - | 8.8 | - | - | | 77 ⁰ 40' 9 ⁰ 44'E | 383 | Aug 4 | 35.0 | 5.9 | 3.7 | • | 8.7 | - | - | | 77 ⁰ 41' 10 ⁰ 21'E | 384 | Aug 4 | 35.3 | 6.5 | 4.5 | - | 10.9 | - | - | | 76°44' 14°40'E | 22 T | Aug 5 | 33.2 | 2.7 | 4.5 | - | 10.2 | - | - | | 76 ⁰ 58' 14 ⁰ 36'E | 21 T | Aug 5 | 33.0 | 2.9 | 4.2 | - | 9.2 | - | - | | 76°20' 12°58'E | 23 T | Aug 6 | 35.0 | 5.8 | 4.0 | - | 11,1 | - | - | | 74 ⁰ 44' 15 ⁰ 05'E | 24 T | Aug 6 | 35.1 | 7.7 | 4.6 | - | 13.0 | - | - | | 73 ⁰ 55' 16 ⁰ 00'E | 25 T | Aug 6 | 35.1 | 7.8 | 5.0 | - | 14.6 | - | - | | 73 ⁰ 27' 16 ⁰ 29'E | 26 T | Aug 6 | 35.2 | 7.5 | 4.3 | - | 10.9 | - | - | | 72 ⁰ 53' 16 ⁰ 52'E | 27 T | Aug 6 | 35.1 | 7.2 | 5.0 | - | 15.8 | - | - | | 72 ⁰ 24' 17 ⁰ 28'E | 28 T | Aug 6 | 34.9 | 8.0 | 4.7 | - | 15.0 | - | - | | 71 ⁰ 38' 18 ⁰ 19'E | 2 9T | Aug 6 | 35.2 | 9.4 | 5.9 | - | 21.3 | - | - | | 71 ⁰ 11' 18 ⁰ 38'E | 70 T | Aug 6 | 34.8 | 9,4 | 7.9 | - | 35,5 | - | - | | 70 ⁰ 47' 19 ⁰ 06'E | 31 T | Aug 6 | 34.5 | 10,4 | 9.4 | - | 33.7 | _ | _ | #Unit: $mBq m^{-3}$ Fig. 4.2.1.1. Radiocesium and ⁹⁰Sr in surface water collected during the F/S Polarstern cruise from Norway to East Greenland via Svalbard in July-August 1984. Fig. 4.2.1.2. Cesium-137 and ⁹⁰Sr in surface water collected between N-Norway and Svalbard in July-August 1983 and 1984. The abscissa shows the latitude of the samples. <u>Pig. 4.2.1.3.</u> Cesium-137 and 90 Sr in surface water collected in the Fram Strait between Svalbard and East-Greenland in July 1983 (790 -80 0 N) and in August 1984 (770 -780N). The abscissa shows the longitude of the samples. # 4.3. Samplings by the Greenland Fisheries and Environmental Resarch Institutes ## 4.3.1. Surface sea water The systematic sampling of seawater along the Greenland west coast, which began in 1983^9), was continued in 1984. The 90 Sr concentrations have shown a decrease throughout the period, whereas the 137 Cs levels have not changed significantly from 1983 to 1984. In the case of 137 Cs the summer concentrations have in general been lower than those observed in November. Sr-90 as well as 137 Cs have shown decreasing values, northward. In Table 4.3.1.1 two samples were collected from the same location (Disko Rende) with 5 days between samplings. We observed an increase of 22% in the 90 Sr as well as in the 137 Cs levels during this short period. This shows how rapidly the concentrations may change along the Greenland west coast. In Fig. 4.3.1.1 we have plotted some data from the Baffin Cruise (Table 4.1.1.1) along with those from Table 4.3.1.1. The two samplings took place 3-4 weeks apart. We observed that the Baffin samples in general showed the highest levels. We conclude that water enriched with (Sellafield) radiocesium appeared during the last part of July along the Greenland west coast. The samplings in November 1984 (Table 4.3.1.2 and Fig. 4.3.1.2) were extended to include the south east coast of Greenland. It is evident that the samples collected closest to the east coast showed higher activity levels and lower salinities that those collected farther away from the coast. The coast near samples were collected within the East Greenland Current (EGC), whereas the more easterly samples were from the Irminger Current, which comes from the Atlantic Ocean. The two stations at Kap Farvel (Table 4.3.1.2) are evidently taken outside the EGC. A coastal sample collected at Prins Christians Sund (Table 3.2.2 and Fig. 4.3.1.2) shows higher levels indicating that we here are in the polar water of the EGC. When we continue up along the Greenland west coast the coast near stations still show the Table 4.3.1.1. Strontium-90 and Cesium-137 in surface sea water off West Greenland in June-July 1984 | Latitude
N | Longitude
W | Name of
location | 90 _{Sr}
Bq m ⁻³ | 137 _{Cs}
Bq m ⁻³ | Salinity
o/oo | |---------------------|---------------------|-------------------------|--|---|------------------| | 64 ⁰ 01' | 52 ⁰ 19' | Fylla Bank (Nuuk) | 4.1 | 6.2 | 33.2 | | 63 ⁰ 55' | 53 ⁰ 07' | - • - | 5.3 | 5.8 | 32.7 | | 63 ⁰ 48' | 53 ⁰ 56' | - • - | 4.7 | 5.8 | 32.7 | | 65 ⁰ 06' | 53 ⁰ 00' | Sukkertoppen (Manitsog) | 4.4 | 4.7 | 28.7 | | 65 ⁰ 06' | 53 ⁰ 59' | - • - | 3.7 | 4.4 | 32.4 | | 65 ⁰ 06' | 54 ⁰ 58* | - • - | 3.9 | 5.7 | 33.3 | | 66 ⁰ 53' | 54 ⁰ 10' | Holsteinborg (Sisimiut) | 3.3 | 3.7 | 34.0 | | 66 ⁰ 46' | 55 ⁰ 36' | - • - | 3.2 | 3.9 | 34.0 | | 66 ⁰ 41' | 56 ⁰ 381 | - • - | 4.3 | 4.9 | 32.3 | | 67 ⁰ 34' | 57 ⁰ 10' | Intermediate station | 4.6 | 3.6 | 27.3 | | 68 ⁰ 04' | 56 ⁰ 00' | Egedesminde (Ausiait) | 4.2 | 3.8 | 33.4 | | 68 ⁰ 08' | 57 ⁰ 17' | - • - | 4.4 | 5.3 | 32.4 | | 68 ^O 54' | 55 ⁰ 54' | Disko Rende* | 3.6 | 4.9 | 33.3 | | - • - | - • - | - " - ** | 4.4 | 6.0 | 31.8 | | 69 ⁰ 30' | 57 ⁰ 10' | Disko Fjord | 3.8 | 4.5 | 31.8 | | 70 ⁰ 20' | 55 ⁰ 10' | Hareø south | 3.6 | 4.0 | 32.8 | | 70 ⁰ 341 | 54 ⁰ 47' | Hareø north | 4.6 | 3.8 | 28.8 | | 69 ⁰ 42' | 510381 | Arveprinsen | 3.7 | 4.4 | 29.3 | | 68 ⁰ 55' | 52 ⁰ 24' | Skansen-Akunag | 4.6 | 4.2 | 28.5 | ^{*} June 30 ^{**}June 5 Table 4.3.1.2. Strontium-90 and Cesium-137 in surface sea water collected around Greenland from the Denmark Strait to the Davis Strait in November 1984 | Latitude
N | Lonai tude
W | Name of location | 90 _{Sr}
Bq m 3 | 137 _{Cs}
Rg m ⁻ 3 | Salinity
n/oo | 137 _{Cs} | |---------------------|----------------------|------------------|----------------------------|--|------------------|-------------------| | 65 ⁰ 53' | 36 ⁰ 52* | Dohrn Bank | 4.8 | 6.7 | 33.1 | 1.40 | | 65°45' | 28 ⁰ 17* | - • - | 1.9 | 2.7 | 35.3 | 1.42 | | 63 ⁰ 04' | 39 ⁰ 11* | Kap Mösting | 4.3 | 6.7 | 33.0 | 1.56 | | 63°38' | 40 ⁰ 05' | - • - | 2.0 | 2.15 | 35.0 | 1.08 | | 62 ⁰ 10' | 41 ⁰ 25* | Kap Steen Bille | 3.1 | 5.9 | 32.4 | 1.90 | | 61 ⁰ 56' | 40 ⁰ 27 * | - • - | 1.8 | 2.5 | 33.1 | 1.39 | | 60°57° | 42 ⁰ 47' | Kap Discord | 3.8 | 6.0 | 33.8 | 1.58 | | 60°48' | 41 ⁰ 16* | -•- | 1.76 | 2.5 | 34.9 | 1.42 | | 59 ⁰ 15' | 44 ⁰ 58* | Kap Farvel | 1.62 | 2.9 | 33.4 | 1.79 | | 58 ⁰ 46 | 45 ⁰ 50 | | 1.9 | 3.2 | 34.6 | 1.68 | | 60°50' | 48 ⁰ 45 * | Kap Desolation | 4.1 | 6.3 | 32.6 | 1,54 | | 60°02' | 51 ⁰ 27* | - • - | 2.5 | 4.0 | 34.5 | 1,60 | | 61 ⁰ 57 | 50 ⁰ 00 • | Prederikshåb | 3.9 | 6.5 | 32.3 | 1.67 | | 61 ⁰ 26' | 53 ⁰ 25* | | 3.8 | 4.6 | 33.7 | 1.21 | | 64 ^O 01' | 52 ⁰ 18* | Fylla Bank | 4.1 | 6.2 | 32.1 | 1.51 | | 63 ⁰ 37' | 55°30° | - • - | 4.1 | 5.6 | 32.6 | 1.37 | | 65 ⁰ 06' | 53 ⁰ 00' | Sukkertoppen | 4.0 | 6.0 | 32.6 | 1.50 | | 65 ⁰ 06' | 55 ⁰ 43' | | 4.0 | 6.3 | 32.5 |
1.58 | | 66 ⁰ 52' | 54 ⁰ 09' | Holsteinsborg | 3.5 | 5.0 | 32.4 | 1.43 | | 66 ⁰ 41' | 56°39' | - • - | 4.4 | 6.0 | 32.2 | 1.36 | | 69°30' | 54 ⁰ 54' | Disco Fjord | 3.3 | 5.6 | 32.8 | 1.70 | | 69°30' | 58 ⁰ 20' | | 2.9 | 4.6 | 33.1 | 1.59 | <u>Fig. 4.3.1.1</u>. Cesium-137, ⁹⁰Sr, and salinity in surface water collected along the Greenland west coast. - Samples collected by the Greenland Fisheries and Environmental Research Institute in July 1984. - ▲ Samples collected by CSS Baffin in August 1984. Fig. 4.3.1.2 Cesium-137, 90 Sr, and salinity in surface water collected along the Greenland east and west coast by F/S Walter Herwig in November 1984. highest values up to $65^{\circ}N$, but the difference between eastern and western stations becomes far less pronounced than seen on the east coast. The four coast-near stations on the east coast contained 4.00±0.73 Bo ^{90}Sr m⁻³ (±1 S.D.) and 6.33±0.43 Bq ^{137}Cs m⁻³. The six coast-near stations along the west coast contained 3.82±0.34 Bq ^{90}Sr m⁻³ and 5.93±0.55 Bq ^{137}Cs m⁻³. Thus we observe a small decrease in the activities, when we Fig. 4.3.1.3. Cesium-137 and ⁹⁰Sr in surface water collected in November 1984 from East Greenland around Kap Farvel to West Greenland. The latitudes are indicated on the abscissa. Coast: Sample location near the coast Sea: Sample location farther away from the shore (cf. also Fig. 4.3.1.2). pass from the east to the west coast of Greenland. At the stations farther away from the shore the water on the west coast shows higher activity levels than that on the east coast. This is because the EGC becomes broader, when the current turns into the West Greenland Current after having passed Kap Farvel (see Fig. 4.3.1.3). ## 4.3.2. Sea plants from the Godthab Fjord Strontium-90 and ⁹⁹Tc were determined in a number of Fucus and Ascophyllum samples collected in the Godthåb Fjord in 1980-1982 (Table 4.3.2.1). An anova (Table 4.3.2.2) showed significant differences between years and between species for ⁹⁹Tc. Ascophyllum nodosum contained 1.3 times more ⁹⁹Tc than Fucus vesiculosus/disticus, and 1982 showed levels 1.3 times higher than 1980. This increase in ⁹⁹Tc on the Greenland west coast have also been seen at other locations^{9,10}). In earlier studies¹⁰) Ascophyllum has showed about about 2 times higher levels than Fucus. In the present material the difference was thus less pronounced. Whether this is because the present samples are from arctic rather than from temperate waters is a question yet to be answered. Table 4.3.2.1. Seaweed samples collected at Godthåb in 1980-82. (Unit: Bg kg-1 dry weight) | Species | Year | 90 _{Sr} | 99 _{TC} | Sample number according to
Greenland Pisheries and
Environmental Research Institute | |---------------------|--------|------------------|------------------|---| | Pucus vesiculosus | 1980 | | 1.10 | 2 53 St 1 | | | 1980 | | 1.45 | 2 54 St 1 | | -•- | 1980 } | 0.59 | 1.36 | 2 55 St 1 | | - • - | 1980 | | 1.40 | 2 56 St 1 | | - * - | 1980 | | 1.23 | 2 57 St 1 | | Ascophyllum nodosum | 1980 | - | 1.95 | Z 64 St 1 | | - • - | 1980 | - | 1.62 | 2 65 St 1 | | - • - | 1980 | - | 2.06 | 2 66 St 1 | | - • - | 1980 | - | 1.95 | 2 67 St 1 | | Pucus disticus | 1980 | 0.43 | 1.40 | Z 58,59,60,61,62 St 1 | | rucus vesiculosus | 1981 | 0.77 | 1,61 | X 53,54,55,56,57 St 1 | | Ascophyllum nodosum | 1981 | - | 1.95 | X 63,64,65,66,67 St 1 | | Pucus disticus | 1981 | - | 1.60 | X 58,59,60,61 St 1 | | Fucus vesiculosus | 1982 | 0.44 | 1.77 | Y 53,54,55,56,57 St 1 | | acophyllum nodosum | 1982 | - | 2.23 | Y 63,64,65,66,67 St 1 | | Pucus disticus | 1982 | - | 1.88 | Y 58,59,60,61,62 St 1 | Table 4.3.2.2. Anova of $\ln Rq^{-99}Tc kg^{-1} d.w.$ in Fucus and Ascophyllum (from Table 4.3.2.1) | Variation | SSD | f | s ² | v ² | P | |-----------------|-------|----|----------------|----------------|-------| | Between years | 0.180 | 2 | 0.090 | 10.03 | 99.61 | | Between species | 0.340 | 1 | 0.340 | 37.85 | 99.98 | | Species × years | 0.022 | 2 | 0.011 | 1.25 | 67.28 | | Remainder | 0.090 | 10 | 0.009 | | | ## 4.3.3. Shrimps, Thule 1984 The shrimp samples from Thule should be seen in context with our plutonium studies in 1984 at Thule (cf. 4.1). The mean level was 0.081 ∓ 0.048 Bq 239,240 Pu kg $^{-1}$ fresh flesh (±1 S.D.; N=10). If a person eats 10 kg of these shrimp annually, he will receive a dose of $0.081\times10\times0.05/2\times10^5=0.2$ µSv. However, according to recent studies made by the NRPB 22) the gastrointrestinal absorption of Pu may be higher for diet than the figure used by ICRP, and this may increase the dose by a factor of five, i.e. to 1 µSv. We may compare this dose with that received from naturally occurring 210 Po in the shrimps (cf. 4.5.4). We notice that the dose from 239,240 Pu is half of that from polonium, which again is 1 o/oo of the natural background radiation (including radon in houses). Figure 4.3.3 shows the median levels of ^{239,240}Pu in shrimp flesh collected in Bylot Sound at Thule since the B52 accident in 1968. After a rapid initial drop (1968 - 1970), the activity has leveled off, and from 1970 to 1984 it has been following the power function: Eq 239,240 Pu kg fresh shrimp flesh = 0.19 $x^{-0.84}$ where X is the year (1969 = 1 etc.) Fig. 4.3.3 Median plutonium levels in shrimp flesh from Thule 1968-1984. The number of samples are shown for each year. In 1970, 1974, and 1979 the flesh levels were calculated from the total animal concentrations by division with $\sin^{2,5}$. Table 4.3.3. Plutonium 239,240 in shrimps caught in Bylot Sound at Thule in July-August 1984 by the Greenland Fisheries and Environmental Research Institute | Sample No. | Shell length
in mm | Number of individuals | Fresh weight
of flesh | % dry
weight | mBa kg ⁻¹
fresh weight | |------------|-----------------------|-----------------------|--------------------------|-----------------|--------------------------------------| | 84-576 | 12-13 | 20 | 18.4 q | 17.5 | 62 | | 84-577 | 14-15 | 20 | 25.5 q | 17.1 | 6.7 B | | 84-578 | 16 | 15 | 23.7 q | 17.3 | 9.7 A | | 84-579 | 17-19 | 11 | 24.2 g | 16.8 | 14.5 A | | 84-580 | 9-11 | 16 | 8.0 g | 12.8 | 23 B | | 84-581 | 12-13 | 20 | 17.6 g | 16.1 | 22 B | | 84-582 | 14-15 | 20 | 25.7 g | 16.4 | 154 | | 84-583 | 16 | 19 | 29.6 g | 17.8 | 490 A | | 84-584 | 17-19 | 20 | 47.3 g | 17.6 | 14 A | | 84-585 | 20-23 | 14 | 43.7 g | 16.0 | 12 A | | 84-586* | 15-18 | 5 | 13.0 g | 12.7 | 0 | | 84-587* | 19-25 | 9 | 12.1 g | 10.0 | 0 | ## 4.4. Norwegian samplings ## 4.4.1. Surface sea water collected at Svalbard in 1984 Three samples were collected from Svalbard in Sept. 1984 (Table 4.4.1). The results agreed with those found in July during the Polarstern cruise (Table 4.2.1 and Fig. 4.2.1.1). Sellafield radiocesium is thus detectable in the coastal waters around Svalbard. Table 4.4.1. Surface sea water samplings at Svalbard in 1984 | Latitude
N | Longitude
E | Location | Date | Salinity
0/00 | Temp. | 90sr
Bq m ⁻³ | 137 _{Cs}
Bq m ⁻³ | |---------------------|----------------|-------------|--------|------------------|-------|----------------------------|---| | 78 ⁰ 53' | 160001 | Mosselbukta | Sep 8 | 33.9 | ż | 4.2 | 10.2 | | 770441 | 14037 | Bellsund | Sep 22 | 32.6 | 3 | 4.9 | 11.4 | | 77 ⁰ 39' | 21005 | Russebukta | Sep 18 | 33.9 | 3 | 4.5 | 11.0 | # 4.4.2. Sea plants from the Norwegian west coast, Svalbard and Jan Mayen An anova on the data in Table 4.4.2.1 shows a significant variation between years and between locations. 1981 thus showed higher Pu levels for all stations than the other years, and the most southern (Utsira) and most northern (Indre Kiberg) stations showed higher levels than the other ones. We thus see another picture for plutonium than that observed for radiocesium and ⁹⁹Tc along the Norwegian west coast ¹⁰). The enhanced levels at Utsira may be due to Sellafield, but the increased Pu concentrations seen in the north must have other explanations. We assume that the slower growth of Fucus in the north is tantamount to higher concentration factors for Pu than those seen at more temperate latitudes. The discharges of Pu from Sellafield were reduced by a factor of 2 from 1979 to 1980 ¹²). This may explain part of the decrease seen in the Norwegian fucus from 1981 to 1982-83, although the transit time from <u>Table 4.4.2.1</u>. Plutonium and Americium in Fucus vesiculosus collected along the Norwegian west coast 1981-1984 | Station No. (cf. Fig. 4.4.2.1) | Location | Unit | 1981 | 1982 | 1983 | 1984 | |---------------------------------------|---|---|-----------|------|-------|------| | | | Bq 239,240 Pu kq - 1 dry weight | 0.25 | 0.16 | 0.195 | | | Indre Ribera
3
70°17'N 30°56'E | 238 _{Pu/} 239,240 _{Pu} | 0.09 | 0.13 | 0.10 | | | | | 241 _{Am/} 239,240 _{Pu} | 0.08 | | | | | | | | Ba 239,240 pu ka-1 dry weight | 0.21 0.19 | 0.13 | 0.12 | | | Vestvågøy
6 | 238 _{Pu/} 239,240 _{Pu} | 0.15 0.05 | 0.18 | 0.08 | | | | | 68 ⁰ 10'N 13 ⁰ 50'E | 241 _{Am/} 239,240 _{Pu} | 0.26 | 0.09 | 0.04 | | | | | $Bq^{239,240}$ pu kg^{-1} dry weight | 0.21 | 0.14 | 0.14 | | | 8 | E id | 238 _{Pu/} 239,240 _{Pu} | 0.08 | 0.10 | 0.07 | | | | 62 ⁰ 38'N 7 ⁰ 38'E | 241 _{Am/} 239,240 _{Pu} | 0.12 | 0.08 | 0.15 | | | · · · · · · · · · · · · · · · · · · · | | $_{\rm Bq}$ $^{239,240}_{\rm Pu}$ $_{\rm kg}^{-1}$ dry weight | 0.26 | 0.15 | 0.17 | 0.07 | | 10 | Utsira | 238 _{Pu/} 239,240 _{Pu} | 0.19 | | 0.09 | 0.03 | | | 59°19'N 4°54'E | 241 _{Am/} 239,240 _{Pu} | 0.07 | | 0.19 | | Fig. 4.4.2.1. Sampling locations for seaweed along the Norwegian coast. Table 4.4.2.2. Plutonium and Americium in seaweed collected at Svalbard and Jan Mayen in 1983 | Station
(cf. Fig.
4.4.2.2) | Location | Species | Date of sampling |
239,240 _{Pu}
Bg kg ⁻¹ d.w. | 238 _{Pu}
239,240 _{Pu} | 241 _{Am}
239,240 _{Pu} | |----------------------------------|--|---------|------------------|---|--|--| | 20-2 | Jan Mayen
71 ⁰ 00'N 8 ⁰ 00'W | La.di. | 29 Aug | 0.047 | 0.06 | | | 20-3 | - • - | La.sa. | 29 Aug | 0.047 | 0.12 | 0.15 | | 23-5 | Hinlop e n
79 ⁰ 50'N 18 ⁰ 20'E | Al.es. | 29 July | 0.025 | 0.14 | 0.28 | | 23-6 | Dickson Fjord
78°46'N 15°00'E | Fu.sp. | 5 Aug | 0.20 | 0.04 | 0.04 | | 23-7 | Gråhuken
79 ⁰ 50'N 14 ⁰ 30'E | Al.es. | 13 Aug | 0.091 | 0.06 | | | 23-8 | Calypsobyen
77 ⁰ 45'N 14 ⁰ 20'E | | 16 Aug | 0.013 | | | | 23-9 | Mosselbukta
79 ⁰ 50'N 16 ⁰ 00'E | fu.sp. | 30 Aug | 0.831 | 0.050 | 0.171 | | 23-10 | Kapp Martin
77 ⁰ 45'N 13 ⁰ 45'E | Al.es. | 14 Sep | 0.052 | 0.11 | 0.07 | La.di.: Laminaria digitata; La.sa.: Laminaria saccharina; Al.es.: Alaria esculenta; Pu.sp.: Pucus spiralis. Sellafield to the Norwegian coast then seems one year shorter than usually anticipated 11). Table 4.4.2.2 shows that Fucus spiralis from Svalbard shows higher Pu levels than the other species and that the levels are similar to or higher than those observed at the northern station (Indre Kiberg) in Norway. The sample from Mosselbukta was in fact as high as one obtained from East Greenland in 1982 at Scoresby Sund²⁾. Table 4.4.2.3 shows that 60 Co probably was present in Fucus vesiculosus collected at Trondheim in 1984. The source of the 60 Co is probably Sellafield or Winfrith in the U.K. or Cap de la Haque in France. From our distance relation for 60 Co determined for Fucus collected along the British coastline in 1982 1), we would at a distance corresponding to that from Sellafield to Trondheim (with the current: 2500 km) has expected 0.23 Bq kg⁻¹ Fucus vesiculosus in 1984. Fig. 4.4.2.2. Sampling locations for seaweed of Svalbard (cf. Table 4.4.2.2). <u>Table 4.4.2.3</u>. Radionuclides in Fucoids collected in the Trondheim Fjord in 1984 | Latitude
N | Longitude
E | Sampling
date | Species | Bg kg ⁻¹
60 _{CO} | dry weight
137 _{Cs} | |---------------|---------------------|------------------|-------------------|---|---------------------------------| | 63°35' | 09 ⁰ 46' | Aug 13 | Fucus vesiculosus | 0.26 B | 4.45 | | _ " _ | - H - | _ " _ | Fucus serratus | | 5.57 | #### 4.5. Polonium-210 studies ## 4.5.1. Introduction If a polonium analysis is carried out on a fresh sample by wet ashing, the ^{210}Po content found may come from ^{210}Po taken up from the environment by the organisms as well as from decay of ^{210}Pb in the organism. We denounce the last source "supported ^{210}Po " and the first "environmental ^{210}Po ". Ashed samples may be measured approximately 3 years after the ashing in order to give ^{210}Po daughter in the samples an opportunity to come into equilibrium with ^{210}Pb . In ashed samples the ^{210}Po thus represents ^{210}Pb only and the analysis does not necessarily tell what the ^{210}Po was in the fresh samples because we have no determination of environmental ^{210}Po . In the following we will denounce ^{210}Po measured on ashed samples ^{210}Pb . Such samples have been decay corrected to the date of sampling by the half-life of ^{210}Pb . Polonium analysis on fresh or dried samples will be given as ^{210}Po and in this case the results are decay corrected with the half-life of ^{210}Po from the date of analysis. This correction may underestimate the ^{210}Po content if there is a lapse of time between sampling and analysis, provided most of the ^{210}Po is environmental. If all ^{210}Po is supported and there is equilibrium with ^{210}Pb there will be an underestimate arising from the decay of ^{210}Pb only, and this will usually be of minor importance due to the relative long half-life of ^{210}Pb . ## 4.5.2. Sea plants The results in Table 4.5.2.1 were all obtained from fresh or dry samples analysed for 210 Po after a wet ashing. <u>Table 4.5.2.1</u>. Polonium-210 in seaweed (fresh or dry) collected in the northern North Atlantic region 1980-1984 | Location | Species | Sampling da | te Bg kg ⁻¹
dry weight | Date of analysis | |--|---------------------|-------------|--------------------------------------|------------------| | Læsø, Østerby, Denmark | Fucus vesiculosus | Oct 25 19 | 84 6.7 | Jan 30, 1985 | | Hesselø, Denmark | - * - | Oct 30 19 | 84 9.4 | - • - | | Anholt, Denmark | | Nov 20 19 | 84 11.7 | - • - | | Godthab Fjord, Greenland | - • - | Summer 19 | 80 5.3 | April 15, 1985 | | - • - | - • - | | - 6.0 | - · - | | - 7 - | - • - | -• | • - 5.7 | - • - | | - " - | - * - | - • | * - 5.5 | - • - | | - " - | | - • | • - 5.9 | - • - | | - • - | - • - | July 22 19 | 81 16.5 | - · - | | - * - | - • - | July 27 19 | 82 7.1 | April 17, 1985 | | | Ascophyllum nodosum | Summer 19 | 80 2.5 | _ • _ | | - * - | | | * - 2.3 | - • - | | - • - | - • - | | • - 2.4 | . • - | | - • - | - • - | | " - 2.8 | . • - | | _ • _ | - * - | July 22 19 | 81 4.2 | April 25, 1985 | | | _ • _ | July 27 19 | 82 2.7 | - # - | | _ * _ | Fucus disticus | Summer 14 | 80 5.8 | April 17, 1985 | | _ * _ | | July 22 19 | 81 15.8 | - * - | | - * - | - • - | July 27 19 | 82 9.9 | - * - | | Indre Kiberg Norway | | | | | | 70 ⁰ 17'N 30 ⁰ 56'E | Fucus vesiculosus | Nov 4 19 | | Aug 19, 1985 | | - * - | - " - | Oct 24 19 | R2 15.7 | - • - | | - • · | - * - | Aug 22 19 | 83 12.0 | Sept 3, 1985 | | Vestvågøy, Norway
68 ⁰ 10'N 13 ⁰ 50'E | Fucus vesiculosus | June 2 19 | 81 12.0 | - # - | | - * - | - * - | Aug 27 19 | 81 13.3 | - * - | | - * - | - · - | Aug 30 19 | 82 0.1 | - • - | | . • . | ~ • ~ | Aug 29 19 | 83 9.2 | Sept 9, 1985 | | | | | | • | Table 4.5.2.1. (continued) | Location | Species | Sampling | date | Bg kg ⁻¹
dry weight | Date of analysis | |--|----------------------|----------|-------|-----------------------------------|------------------| | Bud, Norway
62 ⁰ 38'N 7 ⁰ 35'E | Fucus vesiculosus | Sept 4 | 1980 | 8.1 | Sept 9, 1985 | | - • - | _ * _ | Aug 17 | 1981 | 16.7 | - • - | | - • - | - • - | Aug 10 | 1982 | 9.9 | _ • _ | | - · - | - · - | Aug 15 | 1983 | 12.7 | - * - | | Utsira, Norway
59 ⁰ 19'N 4 ⁰ 54'E | Fucus Vesiculosus | Sept 29 | 1981 | 10.6 | - • - | | - • - | - • - | June 14 | 1982 | 15.0 | - • - | | . • | . • . | Aug 8 | 1983 | 13.7 | Sept 17, 1985 | | - • - | - • - | May 5 | 1984 | 9.7 | - • - | | Jan Mayer
71 ⁰ 00'n 8 ⁰ 00'W | Laminaria digitata | Sept 29 | 1983 | 3.2 | .·. | | - • - | Laminaria saccharina | · | - • - | 3.3 | - • - | | Hinlopen, Svalbard
79 ⁰ 50'N 18 ⁰ 20'E | Alaria esculenta | July 29 | 1983 | 2.2 | - • - | | Dickson Fjord, Svalbard
78 ⁰ 46'N 15 ⁰ 00'E | Fucus spiralis | Aug 5 | 1983 | 4.3 | - • - | | Gråhuken, Svalbard
79 ⁰ 50'N 14 ⁰ 30'E | Alaria esculenta | Aug 13 | 1983 | 4.4 | - • - | | Calypsobyen, Svalbard
77 ⁰ 45'N 14 ⁰ 20'E | - • - | Aug 16 | 1983 | 5.2 | - * - | | Mosselbukta, Svalbard
79 ⁰ 50'N 16 ⁰ 00'E | Fucus spiralis | Aug 30 | 1983 | 49.4 | Sept 25, 1985 | | Rapp Martin, Svalbard
77 ⁰ 45'N 13 ⁰ 45'E | Alaria esculenta | Sept 14 | 1983 | 3.9 | - • - | Samples from Greenland and Norway were collected from the same locations over a period of 3-4 years. An anova showed that there was a probably significant variation between years: 1981 showing higher ²¹⁰Po concentrations than the other years. However, an interaction between years and locations obscured this variation. Ascophyllum nodosum showed lower concentrations than Fucus vesiculosus/disticus. As all samples were analysed several months after the collection the results probably reflect the ^{210}Pb rather than the ^{210}Po content of the fresh samples (cf. 4.5.1). Table 4.5.2.2 was based upon ashed samples only, and the polonium determinations thus represent the ²¹⁰Pb in the samples. It is interesting to note that the mean content of the samples from the Greenland east coast (Danmarkshavn, Scoresby Sund and Angmagssalik) is 2.5 times higher than that on the west coast (Narsaq, Godthåb, Upe navik, Thule). Table 4.5.2.2. Lead-210 in seaweed (ash) collected in Greenland 1966-1981 | Location | Species | Sampling da | ite | Bo q ⁻¹ ash | • | Date of analysis | |----------------|----------------------|------------------|------|------------------------|-------|------------------| | Narssaq | Asc _ System nodes a | "'ne 19,21 | 1979 | 0.044 0.08 | 3 | Feb 27, 1984 | | - • - | Fucus vesiculosus | June
21,24,26 | 1979 | 0.167 0.22 | 0.190 | . • . | | Danmarkshavn | Fucus disticus/ves. | Summer | 1968 | 0.81 | | Mar 12, 1984 | | Scoresbysund | | Sept | 1978 | 0.34 0.41 | | - • - | | Prins Chr.sund | _ * _ | Sept | 1979 | 0.151 0.19 | | . • . | | Upernavik | - • - | Summer | 1981 | 0.065 | | | | Godthåb | - * - | Summer | 1966 | 0.309 | | Mar 25, 1984 | | | _ = _ | July | 1967 | 0.101 | | - • - | | Angmagssalik | | Summer | 1966 | 0.222 | | - • - | | | - • - | Sept 17 | 1968 | 0.39 | | - • - | | Thule | - • - | Sept 17 | 1968 | 0.165 | | | *The activity per kg dry weight may be estimated from the Rg σ^{-1} ash data by multiplication with 260. #### 4.5.3. Mussels The Greenland Fisheries and Environmental Research Institute collected mussels (and other biota) at Narssaq in June 1979. The mussels were divided after shell length and analysed in 1984 for 210 Po. There is no correlation between mussel size and 210 Pb content. The mean concentration of all samples was
24.7 ± 5.2 Bq 210 Pb kg⁻¹ fresh weight (±1 S.D.; N = 20). An annual consumption of 10 kg mussel fresh will give an annual dose from 210 Po of: $$10 \times 24.7 \times 0.05/10^5 \text{ SV} = 0.12 \text{ mSV}$$ assuming that the ^{210}Po content of fresh mussels equals that of ^{210}Pb in the present samples. Table 4.5.3.1. Lead-210 in mussels (ash) collected in SW Greenland at Narssaq in 1979. (Date of analysis: March 12-14, 1984) | Location | Size | Sampling
date | Bg kg ⁻¹
fresh flesh | Bg kg ⁻¹
dry matter | |----------|------------|------------------|------------------------------------|-----------------------------------| | т1 | 4-5 cm | June 21 | 29 24 | 198 163 | | ** | 6-8 cm | - " - | 19 18 | 134 129 | | n | 4-8 cm | - " - | 36 23 | 279 156 | | ** | 4-6 cm | _ " _ | 23 | 157 | | | 6-7 cm | _ " - | 23 | 165 | | • | 7-8 cm | _ " _ | 25 | 182 | | n | 4.5-7 cm | - " - | 28 | 173 | | * | 7-9 cm | - * - | 30 | 193 | | т2 | 2.5-5 cm | June 24 | 22 | 131 | | 1, | 5-6 cm | - " - | 25 | 154 | | • | 6-8.5 cm | _ " _ | 36 | 212 | | н | 2-4 cm | - " - | 22 | 162 | | п | 4.5-5.5 cm | - " - | 25 | 173 | | н | 2.5-5.5 cm | _ * _ | 21 | 142 | | н | 5.5-7.5 cm | - " - | 27 17 21 | 177 121 146 | ### 4.5.4. Shrimps The samples in Table 4.5.4.1 were all freeze dried whereas Table 4.5.4.2 contains ashed samples as well as fresh ones. The ashed samples were analysed after quilibrium between ²¹⁰Pb and ²¹⁰Po was attained. These samples thus represents the ²¹⁰Pb content of the shrimps decay corrected with the half-life of ²¹⁰Pb to the sampling date. The fresh and the freeze-dried samples will contain ²¹⁰Pb partly directly accumulated from the environment and partly from decay of ²¹⁰Pb accumulated in the shrimps. It is not clear from the tables whether ashed or fresh samples contain most ^{210}Pb . It is evident that there are great variation even between samples collected at the same location at the same time. Table 4.5.3.1 does not suggest any significant difference in the ^{210}Po content bwtween different sizes of the animals. The mean content in shrimps collected at Bylot Sound, Thule was 0.41±0.03 Bq ^{210}Po kg⁻ (±1 S.E., N = 10). If we imagine a person eating 10 kg of these shrimps per year he would receive an annual dose of $$0.41 \times 10.0.5/10^5 = 2 \times 10^{-6} \text{ sv}$$ or 1 o/oo of the natural background (cf. also 4.3.3). Table 4.5.4.1. Polonium-210 in shrimps caught in Bylot Sound at Thule in July-August 1984 by the Greenland Fisheries and Environmental Research Institute | Sample No. | Shell length
in mm | Number of individuals | Fresh weight
of flesh | 1 dry
weight | Bq kg ⁻¹
fresh flesh | |------------|-----------------------|-----------------------|--------------------------|-----------------|------------------------------------| | 84-576 | 12-13 | 20 | 18.4 g | 17.5 | 0.49 | | 84-577 | 14-15 | 20 | 25.5 g | 17.1 | 0.60 | | 84-578 | 16 | 15 | 23.7 q | 17.3 | 0.40 | | 84-579 | 17-19 | 11 | 24.2 g | 16.8 | 0.43 | | 84-580 | 9- *1 | 16 | 8.0 q | 12.8 | 0.39 | | 84-581 | 12-13 | 20 | 17.6 q | 16,1 | 0.35 | | 84-582 | 14-15 | 20 | 25.7 q | 16,4 | 0.40 | | 84-583 | 16 | 19 | 29.6 g | 17.8 | 0.42 | | 84-584 | 17-19 | 20 | 47.3 q | 17.5 | 0.19 | | 84-585 | 20-23 | 14 | 43.7 g | 16.0 | 0.43 | | 84-586* | 15-18 | 5 | 13.0 g | 12.7 | | | 84-587* | 19-25 | 9 | 12.1 g | 10.0 | 0.23 | $\underline{\text{Table 4.5.4.2}}$. Lead-210 in shrimps caught at various places in Denmark and Greenland 1968-1984 | Location | Sampling
date | Bq kg ⁻¹ fresh weight | Sample type | |---------------------------|------------------|----------------------------------|--------------| | Danish Straits, Denmark | Oct 1968 | 0.56 | Ashed flesh | | Roskilde Fjord, Denmark | July 1984 | 2.15 1.72 3.13 3.46 | Fresh " | | Thule st. 42, Greenland | Aug 1968 | 1.08 | Ashed " | | - " - st. 44, - " - | Aug 1968 | 1.88 | н н | | Jacobshavn, Greenland | Aug 1970 | 0.40 | и н | | # | Aug 1981 | 0.40 | и и | | _ H | Aug 1982 | 0.17 | Fresh " | | Discobay, Greenland | July 1971 | 0.71 | Ashed " | | Frederikshåb, Greenland | Aug 1371 | 2.73 | и и | | Niagornap, Greenland* | June 1979 | 1.58 0.37 | я п | | Narssaq Sound, Greenland* | June 1979 | 0.76 | н н | | Skov Fjord, Greenland* | June 1979 | 0.57 | n 11 | | - " - | _ # _ | 1.03 | Ashed shells | | _ # _ | - " - | 2.97 | Ashed heads | *Collected by the Greenland Fisheries and Environmental Research Institute. ## 4.5.5. Fish Polonium-210 was determined in fresh fish samples collected from Danish waters (cf. Tables 5.8.2.3-5.8.2.4 in Risø Report No. 527^{3}). The mean content in these samples was 0.80 ± 0.31 Bq 210 po kg⁻¹ fresh flesh ($^{\pm}1$ S.D.;, N = 22). The mean of the 210 Pb values in Table 4.5.5 was 0.32 ± 0.36 Bq 210 Pb kg⁻¹ fresh flesh ($^{\pm}1$ S.D., N = 12) (the Uvaq data were not included, because they were based on total fish analysis). From the measurements of the Danish fish samples we concluded³) that most of the 210 Po was environmental. The Greenland values, which were based on ashed samples, may thus underestimate the 210 Po content (cf. 4.5.1). Table 4.5.5. Lead-210 in fish (ash) collected in SW Greenland in 1979 | Location | Species | Sampling
date | | B | iq ka ⁻¹ | fresh | l | | Date of | analysis | |---------------|-----------------|------------------|------|-------|---------------------|-------|------|------|---------|----------| | Narssaq | Catfish flesh | June 23 | 0.29 | 0.070 | 1 | | | | Peb 27, | 1984 | | Skov Fjord | - • - | June 26 | 0.24 | 0.21 | 0.21 | 0.15 | 0.36 | 0.16 | Mar 13, | 1984 | | Narssaq Sound | Cod flesh | June 28 | 0.33 | 0.17 | 0.25 | 1.45 | | | | • | | Skov Fjord | Uvaq total fish | June 23* | 0.53 | 0.52 | 0.44 | 0.42 | | | Feb 21, | 1984 | | - • - | - * - | - • - | 0.60 | 0.51 | 0.46 | G.44 | | | | - | ^{*}Analysed on 0.1, 0.2, 0.4 and 0.8 q ash in the order given in the table from left to right. ## 4.5.6. Mammals Table 4.5.6.1 shows that marine mammals may contain $^{210}\text{Po}-^{210}\text{Pb}$ levels similar to those found in terrestrial animals. Furthermore, it is evident that there are great variations within the species. The samples in Table 4.5.6.1 were all fresh, but the analysis was carried out 0.5-1 year after the sampling. We may thus have underestimated the ^{210}Po in the freshly collected samples (cf. 4.5.1). Table 4.5.6.1. Polonium-210 in mammals (fresh samples) collected in Greenland and the Parce Islands in 1982-1983 | Location | Species | Sampline date | Bq kg ⁻¹ fresh meat | Date of analysis | |--------------------------|----------|---------------|--------------------------------|------------------| | Angmagssalik, Greenland | Seal | Summer 1982 | 3.37 | July 20, 1983 | | Sukkertoppen, Greenland | - • - | Summer 1982 | 0.45 | June 14, 1983 | | Holsteinsborg, Greenland | Reindeer | Summer 1982 | 1.44 | May 25, 1983 | | Egedesminde, Greenland | - • - | Summer 1982 | 0.75 | - • - | | Thorshavn, The Parces | Lamb | Dec 12 1983 | 0.48 | June 14, 1984 | | Rlaksvig, The Parces | - • - | Dec 12 1983 | 0.46 | - • - | | Dumin, The Faroes | | Dec 12 1983 | 0.19 | - • - | Table 4.5.6.2. Lead-210 in lamb (ashed samples) collected in Narssaq, SW Greenland in February 1980 | Species | | Bg kg ⁻¹ fresh mea | Date of analysis | |---------|---|-------------------------------|------------------| | Lamb | 1 | 0.067 0.061 | April 25, 1984 | | • | 2 | 0.11 | May 23, 1984 | | • | 3 | 0.18 | _ # _ | | • | 4 | 0.022 | _ # _ | | # | 5 | 0.11 | _ * _ | ## 4.5.7. Polonium-210 diet estimates In order to get a reliable estimate of the ²¹⁰Po intake with the diet, it will be necessary to analyse the various food components very shortly after the sampling. As mussels apparently contain 1-2 orders of magnitude higher 210 Po levels than other diet components, the intake of mussels will strongly influence the individual doses from 210 Po in the diet. #### **ACKNOWLEDGEMENTS** The authors wish to thank Anna Holm Pedersen, Else Marie Sørensen, Jytte Clausen, Anna Madsen, Karen Wie Nielsen, Elise Ebling, Oda Brandstrup, Alice Kjølhede, Helle Porsdal, and Karen Mandrup Jensen for their conscientious performance of the analyses. Our thanks are furthermore due the Institute of Hygiene in Thorshavn, to the district physicians in Greenland and the telestations, GTO and all other persons and institutions in the Faroe Islands, Greenland and Denmark who have contributed by collecting samples. The Bedford Institute of Oceanography, Halifax and the Alfred Wegener Institute for Polar Research, Bremerhaven, are acknowledged for their kind invitations to participate in the cruises with the CSS Baffin and the R.V. "Polarstern" in 1984, respectively. F/S Walther Herwig collected sea water samples around Greenland and we convey our thanks to this ship from the Pederal Republic of Germany for its assistance. Martin Munch Hansen the Greenland Fisheries and Environmental Research Institute kindly provided us with fucus and shrimp samples from West Greenland and Thule. The present study was partly sponsored by the C.E.C. Radiation Protection Research Programme and the Nordic Liaison Committee for Atomic Energy (NKA). We finally thank the Commission for Scientific Research in Greenland for permission to collect samples in Greenland. #### **REFERENCES** - 1) Environmental Radioactivity in the Faroes 1962-1982. Risø Reports Nos. 64, 86, 108, 131, 155, 181, 202, 221, 246, 266, 292, 306, 324, 346, 362, 387, 404, 422, 448, 470 and 488 (1963-1983). - 2) Environmental Radioactivity in Greenland 1962-1982. Risø Reports Nos. 65, 87, 109, 132, 155, 182, 203, 222, 247, 267, 293, 307, 325, 347, 363, 388, 405, 423, 448, 471 and 489 (1963-1983). - 3) A. Aarkrog, S. Boelskifte, L. Bøtter-Jensen, H. Dahlgaard, Heinz Hansen, and S.P. Nielsen, Environmental Radioactivity in Denmark in 1984. Risø Report No. 527 (1985). - 5) A. Aarkrog, Environmental Studies on Radioecological Sensitivity and
Variability. Risø-R-437 (June 1979). - 6) A. Aarkrog, H. Dahlgaard, H. Hansen, E. Holm, L. Hallstadius, J. Rioseco and G. Christensen. Radioactive Tracer Studies in the Surface Waters of the northern North Atlantic including the Greenland, Norwegian and Barents Seas. To be published in RIT FISKIDEILDAR as proceedings from a Nordic Symposium on Chemical Tracers for Studying Water Masses and Physical Processes in the Sea in Reykjavik Aug 28-Sept 1, 1984. - 7) H. Dahlgaard, A. Aarkrog, L. Hallstadius, E. Holm and J. Rioseco. Radiocesium Transport from the Irish Sea via the North Sea and the Norwegian Coastal Current to East Greenland. Proceedings from Symposium on Contaminant Pluxes through the Coastal Zone. Nantes, France, 14-16 May 1984. - 8) G. C. Christensen. Radioaktivitet i Blæretang (Fu. ve.) langs Norskekysten 1980-1981. 3. Nordic Seminar on Radio-ecocology in Hyvinkää, Finland 11-13 May 1982. - 9) A. Aarkrog, S. Boelskifte, H. Dahlgaard, S. Duniec, L. Hallstadius, E. Holm and J.N. Smith. Technetium-99 and Cesium-134 as long distance tracers in Arctic waters (submitted for publication to Estuarine, coastal and shelf science (1986)). - 10) A. Aarkrog, S. Boelskifte, E. Buch, G.C. Christensen, H. Dahlgaard, L. Hallstadius, H. Hansen, E. Holm, S. Mattsson and A. Meide. Environmental Radioactivity in the North Atlantic region. The Faroe Islands and Greenland included. 1983. Risø Report No. 510 (1984). - 11) A. Aarkrog, H. Dahlgaard, L. Hallstadius, H. Hansen and E. Holm. Radiocesium from Sellafield Effluents in Greenland Waters. Nature 304, p. 49-51 (1983). - 12) R.S. Cambray. Annual discharges of certain long-lived radionuclides to the sea and to the atmosphere from the Sellafield works, Cumbria 1957-1981. AERE-M 3269 (1982). - 13) BNFL 1978-1983. Annual Report on Radioactive Discharge and Monitoring of the Environment. British Nuclear Fuels Limited, Risley, Warrington, Cheshire, U.K. - 14) A. Aarkrog, H. Dahlgaard and S. Boelskifte. Transfer of Radiocesium and ⁹⁰Sr from Sellafield to the Danish Straits. Cooperative Programme on the Study of Radioactive Materials in the Baltic Sea. IAEA, Vienna 1984. - 15) E. Holm, J. Rioseco and G.C. Christensen. ⁹⁹Tc in <u>Fucus</u> from Norwegian Waters. In: International Symposium on the Behaviour of Long-lived Radionuclides in the Marine Environment p. 357-367. Report EUR 9214 EN, CEC, Brussel, 1984. - 16) A. Aarkrog, H. Dahlgaard, K. Nilsson and E. Holm. Further studies of plutonium and americium at Thule, Greenland. Health Physics 46, 29-44 (1984). - 17) N.A. Talvitie, Radiochemical Determination of Plutonium in Environmental and Biological Samples by Ion Exchange. Anal. Chem. 43, 1827 (1971). - 18) E. Holm, S. Ballestra and R. Fukai. A Method for Ion Exchange Separation of Low Levels of Americium in Environmental Samples. Talanta, 26, 791-794 (1979). - 19) L. Hallstadius, A. Aarkrog, H. Dahlgaard, E. Holm, S. Boelskifte, S. Duniec and B. Persson. Plutonium and Americium in Arctic waters and the North Sea and at the Scottish and Irish coasts. Accepted for publication in J. Environ. Radioactivity (1985)). - 20) A. Aarkrog, H. Dahlgaard, E. Holm and L. Hallstadius. Evidence for Bismuth-207 in global fallout. J. Environ. Radioactivity 1, 107-117 (1984). - 21) A. Aarkrog. Risk assessment of long-lived radionuclides in the marine environment. Invited paper to International Symposium on the behaviour of long-lived radionuclides in the marine environment. La Specia, 28-30 Sept. 1983, p. 419-442. - 22) J.D. Harrison and A.S. David. The gastrointestinal absorption of transuranium elements in animals and the implications for man. 6th IRPA congress May 7-12 1984, p. 427-430 (1984). Sales distributors: G.E.C. Gad Strøget Vimmelskaftet 32 DK-1161 Copenhagen K, Denmark Available on exchange from: Risø Library, Risø National Laboratory, P.O.Box 49, DK-4000 Roskilde, Denmark ISBN 87-550-1129-2 ISSN 0106-2840