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Abstract

In several industries such as civil, mechanical, and aerospace, thin-walled struc-
tures are often used due to the high strength and effective use of the materials.
Because of the increased consumption there has been increasing focus on opti-
mizing and more detailed calculations. However, finely detailed calculations will
be very time consuming, if not impossible, due to the large amount of degrees
of freedom needed. The present thesis deals with a novel mode-based approach
concerning more detailed calculation in the context of distortion of the cross
section which model distortion by a limited number of degrees of freedom. This
means that the classical Vlasov thin-walled beam theory for open and closed
cross sections is generalized as part of a semi-discretization process by including
distortional displacement fields. A novel finite-element-based displacement ap-
proach is used in combination with a weak formulation of the shear constraints
and constrained wall widths. The weak formulation of the shear constraints
enables analysis of both open and closed cell cross-sections by allowing constant
shear flow. Variational analysis is used to establish and identify the uncoupled
set of homogeneous and non-homogeneous differential equations and the related
solutions.

The developed semi-discretization approach to Generalized Beam Theory
(GBT) is furthermore extended to include the geometrical stiffness terms for
column buckling analysis based on an initial stress approach. Through varia-
tions in the potential energy a modified set of coupled homogeneous differential
equations of GBT including initial stress is establish and solved. In this context
instability solutions are found for simply supported columns and by solving the
reduced order differential equations the cross-section displacement mode shapes
and buckling load factor are given.

In order to handle arbitrary boundary conditions as well as the possibility
to add concentrated loads as nodal loads the formulation of a generalized one-
dimensional semi-discretized thin-walled beam element including distortional
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contributions is developed. From the full assembled homogenous solution as well
as the full assembled non-homogeneous solution the generalized displacements
of the exact full solution along the beam are found.

This new approach is a considerable theoretical development since the ob-
tained GBT equations including distributed loading found by discretization of
the cross section are now solved analytically and the formulation is valid with-
out special attention and approximation also for closed single or multi-cell cross
sections. Furthermore, the found eigenvalues have clear mechanical meaning,
since they represent the attenuation of the distortional eigenmodes and may be
used in the automatic meshing of approximate distortional beam elements. The
magnitude of the eigenvalues thus also gives the natural ordering of the modes.

The results are compared to results found using other computational meth-
ods taking distortion of the cross section into account. Thus, the results are
compared to results found using the commercial FE program Abaqus as well
as the free available software GBTUL and CUFSM concerning conventional GBT
and the finite strip method, respectively. Reasonable matches are obtained in
all cases which confirm that this new approach to GBT provides reasonable re-
sults with a very small computational cost making it a good alternative to the
classical FE calculations and other available methods.
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Resum�e

I mange brancher såsom konstruktions-, mekanik- og rumfartsbranchen anven-
des tyndvæggede konstruktioner ofte på grund af deres høje styrke og en ef-
fektiv udnyttelse af materialerne. På grund af øget anvendelse af disse kon-
struktioner, er der stigende fokus på optimering og mere detaljerede bereg-
ninger. Dog vil mere detaljerede beregninger være mere tidskrævende, hvis ikke
umulige, på grund af det store nødvendige antal frihedsgrader. Denne afhand-
ling omhandler en ny form-baseret formulering af den tyndvæggede bjælkete-
ori, hvilket medfører mere detaljerede beregninger ved at medtage og inkludere
tværsnitsdeformation, men samtidig også tager hensyn til tværsnitsdeformation
ved brug af et begrænset antal frihedsgrader. Dette betyder, at den klassiske
Vlasov bjælketeori for åbne og lukkede tværsnit generaliseres som del af en
semi-diskretiserings proces ved at inkludere tværsnitsdeformation. En ny finite-
element baseret formulering anvendes i kombination med en svag formulering af
forskydningsbindinger og en binding af vægudvidelsen. Den svage formulering
af forskydningsbindingerne gør det muligt at analysere både åbne og lukkede
tværsnit ved at tillade en konstant forskydningsstrøm rundt i tværsnittet. Vari-
ationsanalyse anvendes til at identificere og etablere ukoblede sæt af homogene-
og inhomogene differentialligninger og de tilhørende løsninger.

Den udviklede semi-diskretiseringsformulering til generaliseret bjælketeori
(GBT) er endvidere udvidet til også at omfatte de geometriske stivhedsled for
søjleudknæknings analyse baseret på en initialspændingsformulering. Gennem
variationer i den potentielle energi er et modificeret sæt af de koblede homogene
differentialligninger for GBT indeholdende initial spændinger opstillet og løst. I
denne sammenhæng er der fundet in-stabilitets løsninger for simpelt understøt-
tede søjler og ud fra løsningen af de fjerde ordens reducerede differentialligninger
er tværsnitsdeformationsformerne og stabilitetslastfaktoren fundet.

For at kunne håndtere arbitrære randbetingelser og for at kunne påsætte
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koncentrerede belastninger i form af knudelaster, er der formuleret et generalis-
eret en-dimensionelt semi-diskretiseret tyndvægget bjælkeelement indeholdende
tværsnitsdeformation. Udfra den fuldstændige og samlede homogene løsning
såvel som ud fra den fuldstændige og samlede in-homogene løsning, er de gener-
aliserede flytninger for den eksakte, fuldstændige løsning langs bjælken fundet.

Denne nye metode udgør en betydelig teoretisk udvikling, idet de opstillede
GBT ligninger, indeholdende fordelt last fundet ved semi-diskretisering af tvær-
snittet, nu er løst analytisk og idet formuleringen nu er gældende for lukkede
og flercellede tværsnit uden specielle hensyn og approksimationer. Endvidere
har de fundne egenværdier nu en klar definition, idet de repræsenter afkling-
ningslængden af de tværsnitsdeformerede egenformer, og de kan dermed bruges
i forbindelse med en automatisk inddeling af tilnærmede tværsnitsdeformerede
bjælkeelementer. Endvidere angiver størrelsen af egenværdierne den naturlige
hierarkiske rækkefølge af formerne.

De opnåede resultater er sammenlignet med resultater fundet vha. det
kommercielle FE program Abaqus og det frit tilgængelige software GBTUL og
CUFSM, som omhandler henholdsvis konventionel GBT og finite strip meto-
den. Herigennem er der opnået gode overensstemmelser i alle tilfælde, hvilket
bekræfter, at denne nye formulering til GBT giver gode resultater med meget
små beregningsmæssige omkostninger, hvilket gør den til et godt alternativ til
de klassiske FE beregninger og andre tilgængelige metoder.
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Chapter 1

Introduction

For about a century many branches of the industry have sought stronger and at
the same time lighter structural solutions which optimize the effectiveness and
the cost of the structures. Among them are the civil, mechanical, naval and
aerospace industry. This has led to an increasing use of thin-walled structures
such as cold-formed steel beams, steel and concrete box girders, ship hulls,
trapezoidal steel sheeting and other structures in which one dimension is small
compared to the other dimensions, see e.g. Figure 1.1. Thin-walled structures
made of aluminium and composite materials are also widely used. Because
of the increased slenderness of these structures, they lead to more complex
structural behavior which requires the development of more comprehensive and
accurate mathematical approaches. However, more detailed calculations will be
very time consuming, if not impossible, due to the large amount of degrees of
freedom needed.

In this thesis a novel mode-based approach is developed by extending the
existing beam theory to include transverse distortion for open and closed cross

Figure 1.1: Examples of thin-walled cross sections.
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sections in a new and theoretical improved context. Due to the mode (cross-
section deformation multiplied by a longitudinal amplitude function) based for-
mulation it is possible to obtain a more engineering perspective of the problem.
It also implies that the physical understanding is always in focus. At the same
time the novel approach model distortion by a limited number of degrees of free-
dom compared to the classical shell finite element method which is very time
consuming, if not impossible, due to the large amount of degrees of freedom
needed. In this context an advanced distortional semi-discretized thin-walled
beam element has been developed. In general, this means that the thesis is a
study of distortional mechanics of thin-walled structural elements and deals with
the related kinematics and stability. The importance of research in beam theory
and beam elements, which model distortion by a limited number of degrees of
freedom, lies in the fast analysis of complex dynamic problems and stability
related issues of distorting structures. Nowadays the studies of the dynamics of
bridges are often based on a simple beam theory. An extension of these stud-
ies to include deformation of the cross section would be very interesting. It is
possible to include very important contributions to the structural behavior by
adding extra degrees of freedom.

To understand the importance of taking distortion into account, this chapter
will start out by describing the background and history of the beam theory. Due
to the research carried out in this thesis the chapter also presents the purpose
and expectations, an introduction to the novel GBT approach as well as a
description of the report structure.

1.1 Background and history

As far back as the 16th century the strength doctrine was founded by Galileo
Galilei (1564–1642). After his death the development of the theory of elasticity
was started by Robert Hooke (1635–1703) followed by Coulomb (1736–1806)
developing the theory of bending of beams leading to the well known mathe-
matical elasticity theory defining the classic beam theory, Timoshenko (1983).
In the context of this foundation a brief overview of the beam theory is given
in this section.

1.1.1 Classic beam theory

The classic beam theory (Euler-Bernoulli theory) is based on the assumption
of Bernoulli, where plane cross sections remain plane, and it is assumed that
the beam axis remain perpendicular to the cross-section in-plane (Timoshenko
and Goodier, 1951). Furthermore, the physical assumption of Hooke on linear
elasticity is made, which means that the strain distribution will vary linearly
over the cross section. This also means that the forces can be divided into three
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independent components which are (i) the normal force, (ii) bending moment
related to major axis bending and (iii) bending moment related to minor axis
bending. The shear forces are derived from the moment variation and the
distribution of the shear stresses are found from the Grashof formula which is
based on the static assumptions concerning equilibrium (Gere and Timoshenko,
1997).

The mathematical elasticity theory gives the relationship between the shear
stresses and the shear strains for a 3-dimensional continuum. However, it is
important to note that the simplifications of the classic beam theory lead to an
inconsistency in the determination of the shear stresses. The assumptions of the
cross-section deformation mean that there is no shear strains and according to
the mathematical theory of elasticity consequently also no shear stresses. In the
classic beam theory this problem is handled by determining the shear stresses
from equilibrium considerations which are independent of the deformations.
Shear forces would theoretically cause plane cross sections to not remain plane,
but for relatively thick-walled cross sections the error is very small and the clas-
sic beam theory is in these cases sufficiently accurate for all practical purposes.
Furthermore, the classical beam theory consider torsion to be solved based on an
assumption of free torsion which means that distortion out of the plane (warp-
ing) can take place unhindered. Thereby free torsion results in warping of the
cross section which contradicts the assumption of plane cross sections remain-
ing plane. At joints between angled beam elements this leads to compatibility
problems since the torsional deformations do not fit together with the flexural
and axial deformations for closed cells. However, for sufficiently thick-walled
beam elements the torsional deformations will usually be significantly smaller
than the other deformations, which means that the incompatibility concerning
most practical purposes has no significant meaning.

The relation between the cross section and the bending stiffness parame-
ter was first made by Navier in 1820 while the formulation of the problem of
homogeneous torsion of an elastic beam was made in 1855 by St. Venant (Tim-
oshenko, 1983). Until the beginning of the 19th century this theory was state
of the art. In 1921 the incorporation of shear effects into the technical theory
of beam flexure was developed by Timoshenko (Timoshenko, 1983).

As mentioned above the classical technical beam theory is valid for many
practical purposes. However, the validity of the theory cannot be clarified in a
simple way and it depends on the cross-section design, e.g. the plate thickness
in relation to the height, the length of the beam elements, and the structural
application. Furthermore, with an increasing utilization of the construction
material there is more beam- and frame structures, where one is compelled to
incorporate the cross-section warping. Examples are frame constructions built
by I-profiles. Such structures are often dimensioned based on loss of stability by
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lateral torsional buckling, which necessitates a thin-walled beam theory. Bridge
girders made of steel are often made as closed cross section, whereby traffic loads
are able to induce torsion in the bridge girders. The stress distribution in the
structure requires account for non-homogeneous torsion and thus a thin-walled
beam theory.

1.1.2 Thin-walled beam theory

In 1961 a theory describing the combined effects of extension, bending, and
torsion of thin-walled beams was developed by Vlasov (1961) leading to the
well known theory of thin-walled beams. Often thin-walled beams are referred
to as Vlasov beams as he was the first to give a systematic description of the
theory of thin-walled beams. In this context Vlasov also described the warping
phenomenon.

Thin-walled structures such as beams, columns, plates, shells, sheeting,
pipes, among others, are frequently used in civil, naval and space construc-
tions, see e.g. Figure 1.2 and 1.3. They are not easy to define in a precise

Figure 1.2: Examples of thin-walled structures used in civil constructions.

and quantitative way, however it seems sufficient to say that they are structures
made from thin plates joined along their edges. The plate thickness is small to
other cross-sectional dimensions which are in turn often small compared with
the overall length of the member or substructure (Murray, 1986).

There are many reasons why thin-walled structures must be given special
considerations in their analysis and design. Some of them are listed below:

◦ Out-of-plane distortion. The shear stresses and strains are relatively larger
than those in a solid rectangular beam. By twisting a thin-walled structure
it is easily shown that there is an out-of-plane distortion of the cross section
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Figure 1.3: Examples of thin-walled structures used in offshore and aerospace construc-
tions.

in the longitudinal beam direction (warping). Hereby the assumption of
plane sections remaining plane (Bernoulli hypothesis) is violated.

◦ Shear flow. In the closed cross section the torsional moment is resisted
by a shear flow around the cell. Consequently the torsional stiffness is
increased considerably as compared to a similar open cross section.

◦ Shear lag. Shear lag occurs when the forces cannot be transmitted directly
into the entire cross section. This means that the area that is effective in
resisting the force is smaller than the total area.

◦ Susceptible to local buckling. It is well known that thin-walled structures
are susceptible to local buckling when subjected to load.

◦ Stress distribution. It is well known that warping and torsion have a great
influence on the stress distribution.

◦ In-plane distortion. Due to the thin walls, thin-walled beams are much
susceptible to deformation of the cross section, leading to various subjects
and remarks as described later in subsection 1.1.3.

In the theory of thin-walled beams the assumptions that plane cross sections
remain plane are remitted. This gives a more consistent connection between
torsion and bending (or normal force). The torsional problem is no longer
assumed to be freely conducted, which means that so called free torsion can be
obtained. This means a torsional mode where the first derivative of the torsional
angle (φ′) are no longer constant.

In contrast to the classical six degrees of freedom, the calculation of thin-
walled beams also contains a warping parameter which expresses the change in
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the derivative of the angle of rotation (φ′′). This degree of freedom is associated
with the bimoment which is an extra generalized force. The introduction of
the warping parameter is necessary to handle lateral torsion which concerns
stability. In contrast to the classical beam theory the placement of the load at
the cross section is important for thin-walled beams and the torsional stiffness
of a profile is highly dependent on whether the profile is open or closed. But
with regards to the beam theory the solving methodology is the same.

Before the Vlasov formulation, previous works were characterized by solu-
tions to special problems, see e.g. Timoschenko and Gere (1963) and the books
Kollbrunner and Hajdin (1972) and Kollbrunner and Hajdin (1975) provide a
systematic review of the theory and a number of analytical solutions for selected
problems. In Murray (1986) a more practical description of the thin-walled beam
theory and examples of applications are provided. Krenk (1989a;b) provides a
modern description of the thin-walled beam theory based on a continuum me-
chanical basis and specified numerical calculations.

In thin-walled beam structures transition conditions between beam elements,
that meets at non right angles, are complex. The stiffness conditions of the
connections have great importance for the overall structural stiffness, and thus
the buckling load. In Krenk and Damkilde (1992) this problem is handled and
Petersen et al. (1991) contains a finite element formulation of both the linear
problem and the stability problem.

Despite the fact that almost all the points listed above have been well re-
searched for several years, the last and important point describing in-plane
distortion still creates problems specially for closed cross sections. This subject
is handled in the present thesis.

1.1.3 In-plane distortion and why it is important

As seen from the section given above concerning the classical theory of elastic
thin-walled beams it is assumed that the cross sections maintain their shape in-
plane and do not distort. Although the assumption is often justified, it cannot
be maintained in the analysis of modern thin-walled structures. Some of the
reasons to take in-plane distortion into account are listed here as

◦ The deformation of the cross section can give a substantial additional
contribution to the deformation determined by ordinary beam theory as
well as redistribution of stresses. For example cross-section deformation
of box girders due to eccentric transverse load (Krenk, 1989b).

◦ Instability of a compressed flange caused by bending of the web. In this
case the web acts essentially as a supporting spring, and thus the combined
flexibility of the support and the cross-section plays a decisive role.
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◦ Investigations by Raftoyiannis (1994), Godoy et al. (1995), Barbero (2000),
and Barbero et al. (2000) show, both analytically and experimentally, that
the local deformation in the cross section may strongly affect the structural
buckling behavior of thin-walled composite members.

◦ Including distortion of the cross section gives the possibility of analyzing
major bridges in the context of the overall structure instead of in a sub
structural part.

◦ Ovalisation reduces the cross-section moment of inertia and thereby the
stiffness, leading to a non-linear moment-curvature relation often called
the Brazier effect. For example ovalisation of thin-walled pipes in bending
(Krenk, 1989b). Note that this is a non-linear problem and that the
present thesis only deals with linear problems.

The importance of taking in-plane distortion into account has been recog-
nized as far back as 1961 in Vlasov (1961). Here Vlasov presented an approach
in which each wall is treated as a beam linked to the others.

Subsequently, the subject concerning deformable cross sections have been
treated by several authors. Steinle dealt with in-plane distortion of single-
cell box girders (Steinle, 1967; 1970). Also Wright et al. published within
this topic (Wright, 1968). Even though Steinle deals with the topic concerning
deformable cross-sections he is not setting up the differential equation including
the distortion. He is only dealing with an un-coupled formulation by looking
at the classical beam theory to which he attaches the stresses obtained by a
separated analysis of a deformed cross section. In 1979 Křístek treats the topic
concerning closed cross sections (Křístek, 1979).

Inspired by others of the theory of prismatic folded structures (Faltwerke,
in German) also Schardt published in 1966 a new formulation (Schardt, 1966),
taking deformation of the cross section into account. The formulation was based
on the theory of prismatic folded structures and the introduction of new gener-
alized forces and cross-section deformations. The formulation was made so that
the final calculation could be done by using the classical formulation of beam
theory. Hereby Schardt extended the beam theory to include the deformation
of the cross section. In 1975 Kollbrunner and Hajdin (1975) dealt with the topic
of open and closed cross sections including warping. Schardt (1989) published
a further developed formulation known as Generalized Beam Theory (GBT) or
(VBT) in German. The formulation is a generalization of classical Vlasov beam
theory and has been successful and fostered further research which is described
in the next chapter.

A distortional theory which generalizes Vlasov beam theory by including the
modified definition of the warping function and a single distortional mode was
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presented in Jönsson (1998). In that work the analytical solution of coupled
torsional and distortional equations was found by reduction of order and solu-
tion of the related eigenvalue problem. The single mode can here be found by
equilibrium between the actual load and the shear stresses or in simple cases
the mode can be estimated by intuition.

The rapid development during the last ten years within the field of distortion
of thin-walled elements has prompted the publication of widespread literature
on the subject which are described in chapter 2.

1.1.4 Numerical methods available

An assessment of structural performance of thin-walled beams includes linear
static analysis and linear buckling analysis of the behavior which may involve
global deformations, non-local in-plane distortional deformations and local in-
plane distortional deformation as well as out-of-plane deformations (warping).
Regarding such analyses the following main numerical analysis methods are
available:

1. Finite Element Method. This is a method to obtain an approximate solu-
tion to a problem governed by a set of differential equations. The member
is divided or discretized into smaller part (elements) in which simple ex-
pressions for the displacements are chosen, see Figure 1.4(left). Regarding
thin-walled members usually shell finite elements (SFEM) are used. The
displacement field is approximated by a combination of polynomial shape
functions, each single one associated with a nodal displacement or rota-
tion, see for example Zienkiewicz and Taylor (2000a;b) or Hughes (2000),
perhaps with utilization of recursive substructuring (Jönsson et al., 1995).
This advanced numerical technique involves a large amount of degrees of
freedom.

2. Finite Strip Method. This method may be regarded as a special form of
the finite element procedure, see for example Cheung (1976) for a compar-
ison between finite element and finite strip methods. It is applicable for
many structures having regular geometric plans and simple loading and
boundary conditions. The member is discretized into strips which calls
for use of simple interpolation polynomials in the transverse direction and
continuously differentiable smooth series functions (e.g. Fourier series) in
the longitudinal direction. The strips are rectangular finite elements span-
ning all the length, see Figure 1.4(right), and involves a lower number of
degrees of freedom than equivalent SFEM analyses (Cheung and Tham,
1998, Williams and Wittrick, 1968, Cheung, 1976). This provides a power-
ful simplification to the finite element method. The method is subdivided
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into the following main sub-methods, however tremendous developments
of the method have been made:

◦ Semi-Analytical Finite Strip Method. This is the classical finite strip
method, which is applicable only to simply supported boundary con-
ditions and thus applicable to the buckling or vibration analysis of
simply supported members subjected to longitudinally uniform in-
ternal forces and/or moments, see for example Cheung and Tham
(1998). The method has been incorporated into the available free
software packages CUFSM (Li and Schafer, 2010).

◦ Spline Finite Strip Method. This is a development of the semi-
analytical finite strip method and replaces the series functions, rep-
resenting the displacements in the longitudinal direction, by splines
as well as handles non-standard support conditions and non-uniform
internal forces and moments (Loja and Soares, 2002, Prola, 2002).
The number of degrees of freedom required for a spline finite strip
analysis is considerably larger than for the semi-analytical finite strip
method, however it is still considerably less than that of a comparable
finite element analysis (Erp and Menken, 1990).

◦ Constrained Finite Strip Method (cFSM). This method constrain the
classical finite strip method to deformation fields consistent with a
particular class of buckling modes. It uses conventional definitions
of deformation classes such as global, distortional, local, and other
deformations separated into the degrees of freedom. Thus providing
both modal decomposition and modal identification to a conventional
finite strip solution resulting in a better understanding of the cross-
section deformation and stability (Ádány et al., 2009, Schafer and
Ádány, 2006, Ádány et al., 2006). The method has been incorporated
into the available free software packages CUFSM by Li and Schafer
(2010).

3. Conventional Generalized Beam Theory. This is a method having the
distinguishing feature of discretizing the deformed member configuration
into cross-section deformation modes. The modes can either be a global,
local (plate) or distortional mode (Schardt, 1989). After the determina-
tion of the modes during a cross-section analysis, the modes are, within
a member analysis, multiplied by an approximated axial amplitude shape
function leading to a conventional axial element interpolation and dis-
cretization. For open cross sections the method has been incorporated
into the available free software packages GBTUL (Bebiano et al., 2008a),
however the GBTUL cannot yet handle closed cross sections. This theory,
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Figure 1.4: Lipped channel shell finite element discretization (left) and finite strip or GBT
discretization (right).

which is less widespread than the finite element method and the finite
strip method, is an extension of the classical theory by including multi-
ple distortional modes. Thereby it is possible to perform computational
analysis of advanced distortional problems with a less number of degrees
of freedom than necessary for equivalent SFEM analyses, see for example
Figure 1.4(right). This extension and the associated longitudinal finite
element discretization using approximated axial amplitude shape function
leads to a much faster analysis of complex dynamic and stability related
issues. A more elaborate description of the theory is given later in section
2.2.

From the above mentioned methods, the finite element method is the most
powerful and versatile tool of solution in structural analysis. The method is well
known and established, and used in a wide range concerning structural analy-
sis. However, for many structures having regular geometric plans and simple
boundary conditions, a finite element analysis is often extravagant, unnecessary
and at times even impossible. Therefore the finite strip method as well as the
GBT approach is an alternative method, which can reduce the computational
effort for the afore-mentioned class of structures.

Having described the background and history let us turn to the purpose and
expectations.

1.2 Purpose and expectations

The first part of this PhD study consisted of a literature study. During this
study it became clear that several formulations including transverse distortional
displacements have been proposed for analysis of both open and closed cross
sections. It also became clear that especially one formulation has been very
successful and widespread, namely the well known formulation referred to as
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GBT (Generalized Beam Theory). However, this formulation has been devel-
oped for open cross sections and still gives problems for closed cross sections.
Even though GBT is an abbreviation of Generalized Beam Theory which gives
the impression of covering a wide area, the abbreviation has achieved a kind of
trademark related to the theory or formulation developed by Schardt (1989).
As the GBT abbreviation in a word related sense also may cover a wide area
it should in my opinion not be linked to a single theory or formulation. Con-
sequently, the theory developed by Schardt will in this thesis be referred to as
conventionel GBT. The conventional GBT formulation was initially proposed
by Schardt (1966) as a generalization of the theory of bending (Verallgemein-
erte Technische Biegetheorie, VTB in German) but was generally not so known
in the international research community until Davies and Leach (1994a) pre-
sented first-order conventional GBT analysis. Conventional GBT is devoted
to (first-order) distortional displacement analysis including the identification
of distortional modes, as well as (second-order) linear buckling of thin-walled
members, and it has fostered many research investigations as can be seen later
from chapter 2.

As mentioned the conventional generalized beam theory has been studied
much during the last 45 years. In general by the group at the Technical Uni-
versity of Darmstadt, Germany, and in the last 10 years especially and strongly
intensified by the Portuguese group led by Silvestre and Camotim at the Tech-
nical University of Lisbon. Despite 45 years of research and development the
theory is still limited in its distribution. This can be due to several reasons but
one can be that the theory is difficult to understand and not based on the con-
temporary educational topics such as energy principles and the finite element
method.

The hypothesis of this project, which is based on prior research performed
by professor Jeppe Jönsson, has therefore and in contrast to conventional GBT
been theoretical developments based on the calculus of variations and energy
formulations. Formulations for the numerical analysis has been performed based
on the finite element method formulations. It should be noted that the present
novel approach to generalized beam theory is neither similar to conventional
GBT nor an extension of the theory.

Following the arguments above has led to the following objectives and achieve-
ments for this study:

◦ A literature survey on generalized beam theory.
◦ A study to enhance the understanding of the calculus of varia-
tion and energy methods.

◦ The formulation of a set of homogeneous distortional differen-
tial equations of GBT (limited number of degrees of freedom)
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in the context of a semi-discretization (modes) and a FEM for-
mulation. This is done by using calculus of variations and an
energy formulation. The formulation has to be performed so
that also cross sections with closed cells can be treated without
special attention.

◦ The formulation and solution of a consistent eigenvalue problem
that solves the full analytical homogeneous distortional differ-
ential equations of GBT and determines the distortional modes
which decouple the set of differential equations.

◦ The formulation and solution of an uncoupled set of non-homo-
geneous distortional differential equations of GBT including the
distributed loads by using the novel semi-discretization (modes)
process.

◦ An extension of the formulation to include the geometrical stiff-
ness terms, which are needed for column buckling analysis and
identification of buckling modes.

◦ The development of an advanced distortional semi-discretized
prismatic thin-walled element based on the objectives given above.

◦ A comparison between the novel approach to GBT and the con-
ventional GBT.

It is expected that the research will lead to the development of new, modern,
and improved techniques for static, stability, and dynamic analysis of distorting
prismatic thin-walled structural elements. It will enable static and stability
analysis of distortional structural problems with very few degrees of freedom
making it a good alternative to the classical finite element method which is often
extravagant and unnecessary for many structures having a regular geometric
plans and simple boundary conditions.

Before describing the structure of the thesis let us briefly introduce the novel
GBT approach in words.

1.3 Introduction to the novel GBT approach

In this section a brief overview of the novel GBT approach is given in words
before going into the detailed study. This is assumed to be worthwhile for the
knowledgeable reader.

First of all, the presented novel GBT formulation for prismatic thin-walled
beams with both open and closed (single or multi cell) cross sections can be
regarded as an extension of classical Vlasov thin-walled beam theory to include
distortional deformation modes as well as constant shear flows in the walls of
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the cross section (Vlasov, 1961, Kollbrunner and Hajdin, 1972; 1975). This
also means that the novel GBT approach adhere to the definition of the warp-
ing function given by Kollbrunner and Hajdin (1972) which adds the integral
of the shear flow strains, see also (Jönsson, 1998; 1999a;b). Hereby the novel
GBT approach is able to handle open cross sections as well as closed cross sec-
tions without special attention. It should be noticed that shear deformation
accommodating Bredt’s shear flow around closed cells is included in the theory
through the specific definition of the warping function (Kollbrunner and Hajdin,
1972). We are dealing with a beam element adhering to generalized beam theory
and not an extended weak formulation of a finite beam element that allows the
addition of special (transverse extension and shear lag) modes. The approach
makes it possible to analyze prismatic thin-walled members with cross-section
distortion and local plate behavior in a one-dimensional formulation through the
linear combination of pre-established modes of deformation. Note that a distor-
tional theory which generalizes Vlasov beam theory by including the modified
definition of the warping function and a single distortional mode is presented
by Jönsson (1999a).

Furthermore, innovative theoretical developments are performed in the con-
text of finding and solving the analytical homogeneous solution to the fourth-
order differential equations of GBT to obtain the distortional displacements for
a linear beam analysis. This advance enables the formulation of exact distor-
tional beam elements with distributed load for first-order analysis using the
found axial solution functions as seen from chapter 6. This is in contrast to
the conventional interpolation by third-order polynomials. It also means that
the novel approach finds the exact mode shapes and amplitude solutions of the
reduced order GBT equations related to the discretized cross section. The for-
mulation is performed by introducing a semi-discretization process and gives an
excellent knowledge of the length scales of the modes through the magnitude
of the eigenvalues found. Similar methods are used by Hanf (1989) only in his
thesis and by Jönsson (1999a). In the work of Jönsson (1999a) the analytical
solution of coupled torsional and distortional equations are found by reduction
of order and solution of the related eigenvalue problem in the same manner as
in the present work.

Introducing semi-discretization leads towards a formulation in which the ro-
tational degrees of freedom are included, thus including local plate modes in
the formulation even for the simplest discretization. The elimination of these
rotational degrees of freedom could perhaps be advantageous if one wants to per-
form a modal decomposition of buckling displacements into distortional buckling
mode and local plate buckling mode. However, we then rely on a coarse dis-
cretization. A static elimination of the rotations are performed later in order to
compare with conventional GBT.
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During the development of the present novel approach, the determining of
the sequence of the three steps performed has been very difficult and caused
much effort in order to achieve an elegant and solvable eigenvalue problem.

Having shortly introduced the novel GBT approach, the structure of the
thesis is described in the next section.

1.4 Structure of the thesis

The objectives described in section 1.2 are met by an academic research con-
taining a literature study, calculus of variation, energy methods, finite element
formulations and eigenvalue problems. Hereby the analytical derivations are
based on the calculus of variations, and formulations in the context of numer-
ical analysis are based on the finite element formulations. The thesis can be
read without consulting the attached papers, except from the full set of illus-
trative examples given. The thesis is therefore self contained and limits the
repetition of basic information to a bare minimum and allows for philosophical
considerations and extra clarifying informations. It is believed that this gives a
much more comprehensive presentation of the work performed. Consequently,
the thesis include a main part of the associated papers.

Having given an introduction including a description of the background and
history of the beam theory, a presentation of the purpose and expectations, an
introduction to the novel GBT approach as well as a description of the report
structure the next chapter deals with a literature review.
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Chapter 2

Literature Review

With the background information in section 1.1 it is clear that the theory behind
thin-walled structures have been subject to extensive research, and in the recent
years especially focusing on including transverse distortion of the cross section
and minimizing the calculation time. As shown in subsection 1.1.4 a number
of different analysis techniques involving local deformation are available. It
appears, the conventional generalized beam theory known as GBT has been
the most investigated technique in the recent years, due to the limited number
of degrees of freedom and thereby a fast analysis of complicated problems of
distorting structures.

In this chapter a statement of the distortional research will be given, even
though a huge amount of research papers have become and are becoming pub-
lished in these and the previous years. The chapter deals with approaches which
handle in-plane distortion in the context of modal structural analysis, however
the main topic in the chapter deals with the conventional GBT theory as this
theory is most closely related to the novel approach developed in the present
thesis. In this context, a comparison between the novel GBT approach and
conventional GBT is given (later) in chapter 7. Thus, section 2.2 in the present
chapter deals with an introduction of conventional GBT in general for the later
comparison.

An intensive research work in the context of conventional GBT is performed
by the Portuguese group lead by professor Dinar Camotim and professor Nuno
Silvestre at the Technical University of Lisbon. To get insight in the expertise
and knowledge of this group in the context of conventional GBT a valuable
research stay in the group has been carried out by the author during a six
month period. During this period the author had an invaluable opportunity to
obtain an in-depth knowledge of the group, the conventional GBT approach,
the research performed by the group as well as general world wide research
performed in the context of conventional GBT which is reflected in this chapter.
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2.1 Conventional generalized beam theory

The present section deals with a brief historical overview of the advancement and
state-of-the art of the theory. Moreover, the present GBT review is divided into
subsections related to the respective research groups or leaders. The hierarchical
order of the subsections is related to the period of publishing.

2.1.1 Richard Schardt

The first publications by Schardt related to conventional GBT deals with first-
order analysis of prismatic members with thin-walled un-branched open or cylin-
drical cross sections and was published in Schardt (1966; 1968). At the begin-
ning R. Schardt and his research group at the Technical University of Darm-
stadt generally published only in German, which means that a wide majority
of the publications were excluded for many of the international community.
Even though Shardt was inspired of the theory of prismatic folded structures
(Faltwerke in German), he acknowledged in Schardt (1989) that the guiding
principles leading to the development of GBT were actually due to Wlassow
(1958) whose premature death prevented the completion of his work towards
the generalization of the classical beam theory. In that work Vlasov adopted a
displacement field representation similar to the one used in conventional GBT.
Please note that Wlassow and Vlassov is the same person and that the difference
in spelling is due to the translation from English (Vlassov) to German (Wlas-
sow). Since the first publication of Schardt related to conventional GBT he and
his research group have published a great number of papers and dissertations
as well as books concerning conventional GBT. This also includes his German
book, Schardt (1989) which still constitutes the main reference within research
and education in the context of conventional GBT. An overview of publications
from 1966 to 2001 can be found at the website http://www.vtb.info/ controlled
by Christof Schardt who is the son of Richard Schardt.

In the context of solutions to the differential equations of GBT specially
the thesis by Hanf (1989) and Haakh (2004) should be mentioned. In Hanf
(1989) the mathematical solution to the strong form of the semi-orthogonalized
differential equations of GBT is found by solving an eigenvalue problem resulting
in the axial amplitude functions and the associated solution modes. In Haakh
(2004) the solutions to the strong form of the differential equations of GBT
are also found. However, Haakh uses the semi-orthogonalized modes and in
contrast to Hanf he finds their axial variation numerically using approximating
power series.

Even though Schardt prefer to publish in German he started publishing in
English on conventional GBT with the journal article Schardt (1994a). This
paper deals with the conventional GBT formulation for first order analysis of
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prismatic members. Note that this (English) publication was several years after
the publication of his German book (Schardt, 1989).

In relation to second-order analysis in the context of conventional GBT the
first application by Schardt was published in Schardt (1970) and improved by
Miosga (1976). The first publication in English related to the conventional
GBT formulation for second-order analysis of prismatic members was made by
Schardt (1994b). A general GBT procedure to handle closed single or multi-
cell cross sections was given in Möller (1982) followed by Girmscheid (1984)
who improved it by adding warping in order to account for the shear lag ef-
fect. Schardt and Schrade introduced elastic constraints in the GBT member
model and analyzed the stability of restrained cold-formed purlins in Schardt
and Schrade (1982). Mörschardt formulated a methodology handling I-section
members (Mörschardt, 1990) while Conchon used GBT to treat plates and slabs
involving several support conditions and loading linearly (Conchon, 2001). More
recently, R. Schardt and C. Schardt investigated the post-buckling behavior of
an unstiffened plate by a GBT-based analytical approach (Schardt and Schardt,
2006).

In the context of dynamic problems, it was Saal that derived the first con-
ventional GBT formulation for the vibration analysis of prismatic beams (Saal,
1974) and employed it to study effects of support conditions as well as local de-
formation on the vibration behavior of thin-walled beams. Furthermore, he also
employed it to investigate the dynamic behavior of a cylindrical steel chimney
under wind load. Together with Heinz, Schardt analyzed the free vibration be-
havior of an open-section bridge deck in Schardt and Heinz (1991), where they
concluded that the frequency of the torsion mode may be significantly affected
by local deformation. Furthermore, Schardt et al. (1995) and his son in Schardt
(1995) employed conventional GBT to study the effect of coupling between lo-
cal and global modes on the dynamic response of thin-walled members and to
calculate the dynamic impact factor on prismatic bridge decks. Also working
within the field of dynamic behavior is Heppner who dealt with the dynamic
response of beams and plates in Heppner (1997).

More recently, the group of Schardt published several articles in Stahlbau
(2010) on GBT which was as a dedication and in connection with the 80th
birthday of Richard Schardt. In (Strehl, 2010) a brief history overview of the
conventional GBT and the performance of the calculation method are given,
while Schrade (2010) gives some interesting practical cases were the GBT is ac-
tually to be preferred in comparison to the finite element method. As examples
Schrade mentions the South railway bridge in Köln (Germany) the Seidewitz val-
ley bridge (Dohna, Germany), the Lockwitz valley bridge (Dresden, Germany)
and the Dambach valley bridge (Hirschbach, Germany). In Haakh (2010) the
mentioned work by Haakh (2004) and the associated software packages VtbGui



18 2.1: Conventional generalized beam theory

(http://www.ib-haakh.de/vtb) is extended by a systematic and uniform treat-
ment and calculation of all support conditions. An extension of the GBT to
include plate membrane shear lags is performed in Hanf (2010) by an approach
including the implementation of kinematic shear corrections as well as addi-
tional warping degrees of freedom on secondary nodes. In contrast to the thesis
by Hanf (1989) it is notable that the solution of the differential equations now
adhere to the use of power series as in Haakh (2004).

2.1.2 John Michael Davies

Even though Schardt and his group also publish in English the proliferation of
conventional GBT among the English speaking community was due to professor
J.M. Davies from the University of Manchester. In cooperation with his PhD
students P. Leach and C. Jiang, among others, Davies and his group focused
mostly on the application of GBT to study the stability of cold-formed steel
members. The first public contribution from the group was the PhD thesis of
Leach (1989), in which the finite difference method is used to solve the GBT
equations for first and second-order behavior of cold-formed members. In order
to assess the accuracy of the method, the results were compared with results
found using other methods and experimental tests (Davies and Leach, 1992).
Later, Jiang performed elastic and inelastic analysis of cold-formed columns,
purlins and decking (Jiang, 1994, Davies et al., 1994). Jiang wanted the design
codes to account for distortional buckling because it is critical for the geome-
tries of the members when they are used in practice. The two first international
journal papers authored by Davies et.al. were published in 1994 as Davies and
Leach (1994b;c). These publications made a presentation of the GBT formu-
lation for first and second-order analysis. In Davies et al. (1997) GBT is used
to study the buckling behavior of perforated storage rack columns, where the
effect of the pertusions is indirectly considered by the members being treated as
unperforated with a reduced thickness. A comparison of the design codes from
the American (AISI, 1996), European (CEN, 1996), and Australian (AS/NZS,
1996) standards is presented in Davies and Jiang (1998), Kesti and Davies (1999)
where also the accuracy of the calculation of the distortional buckling loads for
columns and beams is treated. For an overview and his state-of-the-art review
of cold-formed members of structures and design techniques see Davies (2000).

2.1.3 Janne Lepist�o and Tapani Halme

A group of researchers from the Lappeenranta University of Technology in Fin-
land used GBT to study the distortional buckling of C-sections and Hat-section
columns with intermediate and end stiffeners and published in this context the
paper Lepistö et al. (1996). They concluded that the GBT method suits well for
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analyzing distortion of cold-formed thin walled profiles and that the mechanical
behavior of the structure can be better understood by using the GBT-method
than by using common numerical methods. They also concluded that the only
widely used code, at the time, mentioning distortional buckling was the Eu-
rocode 3 (CEN 1996) and that this code can give large unconservative results.
Furthermore, Halme considered static, buckling, and vibration behavior of thin-
walled plates in Halme (2001) and uses in Halme (2002) an alternative method
for the determination of the GBT deformation modes by performing the eigen-
frequency analysis of a grid with the shape of the cross section.

2.1.4 Ivan Bal �a�z and Stanislav Rendek

The slovakian contribution to GBT was made by Baláž and Rendek from the
Slovak University of Technology. They employed GBT to analyze the first order
behavior of open and closed section members in Baláž (1999) and they presented
an application of GBT to a cold-formed thin-walled steel cantilever beam with
complex non-symmetrical open cross section (Rendek and Baláž, 2004). In order
to assess the accuracy of the obtained results they performed an experimental
investigation and compared with the theoretical values obtained (Rendek and
Baláž, 2004). They also showed and concluded that GBT gives a very good
description of the structural behavior of the thin-walled beams and therefore
can be used as a good alternative to other numerical methods such as the finite
element method and that GBT is a powerful tool convenient for use in peda-
gogical processes. In Rendek and Baláž (2002) they contributed to the GBT
approach by developing a computer code which performs first-order analysis of
thin-walled members with open or closed sections.

2.1.5 Luis Sim~oes da Silva and Pedro Sim~ao

An amazing and intensive research regarding GBT may belong to Portugal due
to the two groups led by Simões da Silva and Simão as well as Camotim and
Silvestre. The first group led by Simões da Silva and Simão from the University
of Coimbra presents the fundamentals of GBT in Simão and da Silva (2004)
also including a unified energy formulation in the framework of GBT for the
non-linear analysis of both open and closed sections. They compared the buck-
ling behavior of open and closed-section columns in Simao and da Silva (2002)
where the Rayleigh-Ritz method was used to solve the equilibrium equations.
Concerning hollow flange (HFB) beams and columns, the buckling behavior
was investigated in Simão and da Silva (2008a). Regarding post-buckling be-
havior they treated cold-formed columns with open cross sections Simao and
da Silva (2003b) as well as for closed cross section (Simao and da Silva, 2003a).
In this context also the post-buckling behavior of hollow flange (HFB) beams
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and columns was investigated in Simão and da Silva (2008b). This type of
cold-formed steel sections was invented in Australia by Palmer Tube Mills Pty
Ltd and is designated as “dog bone”. They consist of an I-section with flanges
made of triangular closed cells and thus provides high major axis moment of
inertia as well as high torsional stiffness (Avery et al., 2000). Therefore, they
are mainly devoted to beam elements. For a more elaborate description of the
mentioned studies and developments readers are referred to the PhD thesis of
Simão (Simao, 2007).

2.1.6 Dinar Camotim and Nuno Silvestre

The second Portuguese group is led by professor Dinar Camotim and Nuno
Silvestre, from the Technical University of Lisbon (Portugal). The group has
published a large number of papers and has in the last 10 years been on the
cutting edge of research and international communication regarding GBT. They
have produced more than hundred publications on the subject since the first
journal articles (Silvestre and Camotim, 2002a;b). Therefore this subsection
provides only a brief review of the publications and research performed by the
group. Activities by this group up to 2006 can be found in Camotim et al.
(2004; 2006b;a).

As a PhD student with Camotim as supervisor, Silvestre developed and im-
plemented GBT formulations to investigate several structural problems and to
enhance design provisions involving prismatic open-section members, see the
highly referenced thesis (Silvestre, 2005). His investigations, in the context of
cold-formed steel members, involved buckling analysis including GBT-based de-
termination of analytical formulas to calculate the distortional buckling loads
of cold-formed members with C, Z or rack-sections (Silvestre and Camotim,
2004c;a;b). Furthermore, he investigated the buckling behavior of simply sup-
ported steel tubular members with circular sections (Silvestre, 2007), elliptical
sections (Silvestre, 2008a) as well as the buckling behavior of single-walled car-
bon nanotubes (Silvestre, 2008b). The investigations also involved post-buckling
analysis (Silvestre and Camotim, 2003b; 2006b) and as mentioned in Paper I
(Jönsson and Andreassen, 2011) the formulation for post-buckling analysis of
GBT, which is essentially a beam theory and not a plate theory, Silvestre in-
volved the consideration of (non-conventional) shear and transverse extension
modes as well as modified constitutive relations. Additionally, he investigated
vibration analysis (Silvestre and Camotim, 2006c), and the development and
application of formulations for static, buckling and vibration analysis of FRP
composite members (Silvestre and Camotim, 2002a;b; 2003a; 2006a). Together
with Dinis and Camotim he investigated the local and global buckling behavior
of angle, T-section and cruciform thin-walled steel members in the context of
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GBT (Dinis et al., 2010). Recently, he revisited the Generalized Beam The-
ory from the kinematical assumptions to the deformation mode determination
in Silvestre et al. (2011). Currently, Nanomechanics is the research field of
Silvestre, and in this context he published a study concerning the buckling be-
havior of single-walled carbon nanotubes (CNTs) under torsion by using shell
models (Silvestre, 2012).

Rodrigo Gon�calves

Gonçalves expanded the field of applicability of GBT as a PhD student with
Camotim. In particular to members with non-linear elasto-plastic behavior
(Gonçalves, 2007). Recently, he focused on elasto-plastic thin-walled metal
members in the context of geometrically non-linear GBT (Gonçalves and Camo-
tim, 2011; 2012). He formulated a non-linear elastic Generalized Beam Theory
(GBT) and used it to investigate the buckling behavior of thin-walled columns
made of aluminium and stainless steel (Gonçalves and Camotim, 2004b). In
this context he analyzed the plastic bifurcation of simply supported columns
with different types of cross section, used stress-strain laws of the Ramberg-
Osgood type to model the uniaxial behavior as well as implemented plastic-
ity. Later, the formulation was generalized for general loading conditions in
Gonçalves and Camotim (2007). In a recent publication he developed GBT-
based semi-analytical solutions for the plastic bifurcation of thin-walled mem-
bers in Gonçalves et al. (2010). Together with Camotim he also developed a
finite element for the elastic buckling analysis of members subjected to linear
(non-uniform) internal force and moment diagrams in Gonçalves and Camotim
(2004a). They used it to study the buckling behavior of C and hat-section can-
tilever beams. Gonçalves also presented a GBT formulation for the analysis of
multi-cell closed-section members in Gonçalves et al. (2006) used within a box
girder bridge analysis. The formulation has been generalized to arbitrary cross
sections in Gonçalves et al. (2009). Recently, he also investigated steel-concrete
composites in Goncalves and Camotim (2010).

Pedro B. Dinis

In the context of buckling Dinis developed a GBT formulation that handles ar-
bitrary open “branched” sections (Dinis et al., 2006) and subsequently expanded
to general open and closed cross sections (Dinis et al., 2008, Gonçalves et al.,
2009). Together with Camotim he also investigated coupled instabilities with
distortional buckling in cold-formed steel lipped channel columns (Camotim and
Dinis, 2011) as well as the mechanics of thin-walled angle column instability (Di-
nis et al., 2012).
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Cilmar Basaglia

The former PhD student at IST, Cilmar Basaglia has extended the theory to
be applicable to analysis of thin-walled frames. Thus he developed a “joint
element” that guarantees the compatibility of displacements between members
and implemented it in the context of the GBT-based finite element analysis
(Basaglia et al., 2008b). In this context he analyzed the buckling behavior of
thin-walled steel frames using Generalized Beam Theory (Basaglia et al., 2007b)
also subjected to arbitrary loadings (Basaglia et al., 2007a). Regarding post-
buckling analysis he published Basaglia et al. (2008a) dealing with thin-walled
steel members and frames and he studied the effect of non-standard support con-
ditions on the post-buckling behavior of beams subjected to arbitrary loadings
(Basaglia et al., 2009). Camotim, Basaglia and Silvestre report a state-of-art
concerning GBT buckling analysis of thin-walled steel frames in Camotim et al.
(2010). Recently, Basaglia also studied non-linear GBT formulation for open-
section thin-walled members with arbitrary support conditions (Basaglia et al.,
2011).

Nuno Silva

GBT formulations dealing with FRP (Fibre Reinforced Polymers) composites
was developed by Nuno Silva. In this context he investigated the influence
of material couplings on the linear and buckling behavior (Silva and Silvestre,
2007). In relation to buckling he developed a GBT formulation to analyze the
buckling behavior of thin-walled FRP composite columns with open cross sec-
tions (Silva et al., 2010). Thus also taking shear deformation and cross-section
deformations into account. He also investigated post-buckling behavior (Silva
et al., 2008b) and studied the first-order, buckling, and post-buckling behavior
of pultruded I-section GFRP (Glass Fibre Reinforced Polymers) cantilevers in-
cluding comparisons with experimental results (Correia et al., 2009, Silva et al.,
2009; 2011). Moreover, he developed GBT formulations that handles arbitrary
cross sections (Silva et al., 2008a).

Rui Bebiano

Another of Camotim’s PhD students is Bebiano. He started before his PhD
studies to employ conventional GBT to study the effect of stiffeners in the
buckling and post-buckling behavior of C-section columns and beams (Bebiano
et al., 2005, Silvestre et al., 2005). During his PhD he investigated the stability
and dynamics of thin-walled members in the context of conventional generalized
beam theory (Bebiano, 2009). This PhD thesis gives a good state-of-the-art lit-
erature review valid up to 2009. In this context he derived a GBT formulation to
analyze the buckling behavior of thin-walled members subjected to non-uniform
bending (Bebiano et al., 2007). Furthermore, he presented a software package
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GBTUL to perform buckling and vibration analyses of open cold-formed mem-
bers (Bebiano et al., 2008b). This software package is used in the present thesis
to compare the novel GBT approach and conventional GBT.

2.2 Conventional GBT in general

As stated above, this section is devoted to a brief overview of conventional GBT
formulated in words. The overview will focus on parts also related to the novel
GBT approach. From the above literature review it is clear that the conventional
GBT approach has fostered a large number of publications on several different
topics.

Since GBT was developed as a generalization of beam bending it leads
to orthogonal warping modes. Thus the final GBT equations are decoupled
with respect to normal stresses and transverse stresses, however the shear cou-
pling terms are neglected when Schardt uses the GBT equations to find distor-
tional deformation modes. This corresponds to modal analysis with orthogonal
(Rayleigh) damping in dynamic structural analysis. Even though the conven-
tional GBT method is an extensively investigated approach including distortion
and has been very successful for open cross sections to include distortion it has
involved some complications concerning the solution of the conventional GBT
equations for closed (single or multi-celled hollow) thin-walled cross sections.
Consequently, the shear coupling terms are given special attention in case of
closed cells. The basic cross-section deformation modes of GBT are obtained
by separately identifying conventional beam deformation modes and solving the
eigenvalue problem defined by the warping stiffness matrix and the transverse
deformation stiffness matrix. The special attention related to closed (single or
multi celled hollow) thin-walled cross sections comprises that the theory needs
a relaxation of the Vlasov kinematic assumption of negligible shear strain along
the center lines of the cross-section walls, in order to include the warping de-
formation associated with the “Bredt’s shear flow” around each cell (Schardt,
1989). However, it complicates the solution of the conventional GBT equations
by introducing non-negligible shear coupling terms (off-diagonal) in the GBT
equations as can be seen in recent GBT formulations for closed thin-walled cross
sections. An analytical solution of the shear coupled GBT equations has been
published only by (Hanf, 1989) while a numerical solution based on power series
has been published by Haakh (2004).

Alternatively, and as a standard procedure in conventional GBT, the GBT
equations have to be solved using approximate engineering methods. This means
that conventional GBT finds the modes using a method similar to the well
known deformation method or force method, see e.g. Silvestre (2005). After
the elementary deformation modes have been determined, the components of
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the tensors appearing in the equilibrium system can be calculated. Since all
these tensors are fully populated, meaning that the equilibrium system is highly
coupled, it is relevant to find an alternative system of coordinates in order to
render the system as much uncoupled as possible. This is what in GBT is called
the GBT matrices diagonalization. Note, that Both Hanf (1989) and Haakh
(2004) use the original orthogonalization procedure of Schardt to establish the
GBT equations, which are still coupled with respect to shear terms and per-
haps transverse strains. In this diagonalization procedure some new modes are
identified through a three step procedure involving subeigenvalue problems, see
e.g Schardt (1989). Concerning the linear stiffness matrices, it is noted that the
matrices [C] and [B] are completely diagonal, while [D] displays non-null terms
outside the diagonal. In this matter GBT neglects these non-null terms, and
in this way call [D] approximately diagonalized. The new modes identified are
called approximated GBT modes or simply approximated deformation modes.
After determination of the approximated GBT modes a GBT mode selection
is performed corresponding to the problem at hand. Thus it applies that the
conventional GBT approach does not involve an exact analytical solution of the
classical GBT differential equations, which means that the solution is obtained
by approximated longitudinal amplitude functions.

After having completed the cross-section analysis and the GBT mode selec-
tion, these found approximated modes are used as shape functions in a so called
member analysis using a virtual work or potential energy formulation leading to
approximated axial amplitude functions related to finite GBT beam elements.
However, the discretization has to be performed without prior knowledge of the
problem length scales of the individual modes. The approximated axial ampli-
tude functions are then used in the full fourth order differential equation also
containing the non-diagonalized [D]-matrix, which leads to a highly coupled
system of modes. It should be noticed that the GBT approach finds the in-
plane modes in a cross-section analysis while the axial variations are devoted to
a member analysis. Thus, it should be noticed that the conventional GBT for-
mulations do not solve the differential equations to find the distortional modes
but establish a weak solution through introduction of the established approxi-
mate mode shapes (based on an orthogonal shear stiffness assumption) and use
approximate modal amplitude functions. According to this procedure to iden-
tify the modes, the eigenvalue can solely be used to get the order/sequence of
the modes, and not as a parameter that defines the length scale of the modes.
Furthermore, there is no exact link between the in-plane modes and the axial
variational function.

In these developments, the distortional modes of traditional GBT have been
extended (with “other” modes) in order to encompass shear through shear
modes, post-buckling through inclusion of transverse extension modes as well
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special modes to accommodate shear lag. Concerning the possibility to perform
post-buckling analysis with GBT, which is essentially a beam theory and not
a plate theory, it was Silvestre (2005) who found it is necessary to include the
additional transverse extension modes and shear modes, as well as to modify the
constitutive relations. In general these kinds of modes are chosen to be referred
to as “other” modes and the related method as extended conventional GBT.

In the context of stability analysis, GBT uses the modes found in the linear
analysis and postulate a shape function along the axial axis. This linear part is
defined as the linear stiffness matrix K. Afterwards a non-linear part is defined
as the geometrical stiffness matrix G including the non-linear part Xσ which is
also non-diagonal. These definitions lead to the following linear eigensystem:

([K] + λ[G]){a} = 0 (2.1)

The solutions to this equation are a set of buckling loads, λ (eigenvalues),
and the associated buckling mode shapes, {a} (eigenvectors). Also the buckling
modes will be highly coupled. In Silvestre (2005) it is indicated that in fact, both
buckling and vibration problems always have coupled equilibrium equations.

Hereby a brief overview of the conventional GBT in general has been given
and the next section deals with a brief literature review of other methods. The
interested reader is referred to Silvestre (2005) and Schardt (1989) for a more
elaborate description of the conventional generalized beam theory.

2.3 Other methods

Even though the conventional GBT theory is the most similar theory in relation
to the present GBT approach, there are other methods representing the field of
distortional mechanics of thin-walled structural elements.

As mentioned in section 1.1.4 an alternative method is the finite strip method
(FSM) which have been investigated intensively by Ádány and Schäfer focusing
on its relation to GBT as buckling analysis. Using GBT beam elements is an
alternative to the use of finite-strip methods (FSM), see for example Zienkiewicz
and Taylor (2000b). However, GBT is as its name states essentially a beam
theory, whereas FSM essentially is based on plate theory. Therefore FSM does
not contain a natural decomposition into basic beam, distortional, local and
other modes. Since the modal decomposition may lead to advantages in design
of thin-walled structures using FSM a great deal of work has been performed
by Ádány and Schafer to develop a constrained finite-strip method (cFSM) and
modal decomposition methods for open (single-branched) cross sections (Ádány
and Schafer, 2006a;b, Schafer and Ádány, 2006, Ádány and Schafer, 2008). The
modal approaches of extended conventional GBT and cFSM formulations have
recently been compared in Ádány et al. (2009) and Silvestre et al. (2011).



26 2.3: Other methods

Also a Spanish group has investigated the distortional mechanics of thin-
walled structural elements within a combination of the conventional GBT theory
and the finite element method, see Casafont et al. (2011).

An Italian group has presented a new approach for thin-walled member
analysis in the frame work of GBT (Ranzi and Luongo, 2011), and a Romanian
researcher has presented a GBT formulation to analyze the behavior of thin-
walled members with variable cross section (Nedelcu, 2010).

A review of some progresses up to year 2000 in the field of cold-formed steel
members can be found in Rondal (2000).

Having described some, at the time, alternative analysis methods to the
shell finite element method, the next chapters will describe the new approach
to generalized beam theory developed in this PhD project. In the following,
the GBT approach developed by Shardt is referred to as conventional GBT. As
mentioned the theoretical developments in the new approach is based on the
calculus of variations, energy formulations and the formulations concerning the
numerical analysis are based on finite element method formulations.
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Chapter 3

Distortional homogeneous
di�erential equations and
solutions

Having described the most traditional alternative analysis methods to the shell
finite element method, the next chapters will deal with the novel approach to
generalized beam theory developed in this PhD project.

As mentioned, the classical thin-walled beam theory for open and closed
cross sections can be generalized by including distortional displacement modes.
Normally, the introduction of additional displacement modes leads to coupled
differential equations, which seems to have prohibited the use of exact shape
functions in the modeling of coupled torsion and distortion. However, if the
distortional displacement modes are chosen as those which decouple the dif-
ferential equations as in non-proportionally damped modal dynamic analysis
then it may be possible to use exact shape functions and perform analysis on
a reduced problem. In the recently developed generalized beam theory (GBT)
the natural distortional displacement modes are determined on the basis of a
quadratic eigenvalue problem. However, as in linear modal dynamic analysis of
proportionally damped structures this problem has been solved approximately
using linear eigenvalue analysis of modified sub problems. This seems to have
worked well for open cross sections but not for closed. In this chapter it is
shown that it is possible to solve the distortional quadratic eigenvalue problem
and find the natural distortional displacement modes using a method equivalent
to that used for non-proportionally damped (linear) dynamic modal analysis.

In this context and in view of developing an advanced beam element includ-
ing distortional contributions, the distortional decoupled homogeneous differen-
tial equations and solutions are developed and solved. The chapter is related to
Paper I (Jönsson and Andreassen, 2011) and Paper V (Andreassen and Jönsson,
(2009).
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From energy formulations, variational analysis, and a finite-element-based
displacement approach the potential energy is used to establish a set of distor-
tional homogeneous equilibrium differential equations for the generalized dis-
placement field in a modal based formulation. Furthermore, we will adhere to
the definition of the warping function given by Kollbrunner and Hajdin (1972).
The innovative theoretical developments performed in this thesis lead towards a
semi-discretization formulation in which the rotational degrees of freedom are in-
cluded, thus including local plate modes in the formulation even for the simplest
discretization. The formulation with both open and closed (single or multi-cell)
cross sections can be regarded as an extension of modified classical Vlasov thin-
walled beam theory to include distortional deformation modes. As we want to
achieve a formulation resembling a generalization of Vlasov beam theory we also
have to implement some constrains and eliminations into the differential equa-
tions. The extension of the modified classical Vlasov thin-walled beam theory
also includes the introduction of constant shear flows in the walls of the cross
section. Hereby, it makes it possible to analyze prismatic thin-walled mem-
bers with cross-section distortion and local plate behavior in a one-dimensional
formulation through the linear combination of pre-established modes of defor-
mation.

The theories of beams are derived on the basis of assumed displacement
fields which correspond to extension, flexure, torsion, warping and distortional
displacements. This means that the axial stress distribution has several compo-
nents representing the contributions from N ,M1,M2, BT and BD, respectively.
These components and their related transverse displacements are illustrated in
Figure 3.1 for an open C-section. Note, that the distortional part, BD, include
more parts than the shown one, corresponding to the number of distortional
modes.

51 2 30

Figure 3.1: The axial stress components corresponding to N , M1, M2, BT and BD for
an open C-section (upper part) and the related transverse displacements (lower part).

This corresponds to a modal separation in which each mode has a set of
transverse and axial displacement fields that may be coupled. Each of these
cross-section displacement fields is factorized in a displacement mode that is a
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function of the in-plane coordinates, multiplied by a function of the axial co-
ordinate, z, which describes the axial variation of the mode. In the following,
we propose a method for finding these displacement modes, including global,
distortional and local modes. The modes are the eigenmodes of the correspond-
ing homogeneous set of equilibrium equations and the axial variation functions
corresponds to the eigenvalues.

Even though the novel approach lead to a theoretical improvement some
neglected effects should be mentioned. These are:

◦ The influence of curved cross-section walls in the definition of the displace-
ments and strains is neglected. This may be deemed reasonable as it is
assumed that the radius of curvature is sufficiently large.

◦ Local effects at corners and joints are neglected.

◦ Using non-coupling constitutive relations, which also means that there are
no terms out of the diagonal in the constitutive matrix containing E, Es
and G. E is the modulus of elasticity, Es = E/(1 − ν2) the plate type
elasticity modulus in which ν represents the Poisson ratio and G is the
shear modulus.

◦ No Poisson effect taking into account, however Poisson’s ratio is used in
the calculation of the above mentioned Es and G.

◦ Only shear contributions from torsion and shear flow around cells will be
allowed.

As mentioned, the formulations in this chapter only consider the first-order
homogeneous linear displacements of GBT, since the goal has been to identify
a theoretically sound formulation of the end effects. In other words, we find the
eigensolutions for the full displacement field including the variation in the axial
member direction, see the treatment of end effects in Timoshenko and Goodier
(1951).

3.1 Basic kinematic assumptions of a single mode

In view of the distortional homogeneous differential equations, let us first take
a look at the basic assumptions and kinematic relations for a prismatic member
with an arbitrary thin-walled cross section. The entire chosen displacement field
is shown in Figure 3.2. From the figure it is seen that the entire chosen dis-
placement field is described as an in-plane displacement field multiplied by an
out-of-plane axial amplitude function, ψ. In Figure 3.3 we assume a prismatic
thin-walled beam described in a global Cartesian (x, y, z) coordinate system
where the z-axis is in the longitudinal direction of the beam. A cross-section



30 3.1: Basic kinematic assumptions of a single mode

Figure 3.2: Local components of displacements and assumed shear stresses.

coordinate s is introduced as a curve parameter which runs through the entire
section along the center line and the coordinate along the local normal is de-
fined as n. Hereby the subscripts n and s are used for the components in the
local coordinate system corresponding to the normal and tangential directions.
As a formal standard designation, subscripts following a comma are used for
derivatives, for example un,ss = d2un(s)/ds2 or us,n = ∂us(s, n)/∂n. A prime,
′, is used for the axial derivative, d/dz.

Using the stated designations the components un and us of the in-plane
cross-section displacements in the local coordinate system at a point (n, s) in
the cross-section, are introduced as

un(s, z) = wn(s)ψ(z) (3.1)
us(n, s, z) = (ws(s)− nwn,s(s))ψ(z) (3.2)

Here ws(s) and wn(s) are the local displacements of the centerline as shown in
Figure 3.2, and ψ(z) is the function which describes the axial variation of the in-
plane distortional displacements. The axial displacements uz(n, s, z) generated
by the in-plane distortional displacements are introduced as

uz(n, s, z) = −(Ω + nwn)ψ′ (3.3)

Here the axial (warping) displacement mode Ω(s) has been included with a vari-
ation corresponding to the negative axial derivative of the axial variation factor,
−ψ′, and due consideration of local transverse variation through the term nwn.
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Figure 3.3: Global and local Cartesian reference frames.

Thus neglecting shear deformation contributions which are not related to St.
Venant torsion and torsional shear flow around closed cells. To introduce shear
deformation in the current formulation will involve the introduction of a new
parameter, which is independently allocated directly to the warping function
instead of the derivative of the ψ-function. This has been done in Kollbrunner
and Hajdin (1972). However the change is major. Please note that shear defor-
mation accommodating Bredt’s shear flow around closed cells is included in the
theory through the specific definition of the warping function (Kollbrunner and
Hajdin, 1972).

The presented components represent a single displacement mode.
At this state it is important to note that pure axial extension (where Ω = 1

and ws = wn = wn,s = 0) is embedded in the formulation. However, since pure
extension in the present formulation does not involve transverse displacements,
the axial variation −ψ′(z) need not be taken as the derivative of a function, but
just a function which will be introduced as ζ(z) = −ψ′(z) at a later stage.

The axial kinematic strain-displacement relation is given as

ε = u′z = −(Ω + nwn)ψ′′ (3.4)

The cross-section distortional strains are

εs = (ws,s − nwn,ss)ψ (3.5)

and the engineering shear strain in the walls of the cross section becomes

γ = γzs = uz,s + us,z = (ws − Ω,s−2nwn,s)ψ′ (3.6)

To cope with the shear flow around closed cells, we introduce the shear strain
in the middle of the wall as

γ̄dψ
′ = (ws − Ω,s )ψ′ (3.7)
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Bernoulli beam theory is based on the assumption of zero shear strain and sets
the shear strain equal to zero and thus determines the warping displacements
(flexural modes) by the differential equation Ω,s = ws. This means that the
formulation of Bernoulli beam theory does not include shear contributions and
the axial equilibrium equation of a section cut-out is not fulfilled, which leads
to the use of Grashof’s method for the determination of the shear stresses.
However, if we are to analyze closed cross-sections as in Vlasov beam theory,
see Kollbrunner and Hajdin (1972), we have to allow for a constant shear flow
around the cells and the warping of the cross-section then has to be determined
by the differential equation Ω,s = ws − γ̄d as

Ω(s) =
∫ s

0
wsds−

∫ s

0
γ̄dds+ Ω0 (3.8)

In the current context, the warping function will be determined from a weak
formulation of the assumption of a constant shear flow T̄d in the walls of the
cross-section, where T̄d = Gtγ̄d. Here G is the shear modulus and t the thickness
of the wall. The strong formulation of the constraining assumption is that the
contribution of the shear flow to the axial equilibrium equation, see Figure 3.4,
of a section cut-out is zero, i.e.

T̄d,s = 0 (3.9)

Multiplying by a virtual centerline axial displacement, δūz, and integrating over
the cross-section centerline curve, C, we find the virtual work of the shear flow
in a cross section as ∫

C

T̄d,sδūzds = 0 (3.10)

Performing a partial integration and noting that the shear stress flow is zero at
all free edges, we find the weak formulation that will be used to determine the
warping function[

T̄dδūz

]
free edges

−
∫
C

T̄dδūz,sds = 0 ⇒
∫
C

T̄dδūz,sds = 0 (3.11)

This is the constraint equation that we will use to enforce the assumption of
zero axial work performed by the shear flow around the cells.

3.2 Internal energy assumptions

The potential energy of a single deformation mode is formulated based on the
discretization of the cross section.

In the following we will adhere to simple constitutive relations, i.e. the
material is assumed to be linear elastic with a modulus of elasticity E and
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Figure 3.4: Work of shear flow through axial virtual displacement.

a shear modulus G. In the transverse direction we will assume a plate type
elasticity modulus Es = E/(1 − ν2), in which ν represents the Poisson ratio.
The axial stress is determined as σ = Eε, the shear stress as τ = Gγ and the
transverse stress as σs = Esεs. Thus the coupling of axial strain ε and transverse
strain εs is neglected. Note that this means that we also neglect the equivalent
coupling between axial and transverse curvatures in the constitutive relations for
the plate moments, but with some changes it is possible to include the coupling
of the curvatures. With the simple constitutive relations assumed in equation
(3.12) the elastic energy potential is as given in equation (3.13). From equation
(3.12) it is clear that we are using non-coupling diagonal constitutive relations
or in other words there are no off-diagonal terms in the matrix containing E,
Es and G.

 σσs
τ

 =

E 0 0
0 Es 0
0 0 G


 εεs
γ

 (3.12)

Π =
∫
V

(
1
2Eε

2 + 1
2Gγ

2 + 1
2Esε

2
s

)
dV (3.13)

Let us introduce a thin-walled cross section assembled using straight cross-
sectional elements, see Figure 3.5, and let us integrate through the thickness,
t, across the widths, be, of the elements, and over the length, L, of the thin-
walled beam. The elastic potential energy takes the following form after the
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Figure 3.5: Components of the displacements vectors of a straight cross-section element.

introduction of the strains expressed by the displacement in separated form:

Π = 1
2

∫ L

0

[∑
el

∫ be

0

{[ kσΩΩ︷ ︸︸ ︷
Et(Ωψ′′)2 +

kσww︷ ︸︸ ︷
Et3

12 (wnψ′′)2
]

+
[ kτww,1︷ ︸︸ ︷
Gt(wsψ′)2 +

kτΩΩ︷ ︸︸ ︷
Gt(Ω,s ψ′)2−2

−kτwΩ︷ ︸︸ ︷
Gt(wsψ′)(Ω,s ψ′) +

kτww,2︷ ︸︸ ︷
1
3Gt

3(wn,sψ′)2
]

+
[ ks︷ ︸︸ ︷
Est(ws,sψ)2 + Est

3

12 (wn,ssψ)2
]}
ds

]
dz

(3.14)

In equation (3.14) it is seen that the elastic energy terms have been grouped
in axial strain energy, shear energy, and transverse strain energy. Furthermore,
each individual part of the equation has been overbraced and associated with
the stiffness contribution as given later.

In conventional beam theory, we usually introduce rigid cross-sectional dis-
placement modes and the elastic energy is described by a summation of the
energy stored in all displacement modes. However, we have to remember the
shear constraints associated with our assumption of constant shear flow, which
will be introduced later. In the current work we wish to establish a set of dis-
placement modes by using semi-discretization. To achieve this, the cross-section
will be divided into discrete straight-line elements, in which we interpolate the
transverse and axial displacements.
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3.3 Displacement interpolations within cross-section
elements

Within each straight finite cross-section element, the axial displacements, Ω, are
interpolated linearly corresponding to a linear variation of the warping functions
and the transverse displacement of the elements are interpolated linearly in the
direction of the element and cubically (corresponding to beam elements) in the
transverse direction of the element. The displacements in a straight cross-section
finite element are thus interpolated as follows:

Ωψ′ = NΩvelΩψ′

wsψ = Nsvelwψ
wnψ = Nnvelwψ (3.15)

Here NΩ(s) and Ns(s) are linear interpolation matrices and Nn(s) is a cubic
(beam) interpolation matrix. Furthermore, we have introduced the axial and
transverse nodal displacement components of a straight cross-section element as

velΩ =
[
velΩ1 v

el
Ω2

]T
=
[
Ω(0) Ω(be)

]T
velw =

[
velw1 v

el
w2 v

el
w3 v

el
w4 v

el
w5 v

el
w6

]T
=
[

ws(0) −wn(0) −wn,s(0) ws(be) −wn(be) −wn,s(be)
]T

(3.16)

Here be is the width of the flat element. Nodal components and the direction
of the section coordinates (n, s) are shown in Figure 3.5. The element stiffness
contributions to the axial strain, shear strain, and transverse strain energy can
now be found using the displacement interpolations. The stiffness contributions
found are seen from equation (3.14) and shown in Table 3.1, in which the first
two are the axial stiffness contributions, the third is the transverse distortional
stiffness term, while the last three are the shear strain stiffness contributions.
These stiffness contributions can be found explicitly. Written in full the stiffness
matrices takes the form

kσΩΩ = tEL
6

[
2 1
1 2

]
(3.17)
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kσΩΩ =
∫ be

0 EtNT
ΩNΩds

kσww =
∫ be

0
Et3

12 NT
nNnds

ks =
∫ be

0

(
EstNT

s,sNs,s + Est
3

12 NT
n,ssNn,ss

)
ds

kτww =
∫ be

0

(
GtNT

s Ns + Gt3

3 NT
n,sNn,s

)
ds

kτΩΩ =
∫ be

0 GtNT
Ω,sNΩ,sds

kτwΩ = [kτΩw]T = −
∫ be

0 GtNT
s NΩ,sds

Table 3.1: Straight-element stiffness contributions.

kσww = Et3L
12·420



0 0 0 0 0 0
0 156 22L 0 54 −13L
0 22L 4L2 0 13L −3L2

0 0 0 0 0 0
0 54 13L 0 156 −22L
0 −13L −3L2 0 −22L 4L2


(3.18)

ks =



Et
L 0 0 −Et

L 0 0
0 12EI

L3
6EI
L2 0 − 12EI

L3
6EI
L2

0 6EI
L2

4EI
L 0 − 6I

L2
2EI
L

−Et
L 0 0 Et

L 0 0
0 − 12EI

L3 − 6EI
L2 0 12EI

L3 − 6EI
L2

0 6EI
L2

2EI
L 0 − 6EI

L2
4EI
L


(3.19)

kτww = Gt3

180L



60L
2

t2 0 0 30L
2

t2 0 0
0 72 6L 0 −72 6L
0 6L 8L2 0 −6L −2L2

30L
2

t2 0 0 60L
2

t2 0 0
0 −72 −6L 0 72 −6L
0 6L −2L2 0 −6L 8L2


(3.20)

kτΩΩ = tG
L

[
1 −1
−1 1

]
(3.21)
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Kσ
ΩΩ =

∑
el

TT
ΩkσΩΩTΩ Kτ

ww =
∑
el

TT
wkτwwTw

Kσ
ww =

∑
el

TT
wkσwwTw Kτ

ΩΩ =
∑
el

TT
ΩkτΩΩTΩ

Ks =
∑
el

TT
wksTw Kτ

wΩ =
∑
el

TT
wkτwΩTΩ

Table 3.2: Assembly into total cross-section stiffness contributions.

kτwΩ = −tG
2



−1 1
0 0
0 0
−1 1
0 0
0 0


(3.22)

Note that some of the above stiffness matrices are assembled by sub contribu-
tions as also illustrated by the overbraces in equation (3.14).

To obtain a formulation of the total cross-section elastic energy we first
introduce the global displacement vectors as an assembly of the local element
degrees of freedom. The axial displacements and the transverse displacements
are separated into two vectors as follows:

vΩ = [vΩ1 vΩ2 vΩ3 . . .]T

vw = [vx1 vy1 φ1 vx2 vy2 φ2 . . .]T (3.23)

Here vΩ holds the total local axial element degrees of freedom, and vw holds the
total local element degrees of freedom, corresponding to two displacements and
one rotation for each node. The number of degrees of freedom ndof in the cross
section is four times the number of nodes, ndof = 4nno. The transformation
from local to global components is performed using a formal standard trans-
formation of the components in the cross-section plane, i.e. vΩ = TΩvelΩ and
vw = Twvelw . The global assembly of stiffness matrices is found by summation
of the contribution from each element, as illustrated in Table 3.2. Introducing
the described interpolation and matrix calculation scheme, the elastic potential
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energy in equation (3.14) now takes the following form:

Π = 1
2

∫ L

0

{[
ψvTw ψvTΩ

]′′ [Kσ
ww 0
0 Kσ

ΩΩ

][
ψvw

ψvΩ

]′′

+
[
ψvTw ψvTΩ

]′ [Kτ
ww Kτ

wΩ

Kτ
Ωw Kτ

ΩΩ

][
ψvw

ψvΩ

]′

+
[
ψvTw ψvTΩ

][
Ks 0
0 0

][
ψvw

ψvΩ

]}
dz

(3.24)

Here and in the following, a bold zero 0 denotes a suitable size matrix or vector
of zeroes. The axial stiffness from transverse displacements sub matrix Kσ

ww
has a rank deficiency equal to the number of free end nodes plus the number
of “intermediate” nodes between corner points of the cross section. The in-
plane cross-section distortional stiffness sub matrix Ks has a rank deficiency
of 3, corresponding to three in-plane “rigid body” or rather non-distortional
displacements of the cross section. Finally the whole shear stiffness matrix has
a rank deficiency of 3, corresponding to the existence of pure axial extension
and two pure flexural modes without shear. It turns out that since the pure
axial displacement only involves the sub matrix Kτ

ΩΩ, this matrix has a rank
deficiency of one.

3.4 Formulation resembling a generalization of Vlasov
beam theory

The thin-walled beam theory made by Vlasov (1961) was originally established
by equilibrium equations based on equilibrium considerations. The Vlasov beam
theory is derived on the basis of assumed displacement fields which correspond
to extension, major and minor bending, torsion and warping. This corresponds
to a modal separation in which each mode has a set of transverse and axial
displacement fields that may be coupled. Even though we are here using an
extended displacement field and we are using the potential energy to derive the
equilibrium conditions in the form of differential equations, we want to achieve
a formulation resembling a generalization of Vlasov beam theory. This means
that we have to implement some constrains and eliminations into the differential
equations which are:

◦ Elimination of the pure axial extension mode. This mode does not produce
any shear and leads to a singularity in the shear stiffness matrix.

◦ Eliminate the two eigenmodes corresponding to transverse translation of
the cross section.
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◦ Eliminate the pure rotational eigenmode.

◦ Constrain the transverse displacement field so that the wall widths remain
constant.

To implement these constraints and eliminations into the differential equa-
tions, three main steps need to be performed before we can solve the eigenvalue
problem related to distortional displacements, including local plate type modes.
Or in other words, we will introduce constraints, and identify and eliminate the
basic solutions related to the conventional beam displacement modes.

3.4.1 Calculus of variation

To find the distortional differential equations of GBT the Calculus of Variation
is used which is in general a field of mathematics that deals with optimizing
functionals. This is in contrast to ordinary calculus that deals with functions.
Functionals are often formed as definite integrals involving unknown functions
and their derivatives. The aim is finding maximum or minimum conditions for a
relationship between two or more variables that depend not only on the variables
themselves, as in the ordinary calculus, but also on an additional arbitrary
relation, or constraint, between them. This leads to an optimized functional
which attains a maximum or minimum value, or stationary functions, where
the rate of change of the functional is precisely zero.

The calculus of variations is one of the classical and widely used branches of
mathematics and as an example among many applications geometrical problems
can be solved using the calculus of variation in its general form. The topic
of variational principle belongs within the calculus of variations. It develops
general methods for finding functions which minimize or maximize the value of
quantities that depends upon those functions. Variational principles are used
for solving boundary value problems and are applicable when the given problem
can be regarded as a minimization problem.

The variational methods are used in many fields, and there are more than
500 books on variational principles (Berdichevsky, 2009). Some of the princi-
ples are Fermat’s principle, Euler’s Calculus of Variations, Lagrange Variational
Principle, and Hamilton Variational Principle.

In this thesis we will concentrate on the variational principles related to
mechanics and in this context use the Hamilton variational principle which also
applies to classical topics such as the electromagnetic and gravitational. It has
also been extended to quantum mechanics, quantum field theory and criticality
theories. The interested reader can get a description of the different principles
by studying the book by Lanczos, (Lanczos, 1949), that describes the variational
principles of mechanics extensively.
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For beam theory, the variational method leads to generalized forces, when
using so-called natural boundary conditions, which means that no conditions
are imposed in advance. Therefore the generalized forces are an expression of
the boundary conditions. By inserting the generalized forces into the obtained
integral, we obtain the equilibrium equation and so the calculus of variation is
used to obtain the equilibrium equation.

The basis of variational formulation is the principle of virtual work. However,
in the principle of virtual work no change in the configuration is involved and
no assumption about the constitutive laws of the material is made (Krenk,
1989a). The virtual work equation can be obtained from the first variation
of the potential energy functional for an elastic material with a strain energy
density function.

Having touched the calculus of variation briefly let us deal with the three
main steps needed for a formulation resembling a generalization of Vlasov beam
theory.

3.4.2 Step I: Pure axial extension and shear constraints

In this first step we introduce the shear constraint equations that bind axial and
transverse modes together and at the same time simplify or condense equation
(3.24). In this process we need to eliminate the singularity in the shear stiffness
matrix related to pure axial extension. The first eigenmode that we identify is
the pure axial extension; it produces no shear energy and no transverse displace-
ment energy (due to the simple constitutive relations assumed, corresponding
to beam theory and the mentioned rank deficiency).

Let us introduce the shear constraint equations using equation (3.11) as
follows: ∫

C

T dδuz,sds = 0 ⇒

−
∫
C

(Gt(ws − Ω,s ))δΩ,s ds = 0 ⇒∫
C

GtΩ,s δΩ,s ds =
∫
C

GtwsδΩ,s ds (3.25)

Introducing the interpolation, see equation (3.15), Tables 3.1 and 3.2, and taking
variations gives us the following constraint set of equations:

Kτ
ΩΩvΩ = −Kτ

Ωwvw (3.26)

This matrix equation is singular because pure axial extension does not produce
shear. Therefore we introduce the following transformation, using superscripts
a for axial and o for other:

vΩ =
[
Ta

Ω To
Ω

] [vaΩ
voΩ

]
(3.27)
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in which Ta
Ω = vaxial

Ω is the pure axial deformation mode (with unit value for
all components). The other remaining modes are picked out by

To
Ω =

[
0

Iaa

]
} 1 d.o.f. related to the first node
} Unit diagonal matrix

(3.28)

Here Iaa is a unit diagonal matrix of dimension na = nno− 1 , where nno is the
number of nodes. Furthermore, it is worth noting that vaΩ is one component that
corresponds to the amount of pure axial extension, while voΩ corresponds to all
the other axial displacement degrees of freedom. Introducing the transformation
in equation (3.27) into the constraint equations (3.26), we get the following by
pre- and post multiplication:[

0 0
0 To

Ω
TKτ

ΩΩTo
Ω

][
vaΩ
voΩ

]
=
[

0
−To

Ω
TKτ

Ωwvw

]
⇒

voΩ = −(Kτoo
ΩΩ )−1Kτo

Ωwvw (3.29)

where the matrices Kτoo
ΩΩ and Kτo

Ωw are given in Table 3.3. By equation (3.29)
we have introduced a transformation from in-plane cross-section displacement
modes to the axial displacement modes without pure axial extension as follows:

voΩ = TΩwvw, where TΩw = −(Kτoo
ΩΩ )−1Kτo

Ωw (3.30)

Combining equation (3.27) and (3.29) gives

vΩ =
[
To

ΩTΩw Ta
Ω

] [vw

vaΩ

]
=
[
Tr

Ωw Ta
Ω

] [vw

vaΩ

]
= Tr

Ωwvw + Ta
Ωv

a
Ω (3.31)

where Tr
Ωw = To

ΩTΩw.
The potential energy formulation (3.24) can now be modified so that the

amount of axial extension is described by the separate degree of freedom vaΩ and
the shear constraint equations are enforced. The modification of (3.24) is per-
formed using the transformation in equation (3.31) and to clarify the variational
treatment of pure axial extension we also temporally rewrite the terms pertain-
ing to axial extension using ζvaΩ = −ψ′vaΩ. Introducing transformed stiffness
matrices as given in Table 3.3, the elastic potential energy (for a single mode)
takes the following form:

Π = 1
2

∫ L

0

{[
(ψvTw)′′ (ζvaΩ

T )′
] [ K̄σ −Kσra

ΩΩ

−Kσar
ΩΩ Kσaa

ΩΩ

][
(ψvw)′′

(ζvaΩ)′

]

+(ψvTw)′Kτ (ψvw)′ + (ψvTw)Ks(ψvw)
}
dz

(3.32)
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Kσaa
ΩΩ = Ta

Ω
TKσ

ΩΩTa
Ω Kτrr

ΩΩ = Tr
Ωw

TKτ
ΩΩTr

Ωw

Kσar
ΩΩ = Ta

Ω
TKσ

ΩΩTr
Ωw Kτr

wΩ = Kτ
wΩTr

Ωw = Kτr
Ωw

T

Kσrr
ΩΩ = Tr

Ωw
TKσ

ΩΩTr
Ωw Kτoo

ΩΩ = To
Ω
TKτ

ΩΩTo
Ω

K̄σ = Kσ
ww + Kσrr

ΩΩ Kτo
Ωw = To

Ω
TKτ

Ωw

Kσ = K̄σ −Kσra
ΩΩ (Kσaa

ΩΩ )−1Kσar
ΩΩ Kτ = Kτ

ww + Kτr
wΩ + Kτr

Ωw + Kτrr
ΩΩ

Table 3.3: Transformation of stiffness matrices related to Step I.

To find the homogeneous distortional differential equations of GBT, the first
variation of the elastic potential energy is investigated by taking variations in
the complete displacement field. The virtual variation of a property is denoted
by a δ in front of the varied field property (displacement field), as in δ(vwψ)′, as
the virtual variation of the first derivative of the transverse displacement field
expressed by the product of the transverse displacement shape vw and the axial
variation ψ′. This gives us

δΠ =
∫ L

0

{
δ(ψvTw)′′

[
K̄σ(ψvw)′′ −Kσra

ΩΩ (ζvaΩ)′
]

+ δ(ψvTw)′Kτ (ψvw)′ + δ(ψvTw)Ks(ψvw)

+ δ(ζvaΩ)′[−Kσar
ΩΩ (ψvw)′′ +Kσaa

ΩΩ (ζvaΩ)′]
}
dz

(3.33)

After performing up to two partial integrations on the terms and derived terms
that involve axial derivatives of the (virtual) varied displacement field, δ( )′ or
δ( )′′, the first variation of the elastic potential energy takes the form:

δΠ =
∫ L

0

{
δ(ψvTw)

[
K̄σvwψ

′′′′ −Kσra
ΩΩ v

a
Ωζ
′′′ −Kτvwψ

′′ + Ksvwψ
]

+ δ(ζvaΩ)
[
Kσar

ΩΩ vwψ
′′′ −Kσaa

ΩΩ vaΩζ
′′
]}

dz

+
[
δ(ψvTw)′

[
K̄σ(ψvw)′′ −Kσra

ΩΩ (ζvaΩ)′
]

+ δ(ψvTw)
[
− K̄σ(ψvw)′′′ + Kσra

ΩΩ (ζvaΩ)′′ + Kτ (ψvw)′
]

+ δ(ζvaΩ)
[
−Kσar

ΩΩ (ψvw)′′ −Kσaa
ΩΩ (ζvaΩ)′

]]L
0
(3.34)
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For internal variation in the displacement fields δ(ψvw) and δ(ζvaΩ), the elastic
potential energy should be stationary and therefore its first variation must be
equal to zero. Here the terms in the squared bracket correspond to the boundary
loads and boundary conditions. Taking internal variations reveals the following
coupled homogeneous differential equations of GBT in which we note that ζ =
−ψ′:

K̄σvwψ
′′′′ −Kσra

ΩΩ v
a
Ωζ
′′′ −Kτvwψ

′′ + Ksvwψ = 0 (3.35)

Kσar
ΩΩ vwψ

′′′ −Kσaa
ΩΩ vaΩζ

′′ = 0 (3.36)

These equations establish a coupled set of homogeneous GBT differential equa-
tions that determine the displacements of a prismatic thin-walled beam for a
given set of boundary conditions. To solve the boundary value problem, it
is necessary to solve the related eigenvalue problem by establishing the eigen-
modes/vectors and the related axial variation through the related eigenvalues.
In the following, we will first consider the case where the displacement vectors
do not contain transverse displacements, and then we will consider one in which
they do. We start out by isolating the term vaΩζ

′′ in equation (3.36) as follows:

vaΩζ
′′ = (Kσaa

ΩΩ )−1Kσar
ΩΩ vwψ

′′′ (3.37)

We can identify pure axial extension as an eigenmode solution. For the above
equations (3.35) and (3.36), it corresponds to (vw, v

a
Ω) = (0, 1), which we can

see leads to a solution. In the original “global” space, the axial eigenmode is
given by (vw,vΩ) = (0,Ta

Ω). It is also clear that the axial variation of pure
axial extension can be determined by double integration of equation (3.37) with
vw = 0, which gives

ζ(z) = −ψ′(z) = ca1 + ca2z

= −Ψa
′(z) ca =

[
1 z
] [ca1

ca2

]
(3.38)

Here ca1 and ca2 are constants determined by the boundary conditions of axial
extension.

Having identified the “classic” eigenmode, pure axial extension, we finally
turn to the solution of the transverse displacement modes. In this case, equation
(3.37) determines the correction term that eliminates pure axial extension in the
back substitution process. Eliminating ζ ′′ by using the fact that ζ ′′ = −ψ′′′ and
assuming that ψ′′′ 6= 0, we find:

vaΩ = −(Kσaa
ΩΩ )−1Kσar

ΩΩ vw (3.39)
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Using this equation or equation (3.36), we eliminate the second term in equation
(3.35) and introduce Kσ, as given in Table 3.3. This results in the following
homogeneous fourth order differential equations for determination of the trans-
verse (global, distortional and local) distortional displacement modes of GBT:

Kσvwψ
′′′′ −Kτvwψ

′′ + Ksvwψ = 0 (3.40)

To solve this set of equations we have to solve the related eigenvalue problem,
which is of fourth order, but since only an even number of axial derivatives is
involved, this reduces to a quadratic eigenvalue problem. With solutions, vw, to
equation (3.40), we can find voΩ using equation (3.30), vaΩ using equation (3.39),
and finally vΩ using equation (3.27), thus revealing the full solution in global
space.

3.4.3 Step II: Rigid cross-section displacements and constant
wall-width constraint

In this step, we will identify and eliminate two eigenmodes corresponding to
transverse translation of the cross-section, and we will identify a pure rotational
eigenmode for later elimination in the next step. Furthermore, we will also con-
strain the transverse displacement field, so that the wall widths remain constant,
i.e. we will enforce ws,s ≡ 0, see equation (3.5).

With the introduction of the shear constraints in the previous step, the
flexural modes do not have shear energy and the shear stiffness matrix Kτ is
therefore singular for these modes. Since neither the pure translational modes
nor the rotational mode involve any distortion of the cross-section, the transverse
stiffness matrix Ks will be singular due to these modes. It turns out that the
translational modes correspond to two quadruple zero eigenvalues or roots of
the related characteristic equation. To orthogonalize these modes with respect
to the non-singular axial stiffness matrix Kσ, we will form the subspace spanned
by the modes and orthogonalize in this subspace.

Let us first introduce two not necessarily orthogonal translational modes
corresponding to a unit translation in each transverse coordinate direction, or-
dered in columns in the matrix Txy

w = [vx trans
w vy trans

w ] and a rotational mode
corresponding to rotation about the origin of the (initial) transverse coordinate
axes Tz

w = [vz rot
w ].

In the subspace spanned by the two non-orthogonal translational modes
introduced, we can find the principle flexural directions by an equivalent con-
ventional method or by finding the eigenvectors of the following two-dimensional
eigenvalue problem:

(Kσ
xy − λI)vxy = 0 ⇒ vxy = v1

xy or v2
xy (3.41)
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where I is a 2 × 2 diagonal unit matrix and Kσ
xy = Txy

w
TKσTxy

w . The two or-
thogonal eigenvectors corresponding to the principle axis directions are ordered
in columns in the transformation matrix

Tα
xy =

[
v1
xy v2

xy

]
(3.42)

Finally, we can determine the two orthogonal translational eigenmodes in the full
vw-space, ordered in columns in a transformation matrix as Tα

w = [v1 trans
w v2 trans

w ],
by the following matrix multiplication:

Tα
w = Txy

w Tα
xy (3.43)

Next, we take a look at the non-orthogonal rotational mode, and we subtract
the translational part, so that the coupling term in the axial stiffness vanishes.
Thus the orthogonal pure rotational mode is given by

v3 rot
w = vz rot

w −
[
v1 trans

w v2 trans
w

]
dα ⇔ T3

w = Tz
w −Tα

wdα (3.44)

where we have introduced the transformation “matrix” T3
w = [v3 rot

w ] and dα as a
two-dimensional vector giving the amount of each translational eigenmode to be
subtracted. Note that dα is related to the coordinate vector of the shear center
(Jönsson, 1999a). The coupling terms in the axial stiffness between translations
and rotation are found in the subspace as follows:

Kσ
α3 = Tα

w
TKσT3

w = Tα
w
TKσ (Tz

w −Tα
wdα) = Kσ

αz −Kσ
ααdα (3.45)

By requiring that the coupling terms in the axial stiffness vanish, Kσ
α3 = 0, we

find

dα = Kσ
αα
−1Kσ

αz (3.46)

Now we can finally identify the orthogonal pure rotational eigenmode by insert-
ing equation (3.46) in (3.44) as

T3
w = Tz

w −Tα
wKσ

αα
−1Kσ

αz (3.47)

Here the matrix transformations are given in Table 3.4.
Before performing eliminations and finding the solutions pertaining to the

translational modes, we will constrain the transverse normal strains in the mid-
dle surface of the cross-section walls, i.e. we will enforce ws,s ≡ 0 or, say, enforce
a constant wall-width constraint. For each wall element, this leads to a multi-
point constraint equation in local degrees of freedom, velw , corresponding to no
centerline elongation. It takes the following form:[

1 0 0 −1 0 0
]
velw = 0 (3.48)
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Each element constraint equation is reformulated into global degrees of freedom
by a formal transformation of the form velw = TT

wvw, which allows us to write
nc independent constraint equations (where nc can be less than the number of
elements due to over-constraining). The equations take the following form in
the full vw-space:

Cvw = 0 (3.49)

The transformation method described by Cook (2001) is used to enforce the
multi-point constraint equations and eliminate the related degrees of freedom.
However, we must also incorporate the elimination of the translational eigen-
modes and prepare for the elimination of the rotational modes.

Before any elimination of eigenmodes or constrained degrees of freedom can
be performed, we must first transform the equations to a new space (with re-
defined degrees of freedom) in such a way that the degrees of freedom to be
eliminated are clearly identified. Thus we need to choose exactly which of the
constrained degrees of freedom (in each constraint equation) and which degrees
of freedom related to the translational and rotational modes are to be elim-
inated. In our implementation, we choose to eliminate the translations and
rotation of the first node, and we implement a strategic routine which chooses
which of the other translational degrees of freedom related to the constraint
equations are to be eliminated. The identification of the constrained degrees of
freedom to be eliminated is performed by a transformation matrix Tc

w in which
each column belongs to a constraint equation and identifies the degree of free-
dom to be eliminated by a unit value in the corresponding row. The remaining
degrees of freedom, which are not going to be separately identified (eliminated),
are identified in the transformation matrix Tu

w in which each column identi-
fies a remaining (u for unconstrained) degree of freedom by a unit value in the
corresponding row.

We are now ready to introduce the transformation to vw-space from the new
space. In the new space, we introduce the degrees of freedom as vαw = [v1

w v2
w]T

for the magnitudes of the two translational eigenmodes, v3
w for the magnitude of

the rotational eigenmode, vcw for the degrees of freedom to be constrained, and
vuw for the remaining unconstrained degrees of freedom. The transformation
may be written as:

vw =
[
Tα

w T3
w Tc

w Tu
w

]


vαw
v3

w

vcw
vuw

 (3.50)

Since we have strategically chosen the constrained degrees of freedom not to be
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equal to the degrees of freedom related to the translational and rotational eigen-
modes, we have a situation where CTα

w = 0 and CT3
w = 0. So the constrain

equations in (3.49) can be rewritten using equation (3.50) as

CTc
wvcw + CTu

wvuw = 0 (3.51)

This allows us to express the constrained degrees of freedom by the uncon-
strained as

vcw = −C−1
c Cuvuw (3.52)

in which Cc = CTc
w and Cu = CTu

w. Introducing equation (3.52) in the trans-
formation equation (3.50), we find that the total transformation is condensed
as follows:

vw =
[
Tα

w T3
w Tc

w Tu
w

]


vαw
v3

w

−Cc
−1Cuvuw
vuw

 =
[
Tα

w T3
w T̃u

w

]vαw
v3

w

vuw

 (3.53)

Here we have defined the condensed transformation T̃u
w = Tu

w−Tc
wCc

−1Cu by
using a tilde.

Introducing the transformation in (3.53) in the set of differential equations in
(3.40) transforms these equations into the new space. The differential equations
thereby take the following form in which we have also introduced the null terms
corresponding to the rigid-body modes and zero shear strain for translational
and flexural modes:Kσ

αα 0 Kσ
αu

0 Kσ
33 Kσ

3u

Kσ
uα Kσ

u3 Kσ
uu


vαw
v3

w

vuw

ψ′′′′ −
0 0 0

0 Kτ
33 Kτ

3u

0 Kτ
u3 Kτ

uu


vαw
v3

w

vuw

ψ′′

+

0 0 0
0 0 0
0 0 Ks

uu


vαw
v3

w

vuw

ψ =

0
0
0

 (3.54)

The transformed stiffness matrices introduced in this equation are given in Table
3.4. The two-dimensional upper block matrix equation yields the translation
displacements as

vαwψ′′′′ = −Kσ
αα
−1Kσ

αuvuwψ′′′′ (3.55)

We can identify the two orthogonal pure translational modes, (v1
w, v

2
w, v

3
w,vuw) =

(1, 0, 0,0), and ,(0, 1, 0,0), as eigenmodes or solutions to equation (3.54). For
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Kσ
αα = Tα

w
TKσTα

w Kσ
33 = T3

w
TKσT3

w Kτ
33 = T3

w
TKτT3

w

Kσ
αz = Tα

w
TKσTz

w Kσ
3u = T3

w
TKσT̃u

w Kτ
3u = T3

w
TKτ T̃u

w

Kσ
αu = Tα

w
TKσT̃u

w Kσ
uu = T̃u T

w KσT̃u
w Kτ

uu = T̃u T
w Kτ T̃u

w

Ks
uu = T̃u T

w KsT̃u
w K̄σ

uu = Kσ
uu −Kσ

uαKσ
αα
−1Kσ

αu

Table 3.4: Transformation of stiffness matrices related to Step II.

these pure translational modes, we find that the right-hand side of equation
(3.55) vanishes and that the axial variation of the pure translational modes is
therefore determined by quadruple integration, which gives:

ψ1(z) = c11 + c12z + c13z
2 + c14z

3 = Ψ1(z) c1

ψ2(z) = c21 + c22z + c23z
2 + c24z

3 = Ψ2(z) c2 (3.56)

In the following we will make use of the block notation given as

Ψαcα =
[
Ψ1 0
0 Ψ2

][
c1

c2

]
, c1 =


c11

c12

c13

c14

 , c2 =


c21

c22

c23

c24

 (3.57)

in which Ψ1 = Ψ2 = [1 z z2 z3]. The constants in the vectors c1 and
c2 are determined by the boundary conditions for pure transverse translational
displacement in the two directions.

Having identified the two pure translational modes, we turn to the remaining
solutions to the differential equation (3.54). In this case, equation (3.55) deter-
mines the correction term that eliminates pure transverse displacements in the
back-substitution process. By dividing both sides of the equation by ψ′′′′ 6= 0
we find

vαw = −Kσ
αα
−1Kσ

αuvuw (3.58)

Using this equation or equation (3.55), we eliminate the two pure flexural degrees
of freedom and find the condensed version of the differential equation (3.54),
which takes the following form:[

Kσ
33 Kσ

3u

Kσ
u3 K̄σ

uu

][
v3

w

vuw

]
ψ′′′′ −

[
Kτ

33 Kτ
3u

Kτ
u3 Kτ

uu

][
v3

w

vuw

]
ψ′′ +

[
0 0
0 Ks

uu

][
v3

w

vuw

]
ψ =

[
0
0

]

(3.59)
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The introduced stiffness matrix K̄σ
uu is given in Table 3.4. This equation con-

stitutes the GBT differential equations constrained by shear flow constraints
and wall-width constraints after the elimination of the classical axial and two
translational (flexural beam) modes.

3.4.4 Step III: Reduction of order and pure St. Venant torsion

In this step we will reduce the differential order of the coupled fourth order
differential equations and the related quadratic eigenvalue problem to twice as
many coupled second order differential equations with a related linear eigenvalue
problem of double size. This method is equivalent to the one used for the solution
of the coupled homogeneous problem of a-single-mode distortion and torsion
analyzed in Jönsson (1999a). After we have changed the order of the equations,
we can recognize that the pure torsional St. Venant displacement modes with a
constant or a linear variation of the angle of twist are eigensolutions.

The fourth order differential equation (3.59) can be transformed into twice
as many second order differential equations by introducing what is called a state
vector. There are a number of different possible formulations, but we have cho-
sen the use of the state vector vS = [v3

wψ,vuwψ, v3
wψ
′′,vuwψ′′]T . Introducing this

state vector (and using related equality block equations) yields a reformulation
of equation (3.59) as a formal second order matrix differential equation of double
size, which takes the form:

0 0 0 0
0 Ks

uu 0 0
0 0 −Kσ

33 −Kσ
3u

0 0 −Kσ
u3 −K̄σ

uu



v3

wψ

vuwψ
v3

wψ
′′

vuwψ′′



−


Kτ

33 Kτ
3u −Kσ

33 −Kσ
3u

Kτ
u3 Kτ

uu −Kσ
u3 −K̄σ

uu

−Kσ
33 −Kσ

3u 0 0
−Kσ

u3 −K̄σ
uu 0 0



v3

wψ

vuwψ
v3

wψ
′′

vuwψ′′


′′

=


0
0
0
0

(3.60)
Note that the matrices are symmetric about the diagonal and that the lover
half of the matrices is identity equations. Seeking solutions of exponential form,
ψ(z) = eξz, with an eigenvector in which v3

w = 1 and vuw = 0, we see that the
first equation will lead to an eigenvalue, ξ2 = 0, or a double zero root in the
characteristic equation, thus giving us not exponential solutions but two linear
solution terms. This corresponds to a constant or a linear variation of the first
degree of freedom, which is pure twist. However, if we “persistently” seek the
two classical exponential solutions for a pure twist mode with (eigen)vectors,
(1,0, ξ2,0)T , we are not able to show that this is in general a solution. In the
examples section in Paper I (Jönsson and Andreassen, 2011) it is shown that for
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the closed cross-section, only the linear terms of pure twist exist, whereas for
the open channel section, the eigenvalue is very close to the classical result, and
in the example chosen, we cannot visually see the distortion in the associated
“torsional” mode with an exponential variation of twist.

To keep the matrix operations as simple as possible we introduce a new
vector vew and three new block matrices, Kσ

ee, Kσ
3e and Kσ

ue, given by

vew =
[
v3

w

vuw

]
Kσ
ee =

[
Kσ

3e

Kσ
ue

]
=
[

[ Kσ
33 Kσ

3u ]
[ Kσ

u3 K̄σ
uu ]

]
(3.61)

Introducing the new vector and the three block matrices defined by equation
(3.61) and in Table 3.5, the second order differential equations can be written
as 0 0 0

0 Ks
uu 0

0 0 −Kσ
ee


 v

3
wψ

vuwψ
vewψ′′

−
 Kτ

33 Kτ
3u −Kσ

3e

Kτ
u3 Kτ

uu −Kσ
ue

−Kσ
e3 −Kσ

eu 0


 v

3
wψ

vuwψ
vewψ′′


′′

=

0
0
0

 (3.62)
In the first equation we can isolate the pure rotational term resulting in the
following differential equation:

v3
wψ
′′ = −Kτ

33
−1 (Kτ

3uvuwψ′′ −Kσ
3evewψ′′′′) (3.63)

It can be seen that pure St. Venant torsion (with free warping), corresponding
to the solution vector, (v3

wψ,vuwψ,vewψ′′) = (c32z+ c31,0,0), is a solution of the
second order differential equations in (3.62). We have thus shown that

ψ3(z) = c31 + c32z

= Ψ3(z)c3 =
[
1 z
] [c31

c32

]
(3.64)

The remaining solutions to the differential equations in (3.62) are found by
seeking exponential solutions of the form ψ(z) = eξz. We insert the exponential
solution in equation (3.63) and find the following equation, which we will use
for back-substitution purposes:

v3
w = −Kτ

33
−1 (Kτ

3uvuw −Kσ
3e(ξ2vew)

)
(3.65)

Using equation (3.63), we eliminate v3
w from the differential equations in (3.62)

and find the final distortional differential equations of GBT that determine all
the distortional displacement modes as[

Ks
uu 0
0 −Kσ

ee

][
vuwψ
vewψ′′

]
−

[
K̄τ
uu −K̄σ

ue

−K̄σ
eu −K̄σ

ee

][
vuwψ
vewψ′′

]′′
=
[
0
0

]
(3.66)

The block matrices and the transformed stiffness matrices are given in Table
3.5. In the following section we will describe the solution of these differential
equations.
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Kσ
3e = [ Kσ

33 Kσ
3u ] K̄σ

ee = Kσ
e3K

τ
33
−1Kσ

3e

Kσ
ue = [ Kσ

u3 K̄σ
uu ] K̄σ

ue = Kσ
ue −Kτ

u3K
τ
33
−1Kσ

3e

Kσ
ee
T = [ Kσ

3e
T Kσ

ue
T ] K̄τ

uu = Kτ
uu −Kτ

u3K
τ
33
−1Kτ

3u

Table 3.5: Transformation of stiffness matrices related to Step III.

3.5 The distortional eigenvalue problem and

homogeneous solution functions

Now we are finally able to seek solutions to the final condensed differential
matrix equation (3.66) in order to find the distortional eigenmodes, including
what are called local modes. We postulate that the solutions are exponential
solutions of the form

ψ(z) = eξz (3.67)

where ξ is an inverse length scale parameter which may be complex. Inserting
the postulated solution leads to the following generalized linear matrix eigen-
value problem, in which the eigenvalues are ξ2 and the eigenvectors are the
distortional modes that we seek:[

Ks
uu 0
0 −Kσ

ee

][
vuw
ξ2vew

]
−ξ2

[
K̄τ
uu −K̄σ

ue

−K̄σ
eu −K̄σ

ee

][
vuw
ξ2vew

]
=
[
0
0

]
(3.68)

Due to the differences in the order of magnitude of the different stiffness terms
in the matrices, we have improved the numerical accuracy of the eigenvalue
and eigenvector solution in our numerical implementation by introducing the
following Cholesky decomposition of the block matrices in the first matrix:

Ks
uu = LuLTu Kσ

ee = LeLTe (3.69)

We utilize the decomposition by introducing the following new intermediate
vectors

vuw = L−Tu ṽuw (ξ2vew) = L−Te (ξ2ṽew) (3.70)

where the superscript −T corresponds to the inverted transpose of the matrix.
After pre-multiplication of each block matrix equation by L−1

u and L−1
e , the

eigenvalue problem then takes the following form:[
Iuu 0
0 −Iee

][
ṽuw
ξ2ṽew

]
− ξ2

[
L−1
u K̄τ

uuL−Tu −L−1
u K̄σ

ueL−Te
−L−1

e K̄σ
euL−Tu −L−1

e K̄σ
eeL−Te

][
ṽuw
ξ2ṽew

]
=
[
0
0

]
(3.71)
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In this equation Iuu and Iee are adequate size unit diagonal matrices. Some
general eigenvalue solution routines demand that at least one of the matrices
has to be symmetric as well as positive (semi-)definite. This can be achieved
by a change of sign in the second block matrix equation, however the second
matrix becomes asymmetric. Having found the eigenvectors, we use equation
(3.70) to find vuw and (ξ2vuw), which can then be used for the remaining back-
transformation process.

Each distortional eigenvector corresponds to a solution ψd i(z) of the ho-
mogeneous coupled equations of distortion in equation (3.66). The solution
function corresponds to our postulated function in equation (3.67), and it has
now been determined by plus/minus the square root of the eigenvalues as ±ξi.
In other words, for the i’th eigenvector we find the solution

ψd i(z) = cd 2i−1e
ξiz + cd 2ie

−ξiz

= Ψd i(z)cd i =
[
eξiz e−ξiz

] [cd 2i−1

cd 2i

]
(3.72)

in which constants cd 2i−1 and cd 2i assembled in the vector cd i depend on the
boundary conditions of the problem at hand. All the distortional solution func-
tions are assembled in the distortional solution matrix Ψd and multiplied by the
assembled vector of distortional constants cd as follows:

Ψd(z) cd =


Ψd 1(z) 0 0 · · ·

0 Ψd 2(z) 0 · · ·
0 0 Ψd 3(z) · · ·
...

...
...

. . .




cd 1

cd 2

cd 3

...

 (3.73)

This notation is used later to describe the total displacement solution.

3.6 Back substitution

Having found the distortional eigenvalues, eigenvectors and homogeneous solu-
tions for the reduced system (3.68), we now have to perform a backward substi-
tution through the previous steps in order to achieve the results in the original
displacement vector format including all the modes. Furthermore, we also have
to back-substitute all eliminated eigenvectors (multiple zero eigenvalues) and
review the related homogeneous solutions.

3.6.1 Back substitution of distortional modes

In the previous sections, the formulations are related to a single displacement
vector and the back substitution of the distortional modes found from solving
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the eigenvalue problem in equation (3.68) is performed sequentially through
equations (3.65), (3.58), (3.53), (3.39), and (3.31). In a typical modal approach,
all eigenvectors are assembled column-wise in the mode matrix and the related
eigenvalues ξ2 are placed sequentially in the diagonal of the matrix Λ. By intro-
ducing the capital letter V with related sub- and superscripts for the assembled
modes, we can find the back-substituted distortional mode matrices Vd

w and
Vd

Ω using the following sequence of substitutions corresponding to the sequence
of equations mentioned above:

V3
w = −Kτ

33
−1 (Kτ

3uVu
w −Kσ

3e(Ve
wΛ)) (3.74)

Vα
w = −Kσ

αα
−1Kσ

αuVu
w (3.75)

Vd
w = Tα

wVα
w + T3

wV3
w + T̃u

wVu
w (3.76)

Vd,a
Ω = −(Kσaa

ΩΩ )−1Kσar
ΩΩ Vd

w (3.77)
Vd

Ω = Tr
ΩwVd

w + Ta
ΩVd,a

Ω (3.78)

The superscript d has been introduced to distinguish the distortional modes
from the total assembly of modes introduced later. The term (Ve

wΛ) is just one
matrix, which is never separated into the two product terms, but just found
directly as part of the eigenvectors of the reduced-order eigenvalue problem in
equation (3.68).

3.6.2 Back substitution of eliminated beam displacement modes

The back substitution of eliminated beam displacement modes involves back
substitution of the pure axial extension mode, the two transverse translational
modes, and the pure twist mode. Using the degree-of-freedom space introduced
in Step II, these modes are given by the following four transverse displacement
modal vectors:

v1
w

v2
w

v3
w

vuw

 =


0
0
0
0

 ,

v1

w

v2
w

v3
w

vuw

 =


1
0
0
0

 ,

v1

w

v2
w

v3
w

vuw

 =


0
1
0
0

 ,

v1

w

v2
w

v3
w

vuw

 =


0
0
1
0

 (3.79)

The first vector becomes the extensional eigenvector in the degree-of-freedom
space introduced in Step I. The back substitution of these modes is all performed
using the equation (3.53). However, we have already introduced the eigenvectors
in the original transverse displacement space in the transformation matrices
related to this equation, Tα

w and T3
w and the back transformation is obsolete

for these modes. These eigenvectors are assembled in a beam mode matrix Vb
w

as follows:

Vb
w =

[
0 v1 trans

w v2 trans
w v3 rot

w

]
(3.80)
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The back substitution of the warping displacements remains. Of course the
pure axial extension warping vector is trivial and has allready been introduced
as Taxial

Ω = vaxial
Ω , but we have to back-substitute the other modes. This is done

by first calculating the axial (adjustment) component using equation (3.39) as
follows:

Vb,a
Ω =

[
1 0 0 0

]
− (Kσaa

ΩΩ )−1Kσar
ΩΩ Vb

w (3.81)

The beam warping vectors related to the transverse beam displacement modes
can now be found using equation (3.31) as

Vb
Ω =

[
vaxial

Ω v1 trans
Ω v2 trans

Ω v3 rot
Ω

]
= Tr

ΩwVb
w + Ta

ΩVb,a
Ω (3.82)

The axial variation of the four modes has been identified in equations (3.38),
(3.57), and (3.64) and can be assembled in the beam solution function matrix
Ψb(z) and multiplied by the vector of beam displacement constants cb as

Ψb(z) cb =

Ψa(z) 0 0
0 Ψα(z) 0
0 0 Ψ3(z)


ca

cα
c3

 (3.83)

in which we have introduced the integral of the axial solution as Ψa =
[
−z − 1

2z
2
]
.

This matrix function does not pertain to any solution, and we might as well have
set it to zero, since there are no transverse displacements, vaxial

w = 0, for the pure
axial deformation mode in beam theory. However, this choice allows us to use
the derivative of the Ψa(z) matrix, which is the axial solution Ψ′a =

[
−1 −z

]
.

3.7 The full homogenous solution

The full homogenous solution can now be assembled from all the eigenmode
vectors and the solution functions. It turns out that some of the eigenvalues
and eigenvectors are complex. However, in the following we will perform a
direct formulation in which we acknowledge that we are also dealing with com-
plex quantities corresponding to related complex eigenvalues and complex axial
solution functions. A transformation of the complex quantities to pairwise cou-
pled real modes and real solution functions will be introduced in the second
subsection.

3.7.1 Direct formulation

Let us assemble all the eigenvectors column-wise in a modal matrix of transverse
displacement vectors Vw and a modal matrix of axial warping displacement
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vectors VΩ by joining the modal matrices of the beam eigenvectors and the
distortional eigenvectors in the following sequence

Vw =
[

Vb
w Vd

w

]
VΩ =

[
Vb

Ω Vd
Ω

]
(3.84)

The solution function matrices and the displacement constant vectors can also
be assembled using the previously defined block matrices and vectors

Ψ(z) c =
[
Ψb(z) 0

0 Ψd(z)

][
cb
cd

]
(3.85)

The full homogeneous solution along the beam can be assembled in the nodal
solution vectors uw(z) and uz(z) as follows:

uw(z) = VwΨ(z) c
uz(z) = −VΩΨ′(z) c (3.86)

The constants have to be determined by the boundary conditions of the pris-
matic thin-walled beam.

To be able to present and discuss unique complex eigenmodes, all the dis-
tortional vectors in Vw have been normalized after back substitution in such a
way that the largest absolute value of all components in each vector is one and
that this component is real. This has to be done to make them unique since
complex eigenvectors are determined except for an arbitrary complex constant.

Following the completion and solution of the final distortional differential
equations as well as the back substitution process the found mode shapes (eigen-
vectors) can be presented by two examples of transverse mode shapes as shown
in Figures 3.6 and 3.8 and the associated primary warping mode shapes shown in
Figure 3.7 and 3.9, respectively. The shown mode shapes correspond to a lipped
channel and a box section used in the example section in Paper I (Jönsson and
Andreassen, 2011). Note, that there is no primary warping for the local modes.
The modes are scaled in such a way that the greatest displacement, being either
in the horizontal or vertical direction, is equal to 10. For the complex modes
consisting of both a real and an imaginary mode shape, this means that the use
of a scale factor is necessary in order to be able to depict both mode shapes each
having the greatest displacement equal to 10. Note that the imaginary mode
shape is generally substantially smaller than the real mode shape. Also note
that the modes in the present approach are ordered according to the attenuation
length.

The numbers of the modes of a type (e.g., number of distortional modes) are
not given but Figure 3.6 and 3.8 suggests certain numbers of modes. It is to note
that e.g., the number of distortional modes of a lipped channel section seems
to be more than 2, whilst conventional GBT and cFSM define 2 modes. This
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Figure 3.6: Lipped channel – 13 in-plane deformation mode shapes.

difference is because the proposed method in fact finds the exact analytical so-
lution for the discretized cross section which involves twice as many modes (it is
not an orthogonal decomposition of the space). This mode space is only orthog-
onal in the state space and not in the transverse displacement space. However,
interesting enough, visual inspection, as in the other methods, show that we
do in fact find 2 sets of paired complex and complex conjugated eigenmodes,
which can be designated as non-local distortional (due to the length scale of the
solution function).

The total number of modes depends on the discretization and the geometry
of the cross section. This means that the number of different modes can only
be defined by the illustrative examples. At the beginning of this chapter the
number of dofs is four times the number of nodes. But through the steps we
are changing to a GBT space with a reduced number of dofs. Moreover, we
choose to solve the differential equation by reducing the differential order of the
coupled fourth-order differential equations. This is done by transforming the
fourth-order differential equation into twice as many second order differential
equations. This means that we obtain an eigenvalue problem of double size.
The number of dofs is hereby equal to the size of the eigenvalue problem but
reduced through the performance of the described steps.

3.7.2 Transformation to real modes and real solution functions

Some of the distortional displacement modes found and their related eigenval-
ues are complex. Mathematical formulation with the use of complex numbers
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Figure 3.7: Lipped channel – 13 warping deformation mode shapes.
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Figure 3.8: Rectangular box cross-section – 10 in-plane deformation mode shapes.
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Figure 3.9: Rectangular box cross-section – 10 warping deformation mode shapes.

simplify derivations and the use of compilers, which include complex numbers
with complex operations on matrices, will lead to simple algorithms. However,
it may be easier to grasp the form and meaning of the solution in real quantities.

Complex eigenvalues are always found as a pair of complex conjugated eigen-
values with eigenvectors which are also complex conjugated. For the j’th com-
plex eigenvalue, ξ2

j , and its conjugated j + 1’th eigenvalue, ξ2
j+1 = ξ2

j , let us
introduce the following notation for the positive square root values and the
related eigenvector columns vj and vj+1 of Vw:

ξj = λj + µji ξj+1 = ξ̄j = λj − µji (3.87)
vj = aj + bji vj+1 = v̄j = aj − bji (3.88)

in which we have introduced the real and imaginary parts of the eigenvalues and
eigenvectors. The complex eigenvectors in equation (3.88) may be conveniently
written as [

vj vj+1

]
=
[
aj bj

] [1 1
i −i

]
(3.89)

The constants of the related parts of the homogeneous solution are also complex
quantities. However we are able to assemble the two complex conjugated modal
solutions into two real (but pairwise coupled) solutions by introducing the real
constant vectors c̃j and c̃j+1 as follows:[

cj
cj+1

]
= 1

2

[
1 −i
1 i

][
c̃j

c̃j+1

]
(3.90)

The j’th complex part of the full solution can now be rewritten using the trans-
formations in equations (3.89) and (3.90). After multiplication and identification
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of real and imaginary parts, we find the result:[
vj vj+1

] [Ψdj 0
0 Ψdj

][
cj

cj+1

]
=
[
aj bj

] [Re(Ψd j ) Im(Ψd j )
Im(Ψd j ) Re(Ψd j )

][
c̃j

c̃j+1

]
(3.91)

where the real and imaginary parts of the (in this case complex) matrix Ψd j

introduced in (3.72) are

Re(Ψd j ) = Re(Ψd j ) =
[
eλjz cosµjz e−λjz cosµjz

]
Im(Ψd j ) = −Im(Ψd j ) =

[
eλjz sinµjz − e−λjz sinµjz

]
(3.92)

whereby the real formulation in the right-hand side of equation (3.91) becomes

[
aj bj

] [ eλjz cosµjz e−λjz cosµjz
−eλjz sinµjz e−λjz sinµjz

eλjz sinµjz −e−λjz sinµjz
eλjz cosµjz e−λjz cosµjz

]
c̃j 1

c̃j 2

c̃j+1 1

c̃j+1 2


(3.93)

This allows us to rewrite the complex quantities into real quantities. Let us
modify the modal matrices Vw and VΩ and introduce the modified modal ma-
trices Ṽw and ṼΩ by substituting the complex pairs of eigenvectors with their
respective real and imaginary parts. Furthermore, let us also introduce the
modified solution matrix Ψ̃ and its related modified vector of constants c̃ by
substituting the solutions (and constants) of the complex pairs using equation
(3.91), i.e. equation (3.93). This allows us to write the full homogeneous solution
along the beam with real numbers as

uw(z) = ṼwΨ̃(z) c̃
uz(z) = −ṼΩΨ̃′(z) c̃ (3.94)

We may choose to work with this real formulation or work with complex numbers
using the full homogeneous solution formulated in equation (3.86).

Before elaborating on how to find the solution constants an example showing
the validity of the novel approach is given.

3.8 Example

In this section an example is given showing the two eigensolutions related to
the first complex distortional displacement mode of the chosen channel and box
cross sections. For more examples see Paper I (Jönsson and Andreassen, 2011).
We choose to illustrate the mode corresponding to the first complex distortional
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Figure 3.10: Two eigensolutions of the first complex distortional mode for a channel and
a box section.

displacement mode, which are mode j = 5 and j = 4 respectively for the channel
and box cross-sections. With the use of equation (3.93) in which the real part, a,
and the imaginary part, b, of the mode are multiplied by the solution functions.
We choose in Figure 3.10 to illustrate two of the four independent solution
functions: one in which only c̃j 2 is non-zero (shown as a. and b. in the figure),
and the other (shown as c. and d.) in which only c̃j+1 2 is non zero. Thus sub
figure a. and b. correspond to the solution e−λjz cosµjz · aj + e−λjz sinµjz · bj
and sub figure c. and d. corresponds to −e−λjz sinµjz · aj + e−λjz cosµjz · bj .
The eigensolutions shown in the figure therefore involves a coupled behavior of
the real part and imaginary part of the mode.

3.9 The degree of freedom space and related

transformations

To apply the present approach and make use of the solutions found in a finite
element context, it is necessary to be able to relate to the different degree-of-
freedom spaces in use as well as to the constraints introduced. In Step I, the
introduction of shear constraints leads to a generalized beam theory (GBT) in



Chapter 3: Distortional homogeneous di�erential equations and solutions 61

which only shear flow around closed cells is taken into account while all other
shears are constrained. With the exception of pure axial extension, the axial
displacements are determined from the axial derivative of the transverse dis-
placements. From the boundary terms of the first variation of the potential en-
ergy given in equation (3.34), it is seen that the (virtual) generalized boundary
displacements are pure axial extension (ζvaΩ), transverse displacements (ψvw),
and the axial derivative of the transverse displacements (ψvw)′. However, the
transverse displacements are unconstrained, which is not compatible with clas-
sical Vlasov beam theory where the individual thin wall of the cross section is
assumed to maintain its length (width) within the cross section, i.e. no cross-
section centerline elongation. This is overcome in Step II where the walls are
constrained using a set of multipoint constraint equations which eliminate con-
strained transverse displacement degrees of freedom vcw. The basic degrees of
freedom of the GBT formulation are the pure axial extension (ζvaΩ), the remain-
ing transverse displacements (ψvgw), and the axial derivative hereof (ψvgw)′. To
be able to change degree-of-freedom space from GBT space, vgw, to finite ele-
ment (FE) (original degree-of-freedom) space, vw, the following transformation
is introduced:

vw =
[
Tc

w Tg
w

] [vcw
vgw

]
where Tg

w =
[
Ti

w Tu
w

]
and Ti

w =



1 0 0
0 1 0
... 0 1
... 0
...


(3.95)

in which Tc
w and Tu

w have already been introduced in Step II, and Ti
w is a matrix

corresponding to three supplementary columns, which pick out the degrees of
freedom of the first node related to v1

w, v2
w and v3

w.

3.9.1 From FE displacements to GBT displacements

If the transverse displacement vector vw already fulfills the constraint equations,
then we can find the GBT transverse displacement vector by using Tg

w
T , and

the pure axial extension by using Ta
Ω
T as follows:[

vgw
vaΩ

]
=
[
Tg

w
T 0

0 Ta
Ω
T

][
vw

vΩ

]
(3.96)

This is the important transformation from FE space to GBT space, which we
will need to be able to find the constants of the homogeneous solution.
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3.9.2 From GBT displacements to FE displacements

However, we may at some point also need the opposite transformation, which
involves the constraint equations introduced in equation (3.49). Let us prin-
cipally use the same method but introduce the transformation equation (3.95)
whereby the multi-point constraint equations take the form

CTc
wvcw + CTg

wvgw = 0 ⇔ Ccvcw + Cgvgw = 0 (3.97)

in which Cc = CTc
w has previously been introduced and Cg = CTg

w is intro-
duced here. This allows us to express the constrained degrees of freedom by the
GBT transverse displacement vector as:

vcw = −C−1
c Cgvgw (3.98)

Introducing the equality (3.98) in the transformation equation (3.95), we find
that the total transformation condenses our problem as follows:

vw =
[
Tc

w Tg
w

] [−Cc
−1Cgvgw
vgw

]
= T̃g

wvgw (3.99)

where T̃g
w = Tg

w −Tc
wCc

−1Cg has been introduced as the condensed transfor-
mation. Using the transformation equation (3.31) that determines the warping
displacements from the amount of axial extension and the transverse displace-
ments we find

vΩ =
[
Tr

Ωw Ta
Ω

] [vw

vaΩ

]
=
[
Tr

ΩwT̃g
w Ta

Ω

] [vgw
vaΩ

]
(3.100)

Using equations (3.99) and (3.100) we find the following transformation[
vw

vΩ

]
=
[

T̃g
w 0

Tr
ΩwT̃g

w Ta
Ω

][
vgw
vaΩ

]
(3.101)

This transformation is used to transform from GBT space to FE space.

3.10 Displacement boundary conditions of the

homogeneous solution

Having solved the eigenvalue problem and formulated solution modes in the
original FE degree-of-freedom space, we would like to set up a method for de-
termining the constants of the homogeneous solutions found. This is to be done
in the GBT space. As seen from the first variation of the potential energy,
the natural boundary displacements of the GBT at each boundary are the pure
axial displacement uaΩ of the beam, the transverse displacements ugw, and the
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Figure 3.11: Displacement field for boundary conditions in equation (3.106).

axial derivative of the transverse displacements ugw′. The generalized internal
displacements of the GBT beam can be expressed by using the full homoge-
neous solution in equation (3.86) or alternatively, as done in the following, by
the real formulation in equation (3.94) and the transformation from FE to GBT
displacements (3.96) as follows: u

a
z(z)

ugw(z)
ugw′(z)

 =

−Ta
Ω
T ṼΩΨ̃′(z)

Tg
w
T ṼwΨ̃(z)

Tg
w
T ṼwΨ̃′(z)

 c̃ (3.102)

To determine the constants using displacement boundary conditions as in finite
element or stiffness formulations, we need the boundary displacements at the
two ends of a finite length beam, i.e. at z = 0 and at z = L where L is the
length of the beam. The assembled boundary displacement vector is denoted by
ub. This leads to the following equation for the determination of the solution
constants:

ub =



uaz(0)
ugw(0)
ugw′(0)
uaz(L)
ugw(L)
ugw′(L)


=



−Ta
Ω
T ṼΩΨ̃′(0)

Tg
w
T ṼwΨ̃(0)

Tg
w
T ṼwΨ̃′(0)

−Ta
Ω
T ṼΩΨ̃′(L)

Tg
w
T ṼwΨ̃(L)

Tg
w
T ṼwΨ̃′(L)


c̃ = Ãc̃ (3.103)

⇒ c̃ = Ã−1ub (3.104)

where we have introduced the matrix Ã, which is an invertible positive definite
“square” matrix. However, to avoid numerical problems, the exponential solu-
tion functions in Ψ̃(z) may have to be modified by replacing c̃ieλz by ĉieλ(z−L)

so that the positive λz exponent is bounded.
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The two solutions plotted by using equation (3.94) with only c̃j 2 being non-
zero in the upper half of Figure 3.10 can also be found by using the relevant
boundary conditions in equation (3.104). To this end, we use the real and
imaginary vectorial parts, a, b, of the mode shape and the modal solution
functions and the derivative hereof. So in equation (3.104), we would use

ub =


0
a

−λa − µb
0

e−λL(a cosµL+ b sinµL)
−e−λL

{
a(λ cosµL+ µ sinµL) + b(λ sinµL− µ cosµL)

}

 (3.105)

and we should then find only the second constant of the j’th complex mode c̃j 2

to be non zero. The two lower solutions plotted in Figure 3.10 correspond to
boundary conditions in which only the fourth constant c̃j 4 of the complex mode
is non-zero.

It is also worth noting that just specifying the modal shape with a zero
derivative (otherwise built-in support) will lead to a coupling to the remaining
modes. For example, Figure 3.11 shows the displacements for the boundary
displacements corresponding to the real part of the first complex distortional
eigenmode at one end, but with zero axial displacements and zero displacements
and axial displacement derivatives at the other end, i.e. with the following
boundary condition:

uTb =
[
0 aT 0 0 0 0

]T
(3.106)

With this boundary condition many modes are invoked and to achieve the zero
derivative of the displacements, local distortional plate modes have also been
invoked. The length scales of some of these modes are very small and will be
difficult to see in an overall plot of the deformation mode.

3.11 Concluding remarks

In this chapter we have presented a new systematic method leading to the
formulation of the homogeneous differential equations of a generalized beam
theory (GBT) and the establishment of the full analytical solution.

Relevant deformation modes have been found by formulating and solving
the distortional quadratic eigenvalue problem. Hereby it is shown that it is
possible to solve the distortional quadratic eigenvalue problem and find the nat-
ural distortional displacement modes using a method equivalent to that used
for non-proportionally damped (linear) dynamic modal analysis. The beam dis-
placement field has been separated into a sum of products of the cross-section
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displacement modes and their axial variation. The obtained GBT equations are
now solved analytically and the formulation is valid without special attention
also for closed single or multi-cell cross sections. To achieve a formulation re-
sembling a generalization of Vlasov beam theory we have implemented some
constraints and eliminations into the distortional differential equations, which
has condensed the problem considerably and reduced the number of possible
eigenmodes. The formulation above enables the formulation of an advanced
semi-discretized prismatic thin-walled beam element developed later in chap-
ter 6.

Having developed and solved the distortional differential equations as well
as having formulated the full analytical homogeneous solution along the beam,
we will in the next chapter continue with the particular solutions to the non-
homogeneous set of distortional differential equations.
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Chapter 4

Distortional non-homogeneous
di�erential equations and
solutions

This chapter deals with the particular solution to the non-homogeneous distor-
tional differential equations in order to add loads on the advanced distortional
beam element developed later in chapter 6. Thus, in this chapter which is re-
lated to Paper II (Andreassen and Jönsson, 2012b) and Paper VI (Andreassen
and Jönsson, 2011) the distortional differential equations and solutions includ-
ing distributed loads are formulated and solved. By transforming the non-
homogeneous distortional differential equations into an eigenmode space, by
using the distortional modal matrix found for the homogeneous system, we get
the diagonalized and thus uncoupled set of differential equations including the
distributed loads. Afterwards, the full solution of these uncoupled linear second-
order differential equations is given. The boundary conditions considered in the
example of this chapter are restricted to built in ends, which are needed for
a displacement formulation of an exact first-order distortional beam element
developed later in the thesis. This also means that the present approach are
not yet dealing with a beam element which is part of chapter 6. Instead we are
dealing with an analytical solution of the coupled differential equations. This
means that we focus on boundary conditions which are displacement based, i.e.
involve the displacement amplitude and the first derivative hereof. I have cho-
sen to keep the formulation as simple as possible by not having to introduce
the generalized forces and combinations of higher order derivatives. To keep the
example simple with illustrative distortional deformations I have also chosen
only to focus on a uniform load.

It is found necessary to follow the individual steps of the transformations and
eliminations in the previous chapter 3 in order to ensure a correct formulation
of the individual decoupled non-homogeneous differential equation, especially
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= x

Figure 4.1: Load distribution.

for the distortional modes where we have utilized reduction of the order of
the differential equations. Having done this once we may use work or energy
principles to identify the individual load terms in a more direct manner.

4.1 External energy potential for distributed loads

In view of the distortional non-homogeneous differential equations and solutions,
let us first introduce three types of distributed loads qz, qs, qn which act on the
mid plane of the individual walls in the z, s, n directions, respectively. The
external load potential for these distributed loads can then for a single mode be
found as

Πext = −
∫ L

0

∫ be

0

[
qzuz + qsus + qnun

]
ds dz (4.1)

Using separation of variables for the distributed loads as for the displacements
in chapter 3, we introduce the following load variables qs = ps(s)φ(z), qn =
pn(s)φ(z), qz = pz(s)φ(z). In this formulation ps, pn, pz represent the cross-
section load distribution, and the function φ represents the axial variation of
the loads. In the following formulation we operate with only one cross-section
load distribution, which may be modified by summation of various different
cross-section load distributions and axial load variation functions. The load
separation is illustrated in Figure 4.1 for a distributed load qn = pn(s)φ(z) on
the upper flange of a prismatic thin-walled beam. The local components of the
loads and force vectors for a cross-section wall element is shown in Figure 4.2.
Hereby the contribution to the external load potential of a single wall element
takes the following form

Πext,el = −
∫ L

0

∫ be

0
φ

[
pswsψ + pnwnψ − pzΩψ′

]
ds dz (4.2)
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which is suited for adequate interpolation in the following. Note that the two
first load terms perform work through the transverse displacements and the last
load term performs work through the axial warping displacements. Since the
formulation of distortion has much in common with torsion the first two terms
may be described as distortional moment loads and the last term as distortional
bimoment load (Jönsson, 1999a). For the classical torsional equilibrium equation
including warping of the cross section (Kollbrunner and Hajdin, 1972), these
loads correspond to torsional moment load and torsional bimoment load.

4.2 Load interpolations within cross-section

elements

The interpolations related to the cross section are the displacement interpola-
tions for ws, wn, and Ω described in the previous chapter 3 or in Paper I (Jönsson
and Andreassen, 2011), and the interpolation of the cross-section loads ps, pn,
and pz introduced in the following. The distributed load shown in Figure 4.1 are
defined by a linear interpolation of the load on each cross-section wall element
multiplied by an axial shape function φ(z), for which we introduce a specific
interpolation later. The load interpolation in a cross-section wall is given by

ps = Nppels , pn = Nppeln , pz = Nppelz (4.3)

in which Np(s) = [1− s/be, s/be] is a linear interpolation matrix, and where the
nodal end values of a cross-section wall element are given as

pels =
[
ps1

ps2

]
, peln =

[
pn1

pn2

]
, pelz =

[
pz1

pz2

]
(4.4)

Using the introduced interpolations for the displacements and the loads, the
external potential energy now takes the following form for a single wall element

Πext,el = −
∫ L

0

∫ be

0

[
ψvelw

TNs
TNppels + ψvelw

TNn
TNppeln

−ψ′velΩ
TNΩ

TNppelz
]
φ ds dz (4.5)

This formulation allows us to write the element load vector in the same format
as the element stiffness contributions from chapter 3. This means that we in
addition to the straight-element stiffness contribution have the element load
contributions as given in Table 4.1, where we have also included the nodal
cross-section wall loads Pel

w and Pel
Ω corresponding to line loads also varying

along the beam with φ. Hereby the walls of the prismatic thin-walled beam
can be loaded by line loads acting at the cross-section nodes, and by surface
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relΩ =
∫ be

0 NT
ΩNp ds pelz + Pel

Ω

relw =
∫ be

0 NT
s Np ds pels +

∫ be
0 NT

nNp ds peln + Pel
w

Table 4.1: Load contributions.

loads acting on the mid-plane of a cross-section wall. Both of these loads are
distributed along the beam as given by the φ-function. Now, we can rewrite the
external load potential of a single wall element as,

Πext,el = −
∫ L

0

[
ψvelw

T relwφ− ψ′velΩ
T relΩφ

]
dz (4.6)

where we have introduced the axial and transverse nodal load components of a
straight cross-section element as

relΩ =
[
relΩ1 r

el
Ω2

]T
(4.7)

relw =
[
relw1 r

el
w2 r

el
w3 r

el
w4 r

el
w5 r

el
w6

]T
(4.8)

These components are shown in Figure 4.2 along with the direction of the wall
element coordinates (n, s) as well as the positive direction of the load compo-
nents. We choose to assemble the single element components into two separate
global vectors containing the axial load and the transverse load, respectively.
These global vectors we will write as follows:

rΩ = [rΩ1 rΩ2 rΩ3 . . .]T (4.9)
rw = [rw1 rw2 rw3 rw4 rw5 rw6 . . .]T (4.10)

where the transformation from local to global components is performed using
a formal standard transformation of the components in the cross-section plane,
i.e.

rΩ =
∑
el

TΩ
T relΩ (4.11)

rw =
∑
el

Tw
T relw (4.12)

To obtain an overview of the important transformations obtained in the previous
chapter 3 and which also have to be used in the following chapters Table 4.2
has been made.

Now, we can write the total potential energy by summation of each element
contribution as

Πtot = Πint + Πext , where Πext =
∑
el

Πext,el (4.13)
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No. Description Transformations

1 Transformation from local to global axial
d.o.f.

vΩ = TΩvelΩ

2 Transformation from local to global
transverse d.o.f.

vw = Twvelw

3 Transformation from pure axial exten-
sion and other axial d.o.f. to global axial
d.o.f.

vΩ =
[
Ta

Ω To
Ω

] [vaΩ
voΩ

]

4 Transformation from transverse d.o.f. to
the other axial d.o.f. (without pure axial
extension) based on the shear constrains.

voΩ = TΩwvw

5 Transformation from transverse d.o.f.
and pure axial extension d.o.f. to the
global axial d.o.f.

vΩ =
[
Tr

Ωw Ta
Ω

][vw

vaΩ

]
6 Transformation from pure transverse

translation d.o.f., pure rotation d.o.f.,
constant wall-width constrained d.o.f.
and unconstrained d.o.f. to global trans-
verse d.o.f. (wall-width constraints not
applied).

vw =
[
Tα

w T3
w Tc

w Tu
w
]

vαw
v3
w

vcw
vuw



7 Transformation from pure transverse
translation d.o.f., pure rotation d.o.f.
and unconstrained d.o.f. to global trans-
verse d.o.f. (wall-width constraints ap-
plied).

vw =
[
Tα

w T3
w T̃u

w
]vαw

v3
w

vuw



8 Transformation from constrained trans-
verse d.o.f. and transverse GBT d.o.f.
to global transverse d.o.f.

vw =
[
Tc

w Tg
w
] [vcw

vgw

]

9 Transformation from FE space to GBT
space.

[
vgw
vaΩ

]
=
[

Tg
w
T 0

0 Ta
Ω
T

][
vw

vΩ

]
10 Transformation from GBT space to FE

space.

[
vw

vΩ

]
=
[

T̃g
w 0

Tr
ΩwT̃g

w Ta
Ω
T

][
vgw
vaΩ

]

Table 4.2: Transformations.



72 4.3: Modal loads and modal solutions

Figure 4.2: Distributed loads and the resulting load vectors.

where Πint is the contribution to the potential energy from the internal prop-
erties found in chapter 3, and Πext is the contribution from the external loads.
Introducing the described interpolation and matrix calculation scheme allows
us to write the total potential energy as

Πtot = Πint −
∫ L

0

{
(ψvTw)rwφ− (ψvTΩ)′rΩφ

}
dz (4.14)

The first term corresponds to the distortional moment load which performs work
through the transverse displacements and the second term corresponds to the
distortional bimoment load which performs work through the axial displace-
ments.

4.3 Modal loads and modal solutions

To obtain a formulation resembling the generalization of Vlasov beam theory
including distortion, the following three main steps have to be performed again
as in the previous chapter. This allows us to properly identify modal load
components as well as the contributions to the individual modal differential
equations.
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raΩ = Ta
Ω
T rΩ r̄Ω = Tr

Ωw
T rΩ −Kσra

ΩΩ (Kσaa
ΩΩ )−1raΩ

Table 4.3: Transformation of load vectors related to Step I.

4.3.1 Step I: Pure axial load and shear constraints

Following the procedure which is used to identify pure axial extension as an
eigenmode and to introduce shear constraints, we will identify the axial load
components and separate these from the remaining equations. The potential
energy formulation including the load terms in equation (4.14) have to be mod-
ified, so that the pure axial extension is described by the separate degree of
freedom vaΩ, and so that the shear constraint equations are enforced. This mod-
ification is performed using the following transformation (No. 5 described in
Table 4.2):

vΩ = Tr
Ωwvw + Ta

Ωv
a
Ω (4.15)

To clarify the variational treatment of pure axial extension, we also tempo-
rally rewrite the terms pertaining to axial extension using ζvaΩ = −ψ′vaΩ. The
modified elastic potential energy for a single mode takes the following form:

Πtot = Πint −
∫ L

0

{
(ψvTw)rwφ− (ψvTw)′ Tr

Ωw
T rΩφ+ (ζvaΩ)raΩφ

}
dz (4.16)

in which the pure axial loading is identified as raΩ. It is as given in Table 4.3
identified as the product of the transpose of the pure axial deformation mode
and the global axial load vector .

To obtain the differential equations of GBT, the first variation of the elastic
potential energy is investigated by taking variations in the complete displace-
ment field. This gives

δΠtot = δΠint −
∫ L

0

{
δ(ψvTw)rwφ− δ(ψvTw)′ Tr

Ωw
T rΩφ+ δ(ζvaΩ)raΩφ

}
dz

(4.17)

After performing partial integrations on the terms that involve axial derivatives
of the (virtual) varied displacement field, δ( )′, the first variation of the elastic
potential energy takes the form

δΠtot = δΠint −
∫ L

0

{
δ(ψvTw)

[
rwφ+ Tr

Ωw
T rΩφ

′
]

+ δ(ζvaΩ)raΩφ
}
dz

+
[
δ(ψvTw)

[
Tr

Ωw
T rΩφ

]]L
0

(4.18)
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For internal variation in the displacement fields δ(ψvw) and δ(ζvaΩ), the elastic
potential energy should be stationary and therefore its first variation must be
equal to zero. Here the terms in the squared bracket correspond to the boundary
loads and boundary conditions. Substituting δΠint from chapter 3 leads to the
following coupled non-homogeneous differential equations of GBT in which we
note that ζ = −ψ′:

K̄σvwψ
′′′′ −Kσra

ΩΩ v
a
Ωζ
′′′ −Kτvwψ

′′ + Ksvwψ = rwφ+ Tr
Ωw

T rΩφ
′ (4.19)

Kσar
ΩΩ vwψ

′′′ −Kσaa
ΩΩ vaΩζ

′′ = raΩφ (4.20)

Here the left hand side of the equations corresponds to the homogeneous equa-
tions, and the right hand side are the non-homogeneous load terms.

These equations establish a coupled set of non-homogeneous GBT differential
equations, that determine the displacements of a prismatic thin-walled beam for
a given set of boundary conditions. The homogeneous parts of the solution have
been found, and now we seek particular solutions to the modal equations. Let
us start out by isolating the term vaΩζ

′′ in equation (4.20) as

vaΩζ
′′ = (Kσaa

ΩΩ )−1[Kσar
ΩΩ vwψ

′′′ − raΩφ] (4.21)

Let us then first consider the pure axial extension mode, which has been iden-
tified as (vw, v

a
Ω) = (0, 1), where we introduce the notation bold zero 0 for a

suitable size matrix or vector of zeroes. Introducing this mode in equation (4.21)
uncouples the equation (since vw = 0). Integrating the particular solution for
the axial mode, the complete solution for the axial variation is then given by
adding the homogeneous part of the solution and the particular part as follows:

ζ(z) =
[
1 z
] [ca1

ca2

]
− (Kσaa

ΩΩ )−1raΩ

∫∫
φ dzdz (4.22)

where ca1 and ca2 are constants determined by the boundary conditions of axial
extension.

In the context of the current work we will interpolate the cross-section load
using a single distribution function φ(z), which varies linearly between two end
values (φ1 and φ2) representing the values of the multiplicative function at the
ends of the profile. Thus we introduce φ as

φ =
[
1− z

L
z
L

]
φ where φ =

[
φ1

φ2

]
(4.23)

Using this linear interpolation the full integrated solution of equation (4.22)
takes the form
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ζ(z) = −Ψah
′(z) ca −Ψap

′(z) φ (4.24)

where

Ψah
′ = −

[
1 z
]
, ca =

[
ca1

ca2

]
, Ψap

′ = L2raΩ
6Kσaa

ΩΩ

[
3( zL )2 − ( zL )3 ( zL )3

]
(4.25)

The introduced subscripts h and p denote the homogeneous and the particular
parts of the solution, respectively.

Let us next consider the formulation of the remaining transverse displace-
ment modes. Inserting equation (4.21) differentiated once into equation (4.19)
we eliminate pure axial extension. Introducing Kσ as in chapter 3, we obtain
the following non-homogeneous fourth order differential equations for determina-
tion of the transverse (global, distortional, and local) distortional displacement
modes of GBT:

Kσvwψ
′′′′ −Kτvwψ

′′ + Ksvwψ = rwφ+ (Tr
Ωw

T rΩ −Kσra
ΩΩ (Kσaa

ΩΩ )−1raΩ)φ′

(4.26)

which we choose to abbreviate and write as

Kσvwψ
′′′′ −Kτvwψ

′′ + Ksvwψ = rwφ+ r̄Ωφ
′ (4.27)

where r̄Ω is given in Table 4.3.

4.3.2 Step II: Flexural loading and constant wall width

In this step we treat two modes corresponding to transverse translations of the
cross section, and one mode corresponding to pure rotation. We also constrain
the transverse displacement field so that the wall widths remain constant, i.e.
we enforce ws,s ≡ 0.

Let us do this by first introducing transformation No. 7 from Table 4.2 into
the differential equations in (4.27), and also introduce the null terms corre-
sponding to the rigid-body modes and zero shear strain for translational and
flexural modes. Hereby the differential equations including the load terms take
the following form:
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rαw = Tα
w
T rw r3

w = T3
w
T rw

ruw = T̃u T
w rw ruαw = ruw −Kσ

αu
T (Kσ

αα)−1rαw

r̄αΩ = Tα
w
T r̄Ω r̄3

Ω = T3
w
T r̄Ω

r̄uΩ = T̃u T
w r̄Ω r̄uαΩ = r̄uΩ −Kσ

αu
T (Kσ

αα)−1r̄αΩ

Table 4.4: Transformation of load vectors related to Step II.

Kσ
αα 0 Kσ

αu

0 Kσ
33 Kσ

3u

Kσ
uα Kσ

u3 Kσ
uu


vαw
v3

w

vu
w

ψ′′′′ −
0 0 0

0 Kτ
33 Kτ

3u

0 Kτ
u3 Kτ

uu


vαw
v3

w

vu
w

ψ′′

+

0 0 0
0 0 0
0 0 Ks

uu


vαw
v3

w

vu
w

ψ =

rαw
r3
w

ruw

φ+

r̄αΩ
r̄3
Ω

r̄uΩ

φ′ (4.28)

where the transformed stiffness matrices are found and described in chapter 3
and the load vectors are given in Table 4.4. The two-dimensional upper block
matrix equation yields the translation displacements as

vαwψ′′′′ = Kσ
αα
−1[rαwφ+ r̄αΩφ′ −Kσ

αuvuwψ′′′′] (4.29)

where α = 1 or α = 2. We can identify the two orthogonal pure translational
modes, (v1

w, v
2
w, v

3
w,vuw) = (1, 0, 0,0) and (0, 1, 0,0), as eigenmodes or full so-

lutions to the homogeneous part of equation (4.28). A particular solution for
the axial variation of the pure translational modes is determined by quadruple
integration of the non-homogeneous load terms (since vuw = 0). The complete
solution is then given by summation of the full homogeneous solution and the
particular solution, which we can express as

ψα(z) = cα1 + cα2z + cα3z
2 + cα4z

3 +
∫∫∫∫

(Kσ
αα)−1(rαwφ+ r̄αΩφ′) dz dz dz dz

(4.30)

Remembering that we in the present context introduce φ as one linear function
as given in equation (4.23), we can perform the quadruple integration and get

ψα(z) = Ψαh(z) cα + Ψαp(z) φ (4.31)
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Here cα is a vector containing four constants of the homogeneous part of the
solution, and

Ψαp(z) = Ψw
αp(z) + ΨΩ

αp(z) (4.32)

Ψαh(z) =
[
1 z z2 z3

]
(4.33)

Ψw
αp(z) = L4

120 (Kσ
αα)−1rαw

[
5( zL )4 − ( zL )5 ( zL )5

]
(4.34)

ΨΩ
αp(z) = L3

24 (Kσ
αα)−1r̄αΩ

[
4( zL )3 − ( zL )4 ( zL )4

]
(4.35)

Having identified the solutions related to the two pure translational modes we
return to the remaining block equations of equation (4.28). Eliminating the two
pure flexural degrees of freedom using equation (4.29) we obtain the condensed
version of the differential equation (4.28) as[
Kσ

33 Kσ
3u

Kσ
u3 K̄σ

uu

][
v3

w

vuw

]
ψ′′′′ −

[
Kτ

33 Kτ
3u

Kτ
u3 Kτ

uu

][
v3

w

vuw

]
ψ′′ +

[
0 0
0 Ks

uu

][
v3

w

vuw

]
ψ

=
[
r3
w

ruαw

]
φ+

[
r̄3
Ω

r̄uαΩ

]
φ′ (4.36)

The stiffness matrix K̄σ
uu is found in chapter 3 and the vectors ruαw and r̄uαΩ

are given in Table 4.4. This equation constitutes the GBT differential equa-
tions constrained by shear flow constraints and wall-width constraints after the
elimination of the classical axial and two translational (flexural beam) modes.

4.3.3 Step III: Reduction of order and torsional load

The fourth order differential equation (4.36) can be transformed into twice as
many second order differential equations by introducing a so-called state vector.
There are a number of different possible formulations, however we choose the use
of the state vector (v3

wψ,vuwψ, v3
wψ
′′,vuwψ′′)T . By introducing this state vector

we obtain a reformulation of equation (4.36), leading to a formal second order
matrix differential equation of double size, which takes the form

0 0 0 0
0 Ks

uu 0 0
0 0 −Kσ

33 −Kσ
3u

0 0 −Kσ
u3 −K̄σ

uu



v3

wψ

vuwψ
v3

wψ
′′

vuwψ′′

−

Kτ

33 Kτ
3u −Kσ

33 −Kσ
3u

Kτ
u3 Kτ

uu −Kσ
u3 −K̄σ

uu

−Kσ
33 −Kσ

3u 0 0
−Kσ

u3 −K̄σ
uu 0 0



v3

wψ

vuwψ
v3

wψ
′′

vuwψ′′


′′

=


r3
w

ruαw

0
0

φ+


r̄3
Ω

r̄uαΩ

0
0

φ′ (4.37)



78 4.3: Modal loads and modal solutions

To keep the matrix operations as simple as possible we introduce a new vector
vew, three new block matrices, Kσ

ee, Kσ
3e, and Kσ

ue given by

vew =
[
v3

w

vuw

]
Kσ
ee =

[
Kσ

3e

Kσ
ue

]
=
[

[ Kσ
33 Kσ

3u ]
[ Kσ

u3 K̄σ
uu ]

]
(4.38)

and the force vectors are given by

rew =
[

0
0

]
, reΩ =

[
0
0

]
(4.39)

Introducing the new vectors and block matrices defined by equation (4.38) and
(4.39), and the transformed loads given in Table 4.5, the second order differential
equations (4.37) can be rewritten as

0 0 0
0 Ks

uu 0
0 0 −Kσ

ee


 v

3
wψ

vuwψ
vewψ′′

−
 Kτ

33 Kτ
3u −Kσ

3e

Kτ
u3 Kτ

uu −Kσ
ue

−Kσ
e3 −Kσ

eu 0


 v

3
wψ

vuwψ
vewψ′′


′′

=

 r
3
w

ruαw

rew

φ+

 r̄
3
Ω

r̄uαΩ

reΩ

φ′
(4.40)

From the first equation we can isolate the pure rotational term resulting in the
following differential equation:

v3
wψ
′′ = −(Kτ

33)−1 (Kτ
3uvuwψ′′ −Kσ

3evewψ′′′′ + r3
wφ+ r̄3

Ωφ
′) (4.41)

It can be seen that pure torsion (with free warping), corresponding to the so-
lution vector, (v3

wψ,vuwψ,vewψ′′) = (c32z + c31,0,0), is a solution of the ho-
mogeneous second-order differential equations in (4.40). Hereby the particular
solution for the axial variation of the pure torsion mode is determined by double
integration of the particular part, and the full solution is found by addition of
the homogeneous solution. This results in

ψ3(z) = c31 + c32z −
∫∫

(Kτ
33)−1(r̄3

wφ+ r̄3
Ωφ
′) dz dz (4.42)

Inserting the linear function φ from equation (4.23) we can evaluate the integrals
in (4.42) and find the full solution of pure St. Venant torsion as

ψ3(z) = Ψ3h(z) c3 + Ψ3p(z) φ (4.43)
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Here c3 is a vector containing two constants of the homogeneous part of the
solution, and

Ψ3p(z) = Ψw
3p(z) + ΨΩ

3p(z) (4.44)

Ψ3h(z) =
[
1 z
]

(4.45)

Ψw
3p(z) = −L

2r3
w

6Kτ
33

[
3( zL )2 − ( zL )3 ( zL )3

]
(4.46)

ΨΩ
3p(z) = − Lr̄3

Ω
2Kτ

33

[
2( zL )− ( zL )2 ( zL )2

]
(4.47)

Using equation (4.41) we eliminate v3
w from the differential equations in (4.40)

and find the final distortional non-homogeneous differential equations of GBT
that determine all the distortional displacement modes as

[
Ks
uu 0
0 −Kσ

ee

][
vuwψ
vewψ′′

]
−

[
K̄τ
uu −K̄σ

ue

−K̄σ
eu −K̄σ

ee

][
vuwψ
vewψ′′

]′′
=
[
rαu3

w

re3w

]
φ+

[
r̄αu3

Ω

re3Ω

]
φ′ (4.48)

The block matrices and the transformed stiffness matrices are found in chapter
3 and the load vectors are given in Table 4.5.

rαu3
w = ruαw −Kτ

u3K
τ
33
−1r3

w re3w = rew + Kσ
e3K

τ
33
−1r3

w

r̄αu3
Ω = r̄uαΩ −Kτ

u3K
τ
33
−1r̄3

Ω re3Ω = reΩ + Kσ
e3K

τ
33
−1r̄3

Ω

Table 4.5: Transformation of load vectors related to Step III.

4.4 Solution of distortional equations

The distortional eigenvalue problem for the homogeneous system of equations
(4.48) was solved in chapter 3. Here the eigenvalues, λi = ξ2

i , and the corre-
sponding eigenvectors was given by[

vuw
vewξ2

]
i

=
[

vuwi
vewiξi

2

]
(4.49)

In the present context these eigenvectors can be used to decouple the system
of equations in (4.48). The i’th decoupled equation which determines the axial
variation ψdi(z) of the distortional eigenvector is found by inserting the i’th
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eigenvector and pre-multiplying with it, which results in the following equation:

[
vuw

vewξ2

]T
i

[
Ks
uu 0
0 −Kσ

ee

][
vuw

vewξ2

]
i

ψdi −

[
vuw

vewξ2

]T
i

[
K̄τ
uu −K̄σ

ue

−K̄σ
eu −K̄σ

ee

][
vuw

vewξ2

]
i

ψdi
′′

=
[

vuw
vewξ2

]T
i

[
rαu3

w

re3w

]
φ+

[
vuw

vewξ2

]T
i

[
r̄αu3

Ω

re3Ω

]
φ′ (4.50)

which we abbreviate as

Kg
iiψdi −K

d
iiψdi

′′ = rdwiφ+ rdΩiφ
′ (4.51)

For the i′th distortional equation, rdwi can alternatively be determined as rdwi =
VT

wirw which means the cross-section deformation mode (equation (3.84)) mul-
tiplied by the load vector rw (equation (4.10)) in the initial degrees of freedom.
Equivalent we can write rdΩi = VT

ΩirΩ which means the cross-section warping
mode (equation (3.84)) multiplied by the load vector rω (equation (4.9)) in the
initial degrees of freedom. This gives exactly the same values and signs as found
from the transformations. This also applies to the eliminated modes. The loads
in the orthogonal equations for all the modes can be determined in the same
way.

Normalizing equation (4.51) and introducing that the eigenvalue ξi2 is equal
to Kg

ii/K
d
ii, it takes the following standard form

ψdi
′′ − ξi2ψdi = − 1

Kd
ii

(rdwiφ+ rdΩiφ
′) (4.52)

The above introduced distortional stiffness and load terms are given in Table
4.6. Note that rdwiψ is the distortional moment load and rdΩiψ

′ is the distortional
bimoment load.

Kd
ii =

[
vuw

vewξ2

]T
i

[
K̄τ
uu −K̄σ

ue

−K̄σ
eu −K̄σ

ee

][
vuw

vewξ2

]
i

rdwi =
[

vuw
vewξ2

]T
i

[
rαu3

w

re3w

]

Kg
ii = ξi

2Kd
ii =

[
vuw

vewξ2

]T
i

[
Ks
uu 0
0 −Kσ

ee

][
vuw

vewξ2

]
i

rdΩi =
[

vuw
vewξ2

]T
i

[
r̄αu3

Ω

re3Ω

]

Table 4.6: Modal distortional stiffness and load terms.

We find that the full solution of each of these uncoupled non-homogeneous
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linear second-order differential equations is given by

ψdi(z) = c1e
ξiz + c2e

−ξiz (4.53)

− 1
2ξi

eξiz
∫
e−ξiz

1
Kd
ii

(rdwiφ+ rdΩiφ
′) dz

+ 1
2ξi

e−ξiz
∫
eξiz

1
Kd
ii

(rdwiφ+ rdΩiφ
′) dz

Using that φ is a linear function as given in equation (4.23) and performing
integration or by guessing the solution we get

ψd i(z) = Ψdh i(z) cd i + Ψdp i(z) φ (4.54)

Here cdi is a vector containing the two constants cd 2i−1 and cd 2i of the homo-
geneous part of the solution, and

Ψdp i(z) = Ψw
dp i(z) + ΨΩ

dp i(z) (4.55)

Ψdh i(z) =
[
eξiz e−ξiz

]
(4.56)

Ψw
dp i = rdwi

ξi
2Kd

ii

[
1− z

L
z
L

]
(4.57)

ΨΩ
dp i =

rdΩi
ξi

2Kd
ii

[
−1
L

1
L

]
(4.58)

This concludes the determination of all the solutions for all the displacement
modes of GBT.

4.5 Assembly of the full solution

The axial variation of the four beam modes have been identified in equations
(4.24), (4.30) and (4.43) and can be assembled in the beam solution function
matrices Ψbh(z) and Ψbp(z) which are multiplied by the vector of beam dis-
placement constants cb and the load vector φ, respectively. This results in

Ψbh(z) cb + Ψbp(z) φ

Ψah(z) 0 0
0 Ψαh(z) 0
0 0 Ψ3h(z)


ca

cα
c3

+

Ψap(z)
Ψαp(z)
Ψ3p(z)

φ (4.59)

where

Ψαh(z) =
[
Ψ1h(z) 0

0 Ψ2h(z)

]
(4.60)

Ψαp(z) =
[
Ψ1p(z)
Ψ2p(z)

]
(4.61)
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Furthermore, the distortional solution functions can be assembled and described
as

Ψdh(z)cd + Ψdp(z)φ =


Ψdh 1(z) 0 0 · · ·

0 Ψdh 2(z) 0 · · ·
0 0 Ψdh 3(z) · · ·
...

...
...

. . .




cd 1

cd 2

cd 3

...

+


Ψdp 1(z)
Ψdp 2(z)
Ψdp 3(z)

...

φ

(4.62)

Now, all the solution functions are obtained and can be assembled using the
previously defined block matrices and vectors as

Ψh(z)c + Ψp(z)φ (4.63)

in which

Ψh(z) c =
[
Ψbh(z) 0

0 Ψdh(z)

][
cb
cd

]
(4.64)

and

Ψp(z) φ =
[
Ψbp(z)
Ψdp(z)

]
φ (4.65)

As we are using the in-plane modes found in chapter 3, the back-substitution
process of distortional and eliminated beam displacement in-plane modes is
identical to the process performed in that chapter. Hereby all the in-plane
modes are assembled column-wise in a modal matrix of transverse displacement
vectors Vw and a modal matrix of axial warping displacement vectors VΩ,
by joining the modal matrices of the beam eigenvectors and the distortional
eigenvectors as

Vw =
[

Vb
w Vd

w

]
VΩ =

[
Vb

Ω Vd
Ω

]
(4.66)

Having obtained and assembled all the full solution functions and in-plane
modes, the full solution along the beam can be presented in the nodal solution
vectors uw(z) and uΩ(z) as follows:

uw(z) = Vw
[
Ψh(z) c + Ψp(z)φ

]
uz(z) = −VΩ

[
Ψ′h(z) c + Ψ′p(z)φ

]
(4.67)

The constants, c, have to be determined by the boundary conditions of the
prismatic thin-walled beam.



Chapter 4: Distortional non-homogeneous di�erential equations and solutions 83

4.5.1 Transformation to real modes and real solution functions

Also from the non-homogeneous equations some of the distortional solution
functions found are complex. Because these complex numbers are awkward to
handle it is a matter of considerable importance to construct a more convenient
complete solution when we have complex numbers. In subsection 3.7.2 we intro-
duced the following notation for the positive square root values and the related
eigenvector columns vj and vj+1:

ξj = λj + µji ξj+1 = ξ̄j = λj − µji (4.68)
vj = aj + bji vj+1 = v̄j = aj − bji (4.69)

in which we have introduced the real and imaginary parts of the eigenvalues and
eigenvectors. The complex eigenvectors in equation (4.69) may be conveniently
written as

[
vj vj+1

]
=
[
aj bj

] [1 1
i −i

]
(4.70)

The constants of the related parts of the homogeneous solution are also complex
quantities. However, we are able to assemble the two complex conjugated modal
solutions into two real (but pairwise coupled) solutions by introducing the real
constant vectors c̃j and c̃j+1 as follows:[

cj
cj+1

]
= 1

2

[
1 −i
1 i

][
c̃j

c̃j+1

]
(4.71)

The j’th complex part of the full solution in equation (4.67) can now be rewritten
using the transformations in equations (4.70) and (4.71). After multiplication
and identification of real and imaginary parts we find the following result:

[
vj vj+1

]{[Ψdhj 0
0 Ψdhj

][
cj

cj+1

]
+
[
Ψdpj

Ψdpj

][
φ1

φ2

]}

=
[
aj bj

]{[Re(Ψdh j ) Im(Ψdh j )
Im(Ψdh j ) Re(Ψdh j )

][
c̃j

c̃j+1

]
+
[

2Re(Ψdp j )
−2Im(Ψdp j )

][
φ1

φ2

]}
(4.72)

Hereby it is possible to rewrite the complex quantities into real quantities. Now
the modal matrices Vw and VΩ are modified as Ṽw and ṼΩ by substituting
the complex pairs of eigenvectors with their respective real and imaginary parts.
Furthermore, we also introduce the modified solution matrices Ψ̃dh and Ψ̃dp and
the related modified vector of constants c̃ by substituting the solutions (and
constants) of the complex pairs using equation (4.72). Now the full solution
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along the beam can be written using real numbers as

uw(z) = Ṽw

[
Ψ̃h(z) c̃ + Ψ̃p(z) φ

]
uz(z) = −ṼΩ

[
Ψ̃′h(z) c̃ + Ψ̃′p(z) φ

]
(4.73)

It is possible now to work with this real formulation or continue working with
complex numbers using the full solution formulated in equation (4.67). In the
following context we will use the real formulation in equation (4.73).

4.6 Displacement boundary conditions

In this section we will introduce a method for determining the constants of
the non-homogeneous solutions found. This is to be done in the GBT space,
which has been constrained by the relevant assumptions of the beam theory.
As seen from the first variation of the potential energy, the natural boundary
displacements of the GBT at each boundary are the pure axial displacement uaΩ
of the beam, the transverse displacements ugw, and the axial derivative of the
transverse displacements ugw′. In the following the generalized internal displace-
ments of the GBT beam will be expressed by using the transformation from FE
to GBT displacements as follows: u

a
z(z)

ugw(z)
ugw′(z)

 =

−Ta
Ω
T ṼΩΨ̃′h(z)

Tg
w
T ṼwΨ̃h(z)

Tg
w
T ṼwΨ̃′h(z)

 c̃ +

−Ta
Ω
T ṼΩΨ̃′p(z)

Tg
w
T ṼwΨ̃p(z)

Tg
w
T ṼwΨ̃′p(z)

φ (4.74)

To determine the constants using displacement boundary conditions as in finite
element or stiffness formulations, the boundary displacements at the two ends
of a finite length beam are needed , i.e. at z = 0 and at z = L, where L is the
length of the beam. The assembled boundary displacement vector is denoted by
ub. This leads to the following equation for the determination of the solution
constants:

ub =



uaz(0)
ugw(0)
ugw′(0)
uaz(L)
ugw(L)
ugw′(L)


=



−Ta
Ω
T ṼΩΨ̃′h(0)

Tg
w
T ṼwΨ̃h(0)

Tg
w
T ṼwΨ̃′h(0)

−Ta
Ω
T ṼΩΨ̃′h(L)

Tg
w
T ṼwΨ̃h(L)

Tg
w
T ṼwΨ̃′h(L)


c̃ +



−Ta
Ω
T ṼΩΨ̃′p(0)

Tg
w
T ṼwΨ̃p(0)

Tg
w
T ṼwΨ̃′p(0)

−Ta
Ω
T ṼΩΨ̃′p(L)

Tg
w
T ṼwΨ̃p(L)

Tg
w
T ṼwΨ̃′p(L)


φ = Ãc̃ + B̃φ

⇒ c̃ = Ã−1(ub − B̃φ) (4.75)
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where we have introduced the matrix Ã and B̃, where Ã is an invertible positive
definite “square” matrix. To avoid numerical problems the exponential solution
functions in Ψ̃h(z) may have to be modified by replacing c̃ieξiz by ĉieξi(z−L) so
that the positive ξiz exponent is bounded.

To see the effect of the load as it would be in a finite element context with
built in edges, we choose to plot the solution by using equation (4.73), with all
boundary displacements being zero (built in) as

uTb =
[
0 0 0 0 0 0

]T
(4.76)

This is done in the following example.

4.7 Example

In this section an example is given and nodal displacement results as well as
stress distribution results of GBT are compared to those found using the com-
mercial FE program Abaqus. In this example a lipped channel cross section
is loaded by a distortional load as shown in Figure 4.3 and fixed at both ends.
The load are uniformly distributed and thus given by a cross-section load dis-
tribution multiplied by φ(z) = 1. The beam has a length of L = 2000 mm, an
elasticity modulus E = 2.1 · 105 MPa and a Poisson ratio of ν = 0.3. For more
examples see the related Paper II (Andreassen and Jönsson, 2012b).

The results found using Abaqus are based on isotropic material and the
S4 shell element with full 4 point integration. The linear elastic finite element
calculations are based on a structured rectangular mesh with a side length seed
of 5 mm.

h = 50
w = 100
c = 25
t = 2.0
ps = 0.1 N/mm2

◦ Node

Figure 4.3: Geometry, parameter values and distributed distortional load for the lipped
channel.

Solving the equations leads to the GBT deformation solution shown in Figure
4.4, which has displacements of the lips in both transverse coordinate directions
with the maximum value at mid-span. It is seen that the distortional deforma-
tion dominates and that the boundary conditions give raise to relatively local
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end effects, whereas the deformations around mid-span are relatively constant.
Comparing the nodal displacements of the node marked in Figure 4.4 to the dis-

Figure 4.4: GBT plot of the lipped channel with a distortional load.

placements found using a model in the commercial FE program Abaqus gives
the displacement values and the corresponding deviations shown in Table 4.7.
Here the deviation according to the maximum displacement in the horizontal
direction, ux, is 0.2% and the deviation for the vertical direction, uy, is 0.4%.
We also want a comparison between the stress distributions obtained with GBT

GBT [mm] Abaqus [mm] Difference [%]

ux −2.847 −2.841 0.2
uy 2.093 2.084 0.4

Table 4.7: Nodal displacements of GBT and FE analysis.

and Abaqus. In order to have comparable values different from zero the re-
sults concerning the axial normal stresses are obtained from the end section.
A comparison of the axial membrane stresses in the z direction are shown in
Figure 4.5 and shows a maximum deviation of 7.9% as given in Table 4.8. This

15.915.9

287.8 287.8

-127.8 -127.8

GBT Abaqus

15.615.6

303.0 303.0

-138.7 -138.7

Figure 4.5: Comparison between the axial normal stress distributions obtained with GBT
and Abaqus at the end of the beam. All values are in MPa.
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GBT [MPa] Abaqus [MPa] Difference [%]

σz 127.7 138.7 7.9
σs 197.2 196.9 0.2

Table 4.8: Stress distributions of GBT and FE analysis.

deviation can be explained by shear lag as the results are here from the end
section. The transverse bending stresses at mid-span are shown in Figure 4.6.
Here the maximum deviation is 0.2 % and obtained at the corner in the bottom.

The chosen examples given here and in Paper II (Andreassen and Jönsson,
2012b) show solutions which are applicable to finite element formulation of a
future distortional beam element with applied loads, i.e. with fixed boundary
conditions. The examples also show that shear deformation is only included
for “Bredt’s shear flow” around closed cells and the presented theory does not
include shear lag effects. However, these and other effects may be included as
extensions in approximate energy based finite element formulations which may
be used to extend the capabilities of beam elements.

197.2197.2

0.0 0.0-0.3 -0.3

196.9196.9

0.0 0.0-0.2 -0.2

GBT Abaqus

Figure 4.6: Comparison between the transverse bending stress distributions obtained with
GBT and Abaqus at mid-span. All values are in MPa.

4.8 Concluding remarks

In this chapter the homogeneous differential equations as well as the full analyt-
ical solution along the beam have been extended to also hold the particular part
which means that loads can be taken into account in the context of the non-
homogeneous differential equations and associated full solution along the beam.
By using the distortional modal matrix found for the homogeneous system we
have transformed the non-homogeneous distortional differential equations into
the eigenmode space, and then obtained the uncoupled set of differential equa-
tions including the distributed loads. The novel approach now gives the full
analytical solution of the GBT equations with distributed loads for a given
discretization of the cross section.
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Having developed and solved the distortional homogeneous and non-homoge-
neous differential equations as well as the associated full analytical solution along
the beam we will in the next chapter continue with initial stress contributions
to perform linear distortional buckling analyzes.
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Chapter 5

Distortional stability
di�erential equations and
solutions

An assessment of the structural performance of thin-walled beams includes lin-
ear static analyzes and linear buckling analyzes of the behavior. Linear buckling
analysis is used to achieve an estimate of the load level at which certain types
of structures exhibit a loss of stability through large non-linear deformations.
Typically for these structures membrane strain energy is converted into flexu-
ral strain energy with very little change in externally applied load. In slender
columns and thin plates or shells, the membrane stiffness is much greater than
the bending stiffness, and large strain energy can be stored with very small
membrane deformations. Therefore the deformations of the fundamental state
are neglected and the displacements are measured from the initial perfect con-
figuration. As the membrane stiffness is much greater than bending stiffness,
comparatively large bending deformations are needed to absorb the membrane
strain energy released when buckling occurs. In most buckling cases of practical
interest this means that the geometric stiffness term (for compressional loading)
gives a negative contribution to the total stiffness. In other words, instability
may be considered at the load level at which added elastic stiffness terms are
fully neutralized by a change in added negative geometric stiffness terms in the
potential energy. In this chapter we therefore include initial stress contributions
to the potential energy which allow us to perform linear distortional buckling
analysis of semi-discretized prismatic thin-walled members.

The classical stability analysis of thin-walled columns is based on a combi-
nation of the “in-plane rigid” cross-section displacement modes (Vlasov modes,
Vlasov (1961)) corresponding to: uniform axial extension, major axis bending,
minor axis bending and torsion with related warping. An important feature
missing here is the deformation of the cross section, which undergoes in-plane
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deformations by local and distortional modes.
This chapter which is related to Paper III (Andreassen and Jönsson, 2012a)

deals with the novel method based on solution of the differential initial stress
equations of GBT obtained through semi-discretization and application of beam
constraints. Thus, in order to take stability into account, this chapter deals
with the extension of the homogeneous differential equations to also hold the
geometrical stiffness (stability) terms based on the initial stress approach.

As in the previous chapters the potential energy of a single deformation
mode is formulated based on the discretization of the cross section. However,
through variations in the potential energy and the introduction of the well known
constraints related to beam theory this leads to a modified set of coupled ho-
mogeneous differential equations of GBT with initial stress for identification of
distortional buckling modes.

In this chapter we seek “simple” instability solutions using GBT initial stress
equations for the classical simply supported columns with constrained transverse
displacements at the end sections and a constant axial initial stress. Based on
the known boundary conditions the reduced order differential equations are
solved by introducing the relevant trigonometric solution function and solving
the related eigenvalue problem. This directly gives us the cross-section buckling
mode shape and the eigenvalue corresponding to the bifurcation load factor.
It is done as in conventional FSM without the use of modal decomposition as
conventionally performed in GBT.

From the previous chapters it is seen that distortional displacements can be
of a local character in which the length scale is typically equal to or less than
the cross-section dimension or it can be non-local in which case the length scale
is typically several times the cross-section dimension or even longer. In recent
buckling literature and especially in codes there is a tendency, with respect to
buckling, to distinguish between these two behaviors as distortional buckling and
local buckling. In chapter 3 and 4 as well as Paper V (Andreassen and Jönsson,
2009) and Paper VI (Andreassen and Jönsson, 2011) we are operating with
global, distortional non-local and distortional local modes when we define first-
order displacement modes. However in this chapter which concerns buckling we
have chosen to distinguish between distortional buckling and local buckling as
in the recent codes and literature.

5.1 Energy assumptions and initial stress

First, the internal energy potential introduced in section 3 as well as section 4
are used in this section. This is besides the new contribution to the potential
energy of the initial stress terms, which are adequate for distortional buckling
analysis of prismatic thin-walled members.
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The elastic energy potential is given in equation (3.13) as

Πint =
∫
V

(
1
2Eε

2
z + 1

2Gγ
2 + 1

2Esε
2
s

)
dV (5.1)

Next let us introduce the contribution to the potential energy of a constant
uniform initial stress σ0 which is adequate for column buckling analysis. Fol-
lowing conventional methods the initial stress σ0 will be scaled by a factor λ.
After having utilized linear equilibrium of the pre-buckling state and neglected
contribution corresponding to the squared strain term 1

2λσ
0u2
z,z = 1

2λσ
0ε2 the

potential energy contribution of the factored initial stress is given by

Π0 =
∫
V

(
1
2λσ

0u2
s,z + 1

2λσ
0u2
n,z

)
dV =

∫
V

(
1
2λσ

0(us′)2 + 1
2λσ

0(un′)2
)
dV (5.2)

Let us introduce a thin-walled cross section assembled by using straight
cross-sectional elements. This allows us to integrate the internal energy across
the volume of the prismatic thin-walled beam. The elastic potential energy of
a single mode takes the form as given in equation (3.14) after the introduction
of the strains expressed by the separated displacement functions.

The factored initial stress contribution of a single mode to the potential
energy takes the following form after introduction of straight cross-sectional
wall elements, displacement derivatives and integration through the thickness:

Π0 = 1
2

∫ L

0

[∑
el

∫ bel

0
λσ0

{
t(wnψ′)2 + t(wsψ′)2 + 1

12 t
3(wn,sψ′)2

}
ds

]
dz (5.3)

Introducing the displacement interpolation functions into the internal elastic
potential energy leads to the definition of several stiffness sub-matrices as given
in chapter 3, Table 3.1. After transformation of the individual wall elements
to global degrees of freedom vw and vΩ and assembly, the cross-section elastic
potential takes the form as given in equation (3.24).

Let us also perform the same operations with the initial stress contribution
to the potential energy. The introduction of the displacement interpolations
leads to the definition of the geometric stiffness matrix for a single wall element
as follows:

k0 =
∫ be

0

{
tσ0 [NT

nNn

]
+ tσ0

[
Ns

TNs

]
+ 1

12 t
3σ0

[
Nn,s

TNn,s

]}
ds (5.4)
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which written out in full takes the following form:

k0 = σ0tL
12·35



0 0 0 0 0 0
0 156 22L 0 54 −13L
0 22L 4L2 0 13L −3L2

0 0 0 0 0 0
0 54 13L 0 156 −22L
0 −13L −3L2 0 −22L 4L2



+σ0t
360



120L 0 0 60L 0 0
0 36t2

L 3t2 0 − 36t2
L 3t2

0 3t2 4Lt2 0 −3t2 −Lt2

60L 0 0 120L 0 0
0 − 36t2

L −3t2 0 36t2
L −3t2

0 3t2 −Lt2 0 −3t2 4Lt2


(5.5)

Transforming from local, velw , to global, vw, components using a standard formal
finite element transformation and assembly matrix Tw we get the following
global geometrical stiffness matrix:

K0 =
∑
el

TT
wk0Tw (5.6)

Hereby equation (5.3) in reduced form can be rewritten as

Π0 = 1
2

∫ L

0

{[
ψvTw ψvTΩ

]′ [λK0 0
0 0

][
ψvw

ψvΩ

]′}
dz (5.7)

which is the contribution to the potential energy from the factored initial stress.

5.2 GBT di�erential equations with initial stress

To obtain a formulation resembling a generalization of Vlasov beam theory
including distortion, we have to perform the following three main steps again:

5.2.1 Step I: Pure axial extension and inuence of shear

constraints

In this step, we introduce the shear constraint equations that bind axial and
transverse modes together and at the same time simplify or condense equation
(3.24). In this process we need to eliminate the singularity in the shear stiffness
matrix related to pure axial extension. Performing step I as in section 3.4.2
the differential equations governing the stability problem can be derived by
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considering the first variation of the initial stress contributions to the potential
energy in the same way as the first variation of the traditional elastic potential
energy provided the differential equations in chapter 3 and 4.

δΠ0 =
∫ L

0

{
δ(ψvTw)′λK0(ψvw)′

}
dz (5.8)

After performing partial integration the variation of the initial stress contribu-
tions to the potential energy takes the form:

δΠ0 =
∫ L

0

{
δ(ψvTw)

[
− (λK0vwψ

′)′
]}

ds+
[
δ(ψvTw)

[
λK0(ψvw)′

]]L
0

(5.9)

where the term in the square bracket correspond to the boundary loads and
boundary conditions. As in chapter 3 the pure axial displacement mode is
identified and denoted by superscript a and the remaining axial displacement
modes by superscript r. Substituting δΠint from chapter 3, equation (3.34) leads
to the following coupled homogeneous differential equations of GBT including
initial stresses in which we note that ζ = −ψ′:(

K̄σvwψ
′′)′′ − (Kσra

ΩΩ v
a
Ωζ
′)′′ −

([
Kτvw + λK0vw

]
ψ′
)′ + Ksvwψ = 0 (5.10)

(Kσar
ΩΩ vwψ

′′)′ − (Kσaa
ΩΩ v

a
Ωζ
′)′ = 0 (5.11)

These equations establish a coupled set of homogeneous GBT differential equa-
tions, that determine the displacements of a prismatic thin-walled beam for a
given set of boundary conditions. Note that vaΩ is one component that corre-
sponds to the amount of pure axial extension.

Now we seek solutions to the equations. As in chapter 3 we can identify pure
axial extension as a solution which takes the form as given in equation (3.38).

Having identified the “trivial” displacement mode (pure axial extension) we
turn to the solution of the transverse displacement modes. Eliminating ζ ′′ by
using the fact that ζ ′′ = −ψ′′′ and assuming that ψ′′′ 6= 0, we find:

vaΩ = −(Kσaa
ΩΩ )−1Kσar

ΩΩ vw (5.12)

Using this equation or equation (5.11), we eliminate the second term in equa-
tion (5.10). This results in the following homogeneous fourth-order differential
equations for determination of the transverse (global, distortional, and local)
distortional displacement modes of GBT:

Kσvwψ
′′′′ −

([
Kτ + λK0]vwψ

′)′ + Ksvwψ = 0 (5.13)

where Kσ, Kτ and Ks which are constants are given in Table 3.2 and 3.3. In
general K0 is a function of the axial coordinate z corresponding to the longi-
tudinal contribution of the initial stress. However, in the present context the
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initial stress will be assumed uniformly distributed and constant whereby K0 is
also independent of the axial coordinate z and the equation simplifies to

Kσvwψ
′′′′ −

[
Kτ + λK0]vwψ

′′ + Ksvwψ = 0 (5.14)

This set of GBT column stability equations resemble the conventional equation
for classic column stability. Now the number of degrees of freedom is ndof =
3nno, since all (nno) axial dofs vΩ have been eliminated by the shear constraint
equation and the pure axial deformation mode.

5.2.2 Step II: Translations and constant wall width

In this step we treat two modes corresponding to transverse translations of the
cross section and one mode corresponding to pure rotation. We also constrain
the transverse displacement field so that the wall widths remain constant, i.e.
we enforce ws,s ≡ 0.

Let us do this by first using the transformation given in equation (3.53).
Using this transformation to transform the differential equations in (5.14),

and introducing the null terms corresponding to the rigid-body modes and zero
shear strain for translational and flexural modes, the differential equations take
the following form:Kσ

αα 0 Kσ
αu

0 Kσ
33 Kσ

3u

Kσ
uα Kσ

u3 Kσ
uu


vαw
v3

w

vu
w

ψ′′′′−

0 0 0

0 Kτ
33 Kτ

3u

0 Kτ
u3 Kτ

uu

+ λ

K0
αα K0

α3 K0
αu

K0
3α K0

33 K0
3u

K0
uα K0

u3 K0
uu



vαw
v3

w

vu
w

ψ′′

+

0 0 0
0 0 0
0 0 Ks

uu


vαw
v3

w

vu
w

ψ =

0
0
0

 (5.15)

Here the transformed stiffness matrices are given in Table 3.4 and the K0-
matrices are given in Table 5.1. Now the number of degrees of freedom depends
on the geometry of the cross section. We have constrained the transverse dis-
placement field so that the wall widths remain constant, i.e. we enforce ws,s ≡ 0.
This means that a single ws−dof is eliminated for each element in the cross sec-
tion. For a lipped channel cross section with nel = nno− 1 elements this means
that ndof = 3nno − nel = 2nno + 1. For a box cross section with nel = nno
elements it means that ndof = 3nno − nel = 2nno.

5.2.3 Step III: Reduction of order

To solve this differential equation we choose again to reduce the differential
order of the coupled fourth-order differential equations and the related quadratic
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K0
αα = Tα

w
TK0Tα

w K0
α3 = Tα

w
TK0T3

w K0
αu = Tα

w
TK0Tu

w

K0
3α = T3

w
TK0Tα

w K0
33 = T3

w
TK0T3

w K0
3u = T3

w
TK0T̃u

w

K0
uα = T̃u

w
TK0Tα

w K0
u3 = T̃u T

w K0T3
w K0

uu = T̃u T
w K0T̃u

w

Table 5.1: Transformation of K0-stiffness matrices related to Step II.

eigenvalue problem to twice as many coupled second-order differential equations
with a related linear eigenvalue problem of double size.

The fourth-order differential equation (5.15) can be transformed into twice
as many second order differential equations by introducing what is called a
state vector. There are a number of different possible formulations, but we have
chosen the use of the state vector uS = [vαwψ, v3

wψ,vuwψ,vαwψ′′, v3
wψ
′′,vuwψ′′]T .

Introducing this state vector (and using related equality block equations) yields
a reformulation of equation (5.15) as a formal second order matrix differential
equation of double size which takes the form:



0 0 0 0 0 0
0 0 0 0 0 0
0 0 Ks

uu 0 0 0

0 0 0 −Kσ
αα 0 −Kσ

αu

0 0 0 0 −Kσ
33 −Kσ

3u

0 0 0 −Kσ
uα −Kσ

u3 −Kσ
uu





vαwψ
v3

wψ

vuwψ

vαwψ′′

v3
wψ
′′

vuwψ′′


−





0 0 0 −Kσ
αα 0 −Kσ

αu

0 Kτ
33 Kτ

3u 0 −Kσ
33 −Kσ

3u

0 Kτ
u3 Kτ

uu −Kσ
uα −Kσ

u3 −Kσ
uu

−Kσ
αα 0 −Kσ

αu 0 0 0
0 −Kσ

33 −Kσ
3u 0 0 0

−Kσ
uα −Kσ

u3 −Kσ
uu 0 0 0


+

λ



K0
αα K0

α3 K0
αu 0 0 0

K0
3α K0

33 K0
3u 0 0 0

K0
uα K0

u3 K0
uu 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0







vαwψ
v3

wψ

vuwψ

vαwψ′′

v3
wψ
′′

vuwψ′′



′′

=



0
0
0

0
0
0


(5.16)
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which we choose to abbreviate as follows using the block structure shown in
equation (5.16):[

K̃s 0
0 −K̃σ

][
ṽwψ

ṽwψ
′′

]
−

([
K̃τ −K̃σ

−K̃σ 0

]
+ λ

[
K̃0 0
0 0

])[
ṽwψ

ṽwψ
′′

]′′
=
[
0
0

]
(5.17)

This is the set of differential equations to which we want to find solutions.

5.3 The distortional initial stress eigenvalue problem

In the reduced order differential equations in (5.17) we substitute A, B, C and
uS for the respective matrices and vector in the equation. This means that A
and B are linear stiffness matrices, C a geometrical stiffness matrix, and uS
a vector containing the longitudinal amplitude functions. Thus, it takes the
following form:

AuS − [B + λC] uS ′′ = 0 (5.18)

This set of differential equations are homogeneous with constant coefficients and
therefore lead to solution functions of exponential type.

By postulating exponential solutions of the form uS = vSψ(z), where the
state space vector vS is independent of the axial coordinate z and ψ(z) = eξz,
and inserting the solution, the following special eigenvalue problem is obtained:

AvS − ξ2 [B + λC] vS = 0 (5.19)

In the classical stability theory the solution function ψ(z) is normally as-
sumed to be a trigonometric function in order to satisfy suitable simple bound-
ary conditions (Timoschenko and Gere, 1963). This means that ξ = µi is a
known (complex) parameter and that λ can be determined as the eigenvalue
equivalent to the instability load factor, which determines the level of stress at
which the structure becomes unstable. The eigenvalues and the corresponding
eigenvectors vS can be found by solving the eigenvalue problem.

In order to satisfy suitable simple boundary conditions let us therefore as-
sume that the solution is of a simple trigonometric form here chosen as

ψ(z) = sinµz (5.20)

where µ = nπ/L in which n is equal to the number of buckles, i.e. half-
wavelengths. This solution satisfies boundary conditions corresponding to sim-
ple supports with restrained transverse cross-section displacements at z = 0 and
z = L. Inserting this postulated solution in equation (5.18) and remembering
the change of sign related to double differentiation of the sine function leads to
the following generalized linear symmetric matrix eigenvalue problem, in which
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K = K̃s + µ2K̃τ + µ4K̃σ G = µ2K̃0

Table 5.2: Definition of K and G.

the eigenvalues, λ, correspond to the buckling factor and the eigenvectors are
the distortional state space buckling modes:[

A +
(nπ
L

)2
B
]

vS + λ
(nπ
L

)2
CvS = 0 (5.21)

Eliminating the second half of vector vS corresponding to ṽwψ
′′ in equation

(5.17) leads to the following final generalized linear symmetric matrix eigenvalue
problem:

[K + λG] ṽw = 0 (5.22)

in which K and G are given in Table 5.2 as functions of the inverse length scale
parameter µ. From the results of this eigenvalue problem we know at which load
(λ) the corresponding mode has a homogeneous solution function which is sinu-
soidal with a number of half-waves corresponding to n, leading to conventional
half wavelength buckling curves or so called cross-section signature curves. Such
a signature curve is depicted in the upper left part of Figure 5.1 obtained from
the example given in the following section 5.4. The signature curve is similar
to the finite strip buckling curve obtained by Hancock (1985). In chapter 3
as well as in Paper I (Jönsson and Andreassen, 2011) a full decomposition of
the displacement field is demonstrated (though with some complex solutions).
Hereby we establish the natural analytical solution modes of the GBT differen-
tial equations for first-order analysis, while we in the present chapter establish
a special set of solutions of the GBT-stability differential equations for buckling
of simply supported columns. This means that we are not able to do the same
full modal decomposition while the modes are not as pure as for the natural
modes but a combination of several modes. The indication of the combination
of natural modes for a given buckling mode is also a feature in GBTUL and a
topic in its related papers.

The number of modes depends on the discretization and the geometry of
the cross section. This means that the number of different modes can only be
defined by the illustrative examples. But as mentioned we are not dealing with
a modal decomposition, but with a set of buckling modes (which in conventional
GBT means a combination of several first-order modes). For example, a global
buckling mode is a combination of a rigid translation and some distortional local
and/or non-local transverse displacement. Therefore we are not able to classify
all the buckling modes in pure global, distortional, and local modes. (This also
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happens in classic theory involving interaction of flexural and torsional buckling
as well as in conventional GBT). At the present level the number of degrees of
freedom for a lipped channel cross section is ndof = 2nno + 1, while the number
of degrees of freedom for a box cross section is ndof = 2nno. The number of
dofs is equal to the number of eigenvalues.

In contrast to the assumed solution function given in equations (5.20) which
lead to the eigenvalue problem in equation (5.22) we could instead seek general
solutions to the differential equations, see Paper VII (Jönsson and Andreassen,
2012). Thus, it is necessary to fix the initial stress level and thus perform
calculations with fixed values of λ. Furthermore, it is necessary to reduce the
order of the differential equations and introduce a state vector with twice the
number of dofs. Through solution of the related linear eigenvalue problem of
double size the state space displacement solutions are identified. The eigenvalues
ξ are functions of the initial stress level and correspond to complex solution
length scales (π/ξ) as plotted in the upper right part of Figure 5.1. From this
part of the figure we can recognize the cross-section signature curves identical to
the upper left part of the figure. Separating the cross-section signature curves
the changes in the distortional solution modes and length scales are seen in the
lower part of the figure.

Although we have several opportunities for investigating the problem we will
here continue with the assumed trigonometric solution function and the related
eigenvalue problem given in equation (5.22) leading to the following example.

5.4 Example

In this section the developed GBT approach is used to give an illustrative exam-
ple of the trigonometric buckling solutions of the differential GBT equations with
initial stress. The ability of the GBT approach to produce buckling curves and
predict buckling is shown. The buckling of a simply supported lipped channel
column in pure compression is analyzed. The chosen in-plane geometry and the
discretization is shown in Figure 5.2. The end sections are constrained against
transverse displacements, but otherwise free to warp (and thus also rotate).

The buckling signature curves of the cross section are developed correspond-
ing to the buckling stress versus the buckling half-wavelength for the four lowest
buckling modes. This is done by solving the GBT eigenvalue problem for con-
secutive values of the half-wavelength. For each buckling curve it is shown that
the transverse buckling mode shape varies with the buckle half-wavelength. The
buckling signature curve is used to develop the overall buckling curve including
multiple buckling waves by shifting the signature curve sides ways correspond-
ing to a number of half-wavelengths. Chosen buckling modes for given column
lengths are used to illustrate local, distortional and global buckling modes. The
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Figure 5.1: Signature curves, solution length scale curves and solution mode development.

accuracy of the results are assessed by comparison to results obtained by the
use of the commercial FE program Abaqus.
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The results found using Abaqus are based on isotropic material and the
4 node S4 shell element with full 4 point integration. The linear elastic finite
element calculations are based on a structured rectangular mesh with a side
length seed of 5 mm. The cross section is fixed in the transverse directions at
both ends. All supports are continuous line supports. Two identical normal
forces are applied as a uniform distributed shell edge load; one at each end.
For further and more detailed explanations see also Abaqus (2008). This finite
element model results in local transverse stress near the end supports due to
the Poisson effect. These end stresses have an influence on the buckling, which
is not included in the FSM or GBT models.

h = 50
w = 100
c = 25
t = 2.0
E = 2.1 × 105

G = 8.077 × 104

ν = 0.3
◦ Node

Figure 5.2: Geometry, discretization and parameter values of a lipped channel column.

For more examples see Paper III (Andreassen and Jönsson, 2012a). Solving
the GBT initial stress eigenvalue problem given in equation (5.21) with n = 1
for half-wavelengths L varying from 10 mm to 3000 mm (logarithmical spaced)
allows the development of the signature curve (buckling stress versus the buckle
half wavelength) as shown in Figure 5.3. Thus the buckling curves shown in the
figure correspond to the four lowest buckling modes with one half-wave buckle,
n = 1.

For three different half-wavelengths the transverse buckling mode shape has
been included in the figure. It is clear that the mode shape of each curve changes
gradually as a function of the length. The chosen half-wavelengths correspond
to the dashed lines at 70 mm, 500 mm and 2000 mm, respectively. To illuminate
the changes in the deformation modes for increasing length we have chosen also
to show the buckling mode shapes in 3D in Figure 5.4. The mode shapes are
shown as a 3D representation even though the results are provided by a one-
dimensional beam formulation.

From the figures it is seen that each developing mode represents its own
curve placed in a hierarchical order according to the stress level. However, the
curves are able to change place in the hierarchy at a certain column length.
This phenomenon can for example be seen for buckling mode 1 and 2 (two
lowest ranking graphs) at a column length of approximately 1000 mm. The
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Figure 5.3: Buckling signature curve corresponding to the lowest four modes with a single
half-wave buckle, n = 1.

signature curve, shown bold, is achieved as the very lowest of the buckling
curves. For this curve short column lengths correspond to local buckling, while
for increasing column lengths it corresponds to distortional buckling and finally
for large column lengths it corresponds to global buckling. The signature curve
is similar to the finite strip buckling curve obtained by Hancock (1985).

As mentioned Figure 5.3 is for a half-wave number n = 1. As the buckling
loads also depend on the number of n half waves in the buckled shapes, this
means that points lower than the signature curve can exist for a greater number
of buckles, n > 1. To show this phenomenon the signature curve has been
created for a varying number of n as shown in Figure 5.5. This means that
the bold curve shown in Figure 5.5 represents the absolute lowest curve for
the buckling stress versus column length. However, to illustrate the multitude
of buckling modes for each column length, let us look at a column length of
L = 1000 mm. In Figure 5.5 this length is represented by the vertical dashed
line. For this length we can find the buckling modes m = 1, 2, 3.. ordered from
lowest to highest critical stress, each having a different number of half waves n.
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A,70
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A,2000 C,70
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C,2000
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D,500

D,2000

Figure 5.4: Column buckling modes associated with Figure 5.3 for single (n = 1) half
wavelengths of 70 mm, 500 mm, and 2000 mm

In Table A.3 the buckling stresses of FE analysis using Abaqus (2008) versus
the presented GBT method, conventional GBT using GBTUL (Bebiano et al.,
2008a) and FSM using CUFSM (Li and Schafer, 2010) are compared. The com-
parison is performed for suitable mode numbers (m-values) and the associated
relevant buckling modes are depicted in Figure 5.6. It shows the local buckling
mode corresponding to the lowest critical stress (m = 1), the global beam buck-
ling mode (m = 20), and a distortional mode shape (m = 24), respectively. The
three values of m have been chosen to show the spectrum of modes represented
at the given beam length.

From Table A.3 it is seen that for a column length of 1000 mm buckling
will occur as local buckling consisting of thirteen sine half waves and have an
associated buckling stress of 350 MPa. Furthermore, it is seen that the buckling
mode shape for mode m = 20 is global column buckling with one buckle, n = 1,
at a stress level of 590 MPa and finally for m = 24 distortional column buckling
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Figure 5.5: Buckling stress versus column length for the lipped channel section in com-
pression.

Nr. of half Abaqus GBT Diff. GBTUL Diff. CUFSM Diff.

m waves n [MPa] [MPa] % [MPa] % [MPa] %

1 13 404 350 13.4 412 2.0 412 2.0
20 1 580 590 1.7 589 1.6 581 0.2
24 3 903 918 1.7 933 3.3 906 0.3

Table 5.3: Comparison of buckling stresses for FE analysis versus the presented GBT
method, GBTUL and CUFSM, respectively. The comparisons are related to the vertical
dashed m-line in Figure 5.5.

occurs at a stress level of 918 MPa.
Comparing the GBT buckling stresses with Abaqus we obtain a deviation

of 13.4% for local plate buckling, 1.7% for global buckling and 1.7% for dis-
tortional buckling. Hereby it is seen that good results are obtained for global
and distortional buckling, while a rather large deviation is obtained for local
buckling. The GBTUL results which are based on the conventional GBT theory
shows a deviation of 2.0% for local plate buckling, 1.6% for global buckling and
3.3% for distortional buckling. In contrast to these beam theory results, Table
A.3 also shows results obtained from the CUFSM program which is based on
a plate theory. Here we obtain a deviation of 2.0% for local plate buckling,
0.2% for global buckling and 0.3% for distortional buckling, showing that good
results are obtained in all cases. From the deviations it is obvious that GBT
and GBTUL are based on beam theories while CUFSM is based on plate theory.
The rather large deviation of 13.4% for the GBT results can to a certain extent
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m=1

m=20

m=24

Figure 5.6: GBT column buckling mode shapes of a lipped channel column in pure
compression.
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be explained by the very simple constitutive relations used in the current GBT
formulation where Poisson effects are not taking into account. Making a calcu-
lation in Abaqus with similar very simple non-coupling constitutive relations
the deviations obtained now corresponds to (350 MPa) 0.0%, (582 MPa) 1.4%
and (888 MPa) 3.4%, respectively. Hereby good matches between the two ap-
proaches are obtained, however also difference in the modeling of the boundary
conditions can affect the results. Thus demonstrating that this new developed
GBT approach provides reasonably accurate results with a very small compu-
tational cost, making it an alternative to the traditional and time consuming
FE calculations and the other available methods. However, the constitutive re-
lations should be modified to achieve a higher accuracy for local plate buckling.

5.5 Concluding remarks

In this chapter we have presented the extension of the novel GBT approach to
include the geometrical stiffness terms which are needed for column buckling
analysis. The distortional differential equations in chapter 3 are extended to
a formulation including geometrical stiffness terms by using the initial stress
approach to formulate the instability problem. The derived GBT differential
equations with initial stress have been solved as an eigenvalue problem leading
to a number of buckling modes and associated buckling stresses for simply sup-
ported columns in compression. As opposed to conventional GBT this means
that we are not using a modal decomposition from a pseudo first-order analysis
to establish the buckling modes as a sum of these first-order modes; we are
solving the differential buckling equations of GBT directly.

Having developed and solved the distortional homogeneous and non-homo-
geneous differential equations and solutions along the beam as well as included
the geometrical stiffness terms, we will in the next chapter finally deal with the
development of an advanced distortional semi-discretized prismatic thin-walled
beam element.
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Chapter 6

A distortional semi-discretized
prismatic thin-walled beam
element

The previous chapters adhere to the solution of the developed and formulated
set of distortional differential equations. Thus these chapters are not dealing
with a finite element but dealing with an analytical solution of the coupled
differential equations. To handle arbitrary boundary conditions as well as the
possibility of adding concentrated loads as nodal loads the formulation of a finite
element is needed. This chapter deals with the formulation of such a generalized
one-dimensional semi-discretized prismatic thin-walled beam element including
distortional contributions. It should be noticed that we are dealing with a basic
generalized beam theory and not an extended finite element formulation of an
approximate beam element. Furthermore, it should be noticed that the beam
element developed in the present chapter do not include the geometrical stiffness
terms and thus do not deal with column buckling analyzes.

6.1 Element sti�ness matrix and load vector

In this section the global beam element stiffness matrix and load vector needed
for the determination of the nodal element solution are found. As the load has no
influence on the stiffness contributions we use the full assembled homogeneous
solution along the beam found in chapter 3. We also use the homogeneous dis-
placement modes to generate the nodal load vector. Some of the distortional
displacement modes found and their related eigenvalues are complex. In con-
trast to the previous chapters where a transformation to real modes and real
solutions are performed we will here continue working with complex numbers.
This means that the use of compilers which include complex numbers with com-
plex operations on matrices will lead to simple algorithms based directly on the
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following formulations.
The homogeneous solution vectors along the beam are given by the full

solution in equation (3.86) as

uw(z) = VwΨh(z) c
uz(z) = −VΩΨ′h(z) c (6.1)

where the given constants have to be determined by the GBT-space boundary
conditions of the prismatic thin-walled beam. This means that we are now con-
sidering not just a single mode but all solution modes. To establish the stiffness
matrix and load vector for a single beam element the constants are viewed as
temporary element degrees of freedom. The transformation between these con-
stants and the final end displacements of the beam element will be determined
by setting up the necessary GBT boundary conditions. Using the homogeneous
solution vectors given in equation (6.1) the potential energy including all the
homogeneous modes in equation (4.14) can be written as

Π = 1
2

∫ L

0

{
cT
[
ΨT
hVT

w ΨT
hVT

Ω

]′′ [Kσ
ww 0
0 Kσ

ΩΩ

][
VwΨh

VΩΨh

]′′
c

+cT
[
ΨT
hVT

w ΨT
hVT

Ω

]′ [Kτ
ww Kτ

wΩ

Kτ
Ωw Kτ

ΩΩ

][
VwΨh

VΩΨh

]′
c

+cT
[
ΨT
hVT

w ΨT
hVT

Ω

] [
Ks 0
0 0

][
VwΨh

VΩΨh

]
c

−cT (ΨT
hVT

w)rwφ− cT (ΨT
hVT

Ω)′rΩφ

}
dz (6.2)

or in integrated form as

Π = 1
2cT (K̃c− r̃) (6.3)

where K̃ is the stiffness matrix and r̃ the load vector related to the modal
displacement constants c. The stiffness matrix and the load vector are found by
integration and addition of the individual sub matrix products in the potential
energy equation (6.2) as

K̃ = K̃σ
ww + K̃σ

ΩΩ + K̃τ
ww + K̃τ

wΩ + K̃τ
Ωw + K̃τ

ΩΩ + K̃s

(6.4)

and

r̃ = r̃w + r̃Ω (6.5)
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K̃σ
ww =

∫ L
0 Ψh

′′TVT
wKσ

wwVwΨh
′′ dz K̃σ

ΩΩ =
∫ L

0 Ψh
′′TVT

ΩKσ
ΩΩVΩΨh

′′ dz

K̃τ
ww =

∫ L
0 Ψh

′TVT
wKτ

wwVwΨh
′ dz K̃τ

Ωw =
∫ L

0 Ψh
′TVT

ΩKτ
ΩwVwΨh

′ dz

K̃τ
wΩ =

∫ L
0 Ψh

′TVT
wKτ

wΩVΩΨh
′ dz K̃τ

ΩΩ =
∫ L

0 Ψh
′TVT

ΩKτ
ΩΩVΩΨh

′ dz

K̃s =
∫ L

0 Ψh
TVT

wKsVwΨh dz

Table 6.1: Beam element stiffness contributions.

r̃w =
∫ L

0 Ψh
T φ dz VT

wrw r̃Ω =
∫ L

0 Ψ ′
h
T
φ dz VT

ΩrΩ

Table 6.2: Beam element load vector contributions.

The stiffness matrix contributions are given i Table 6.1 and the two load vector
contributions are given in Table 6.2. Let us now turn to a reformulation of
eigenvectors and solution functions which enables clearer analytical integration.

6.1.1 Formulation enabling analytical integration

In the potential energy formulation in equation (6.2) the modal matrix of trans-
verse displacement vectors Vw and the modal matrix of axial warping displace-
ment vectors VΩ contain all the found eigenmode vectors assembled column-
wise. However, each eigenvector is only represented once. To ease the integra-
tion of the products of the longitudinal amplitude functions Ψh we will here
introduce a matrix format Ψh corresponding to a diagonal representation of
the solution functions. This can only be done if we also introduce an expanded
representation of the eigenvectors Vw and VΩ. By doing this each eigenvector
is represented twice for double roots and four times for quadruple roots. To
obtain this format we will use a transformation matrix H to expand the trans-
verse displacement vectors Vw and the axial warping displacement vectors VΩ

into the full space by

Vw = VwH (6.6)
VΩ = VΩH (6.7)

The transformation matrix also gives a transformation from the diagonalized
solution function matrix to the original format by

Ψh = HΨh (6.8)
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The transformation matrix can be subdivided into a part Hb related to the
transformation of the classic beam modes and a part Hd related to the trans-
formation of the distortional modes by

H =
[
Hb 0
0 Hd

]
(6.9)

Concerning the conventional beam displacements as given in equation (3.80)
and (3.82) the expanding transformation matrix Hb takes the following form:

Hb =


1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1

 (6.10)

and for the distortional displacements the expanding transformation takes the
form

Hd =


1 1 0 0 0 0 · · ·
0 0 1 1 0 0 · · ·
0 0 0 0 1 1 · · ·
...
...
...
...
...
...
. . .

 (6.11)

To be clear let us repeat the formulation of the solution functions in the new
diagonalized formulation. The integral of the pure axial solution in diagonalized
form takes the form

Ψa(z) ca =
[
−z 0
0 − 1

2z
2

][
ca1

ca2

]
(6.12)

while the axial variation of the pure translational modes determined by quadru-
ple integration as described in Paper I (Jönsson and Andreassen, 2011) is rep-
resented in diagonalized form as

Ψ1(z) c1 =


1 0 0 0
0 z 0 0
0 0 z2 0
0 0 0 z3



c11

c12

c13

c14

 , Ψ2(z) c2 =


1 0 0 0
0 z 0 0
0 0 z2 0
0 0 0 z3



c21

c22

c23

c24

 (6.13)

The axial variation of the pure twist mode (St. Venant torsion) is represented
by

Ψ3(z)c3 =
[

1 0
0 z

][
c31

c32

]
(6.14)
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Substituting these full diagonalized solution matrices into a diagonal block ma-
trix formulation the assembled full diagonalized axial classical beam solution
functions Ψb are obtained.

Concerning the distortional analytical solution functions the i’th eigenvalue
results in the following diagonal solution matrix representation:

Ψd i(z)cd i =
[
eξiz 0
0 e−ξiz

][
cd 2i−1

cd 2i

]
(6.15)

The full diagonalized distortional solution functions are assembled in the (di-
agonal block) distortional solution matrix Ψd and multiplied by the assem-
bled vector of distortional constants cd. Finally, the longitudinal classic beam
amplitude solution functions as well as the longitudinal distortional amplitude
solution functions are assembled using diagonal block matrices as

Ψ(z) c =
[
Ψb(z) 0

0 Ψd(z)

][
cb
cd

]
(6.16)

where c are the original displacement constants. Using the transformation ma-
trix H as given in equation (6.9) we can obtain the original formulation of the
solution function matrix by using the transformation as shown in equation (6.8).

Introducing the transformation given in equation (6.8) of the longitudinally
varying amplitude solution functions in the integrals given in Table 6.1, followed
by the use of equations (6.6) and (6.7) and noting that only the diagonal am-
plitude solution functions are dependent on z allows us to see that the product
terms become simple. Thus, the individual components of the stiffness matrix
only contain integrals of one product term. For example the transverse stiffness
contribution is reformulated as follows:

K̃s =
∫ L

0
ΨT

hHTVT
wKsVwHΨh dz

=
∫ L

0
ΨhV

T

wKsVwΨh dz

= VT

wKsVw ◦
∫ L

0
ΨJΨ dz (6.17)

in which J is a matrix of unit components (i.e. all components are equal to
one) and the mathematical symbol ◦ represents the Hadamard product also
known as the “entry-wise product” or the “Schur product”. It is seen that only
the diagonal matrix Ψ is a function of z and that the integral of the product
terms are easily solved analytically due to the simple longitudinal ψ(z) solution
functions. This means that the formulation of the respective beam element
stiffness contributions in Table 6.1 can be reformulated as given in Table 6.3.
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K̃σ
ww = VT

wKσ
wwVw ◦

∫ L
0 Ψ′′JΨ′′ dz K̃σ

ΩΩ = VT

ΩKσ
ΩΩVΩ ◦

∫ L
0 Ψ′′JΨ′′ dz

K̃τ
ww = VT

wKτ
wwVw ◦

∫ L
0 Ψ′JΨ′ dz K̃τ

Ωw = VT

ΩKτ
ΩwVw ◦

∫ L
0 Ψ′JΨ′ dz

K̃τ
wΩ = VT

wKτ
wΩVΩ ◦

∫ L
0 Ψ′JΨ′ dz K̃τ

ΩΩ = VT

ΩKτ
ΩΩVΩ ◦

∫ L
0 Ψ′JΨ′ dz

K̃s = VT

wKsVw ◦
∫ L

0 ΨJΨ dz

Table 6.3: Beam element stiffness contributions enabling analytical integration.

6.1.2 Generalized displacements

The generalized displacements of the present GBT formulation are determined
by the first variation of the potential energy, shear constraints and the multi
point constraint equations, as described in chapter 3. This degree of freedom
space is what we refer to as the GBT-space. In this space the degrees of freedom
are determined as the value of the pure axial extension uaz(z), the values of
the remaining unconstrained transverse displacements ugw(z), and their axial
derivatives ugw′(z) as given by the expressions involving the eigenmode vectors,
solution functions and solution constants: u

a
z(z)

ugw(z)
ugw′(z)

 =

−Ta
Ω
TVΩΨ′h(z)

Tg
w
TVwΨh(z)

Tg
w
TVwΨ′h(z)

 c (6.18)

Here the transformations are taken directly from chapter 3. As in a basic beam
element formulation we will specify the boundary displacements at the two ends
of the beam, i.e. at z = 0 and at z = L where L is the beam length. Denoting
the assembled boundary displacement vector by ub we can write the following
equation for the determination of the solution constants:

ub =



uaz(0)
ugw(0)
ugw′(0)
uaz(L)
ugw(L)
ugw′(L)


=



−Ta
Ω
TVΩΨ′h(0)

Tg
w
TVwΨh(0)

Tg
w
TVwΨ′h(0)

−Ta
Ω
TVΩΨ′h(L)

Tg
w
TVwΨh(L)

Tg
w
TVwΨ′h(L)


c = Ac (6.19)

This equation defines the “square” invertible matrix A and allows the determi-
nation of the solution constants by the beam end displacements as

c = A−1ub (6.20)
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The first variation of the elastic potential energy in equation (6.3) then takes
the form

δΠ = δcT (K̃c− r̃) (6.21)

Substituting beam boundary displacements for the solution constants using
equation (6.20) we redefine the formulation to include the end displacements
in GBT-space as follows:

δΠ = δubTA−T K̃A−1ub − δubTA−T r̃ = δubT (Keub −Re) (6.22)

where we have introduced the beam element stiffness matrix in GBT-space as

Ke = A−T K̃A−1 (6.23)

and the beam element load vector in GBT-space as

Re = A−T r̃ (6.24)

For stationarity the first variation of the potential energy must be equal to zero
whereby we can write the single element equations as

Keub = Re (6.25)

Having a prismatic structure of multiple beam elements we have to setup a
global system in which the end boundary displacements (in GBT-space) are
assembled. Using a standard finite element procedure to assemble the global
system we obtain

Ku = R ⇔ u = K−1R (6.26)

where K has to be a positive definite “square” matrix and R is the load vector
corresponding to the chosen load. However, in order to achieve a positive definite
matrix it is necessary to apply boundary conditions, for example as described
in the next section. In a conventional finite element formulation the displace-
ment field between the nodes is usually interpolated using approximated shape
functions. In the present formulation we do not use approximated interpola-
tion functions as we have found the exact shape functions as given in equation
(6.18). Furthermore, we can adjust the internal displacement field to the dis-
tributed loads on the individual beam element using the particular solutions
with adequate boundary conditions as described after the next section.

6.2 Boundary conditions and nodal loads

In the present formulation the global stiffness matrix K is related to sets of
beam end degrees of freedom uGBT in the GBT-space and after assembling the
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individual element matrices this global matrix will be singular corresponding to
the rigid body movements. Thus we have to specify at least six conditions to
keep the beam fixed in space in order to solve the equations.

Of the methods used to introduce boundary conditions in the finite element
equations (6.26) I have chosen the simple method of adding stiff springs. As the
present formulation is in the constrained, eliminated and transformed GBT-
space it is rather difficult directly to apply the desired boundary conditions.
Therefore the boundary stiffness contributions ∆KFE are formulated in the
unconstrained FE-space, uFE, corresponding to all nodal degrees of freedom
shown in Figure 3.5 and the axial derivatives of transverse components of these.
For more clarity let us show the GBT and FE-space displacement vectors and
their transformation as deduced from chapter 3:

uGBT =

 u
a
z

ugw
ugw′

 =

Ta
Ω
T 0 0

0 Tg
w
T 0

0 0 Tg
w
T


 uz

uw

uw
′

 = T uFE (6.27)

Thus the beam end spring stiffness contributions ∆KFE are transformed into
GBT space by

∆KGBT = TT∆KFET (6.28)

and the nodal loads (at beam element ends and intersections) are transformed
from FE-space to GBT-space by the transformation

∆RGBT = TT∆RFE (6.29)

Using this method a wide range of situations may be analyzed. However, other
methods involving coupling with traditional finite plate elements is envisioned
to be possible and should be further investigated in the future.

6.3 Internal element displacements

The internal beam displacements are represented by the cross-section node dis-
placement vectors uz(z) and uw(z) as a function of the axial coordinate z. In
the beam element these internal displacements are found by superposition of
a© the internal displacements induced by the nodal displacements without dis-
tributed loading and b© the displacements induced by the loading on the beam
with zero nodal displacements.

6.3.1 Nodal displacements

Adhering to this concept equation (6.30) gives us the first contribution as

u a©
w (z) = VwΨh(z) c

u a©
z (z) = −VΩΨ′h(z) c (6.30)
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where the constants c = A−1ub are determined by the nodal displacements, ub,
of the element.

6.3.2 Loading induced displacements

The second contribution involves the solution of the differential equations with
boundary conditions corresponding to zero nodal displacements. As the partic-
ular solution does not abide to zero displacements at the nodes, this has to be
achieved by addition of a homogeneous solution. The boundary conditions for
the GBT equations are formulated in chapter 4, which in the present complex
formulation corresponds to:

ub =



−Ta
Ω
TVΩΨ′h(0)

Tg
w
TVwΨh(0)

Tg
w
TVwΨ′h(0)

−Ta
Ω
TVΩΨ′h(L)

Tg
w
TVwΨh(L)

Tg
w
TVwΨ′h(L)


cp +



−Ta
Ω
TVΩΨ′p(0)

Tg
w
TVwΨp(0)

Tg
w
TVwΨ′p(0)

−Ta
Ω
TVΩΨ′p(L)

Tg
w
TVwΨp(L)

Tg
w
TVwΨ′p(L)


φ = Acp + Bφ (6.31)

which also defines the particular solution matrix B that gives the displacement
values of the particular solutions at the beam boundaries when multiplied by
the two end load intensity values in φ. Inserting that the nodal displacements
are zero we find the constants cp, which determine the homogeneous solutions
to add to the particular solution in order to abide the boundary conditions:

ub = 0 ⇒ cp = −A−1Bφ (6.32)

With this knowledge the second contribution is given by equation (4.67) as

u b©
w (z) = Vw

[
Ψh(z) cp + Ψp(z)φ

]
u b©
z (z) = −VΩ

[
Ψ ′
h(z) cp + Ψ ′

p(z)φ
]

(6.33)

6.3.3 Superpositioned displacements

Finally, we can superimpose the two solutions a© and b© and find the semi-
analytically determined internal displacement vectors as

uw(z) = Vw
[
Ψh(z) (c + cp) + Ψp(z)φ

]
uz(z) = −VΩ

[
Ψ ′
h(z) (c + cp) + Ψ ′

p(z)φ
]

(6.34)

where c = A−1ub and cp = −A−1Bφ.
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6.4 Example

In this illustrative example nodal displacement results as well as stress distri-
bution results of GBT are compared to those found using the commercial FE
program Abaqus. We consider a simple supported lipped channel beam loaded
by two point loads symmetrically placed in the same cross section as shown in
Figure 6.1. The beam have a length of 1500 mm consisting of and assembled
by three single beam elements of 500 mm. The end sections are constrained
against transverse displacements, but otherwise free to warp (and thus also ro-
tate). Further, one of the ends is fixed at a single node against longitudinal
translation. An elasticity modulus E = 2.1 · 105 MPa and a Poisson ratio of
ν = 0.3 have been used. For more examples see Paper IV (Andreassen and
Jönsson, 2013).

The results found using Abaqus are based on isotropic material and the
S4 shell element with full 4 point integration. The linear elastic finite element
calculations are based on a structured rectangular mesh with a side length seed
of 5 mm. The cross section is fixed in the transverse directions at both ends
and fixed at a single node against longitudinal translation.

All stress comparisons between the present novel approach and the commer-
cial FE program Abaqus are performed in relation to the given maximum stress
at the cross section.

h = 50
w = 100
c = 25
t = 2.0
Pn = 1 kN
◦ Node

Figure 6.1: Geometry, in-plane discretization, parameter values and load for the lipped
channel beam.

Using the parameters as given in Figure 6.1 and 6.2 and the full solution in
equation (6.34) leads to the deformed configuration shown in Figure 6.3. Here
it is seen that the global deformation is related to flexure of the beam, non-local
distortional deformation of the cross section and a very local plate deformation
of the lips related to the location of the point loads. Thus three length scales
are represented, the global flexural beam mode as seen in Figure 6.3, the non-
local distortional deformation of the lips as shown in Figure 6.4, and the local
distortional plate deformation of the lip as shown in close-up in Figure 6.5. This
example points out the importance of taking distortion into account in order to
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l

Figure 6.2: Geometry and discretization for a lipped channel beam consisting of 3 ele-
ments.

Figure 6.3: GBT plot of the lipped channel with point loads.

obtain a good approximation of the deformation shape. From Figure 6.5 it is
seen that the deflection in the longitudinal z-direction decreases exponentially
in the y-z-plane. It should also be noted that the deformation is so local that
it is difficult to see that the surface is C1 continuous. The decreasing non-local
distortion is clear in the x-z-plot shown in Figure 6.4, which represents a part
of the beam that is symmetrical about the loaded cross section. Comparing the
nodal displacements of the marked node in Figure 6.3 to the displacement found
using a model in the commercial FE program Abaqus gives the displacement
values and the corresponding deviations shown in Table 6.4. From Table 6.4

150 mm

Figure 6.4: GBT plot of the lipped channel to show the exponential decrease in the
x-z-plane.
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50 mm

Figure 6.5: GBT plot of the lipped channel to show the exponential decrease in the
y-z-plane.

GBT [mm] Abaqus [mm] Difference [%]

ux −1.424 −1.415 0.6
uy 4.697 4.772 1.6

Table 6.4: Nodal displacements of GBT and FE analysis.

the deviation from Abaqus results of the displacement, ux, in the horizontal
direction is 0.6% while the deviation for the vertical displacement, uy, is 1.6%.
Due to the poor discretization of the cross section and the present approach
which is based on a beam theory these deviations may be expected.

Having compared the nodal displacement obtained with GBT and Abaqus

we take a look at the stress distributions. A comparison of the membrane
stresses in the z direction is shown in Figure 6.6. Comparing the stresses in
relation to the maximum stress at the cross section a maximum deviation of
4.8% is obtained as shown in Table 6.5. This deviation level is expected as

-31.2146.7 -31.2 146.7

-68.2 -68.2

-38.6153.6 -38.6 153.6

-72.3 -72.3

Figure 6.6: Comparison between the axial normal stress distributions obtained with GBT
and Abaqus. All values are in MPa.

the chosen point is subjected to very local complex phenomena. The transverse
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GBT [MPa] Abaqus [MPa] Difference [%]

σz −31.2 −38.6 4.8
σs 492.3 481.9 2.1

Table 6.5: Stress distributions of GBT and FE analysis.

bending stresses are shown in Figure 6.7. In this case a maximum deviation of

131.0 131.0126.7492.3

38.1 38.1

126.7 492.3 481.9

39.9 39.9

481.9

70.3 67.4

Figure 6.7: Comparison between the transverse bending stress distributions obtained with
GBT and Abaqus. All values are in MPa.

2.1% is obtained.
The chosen example here and in Paper IV (Andreassen and Jönsson, 2013)

show solutions which are applicable to the finite element formulation.

6.5 Concluding remarks

In this chapter the formulation of a distortional semi-discretized thin-walled
beam element has been presented. Using the full assembled homogenous so-
lution along the beam, the beam element stiffness matrices have been found.
From the full assembled homogenous solution as well as the full assembled
non-homogeneous solution the displacements of the full semi-analytical solution
along the beam have been found in the context of a beam element.

Having finally developed a distortional semi-discretized prismatic thin-walled
beam element in continuation of the distortional homogeneous and non-homoge-
neous differential equations and solutions, the next chapter deals with a general
discussion regarding this and the previous chapters as well as a comparison of
the novel approach to GBT and the conventional GBT.
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Chapter 7

Discussion and comparison

Now we have developed a novel mode-based approach by extending the existing
thin-walled beam theory to include transverse distortion for open and closed
cross sections in a new and theoretical improved context. At the same time we
have developed an approach which model distortion by a limited number of de-
grees of freedom. In this context also an advanced distortional semi-discretized
prismatic thin-walled beam element has been developed. Based on these devel-
opments this chapter deals with a general discussion as well as a comparison of
the novel approach to GBT and conventional GBT.

It should be noted that the present novel approach to generalized beam
theory is neither similar to conventional GBT nor an extension of the theory.

7.1 Newsworthy

Within the area of thin-walled structures and with respect to generalized beam
theory it is new and interesting that:

◦ A novel approach to Generalized Beam Theory (GBT) is formulated and
involves a new cross-section semi-discretization process as suggested by
Zienkiewicz and Taylor (2000b).

◦ The novel approach involves a new determination of the natural cross-
section eigenmodes and related axial solution functions by exact analytical
solution of the related first-order GBT equations.

◦ Furthermore, this thesis adheres to the definition of the warping function
given in (Kollbrunner and Hajdin, 1972) which is in contrast to conven-
tional GBT formulation that is developed as a generalization of the classic
Vlasov beam theory by including the warping deformation associated with
the ”Bredt’s shear flow” around each cell.
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◦ In contrast to the available methods for identification of cross-section de-
formations modes developed for open cross sections, the present method is
able to handle open cross sections as well as closed cross sections without
special attention.

◦ Finding the analytical homogeneous solution to the differential GBT equa-
tions which (through the magnitude of the eigenvalues) gives a much better
knowledge of the length scales of the modes.

◦ Discretization into finite GBT beam elements can be performed with prior
knowledge of the problem length scales of the individual modes.

◦ The novel approach has in contrast to conventional GBT been based on
the calculus of variations and energy formulations, and formulations for
the numerical analysis has been performed based on the finite element
method formulations.

◦ The novel present approach and the developed advanced one-dimensional
beam element is based on and is intended to be integrated with standard
FEM programs.

◦ The use of a displacement based finite element method is in contrast to the
force method used in conventional GBT, which makes problems according
to cross sections containing cells.

As mentioned in section 1.2 the conventional generalized beam theory has
been subject to extensive research and is a good alternative to the classical
shell finite element method which is often extravagant and unnecessary for
many structures having regular geometric plans and simple boundary condi-
tions. However, we have in this thesis and due to the arguments described in
section 1.2 requested a new and improved formulation to GBT. In this con-
text some differences between using the conventional GBT and the generalized
beam formulation developed in this project are listed above, making the new
formulation to an innovative theoretical development.

In the following sections the novel GBT approach and the conventional GBT
theory are briefly compared. Also including accompanying illustrative examples.
Even though a full comparison of the two formulations is devoted to a future
publication, some of the most important differences are pointed out in the com-
parison.

First of all, the modes found in the present novel approach seem to be sim-
ilar to the modes found in conventional GBT, see e.g. Silvestre and Camotim
(2002a), as well as to the modes found by the modified GBT formulation for
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closed cross sections in Gonçalves and Camotim (2004b). In this relation a com-
parison of the found distortional modes and the modes found by the conventional
GBT formulation forms part of the following comparison.

7.2 Comparison of the novel GBT approach and

conventional GBT

As mentioned in chapter 2 the novel GBT approach is, among the available
distortional theories, most related to the conventional GBT. In this context,
this section is devoted to a comparison of the novel GBT approach and the
conventional GBT in order to define and place the novel GBT approach among
the existing theories. As mentioned in chapter 2 the conventional GBT has
also been compared with the cFSM modal approach in relation to the buckling
analysis of un-branched thin-walled members (Ádány et al., 2009).

The present novel approach to Generalized Beam Theory (GBT) involves
a cross-section semi-discretization process as well as a determination of the
natural cross-section eigenmodes and related axial solution functions by exact
analytical solution of the related first-order GBT differential equations of fourth
order. This is done by first postulating a solution function ψ(z) = eξz to
the differential equations and afterwards solving the equations as an eigenvalue
problem. Consequently, the link between the in-plane modes and the axial
variational function is exact. By formulating the eigenvalue problem so that
the ξ parameter (which is also an inverse length scale parameter) become the
eigenvalue, it is possible to use the eigenvalue as a length scale parameter.
Thus the novel approach is different from the conventional GBT formulation
developed in Schardt (1966) and Schardt (1989) which solves the equations
using the approximate engineering methods, in which the shear coupling terms
are neglected, producing orthogonal axial and transverse normal stress modes.
In such a case the differential equations are not solved but a weak solution may
be found through introduction of the established approximate mode shapes and
use of approximate modal amplitude functions. Thus the conventional GBT
formulations uses the produced approximated modes as shape functions in a
virtual work or potential energy formulation leading to approximated finite GBT
beam elements and the discretization has to be performed without proper prior
knowledge of the problem length scales of the individual modes.

Regarding the analytical solution of the shear coupled conventional GBT
equations published only by (Hanf, 1989) as well as the numerical solution based
on power series published by Haakh (2004), it mentioned that both Hanf (1989)
and Haakh (2004) use the original orthogonalization procedure of Schardt to
establish the GBT equations. Note that these equations are still coupled with
respect to shear terms and perhaps transverse strains. Hanf (1989) uses the
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reduction of order of the differential equations as in the present thesis, however
the description of solution modes, relations to conventional modes and treat-
ment of complex modes is limited. In relation to this the present thesis does
not rely on the pre-orthogonalization into orthogonal normal stress modes. In
relations to Haakh (2004) who solves the equations numerically using approx-
imating power series, the solutions in the present thesis are found analytically
based on the numerical solution of the characteristic eigenvalue problem related
to the reduced order differential equations. Note that the exponential solution
functions span such a large numerical range that it is evident that the use of
power series could lead to inaccuracies for the very short problem length scales
of some of the local modes. Furthermore, it is interesting that Haakh (2004)
formulates the GBT equations based on a two-dimensional membrane and a
plate displacement field, which is independent of the formulation by Schardt
(with independent notation) and not directly related to the original beam mode
formulations of Schardt. Moreover, his choice of displacement field is specifi-
cally related to his choice of interpolation and does not seem consistent and he
neglects some higher order (differential) terms and ends up having to use the
static procedure, i.e. Grashof’s method, for the final shear stress and transverse
stress distribution. The work of the present thesis has been formulated as an
extension of beam theory with the related shear only in closed cells, and hereby
it only includes shear related to torsion and shear flow in closed cells. The
beauty of the weak formulation used to allow for shear flow only around cells
and to link warping and transverse displacements is profound and leads to a
formulation and programming completely independent of the number of cells.

Regarding the energy formulation the novel GBT approach does not include
generalized flexural Poisson’s effect in contrast to conventional GBT which in-
cludes it during the linear stiffness matrix, DII

ik , associated with wall torsion.
The novel GBT approach includes rotations as part of the degrees of freedom

which is in contrast to conventional GBT which do not.
The novel GBT approach defines a mode as a combination of an in-plane

deformation mode and an axial varying amplitude function which is in contrast
to conventional GBT which defines a mode only as an in-plane deformation
mode (found during a cross-section configuration analysis). The axial varying
amplitude function is approximated with a cubic function and solved during a
member analysis.

The novel GBT approach is using a FE-formulation and setting up stiffness
matrices by using FE-components while the conventional GBT is using the force-
method and setting up stiffness matrices by using force-method components.

Even though both methods flow into the same solution, the novel GBT
approach then seems to be more elegant and a more academic approach.

Regarding the extensions with other modes as mentioned in section 2.2,
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these modes are not considered in the comparison between the two approaches
since they are not part of a first generation GBT and may be viewed as patches
towards expanded use of a generalized beam theory.

In addition to the previous mentioned differences between the two approaches,
it is also important to note that the novel GBT approach uses all the modes in
the full solution, which is in contrast to conventional GBT which make a GBT
mode selection and thereby only use the modes which in a visual perspective
seems to be the most important.

Even though both approaches are operating with very few degrees of freedom
in relation to traditional FE formulations, it should be noticed that they are
also operating with rather complex and time consuming differential equations
and algorithms that are difficult to devise and to implement computationally.

7.2.1 Direct comparison of results

In this subsection we will visually compare the two methods through some ex-
amples. The results obtained by the novel approach are based on the associated
developed MATLAB code while the results obtained by the conventional GBT
approach are based on the freely available software package GBTUL.

Like other discretized calculation methods, the results depend on the dis-
cretization of the calculated part. In the examples we will then use an identical
discretization of the cross section in the two approaches. Only open cross sec-
tions are compared as GBTUL can not yet handle closed cross sections.

Example

As an illustrative example we compare a lipped channel cross section with the
geometric parameters, discretization, and values as given i Figure 7.1.

Parameter Value

h 50
w 100
c 25
t 2.0
◦ Node

Figure 7.1: Geometric parameters and values.

As the local modes are not calculated in the same order, the comparison
have to be done between the modes that visually seems to be similar, and
not between the modes with the same hierarchical mode number. The visual
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Figure 7.2: Comparison of lipped channel deformation mode in-plane shapes obtained
from the novel GBT approach and conventional GBT.

13 14 15

Figure 7.3: Mode shape plot to clearly show the difference between the compared in-plane
mode shapes.

comparison is made by calculating the respective modes by the novel GBT
approach and conventional GBT respectively, and then showing them on the
same plot. All the modes are normalized in accordance with the largest node
displacement in either the vertical direction or the horizontal direction. When
comparing the first-order mode shapes obtained by the two approaches it is seen
from Figure 7.2 and 7.3 that they are all very similar. However, the deviation
for the local modes of higher order seems to increase according to an increasing
mode number. On the figures, the mode shapes from the two methods are
depicted in the same plot, even though they can overlap when having nearly
similar mode shapes. The mode shapes obtained from the novel GBT approach
are depicted by a complete solid line (–) whilst the mode shapes obtained from
the conventional GBT are depicted by a dash-dotted line (−·−). As seen from
Figure 7.2 and 7.3 the modes are not exactly identical. In this context we choose
to modify the novel GBT approach to be more consistent with the conventional
GBT approach. Two significant differences which are easy to standardize are
(i) the novel GBT approach in contrast to conventional GBT includes rotations
in the degrees of freedom and (ii) the novel GBT approach does not include
Poisson’s effects. To show the effect on the results of these two inconsistencies
we will here make another comparison when (i) making a static elimination of
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the rotations in the novel GBT approach and (ii) setting the Poisson’s ratio
equal to 0 in both of the approaches.

7.2.2 Modified comparison of results

In this second comparison we easily set the Poisson’s ratio equal to zero in the
two approaches, however with respect to the rotational degrees of freedom we
have to make a static elimination of the rotations in the novel GBT approach
as given in the following:

Static elimination of rotations

In conventional GBT the rotational degrees of freedom are found by solving a
statically indeterminate folded-plate problem by means of the force method. In
the present formulation this static subproblem is not elementary but involves a
reduction of the overall order of interpolation of the transverse displacements
using static elimination of the rotations in the transverse stiffness matrix Ks

uu.
In chapter 3 we have in step II identified the unconstrained degrees of freedom
as vuw using the transformation matrix Tu

w as

vw =
[
Tα

w T3
w Tc

w Tu
w

]


vαw
v3

w

vcw
vuw

 (7.1)

However to obtain the same degrees of freedom space as in conventional GBT
we have to statically eliminate the rotations at all nodes except the one (first),
which has been related to pure twist. To do this we identify the unconstrained
transverse displacements vvw and the unconstrained rotations vφw in the FE de-
gree of freedom space vw by introducing the related transformations, which
pick out the relevant degrees of freedom Tv

w and Tφ
w. This allows us to perform

the following introduction of related transformation matrices and new degree of
freedom:

vuw = Tu
w
Tvw = Tu

w
T (Tv

wvvw + Tφ
wvφw) = T̄v

wvvw + T̄φ
wvφw (7.2)

in which we have introduced the transformations T̄v
w = Tu

w
TTv

w and T̄φ
w =

Tu
w
TTφ

w. Using the transformation on the transverse stiffness term in the fol-
lowing equation (7.3) from chapter 3:[
Kσ

33 Kσ
3u

Kσ
u3 K̄σ

uu

][
v3

w

vuw

]
ψ′′′′ −

[
Kτ

33 Kτ
3u

Kτ
u3 Kτ

uu

][
v3

w

vuw

]
ψ′′ +

[
0 0
0 Ks

uu

][
v3

w

vuw

]
ψ =

[
0
0

]
(7.3)

and neglecting contributions from shear stiffness as well as warping stiffness
related to the rotational degrees of freedom we find

vφw = −Ks
φφ
−1Ks

φvvvw = Tφv
w vvw where Tφv

w = −Ks
φφ
−1Ks

φv (7.4)
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K̄σ
vv = Tuv

w
T K̄σ

uuTuv
w Kτ

vv = Tuv
w
TKτ

uuTuv
w K̄s

vv = Tuv
w
TKs

uuTuv
w

Kσ
3v = Kσ

3uTuv
w Kτ

3v = Kτ
3uTuv

w

Table 7.1: Statically reduced stiffness matrices.

Here we have introduced the transformed matrices Ks
φφ = T̄φ

w
TKs

uuT̄φ
w and

Ks
φv = T̄φ

w
TKs

uuT̄v
w. Combining the two transformations (7.2) and (7.4) we

find the following transformation from the unconstrained transverse translation
d.o.f. vvw to the unconstrained d.o.f. vuw:

vuw =
(
T̄v

w − T̄φ
wTφv

w
)
vvw = Tuv

w vvw where Tuv
w = T̄v

w − T̄φ
wTφv

w (7.5)

Let us use this transformation to reduce the number of equations in (7.1) to the
following:[
Kσ

33 Kσ
3v

Kσ
v3 K̄σ

vv

][
v3

w

vvw

]
ψ′′′′ −

[
Kτ

33 Kτ
3v

Kτ
v3 Kτ

vv

][
v3

w

vvw

]
ψ′′ +

[
0 0
0 K̄s

vv

][
v3

w

vvw

]
ψ =

[
0
0

]
(7.6)

where the new matrices have been introduced in Table 7.1. Solving this equation
and using equation (7.5) for back substitution leads to a method which is more
similar to conventional GBT.

The methods developed by Schardt, Silvestre, Camotim and co-workers will
therefore be applicable for the presented modified (elimination of rotations)
formulation.

Example

Having modified the novel GBT approach by setting Poisson’s ratio equal to
zero and using the presented modified (elimination of rotations) formulation
we get results as shown in Figure 7.4 and 7.5 where a comparison of some
relevant in-plane deformation mode shapes is depicted. Also in this example
only open cross sections are compared as GBTUL cannot currently handle closed
cross sections. In Figure 7.4 the mode shapes obtained from the modified novel
GBT approach are depicted by a complete solid line (–) whilst the mode shapes
obtained from the conventional GBT are depicted by a dash-dotted line (−·−).
The presence of the two mode shapes, obtained from the two methods and
depicted in the same plot in Figure 7.4, are found to be close to identical. As
a conclusion from Figure 7.4 it is clear that using the given discretization and
modifications very similar results are obtained from the two methods.

Many of the topics given in the previous chapters point to a need for fur-
ther investigations and suggestions for these are made in chapter 9 concerning
recommendations for future work following after a recap with conclusions.
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Figure 7.4: Comparison of lipped channel deformation mode in-plane shapes obtained
from the novel GBT approach (Poisson’s ratio equal to 0 and rotations eliminated) and
conventional GBT.

13 14 15

Figure 7.5: Mode shape plot to clearly show the similarity between the compared modified
in-plane mode shapes.
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Chapter 8

Conclusion

During this thesis we have described the importance of taking distortion of
the cross section into account as well as the importance of developing a novel
approach which model distortion by a limited number of degrees of freedom.
Furthermore, we have presented current available analysis techniques taking
in-plane distortion into account as well as presented an overview based on a
literature review.

We have presented a novel GBT approach including a new systematic method
accompanied by a detailed description for the full semi-discretization process
from kinematic assumptions, potential energy, potential energy variation lead-
ing to the formulation of the homogeneous differential equations of a generalized
beam theory (GBT) and the establishment of the full solution through identifi-
cation of all eigenvalues and eigenmodes.

The beam displacement field has been separated into a sum of products of the
cross-section displacement modes and their axial variation. This displacement
field has been constrained to follow the shear assumptions made in Vlasov beam
theory by a weak formulation of the constant shear flow assumption. Thus
allowing the identical treatment of both open and closed cross sections.

The coupled homogeneous fourth-order differential equations of GBT have
not been solved approximately, but by a reduction of order accompanied by a
doubling of the number of equations and the introduction of a state vector, as
in non-proportionally damped dynamic analysis.

It is clear that the eigenvalues of the distortional modes found are inverse
length scale parameters or attenuation parameters which define the axial solu-
tion functions and allow us to predict the length of the distortional displacement
field. This may be used to determine the degree of discretization in the devel-
oped distortional beam element.

We have included distributed loads in the novel semi-discretized formulation
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of the distortional differential equations. By using the distortional modal matrix
found for the homogeneous system we have transformed the non-homogeneous
distortional differential equations into the eigenmode space, and then obtained
the uncoupled set of differential equations including the distributed loads. This
uncoupling is very important in GBT, since the shear stiffness contribution
cannot be neglected nor approximated by the combination of axial stiffness
and transverse stiffness, especially for closed cross sections. This means that
conventional modal analysis (corresponding to orthogonal damping) cannot be
used to solve the equations and analytical solutions must therefore be based on
the eigenmodes found for the reduced order distortional differential equations.

We have presented the extension of the novel GBT approach to include the
geometrical stiffness terms which are needed for column buckling analysis. The
distortional differential equations are extended to a formulation including ge-
ometrical stiffness terms by using the initial stress approach to formulate the
instability problem. The derived GBT differential equations with initial stress
have been solved as an eigenvalue problem leading to a number of buckling
modes and associated buckling stresses for simply supported columns in com-
pression. The changes in solution modes and length scales are investigated.

We have presented the formulation of an advanced generalized one-dimensio-
nal semi-discretized prismatic thin-walled beam element including distortional
contributions. Using the full assembled homogenous solution along the beam the
finite beam element stiffness matrices have been found. From the full assembled
homogenous solution as well as the full assembled non-homogeneous solution
the generalized displacements of the exact full solution along the beam have
been found.

Based on the novel approach a general discussion has been given. Further-
more, the modes found seem to be similar to the modes found in conventional
GBT, see e.g. Silvestre and Camotim (2002a), as well as to the modes found by
the modified GBT formulation for closed cross sections (Gonçalves and Camo-
tim, 2004b). In this relation a comparison of the found distortional modes and
the modes found by the conventional GBT formulation has been made and
associated illustrative examples given.

The novel approach presented is a considerable theoretical and practical
achievement, since it without approximation gives the full analytical solution
along the loaded beam for a given discretization of the cross section. Further-
more, the approach is valid without special attention also for closed single or
multi cell cross sections. Reasonable matches are obtained in all example cases
confirming that this new developed GBT approach provides reasonable results
with a very small computational cost making it an alternative to the traditional
and time consuming FE calculations and the other available methods.

After having given final concluding remarks the next chapter deals with
recommendations for future works.
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Chapter 9

Recommendations for

Future Work

There are several recommendations for future work within the presented areas
of research. Directions for these are:

Extend the developed beam element also to include stability contributions.
At the present state the beam element do not include the geometrical stiffness
terms and thus do not deal with column buckling analyzes. The geometrical
stiffness terms are only dealt with within the analytical solution of the coupled
differential equations.

The GBT software developed and related to the present novel approach
should be designed in a format to be released for public use. At the present
state the program code is made in MATLAB, however it could be appropriate to
do the code in traditional programming languages, such as C/C++ or Java to
make it more accessible to the public.

The presented theory may be extended also to include dynamical contribu-
tions and thus the possibility to perform dynamic analysis. This could lead to
the determination of distortional modes of vibration and the formulation of a
finite element model able to cope with dynamic problems. This will allow the
development of simple solutions for many distortional problems of practical in-
terest.

An important task such as a modeling of connections between the present
advanced beam elements would be interesting. Different thin-walled structural
elements are often connected using mechanical fasteners, which constrain the
displacements of certain points in the structural elements. The connections
must be able to handle or obtain compatible displacements of the connected
elements at the points of connection. The investigation could also include the
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behaviors of practical connections thus including experimental investigations.

Finally, investigation could be done in the context of performing a more
elaborate comparison between the present approach and the conventional GBT
approach. The objectives of such a comparison is to clarify the fundamental
differences between the two methods and to provide an extensive mode-based
comparison including e.g. displacement- and energy based comparisons.
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Appendix A

Errata

List of known errors in the appended papers:

◦ In Paper I, the referred page number in reference [20] should be 207 instead
of 308.

◦ Due to an error in the programmed MATLAB code in the form of dividing
the straight-element stiffness contribution kσww by the length, be, the fol-
lowing tables and figures have to be corrected: In Paper I, Table 6 and the
associated Figures 6 and 7 should be corrected as given in the following
as respectively Table A.1 with the associated Figures A.1 and A.2.

◦ In Paper I, Table 7 and the associated Figures 9 and 10 should be corrected
as given in the following as respectively Table A.2 with the associated
Figures A.3 and A.4.

◦ In Paper III, Table 4 should be corrected as given in the following as Table
A.3.

◦ In Paper II, Figure 5, 9, 13 and 17 the unit of the distributed loads should
be in N/mm2 instead of N/mm.
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Mode Eigenvalues Axial solution
Type No. ξ2 × 106 ξ × 103 ψ(z)

B
ea
m

gl
ob

al

0 0 0 −ca1z − ca2z
2

1 0 0 c11 + c12z + c13z
2 + c14z

3

2 0 0 c21 + c22z + c23z
2 + c24z

3

3 0 0 c31 + c32z

D
is
to
rt
io
na

l

no
n-
lo
ca
l 4 0.37 0.61 cd1e

ξz + cd2e
−ξz

5 3.35− 26.47i ±(3.87− 3.42i) cd3e
ξz + cd4e

−ξz

6 3.35 + 26.47i ±(3.87 + 3.42i) cd5e
ξz + cd6e

−ξz

7 4.22− 49.98i ±(5.21− 4.79i) cd7e
ξz + cd8e

−ξz

8 4.22 + 49.98i ±(5.21 + 4.79i) cd9e
ξz + cd10e

−ξz

lo
ca
l

9 1003.43 31.68 cd11e
ξz + cd12e

−ξz

10 1088.79 33.00 cd13e
ξz + cd14e

−ξz

11 945.87− 1390.34i ±(36.25− 19.18i) cd15e
ξz + cd16e

−ξz

12 945.87 + 1390.34i ±(36.25 + 19.18i) cd17e
ξz + cd18e

−ξz

Table A.1: Eigenvalues ξ2, the ξ value, and the related axial solutions for the lipped
channel cross-section.
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Figure A.1: Lipped channel – 13 in-plane deformation mode shapes.
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Figure A.2: Lipped channel – 13 warping deformation mode shapes.

Mode Eigenvalues Axial solution
Type No. ξ2 × 106 ξ × 103 ψ(z)

B
ea
m

gl
ob

al

0 0 0 −ca1z − ca2z
2

1 0 0 c11 + c12z + c13z
2 + c14z

3

2 0 0 c21 + c22z + c23z
2 + c24z

3

3 0 0 c31 + c32z

D
is
to
rt
io
na

l

no
n-
lo
ca
l

4 0.72− 36.93i ±(4.34− 4.26i) cd1e
ξz + cd2e

−ξz

5 0.72 + 36.93i ±(4.34 + 4.26i) cd3e
ξz + cd4e

−ξz

lo
ca
l

6 891.43− 1127.00i ±(34.12− 16.52i) cd5e
ξz + cd6e

−ξz

7 891.43 + 1127.00i ±(34.12 + 16.52i) cd7e
ξz + cd8e

−ξz

8 849.60− 1569.79i ±(36.29− 21.63i) cd9e
ξz + cd10e

−ξz

9 849.60 + 1569.79i ±(36.29 + 21.63i) cd11e
ξz + cd12e

−ξz

Table A.2: Eigenvalues ξ2, the ξ value, and the related axial solutions for the rectangular
box cross-section.
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Figure A.3: Rectangular box cross-section – 10 in-plane deformation mode shapes.
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Figure A.4: Rectangular box cross-section – 10 warping deformation mode shapes.

Nr. of half Abaqus GBT Diff. GBTUL Diff. CUFSM Diff.

m waves n [MPa] [MPa] % [MPa] % [MPa] %

1 13 404 350 13.4 412 2.0 412 2.0
20 1 580 590 1.7 589 1.6 581 0.2
24 3 903 918 1.7 933 3.3 906 0.3

Table A.3: Comparison of buckling stresses for FE analysis versus the presented GBT
method, GBTUL and CUFSM, respectively. The comparisons are related to the vertical
dashed m-line in Figure 5.5.
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a b s t r a c t

The classical Vlasov theory for torsional analysis of thin-walled beams with open and closed cross-

sections can be generalized by including distortional displacement fields. We show that the

determination of adequate distortional displacement fields for generalized beam theory (GBT) can be

found as part of a semi-discretization process. In this process the cross-section is discretized into finite

cross-section elements and the axial variation of the displacement functions are solutions to the

established coupled fourth order differential equations of GBT. We use a novel finite-element-based

displacement approach in combination with a weak formulation of the shear constraints and

constrained wall widths. The weak formulation of the shear constraints enables analysis of both open

and closed cell cross-sections by allowing constant shear flow. We use variational analysis to establish

and clearly identify the homogeneous differential equations, the eigenmodes, and the related

homogeneous solutions. The distortional equations are solved by reduction of order and solution of

the related eigenvalue problem of double size as in non-proportionally damped structural dynamic

analysis. The full homogeneous solution is given as well as transformations between different degree of

freedom spaces. This new approach is a considerable theoretical improvement, since the obtained GBT

equations found by discretization of the cross-section are now solved analytically and the formulation

is valid without special attention also for closed single or multi-cell cross-sections. Further more the

found eigenvalues have clear mechanical meaning, since they represent the attenuation of the

distortional eigenmodes and may be used in the automatic meshing of approximate distortional beam

elements. The magnitude of the eigenvalues thus also gives the natural ordering of the modes.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Thin-walled structural elements are extremely efficient due to
the minimization of the thickness-to-width ratio of the cross-
section walls, and the thin walls are a primary aspect in the
behavior and design. The increasing slenderness leads to the
insufficiency of both ordinary Euler–Bernoulli beam theory with
St. Venant torsion and Vlasov beam theory for thin-walled beams
[1]. An important feature missing in these theories is the distor-
tion of the cross-sections, which do not maintain their shape, but
distort and buckle. Several formulations including transverse
distortional displacements have been proposed for analysis of
both open and closed cross-sections. One formulation which has
been very successful is the generalization of classic Vlasov beam
theory for open cross-sections to include distortion. It has been
based on the kinematic assumption of negligible shear strain

along the center lines of the cross-section walls. This formulation
is known as GBT (generalized beam theory) and it was initially
proposed by Schardt [2] in 1966 as a generalization of the theory
of bending (Verallgemeinerte Technisch Biegetheorie, VTB in
German). For closed (single or multi-celled hollow) thin-walled
cross-sections, Schardt shows in his presentation of GBT in [3]
that the theory needs a relaxation of the Vlasov assumption of
negligible shear strain in order to include the warping deforma-
tion associated with the ‘‘Bredt’s shear flow’’ around each cell.
However it complicates the solution of the GBT equations by
introducing non negligible shear coupling terms (off diagonal) in
the GBT equations as can be seen in recent GBT formulations for
closed thin-walled cross-sections, e.g. [4–6]. In this paper we will
therefore adhere to the definition of the warping function given
by Kollbrunner and Hajdin, [7], which adds the integral of the
shear flow strains, see also [8,9]. Since GBT is developed as a
generalization of beam bending it leads to orthogonal warping
modes. Thus the final GBT equations are decoupled with respect
to normal stresses and transverse stresses, however the shear
coupling terms are neglected or in case of closed cells given
special attention. The basic cross-section deformation modes of
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GBT are obtained by separately identifying conventional beam
deformation modes and solving the eigenvalue problem defined
by the warping stiffness matrix and the transverse deformation
stiffness matrix. When solving the GBT equations the shear
coupling stiffness terms are neglected. This corresponds to modal
analysis with orthogonal (Rayleigh) damping in dynamic struc-
tural analysis. The solution of the shear coupled GBT equations for
closed cross-sections was published by Hanf only in his thesis
[10]. GBT was generally not so known in the international
research community until Davies, see [11], presented first-order
GBT analysis. A distortional theory which generalizes Vlasov
beam theory by including the modified definition of the warping
function and one distortional mode was presented by Jönsson
[12]. In that work the analytical solution of coupled torsional and
distortional equations was found by reduction of order and
solution of the related eigenvalue problem as in the present work.
GBT is devoted to (first order) distortional displacement analysis
including the identification of distortional modes, as well as
(second order) linear buckling of thin-walled members, and it
has fostered a lot of research. Silvestre and Camotim extended the
theory to include orthotropic materials, see [13,14]. Experimental
verifications have also been presented, see for example Rendek
and Balaz [15]. Silvestre [16] presents buckling solutions as well
as non-linear post-buckling solutions. However in order to per-
form post-buckling analysis with GBT, which is essentially a beam
theory and not a plate theory, Silvestre finds it is necessary to
include additional transverse extension modes and shear modes,
as well as modified constitutive relations. In the following we will
refer to these kinds of modes as other modes and the related
method as extended GBT. For an overview and information about
the research and development of GBT see Camotim et al. [17,18].

The innovative theoretical developments performed in this
paper by introducing semi-discretization lead towards a modified
formulation of GBT, in which the rotational degrees of freedom
are included, thus including local plate modes in the formulation
even for the simplest discretization. The elimination of these
rotations could perhaps be advantageous if one wants to perform
a modal decomposition of buckling displacements into distor-
tional buckling mode and local plate buckling mode, however we
then rely on a coarse discretization. The methods developed by
Schardt, Silvestre, Camotim and co-workers will therefore be
applicable for the presented modified formulation. The presented
modified GBT formulation for thin-walled beams with both open
and closed (single or multi-cell) cross-sections can be regarded as
an extension of classical Vlasov thin-walled beam theory to
include distortional deformation modes as well as constant shear
flows in the walls of the cross-section, see [1,7,19]. It makes it
possible to analyze thin-walled members with cross-section
distortion and local plate behavior in a one-dimensional formula-
tion through the linear combination of pre-established modes of
deformation. However in this paper we find the analytical homo-
geneous solution to the differential GBT equations (obtained by
semi-discretization), using methods similar to Hanf [10] and
Jönsson [12], this also (through the magnitude of the eigenvalues)
gives a much better knowledge of the length scales of the modes.
Alternatively the GBT equations may just as well have been
solved using the approximate engineering methods (in which
the shear coupling terms are neglected) producing orthogonal
axial and transverse normal stress modes. In conventional GBT
these modes are used as shape functions in a virtual work or
potential energy formulation leading to finite GBT beam ele-
ments. However the discretization has to be performed without
prior knowledge of the problem length scales of the individual
modes. Buckling analysis using GBT beam elements is an alter-
native to the use of finite-strip methods (FSM), see [20]. However
GBT is as its name states essentially a beam theory, whereas FSM

essentially is based on plate theory. Therefore FSM does not contain
a natural decomposition into basic beam, distortional, local and
other modes. Further more conventional GBT does not contain other
modes as mentioned above. Since the modal decomposition may
lead to advantages in design of thin-walled structures using FSM a
great deal of work has been performed by Ádány and Schafer to
develop a constrained finite-strip method (cFSM) and modal decom-
position methods for open (single-branched) cross-sections, see
[21–23]. The modal approaches of extended GBT and cFSM for-
mulations have recently been compared in [24]. The formulations in
this paper only consider the (first order) homogeneous linear
displacements of GBT, since the main goal has been to identify a
theoretically sound formulation of the end effects or in other words
find the eigensolutions for the full displacement field including the
variation in the axial member direction, see the treatment of end
effects by Timoshenko [25].

Let us briefly describe the contents of the following sections
and illuminate the process. In the theories of beams, the displace-
ments assumed are typically separated into a sum of (orthogonal)
displacement fields. In the following sections, only one of these
displacement fields is considered in the variational formulation.
The basic kinematic assumptions of these displacement fields are
introduced in Section 2. The displacements are separated into the
product of cross-section displacement functions and the axial
variation functions. The strain fields are derived, and a weak
formulation of the shear constraints is described for later use.
Simple constitutive energy assumptions in Section 3 lead to the
formulation of the elastic energy potential. In Section 4, the cross-
section is discretized by straight finite elements in which the local
transverse displacements and the warping displacements are
interpolated. The element interpolation functions are introduced
and the elastic potential energy is formulated in a semi-discre-
tized form. At this stage, the interpolated displacements have not
yet been constrained by assumptions about shear and constant
width of wall elements. Section 5 is split into three main steps
leading to the final distortional differential equations in which
all conventional beam modes have been eliminated and all con-
straints introduced. In Step I, the weak form of the shear constraint
equations is introduced, and by taking adequate variations in the
potential energy, the pure axial extension mode and its homoge-
neous solution is identified and eliminated. In Step II, the constraint
equations relating to the assumption of a constant wall width are
introduced, and the rigid translations and the rotational cross-section
displacement eigenmodes are identified and orthogonalized. The
constrained degrees of freedom and the two degrees of freedom rela-
ted to the rigid translations are eliminated, leading to a condensed
set of coupled fourth order differential equations. In Step III, the order
of the differential equations is reduced by doubling the number of
equations through the introduction of a state vector with compo-
nents of different differentiation levels. The pure St. Venant torsional
mode is identified as an eigenmode with its linear axial solution,
St. Venant torsion is eliminated, and the final coupled differential
equations are revealed. In Section 6, the distortional eigenvalue
problem is solved and the solution functions are ordered in a matrix
format. In Section 7, the eigenmodes and solutions are assembled in
modal vectors and the back-substitution steps for the eliminated
degrees of freedom are recapitulated in a matrix format. The full
homogeneous solution of the GBT differential equations is formu-
lated in Section 8 and the handling of complex eigenvectors and
eigenvalues is described. Examples are given in Section 9, and in
Section 10, the degree-of-freedom spaces of the finite-element for-
mulation and the GBT formulation are treated and transformations
between these are given. Finally Section 11 is devoted to the deter-
mination of solution constants using displacement boundary condi-
tions which are relevant for the finite-element formulation of an
analytical GBT beam element.

J. Jönsson, M.J. Andreassen / Thin-Walled Structures 49 (2011) 691–707692
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The present paper does not take distributed loads into account,
but they can be incorporated in the formulation leading to the
addition of inhomogeneous solution functions. In a following
companion paper we will address the solution of the inhomoge-
neous GBT equations, since we in the development stage of the
present formulation know that the eigenmodes are needed in
order to decouple the reduced-order non-homogeneous differen-
tial equations as well as the conventional beam equations.

2. Basic kinematic assumptions

The prismatic thin-walled beam is described in a global
Cartesian (x, y, z) coordinate system where the z-axis is in the
longitudinal direction of the beam, see Fig. 1. A cross-section
coordinate s is introduced as a curve parameter which runs
through the section along the center line and n is the coordinate
along the local normal. Subscripts n and s are used for the
components in the local coordinate system corresponding to the
normal and tangential directions. Subscripts following a comma
are used for derivatives, for example un,ss ¼ d2unðsÞ=ds2 or us,n ¼
@usðs,nÞ=@n. A prime, 0, is used for the axial derivative, d/dz.

The theories of beams are derived on the basis of assumed
displacement fields which correspond to extension, flexure, tor-
sion, warping and distortional displacements. This corresponds to
a modal separation in which each mode has a set of transverse
and axial displacement fields that may be coupled. Each of these

cross-section displacement fields is factorized in a displacement
mode which is a function of the in-plane coordinates, multiplied
by a function of the axial coordinate, which describes the axial
variation of the mode. In the following, we propose a method for
finding these displacement modes, including global, distortional
and local modes, as the eigenmodes of the corresponding homo-
geneous set of equilibrium equations and axial variation functions
corresponding to the eigenvalues.

In the definition of the displacements and strains, the influ-
ence of curved cross-section walls is neglected and it is assumed
that the radius of curvature is sufficiently large, so that curvature
effects vanish. The local effects at corners and joints are also
neglected. Only shear contributions from torsion and shear flow
around cells will be allowed. For one displacement mode, the
components un and us of the in-plane cross-section displacements
in the local coordinate system at a point (n, s) in the cross-section,
are introduced as

unðs,zÞ ¼wnc ð1Þ

usðn,s,zÞ ¼ ðws�nwn,sÞc ð2Þ

Here ws(s) and wn(s) are the local displacements of the centerline
as shown in Fig. 2, and cðzÞ is the function which describes the
axial variation of the in-plane distortional displacements. The
axial displacements uz(n,s,z) generated by the in-plane distor-
tional displacements are introduced as

uzðn,s,zÞ ¼�ðOþnwnÞcu ð3Þ

Here the axial (warping) displacement mode OðsÞ has been
included with a variation corresponding to the negative axial
derivative of the axial variation factor, �cu, and due consideration
of local transverse variation through the term nwn. Thus neglect-
ing shear deformation contributions which are not related to St.
Venant torsion and torsional shear flow around closed cells.

It is convenient at this stage to note that pure axial extension
(where O¼ 1 and ws¼wn ¼ wn,s ¼ 0) is embedded in this for-
mulation. However pure extension in the present formulation, does
not involve transverse displacements, the axial variation �cuðzÞ
need not be taken as the derivative of a function, but just a function
which we will be introducing as zðzÞ ¼�cuðzÞ at a later stage.Fig. 1. Global and local Cartesian reference frames.

Fig. 2. Local components of displacements and assumed shear stresses.
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The axial strains corresponding to the given displacements are

e¼ uzu ¼�ðOþnwnÞcuu ð4Þ
The cross-section distortional strains are

es ¼ ðws,s�nwn,ssÞc ð5Þ
The engineering shear strain in the walls of the cross-section
becomes

g¼ gzs ¼ uz,sþus,z ¼ ðws�O,s�2nwn,sÞcu ð6Þ
To cope with the shear flow around closed cells, we introduce the
shear strain in the middle of the wall as

gdcu¼ ðws�O,sÞcu ð7Þ
Bernoulli beam theory is based on the assumption of negligible
shear strain and sets the shear strain equal to zero and thus
determines the warping displacements (flexural modes) by the
differential equation O,s ¼ws. This means that the formulation of
Bernoulli beam theory does not include shear contributions and the
axial equilibrium equation of a section cut-out is not fulfilled, which
leads to the use of Grashof’s method for the determination of the
shear stresses. However, if we are to analyze closed cross-sections as
in Vlasov beam theory, see [7], we have to allow for a constant shear
flow around the cells and the warping of the cross-section then has
to be determined by the differential equation O,s ¼ws�gd as

OðsÞ ¼
Z s

0
ws ds�

Z s

0
gd dsþO0 ð8Þ

In the current context, the warping function will be determined
from a weak formulation of the assumption of a constant shear flow
Td in the walls of the cross-section (where T d ¼ Gtgd). The strong
formulation of the constraining assumption is that the contribution
of the shear flow to the axial equilibrium equation, see Fig. 3, of a
section cut-out is zero, i.e.

Td,s ¼ 0 ð9Þ
Multiplying by a virtual centerline axial displacement, duz, and
integrating over the cross-section we find the virtual work of the
shear stresses in a cross-section asZ
C
T d,sduz ds¼ 0 ð10Þ

Performing a partial integration and noting that the shear stress flow
is zero at all free edges, we find the weak formulation that will be
used to determine the warping function:

½T dduz�free edges�
Z
C
T dduz,s ds¼ 0 +

Z
C
T dduz,s ds¼ 0 ð11Þ

This is the constraint equation that we will use to enforce the
assumption of zero axial work performed by the shear flow around
the cells.

3. Strain energy assumptions

In the following we will adhere to simple constitutive relations,
i.e. the material is assumed to be linear elastic with a modulus of
elasticity E and a shear modulus G. In the transverse direction wewill
assume a plate type elasticity modulus Es ¼ E= ð1�n2Þ, in which n
represents the Poisson ratio. The axial stress is determined as s¼ Ee,
the shear stress as t¼ Gg and the transverse stress as ss ¼ Eses. Thus
the coupling of axial strain e and transverse strain es is neglected.
Note that this means that we also neglect the equivalent coupling
between axial and transverse curvatures in the constitutive relations
for the plate moments, but with some changes it is possible to
include the coupling of the curvatures. With the simple constitutive
relations assumed, the elastic energy potential becomes

P¼
Z
V

1

2
Ee2þ 1

2
Gg2þ 1

2
Ese2s

� �
dV ð12Þ

Let us introduce a thin-walled cross-section assembled using
straight cross-sectional elements, see Fig. 4, and let us integrate
through the thickness, t, across the widths, be, of the elements,
and over the length, L, of the thin-walled beam. The elastic
potential energy takes the following form after the introduction
of the strains expressed by the displacement in separated form

P¼ 1

2

Z L

0

X
el

Z bel

0
EtðOcuuÞ2þ 1

12
Et3ðwncuuÞ2

� ��"

þ GtðwscuÞ2þGtðO,scuÞ2
h

�2GtðwscuÞðO,scuÞþ
1

3
Gt3ðwn,scuÞ2

i
þ Estðws,scÞ2þ 1

12
Est

3ðwn,sscÞ2
� ��

ds

#
dz ð13Þ

In Eq. (13) the elastic energy terms have been grouped in axial
strain energy, shear energy, and transverse strain energy. In con-
ventional beam theory, we usually introduce rigid cross-sectional
displacement modes and the elastic energy is described by a
summation of the energy stored in all displacement modes. How-
ever we have to remember the shear constraints associated with
our assumption of constant shear flow, which have to be introduced
later. In the current work we wish to establish a set of displacement
modes by using semi-discretization. To achieve this, the cross-
section will be divided into discrete straight-line elements, in which
we interpolate the transverse and axial displacements.

4. Interpolation within cross-section elements

Within each straight finite cross-section element, the axial
displacements, O, will be interpolated linearly corresponding to a
linear variation of the warping functions and the transverse
displacement of the elements will be interpolated linearly in the
direction of the element and cubically (corresponding to beam
elements) in the transverse direction of the element. The dis-
placements in a straight cross-section finite element are thus

Fig. 3. Work of shear flow through axial virtual displacement.
Fig. 4. Components of the displacements vectors of a straight cross-section

element.
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interpolated as follows:

Ocu¼NOv
el
Ocu

wsc¼Nsv
el
wc

wnc¼Nnv
el
wc ð14Þ

in which NOðsÞ and Ns(s) are linear interpolation matrices and
Nn(s) is a cubic (beam) interpolation matrix. Furthermore we have
introduced the axial and transverse nodal displacement compo-
nents of a straight cross-section element as

velO ¼ ½velO1 velO2�T ¼ ½Oð0Þ OðbeÞ�T
velw ¼ ½velw1 velw2 velw3 velw4 velw5 velw6�T

¼ ½wsð0Þ �wnð0Þ �wn,sð0Þ wsðbeÞ �wnðbeÞ �wn,sðbeÞ�T ð15Þ

Here be is the width of the flat element. Nodal components and
the direction of the section coordinates (n,s) are shown in Fig. 4.
The element stiffness contributions to the axial strain, shear
strain, and transverse strain energy can now be found using the
displacement interpolations. The stiffness contributions found are
shown in Table 1, in which the first two are the axial stiffness
contributions, the third is the transverse distortional stiffness
term, while the last three are the shear strain stiffness contribu-
tions. These stiffness contributions can be found explicitly. Let us
prepare for the formulation of the total cross-section elastic
energy by introducing global displacement vectors as an assembly
of the local element degrees of freedom. The axial displacements
and the transverse displacements are separated into two vectors
as follows:

vO ¼ ½vO1 vO2 vO3 . . . �T

vw ¼ ½vx1 vy1 f1 vx2 vy2 f2 . . . �T ð16Þ
In Eq. (16), vO holds the local axial element degrees of freedom,
and vw holds the local element degrees of freedom, corresponding
to two displacements and one rotation for each node. The
transformation from local to global components is performed
using a formal standard transformation of the components in the
cross-section plane, i.e. vO ¼ TOv

el
O and vw ¼ Twvelw. The global

assembly of stiffness matrices is found by summation of the
contribution from each element, as illustrated in Table 2. Intro-
ducing the described interpolation and matrix calculation
scheme, the elastic potential energy in Eq. (13) now takes the
following form:

P¼ 1

2

Z L

0

(
cvTw cvTO
� 	uu Ks

ww 0

0 Ks
OO

" #
cvw
cvO

" #uu
þ cvTw cvTO
� 	u Kt

ww Kt
wO

Kt
Ow Kt

OO

" #
cvw
cvO

" #u
þ cvTw cvTO
� 	 Ks 0

0 0

" #
cvw
cvO

" #)
dz ð17Þ

In Eq. (17) and in the following, a bold zero 0 denotes a suitable
size matrix or vector of zeroes. The axial stiffness from transverse
displacements sub-matrix Ks

ww has a rank deficiency equal to the
number of free end nodes plus the number of ‘‘internal’’ nodes
between corner points of the cross-section. The in-plane cross-
section distortional stiffness sub-matrix Ks has a rank deficiency
of 3, corresponding to three in-plane ‘‘rigid body’’ or rather non-
distortional displacements of the cross-section. Finally the whole
shear stiffness matrix has a rank deficiency of 3, corresponding to
the existence of pure axial extension and two pure flexural modes
without shear. It turns out that since the pure axial displacement
only involves the sub-matrix Kt

OO, this matrix has a rank defi-
ciency of one.

5. Constraints, eliminations, transformations and reduction
of order

To achieve a formulation resembling a generalization of Vlasov
beam theory including distortion, the following three main steps
need to be performed, before we can solve the eigenvalue
problem related to distortional displacements, including local
plate type modes. In this process, we introduce constraints, and
we identify and eliminate the basic solutions related to the
conventional beam displacement modes.

5.1. Step I: Pure axial extension and shear constraints

In this step, we introduce the shear constraint equations that
bind axial and transverse modes together and at the same time
simplify or condense Eq. (17). In this process we need to eliminate
the singularity in the shear stiffness matrix related to pure axial
extension. The first eigenmode that we identify is the pure axial
extension; it produces no shear energy and no transverse dis-
placement energy (due to the simple constitutive relations
assumed, corresponding to beam theory and the mentioned rank
deficiency).

Let us introduce the shear constraint equations using Eq. (11)
as follows:Z
C
T dduz,s ds¼ 0 +

�
Z
C
Gtðws�O,sÞdO,s ds¼ 0 +

Z
C
GtO,sdO,s ds¼

Z
C
GtwsdO,s ds ð18Þ

Introducing the interpolation, see Eq. (14), Tables 1 and 2, and
taking variations gives us the constraint equations:

Kt
OOvO ¼�Kt

Owvw ð19Þ
This matrix equation is singular because pure axial extension
does not produce shear. Therefore we introduce the following
transformation, using superscripts a for axial and o for other:

vO ¼ ½Ta
O To

O�
vaO
voO

" #
ð20Þ

Table 1
Straight-element stiffness contributions.

ksOO ¼ R be
0 EtNT

ONO ds

ksww ¼ R be
0

Et3

12
NT

nNn ds

ks ¼ R be
0 EstN

T
s,sNs,sþEst3

12
NT

n,ssNn,ss

� �
ds

ktww ¼ R be
0

�
GtNT

sNsþGt3

3
NT

n,sNn,s

�
ds

ktOO ¼ R be
0 GtNT

O,sNO,s ds

ktwO ¼ ½ktOw�T ¼� R be
0 GtNT

sNO,s ds

Table 2
Assembly into total cross-section stiffness contributions.

Ks
OO ¼P

elT
T
Ok

s
OOTO Kt

ww ¼P
elT

T
wk

t
wwTw

Ks
ww ¼P

elT
T
wk

s
wwTw Kt

OO ¼P
elT

T
Ok

t
OOTO

Ks ¼P
elT

T
wk

sTw Kt
wO ¼P

elT
T
wk

t
wOTO
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in which Ta
O ¼ vaxialO is the pure axial deformation mode (with unit

value for all components). The other remaining modes are picked
out by

To
O ¼

0

Iaa

" #
g 1 d:o:f : related to the first node

g Unit diagonal matrix
ð21Þ

Here Iaa is a unit diagonal matrix of dimension na¼nno�1, where
nno is the number of nodes. Furthermore, it is worth noting that
vaO is one component that corresponds to the amount of pure axial
extension, while voO corresponds to all the other axial displacement
degrees of freedom. Introducing the transformation in Eq. (20) into
the constraint Eq. (19), we get the following by pre- and post-
multiplication:

0 0

0 ToT
O Kt

OOT
o
O

" #
vaO
voO

" #
¼

0

�ToT
O Kt

Owvw

" #
+

voO ¼�ðKtoo
OOÞ�1Kto

Owvw ð22Þ
where the matrices Ktoo

OO and Kto
Ow are given in Table 3. With Eq. (22)

we have introduced a transformation from in-plane cross-section
displacement modes to the axial displacement modes without pure
axial extension as follows:

voO ¼ TOwvw where TOw ¼�ðKtoo
OOÞ�1Kto

Ow ð23Þ
Combining Eqs. (20) and (22) gives

vO ¼ ½To
OTOw Ta

O�
vw
vaO

" #
¼ ½Tr

Ow Ta
O�

vw
vaO

" #
¼ Tr

OwvwþTa
Ov

a
O ð24Þ

where Tr
Ow ¼ To

OTOw.
The potential energy formulation (17) can now be modified so

that the amount of axial extension is described by the separate
degree of freedom vaO and the shear constraint equations are
enforced. The modification of (17) is performed using the trans-
formation in Eq. (24) and, to clarify the variational treatment of
pure axial extension, we also temporally rewrite the terms
pertaining to axial extension using zvaO ¼�cuvaO. Introducing
transformed stiffness matrices, see Table 3, the elastic potential
energy (for one mode) takes the following form

P¼ 1

2

Z L

0

�h
ðcvTwÞuu ðzvaOT Þu

i K
s �Ksra

OO

�Ksar
OO Ksaa

OO

" # ðcvwÞuu
ðzvaOÞu

" #

þðcvTwÞuKtðcvwÞuþðcvTwÞKsðcvwÞ
�
dz ð25Þ

To find the homogeneous distortional differential equations of
GBT, the first variation of the elastic potential energy is investi-
gated by taking variations in the complete displacement field.
The virtual variation of a property is denoted by a d in front of the
varied field property (displacement field), as in dðvwcÞu, as the
virtual variation of the first derivative of the transverse displace-
ment field expressed by the product of the transverse displace-
ment shape vw and the axial variation cu. This gives us

dP¼
Z L

0

�
dðcvTwÞuu½K

sðcvwÞuu�Ksra
OOðzvaOÞu�

þdðcvTwÞuKtðcvwÞuþdðcvTwÞKsðcvwÞ
þdðzvaOÞu½�Ksar

OO ðcvwÞuuþKsaa
OO ðzvaOÞu�

�
dz ð26Þ

After performing up to two partial integrations on the terms and
derived terms that involve axial derivatives of the (virtual) varied
displacement field, dðÞu or dðÞuu, the first variation of the elastic
potential energy takes the form:

dP¼
Z L

0

�
dðcvTwÞ K

s
vwc

0000�Ksra
OOv

a
Oz

000�KtvwcuuþKsvwc
h i

þdðzvaOÞ Ksar
OOvwc

000�Ksaa
OO vaOzuu

� 	�
dz

þ
h
dðcvTwÞu½K

sðcvwÞuu�Ksra
OOðzvaOÞu�

þdðcvTwÞ½�K
sðcvwÞ000 þKsra

OOðzvaOÞuuþKtðcvwÞu�
þdðzvaOÞ½�Ksar

OOðcvwÞuu�Ksaa
OO ðzvaOÞu�

iL
0

ð27Þ

For internal variation in the displacement fields dðcvwÞ and
dðzvaOÞ, the elastic potential energy should be stationary and
therefore its first variation must be equal to zero. Here the terms
in the squared bracket correspond to the boundary loads and
boundary conditions. Taking internal variations reveals the fol-
lowing coupled homogeneous differential equations of GBT in
which we note that z¼�cu:
K
s
vwc

0000�Ksra
OOv

a
Oz

000�KtvwcuuþKsvwc¼ 0 ð28Þ

Ksar
OOvwc

000�Ksaa
OO vaOzuu¼ 0 ð29Þ

These equations establish a coupled set of homogeneous GBT
differential equations that determine the displacements of a thin-
walled beam for a given set of boundary conditions. To solve the
boundary value problem, it is necessary to solve the related
eigenvalue problem by establishing the eigenmodes/vectors and
the related axial variation through the related eigenvalues. In the
following, we will first consider the case where the displacement
vectors do not contain transverse displacements, and then we will
consider one in which they do. We start out by isolating the term
vaOzuu in Eq. (29) as follows:

vaOzuu¼ ðKsaa
OO Þ�1Ksar

OOvwc
000 ð30Þ

We can identify pure axial extension as an eigenmode solution.
For the above Eqs. (28) and (29), it corresponds to ðvw,vaOÞ ¼ ð0,1Þ,
which we can see leads to a solution. In the original ‘‘global’’
space, the axial eigenmode is given by ðvw,vOÞ ¼ ð0,Ta

OÞ. It is also
clear that the axial variation of pure axial extension can be
determined by double integration of Eq. (30) with vw ¼ 0, which
results in

zðzÞ ¼�cuðzÞ ¼ ca1þca2z¼�WauðzÞca ¼ ½1 z�
ca1

ca2

" #
ð31Þ

where ca1 and ca2 are constants determined by the boundary
conditions of axial extension.

Having identified the ‘‘trivial’’ eigenmode, pure axial exten-
sion, we finally turn to the solution of the transverse displace-
ment modes. In this case, Eq. (30) determines the correction term
that eliminates pure axial extension in the back-substitution
process. Eliminating zuu by using the fact that zuu¼�c000 and
assuming that c000a0, we find

vaO ¼�ðKsaa
OO Þ�1Ksar

OOvw ð32Þ

Using this equation or Eq. (29), we eliminate the second term in
Eq. (28) and introduce Ks, as given in Table 3. This results in the
following homogeneous fourth order differential equations for
determination of the transverse (global, distortional and local)

Table 3
Transformation of stiffness matrices related to Step I.

Ksaa
OO ¼ Ta

O
T
Ks
OOT

a
O Ktrr

OO ¼ Tr
Ow

T
Kt
OOT

r
Ow

Ksar
OO ¼ Ta

O
T
Ks
OOT

r
Ow Ktr

wO ¼Kt
wOT

r
Ow ¼Ktr

Ow
T

Ksrr
OO ¼ Tr

Ow
T
Ks
OOT

r
Ow Ktoo

OO ¼ To
O
T
Kt
OOT

o
O

K
s ¼Ks

wwþKsrr
OO Kto

Ow ¼ To
O
T
Kt
Ow

Ks ¼K
s�Ksra

OOðKsaa
OO Þ�1Ksar

OO
Kt ¼Kt

wwþKtr
wOþKtr

OwþKtrr
OO
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distortional displacement modes of GBT:

Ksvwc
0000�KtvwcuuþKsvwc¼ 0 ð33Þ

To solve this set of equations we have to solve the related
eigenvalue problem, which is of fourth order, but since only an
even number of axial derivatives is involved, this reduces to a
quadratic eigenvalue problem. With solutions, vw, to Eq. (33), we
can find voO using Eq. (23), vaO using Eq. (32), and finally vO using
Eq. (20), thus revealing the full solution (in global space).

5.2. Step II: Rigid cross-section displacements and constant

wall-width constraint

In this step, we will identify and eliminate two eigenmodes
corresponding to transverse translation of the cross-section, and
we will identify a pure rotational eigenmode for later elimination
in the next step. Furthermore, we will also constrain the trans-
verse displacement field, so that the wall widths remain constant,
i.e. we will enforce ws,s � 0, see Eq. (5).

With the introduction of the shear constraints in the previous
step, the flexural modes do not have shear energy and the shear
stiffness matrix Kt is therefore singular for these modes. Since
neither the pure translational modes nor the rotational mode
involve any distortion of the cross-section, the transverse stiffness
matrix Ks will be singular for these modes. It turns out that the
translational modes correspond to two quadruple zero eigenva-
lues or roots of the related characteristic equation. To orthogo-
nalize these modes with respect to the non-singular axial stiffness
matrix Ks, we will form the subspace spanned by the modes and
orthogonalize in this subspace.

Let us first introduce two not necessarily orthogonal transla-
tional modes corresponding to a unit translation in each trans-
verse coordinate direction, ordered in columns in the matrix
Txy
w ¼ ½vx trans

w vy trans
w � and a rotational mode corresponding to

rotation about the origin of the (initial) transverse coordinate
axes Tz

w ¼ ½vz rot
w �.

In the subspace spanned by the two non-orthogonal transla-
tional modes introduced, we can find the principle flexural
directions by an equivalent conventional method or by finding
the eigenvectors of the following two-dimensional eigenvalue
problem:

ðKs
xy�lIÞvxy ¼ 0 ) vxy ¼ v1xy or v2xy ð34Þ

where I is a 2�2 diagonal unit matrix and Ks
xy ¼ Txy

w
T
KsTxy

w . The
two orthogonal eigenvectors corresponding to the principle axis
directions are ordered in columns in the transformation matrix

Taxy ¼ ½v1xy v2xy� ð35Þ
Finally we can determine the two orthogonal translational eigen-
modes in the full vw space, ordered in columns in a transforma-
tion matrix as Taw ¼ ½v1 trans

w v2 trans
w �, by the simple matrix

multiplication

Taw ¼ Txy
w Taxy ð36Þ

Next we turn to the non-orthogonal rotational mode, and we
subtract the translational part, so that the coupling term in the
axial stiffness vanishes. Thus the orthogonal pure rotational mode
is given by

v3 rot
w ¼ vz rot

w �½v1 trans
w v2 trans

w �da {

T3
w ¼ Tz

w�Tawda ð37Þ
where we have introduced the transformation ‘‘matrix’’ T3

w ¼ ½v3 rot
w �

and da as a two-dimensional vector giving the amount of each
translational eigenmode to be subtracted. Note that da is related to
the coordinate vector of the shear center, see [12]. The coupling

terms in the axial stiffness between translations and rotation are
found as follows (in the subspace):

Ks
a3 ¼ Taw

T
KsT3

w ¼ Taw
T
KsðTz

w�TawdaÞ ¼Ks
az�Ks

aada ð38Þ
By requiring that the coupling terms in the axial stiffness vanish
Ks
a3 ¼ 0, we find

da ¼Ks
aa

�1
Ks
az ð39Þ

Now we can completely identify the orthogonal pure rotational
eigenmode by inserting Eq. (39) in Eq. (37) as

T3
w ¼ Tz

w�TawK
s
aa

�1Ks
az ð40Þ

Here the matrix transformations are given in Table 4.
Before performing eliminations and finding the solutions

pertaining to the translational modes, we will constrain the
transverse normal strains in the middle surface of the cross-
section walls, i.e. we will enforce ws,s � 0 or, say, enforce a
constant wall-width constraint. For each wall element, this leads
to a multi-point constraint equation in local degrees of freedom,
velw, corresponding to no centerline elongation. It takes the
following form:

½1 0 0 �1 0 0�velw ¼ 0 ð41Þ
Each element constraint equation is reformulated into global
degrees of freedom by a formal transformation of the form
velw ¼ TT

wvw, which allows us to write nc independent constraint
equations (where nc can be less than the number of elements due
to over-constraining). The equations take the following form in
the full vw-space:

Cvw ¼ 0 ð42Þ
The transformation method described by Cook et al. [26] will be
used to enforce the multi-point constraint equations and elim-
inate the related degrees of freedom. However, we must also
incorporate the elimination of the translational eigenmodes and
prepare for the elimination of the rotational modes.

Before any elimination of eigenmodes or constrained degrees of
freedom can be performed, we must first transform the equations to
a new space (with redefined degrees of freedom) in such a way that
the degrees of freedom to be eliminated are clearly identified. Thus
we need to choose exactly which of the constrained degrees of
freedom (in each constraint equation) and which degrees of freedom
related to the translational and rotational modes are to be elimi-
nated. In our implementation, we choose to eliminate the transla-
tions and rotation of the first node, and we implement a strategic
routine which chooses which of the other translational degrees of
freedom related to the constraint equations are to be eliminated. The
identification of the constrained degrees of freedom to be eliminated
is performed by a transformation matrix Tw

c in which each column
belongs to a constraint equation and identifies the degree of freedom
to be eliminated by a unit value in the corresponding row. The
remaining degrees of freedom, which are not going to be separately
identified (eliminated), are identified in the transformation matrix Tw

u

in which each column identifies a remaining (u for unconstrained)
degree of freedom by a unit value in the corresponding row.

We are now ready to introduce the transformation to vw-space
from the new space. In the new space, we introduce the degrees

Table 4
Transformation of stiffness matrices related to Step II.

Ks
aa ¼ Taw

T
KsTaw Ks

33 ¼ T3
w

T
KsT3

w Kt
33 ¼ T3

w

T
KtT3

w

Ks
az ¼ Taw

T
KsTz

w Ks
3u ¼ T3

w

T
KseTu

w Kt
3u ¼ T3

w

T
KteTu

w

Ks
au ¼ Taw

T
KseTu

w Ks
uu ¼ eTu T

w KseTu

w Kt
uu ¼ eTu T

w KteTu

w

Ks
uu ¼ eTu T

w KseTu

w
K
s
uu ¼Ks

uu�Ks
uaK

s
aa

�1
Ks
au
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of freedom as, vaw ¼ ½v1w v2w�T for the magnitudes of the two
translational eigenmodes, vw

3 for the magnitude of the rotational
eigenmode, vw

c for the degrees of freedom to be constrained, and
vw
u for the remaining unconstrained degrees of freedom. The

transformation may be written as:

vw ¼ ½Taw T3
w Tc

w Tu
w�

vaw
v3w
vcw
vuw

266664
377775 ð43Þ

Since we have strategically chosen the constrained degrees of
freedom not to be equal to the degrees of freedom related to the
translational and rotational eigenmodes, we have a situation
where CTaw ¼ 0 and CTw

3 ¼ 0. So the constrain equations in (42)
can be rewritten using Eq. (43) as

CTc
wv

c
wþCTu

wv
u
w ¼ 0 ð44Þ

This allows us to express the constrained degrees of freedom by
the unconstrained as

vcw ¼�C�1
c Cuv

u
w ð45Þ

in which Cc ¼ CTc
w and Cu ¼ CTu

w. Introducing (45) in the transfor-
mation Eq. (43), we find that the total transformation is con-
densed as follows:

vw ¼ ½Taw T3
w Tc

w Tu
w�

vaw
v3w

�C�1
c Cuvuw
vuw

266664
377775¼ ½Taw T3

w
eTu

w�
vaw
v3w
vuw

264
375 ð46Þ

where eTu

w ¼ Tu
w�Tc

wC
�1
c Cu has been introduced as the condensed

transformation by using a tilde.
Introducing the transformation in (46) in the differential equa-

tions in (33) transforms these equations into the new space. The
differential equations thereby take the following form in which we
have also introduced the null terms corresponding to the rigid-body
modes and zero shear strain for translational and flexural modes:

Ks
aa 0 Ks

au

0 Ks
33 Ks

3u

Ks
ua Ks

u3 Ks
uu

264
375 vaw

v3w
vuw

264
375c0000�

0 0 0

0 Kt
33 Kt

3u

0 Kt
u3 Kt

uu

264
375 vaw

v3w
vuw

264
375cuu

þ
0 0 0

0 0 0

0 0 Ks
uu

264
375 vaw

v3w
vuw

264
375c¼

0

0

0

264
375 ð47Þ

The transformed stiffness matrices introduced in this equation are
given in Table 4. The two-dimensional upper block matrix equation
yields the translation displacements as

vawc
0000 ¼ �Ks

aa
�1

Ks
auv

u
wc

0000 ð48Þ
We can identify the two orthogonal pure translational modes, (v1w,
v2w, v

3
w, v

u
w) ¼ (1, 0, 0, 0) and (0, 1, 0, 0), as eigenmodes or solutions

to Eq. (47). For these pure translational modes, we find that the
right-hand side of Eq. (48) vanishes and that the axial variation of
the pure translational modes is therefore determined by quadruple
integration, which gives:

c1ðzÞ ¼ c11þc12zþc13z
2þc14z

3 ¼W1ðzÞc1

c2ðzÞ ¼ c21þc22zþc23z
2þc24z

3 ¼W2ðzÞc2 ð49Þ

We will make use of the following block notation:

Waca ¼
W1 0

0 W2

" #
c1
c2

" #
, c1 ¼

c11

c12

c13

c14

266664
377775, c2 ¼

c21

c22

c23

c24

266664
377775 ð50Þ

in whichW1 ¼W2 ¼ ½1 z z2 z3�. The constants in the vectors c1 and
c2 are determined by the boundary conditions for pure transverse
translational displacement in the two directions.

Having identified the two pure translational modes, we turn to
the remaining solutions to the differential Eq. (47). In this case,
Eq. (48) determines the correction term that eliminates pure
transverse displacements in the back-substitution process. By
dividing both sides of the equation by c0000a0 we find

vaw ¼�Ks
aa

�1
Ks
auv

u
w ð51Þ

Using this equation or Eq. (48), we eliminate the two pure flexural
degrees of freedom and find the condensed version of the
differential Eq. (47), which takes the following form:

Ks
33 Ks

3u

Ks
u3 K

s
uu

" #
v3w
vuw

" #
c0000�

Kt
33 Kt

3u

Kt
u3 Kt

uu

" #
v3w
vuw

" #
cuuþ

0 0

0 Ks
uu

" #
v3w
vuw

" #
c¼ 0

0

� �
ð52Þ

The introduced stiffness matrix K
s
uu is given in Table 4. This equation

constitutes the GBT differential equations constrained by shear flow
constraints and wall-width constraints after the elimination of the
classical axial and two translational (flexural beam) modes.

5.3. Step III: Reduction of order and pure st. venant torsion

In the following, we will reduce the differential order of the
coupled fourth order differential equations and the related quad-
ratic eigenvalue problem to twice as many coupled second order
differential equations with a related linear eigenvalue problem of
double size. This method is equivalent to the one used for the
solution of the coupled homogeneous problem of one-mode
distortion and torsion analyzed in [12]. After we have changed
the order of the equations, we can recognize that the pure
torsional St. Venant displacement modes with a constant or a
linear variation of the angle of twist are eigensolutions.

The fourth order differential Eq. (52) can be transformed into
twice as many second order differential equations by introducing
what is called a state vector. There are a number of different
possible formulations, but we have chosen the use of the state
vector vS ¼ ½v3wc,vuwc,v3wcuu,vuwcuu�T . Introducing this state vector
(and using related equality block equations) yields a reformula-
tion of Eq. (52) as a formal second order matrix differential
equation of double size, which takes the form:

0 0 0 0

0 Ks
uu 0 0

0 0 �Ks
33 �Ks

3u

0 0 �Ks
u3 �K

s
uu

266664
377775

v3wc
vuwc
v3wcuu
vuwcuu

266664
377775

�

Kt
33 Kt

3u �Ks
33 �Ks

3u

Kt
u3 Kt

uu �Ks
u3 �K

s
uu

�Ks
33 �Ks

3u 0 0

�Ks
u3 �K

s
uu 0 0

2666664

3777775
v3wc
vuwc
v3wcuu
vuwcuu

266664
377775
uu

¼

0

0

0

0

26664
37775 ð53Þ

Seeking solutions of exponential form, cðzÞ ¼ exz, with an eigen-
vector in which v3w¼1 and vuw¼0, we see that the first equation
will lead to an eigenvalue, x2 ¼ 0, or a double zero root (in the
characteristic equation), thus giving us not exponential solutions
but two linear solution terms. This corresponds to a constant or a
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linear variation of the first degree of freedom, which is pure twist.
However if we ‘‘persistently’’ seek the two classical exponential
solutions for a pure twist mode with (eigen)vectors, ð1,0,x2,0ÞT ,
we are not able to show that this is in general a solution. In the
examples section, we will see that for the closed cross-section,
only the linear terms of pure twist exist, whereas for the open
channel section, the eigenvalue is very close to the classical result,
and in the example chosen, we cannot visually see the distortion
in the associated ‘‘torsional’’ mode with an exponential variation
of twist.

To keep the matrix operations as simple as possible we
introduce a new vector vw

e and three new block matrices, Ks
ee,

Ks
3e and Ks

ue, given by

vew ¼
v3w
vuw

" #
, Ks

ee ¼
Ks

3e

Ks
ue

" #
¼

½Ks
33 Ks

3u�
½Ks

u3 K
s
uu�

" #
ð54Þ

When we introduce the new vector and the three block matrices
defined by Eq. (54) and in Table 5, the second order differential
equations can be written as

0 0 0

0 Ks
uu 0

0 0 �Ks
ee

264
375 v3wc

vuwc
vewcuu

264
375� Kt

33 Kt
3u �Ks

3e

Kt
u3 Kt

uu �Ks
ue

�Ks
e3 �Ks

eu 0

264
375 v3wc

vuwc
vewcuu

264
375
uu

¼
0

0

0

264
375

ð55Þ
In the first equation we can isolate the pure rotational term
resulting in the following differential equation:

v3wcuu¼�Kt
33

�1ðKt
3uv

u
wcuu�Ks

3ev
e
wc

0000Þ ð56Þ
It can be seen that pure St. Venant torsion (with free warping),
corresponding to the solution vector, ðv3wc,vuwc,vewcuuÞ ¼ ðc32zþ
c31,0,0Þ, is a solution of the second order differential equations in
(55). We have thus shown that

c3ðzÞ ¼ c31þc32z¼W3ðzÞc3 ¼ ½1 z�
c31

c32

" #
ð57Þ

The remaining solutions to the differential equations in (55) are
found by seeking exponential solutions of the form cðzÞ ¼ exz. We
insert the exponential solution in Eq. (56) and find the following
equation, which we will use for back-substitution purposes:

v3w ¼�Kt
33

�1ðKt
3uv

u
w�Ks

3eðx2vewÞÞ ð58Þ
Using Eq. (56), we eliminate v3w from the differential equations in
(55) and find the final distortional differential equations of GBT that
determine all the distortional displacement modes as

Ks
uu 0

0 �Ks
ee

" #
vuwc
vewcuu

" #
�

K
t
uu �K

s
ue

�K
s
eu �K

s
ee

24 35 vuwc
vewcuu

" #uu

¼ 0

0

� �
ð59Þ

The block matrices and the transformed stiffness matrices are given
in Table 5. In the following section we will describe the solution of
these differential equations.

6. The distortional eigenvalue problem and homogeneous
solution functions

To find the distortional eigenmodes, including what are called
local modes, we are finally able to seek solutions to the final
condensed differential matrix Eq. (59). We postulate that the

solutions are exponential solutions of the form

cðzÞ ¼ exz ð60Þ

where x is an inverse length scale parameter which may be
complex. Inserting the postulated solution leads to the following
generalized linear matrix eigenvalue problem, in which the eigen-
values are x2 and the eigenvectors are the distortional modes that
we seek:

Ks
uu 0

0 �Ks
ee

" #
vuw

x2vew

" #
�x2

K
t
uu �K

s
ue

�K
s
eu �K

s
ee

24 35 vuw

x2vew

" #
¼ 0

0

� �
ð61Þ

Due to the differences in the order of magnitude of the different
stiffness terms in the matrices, we have chosen to improve the
numerical accuracy of the eigenvalue and eigenvector solution in
our numerical implementation by introducing the following
Cholesky decomposition of the block matrices in the first matrix:

Ks
uu ¼ LuL

T
u , Ks

ee ¼ LeL
T
e ð62Þ

We utilize the decomposition by introducing the following new
intermediate vectors

vuw ¼ L�T
u

evu
w, ðx2vewÞ ¼ L�T

e ðx2eve
wÞ ð63Þ

where the superscript �T corresponds to the inverted transpose of
the matrix. After pre-multiplication of each block matrix equation
by Lu

�1 and Le
�1, the eigenvalue problem then takes the following

form:

Iuu 0

0 �Iee

" # evu
w

x2eve
w

" #
�x2

L�1
u K

t
uuL

�T
u �L�1

u K
s
ueL

�T
e

�L�1
e K

s
euL

�T
u �L�1

e K
s
eeL

�T
e

24 35 evu
w

x2eve
w

" #
¼ 0

0

� �
ð64Þ

In this equation Iuu and Iee are adequate size unit diagonal
matrices. Some general eigenvalue solution routines demand that
at least one of the matrices has to be symmetric as well as
positive (semi-)definite. This can be achieved by a change of sign
in the second block matrix equation, however the second matrix
becomes asymmetric. Having found the eigenvectors, we use
Eq. (63) to find vuw and ðx2vuwÞ, which can then be used for the
remaining back-transformation process.

Each distortional eigenvector corresponds to a solution cdi
ðzÞ

of the homogeneous coupled equations of distortion in Eq. (59).
The solution function corresponds to our trial function in Eq. (60),
and it has now been determined by plus/minus the square root of
the eigenvalues as 7xi. In other words, for the ith eigenvector we
find the solution

cdi
ðzÞ ¼ cd2i�1

exizþcd2i e
�xiz ¼Wdi ðzÞcdi ¼ ½exiz e�xiz�

cd2i�1

cd2i

" #
ð65Þ

in which constants cd2i�1
and cd2i assembled in the vector cdi

depend on the boundary conditions of the problem at hand. All
the distortional solution functions are assembled in the distor-
tional solution matrix Cd and multiplied by the assembled vector
of distortional constants cd as follows:

WdðzÞcd ¼

Wd1 ðzÞ 0 0 � � �
0 Wd2 ðzÞ 0 � � �
0 0 Wd3 ðzÞ � � �
^ ^ ^ &

266664
377775

cd1
cd2
cd3
^

266664
377775 ð66Þ

This notation is used later to describe the total displacement
solution.

Table 5
Transformation of stiffness matrices related to Step III.

Ks
3e ¼ ½Ks

33 Ks
3u� Ks

ue ¼ ½Ks
u3 K

s
uu� Ks

ee
T ¼ ½Ks

3e
T
Ks

ue
T �

K
s
ee ¼Ks

e3K
t
33

�1Ks
3e K

s
ue ¼Ks

ue�Kt
u3K

t
33

�1Ks
3e K

t
uu ¼Kt

uu�Kt
u3K

t
33

�1Kt
3u
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7. Back substitution

Having found the distortional eigenvalues, eigenvectors and
homogeneous solutions for the reduced system (61), we now
have to perform a backward substitution through the previous
steps in order to achieve the results in the original displacement
vector format. Furthermore, we also have to back-substitute all
eliminated eigenvectors (multiple zero eigenvalues) and review
the related homogeneous solutions.

7.1. Back substitution of distortional modes

In the previous sections, the formulations are related to a
single displacement vector and the back substitution of the
distortional modes found from solving the eigenvalue problem
in Eq. (61) is performed sequentially through Eqs. (58), (51), (46),
(32) and (24). In a typical modal approach, all eigenvectors are
assembled column-wise in the mode matrix and the related
eigenvalues x2 are placed sequentially in the diagonal of the
matrix K. By introducing the capital letter V with related sub- and
superscripts for the assembled modes, we can find the back-
substituted distortional mode matrices Vw

d and Vd
O using the

following sequence of substitutions corresponding to the
sequence of equations mentioned above:

V3
w ¼�Kt

33
�1ðKt

3uV
u
w�Ks

3eðVe
wKÞÞ ð67Þ

Va
w ¼�Ks

aa
�1

Ks
auV

u
w ð68Þ

Vd
w ¼ TawV

a
wþT3

wV
3
wþeTu

wV
u
w ð69Þ

Vd,a
O ¼�ðKsaa

OO Þ�1Ksar
OOV

d
w ð70Þ

Vd
O ¼ Tr

OwV
d
wþTa

OV
d,a
O ð71Þ

The superscript d has been introduced to distinguish the distor-
tional modes from the total assembly of modes introduced later.
The term ðVe

wKÞ is just one matrix, which is never separated into
the two product terms, but just found directly as part of the
eigenvectors of the reduced-order eigenvalue problem in Eq. (61).

7.2. Back substitution of eliminated beam displacement modes

The back substitution of eliminated beam displacement modes
involves back substitution of the pure axial extension mode, the
two transverse translational modes, and the pure twist mode.
Using the degree-of-freedom space introduced in Step II, these
modes are given by the following four transverse displacement
modal vectors:

v1w
v2w
v3w
vuw

266664
377775¼

0

0

0

0

26664
37775,

v1w
v2w
v3w
vuw

266664
377775¼

1

0

0

0

26664
37775,

v1w
v2w
v3w
vuw

266664
377775¼

0

1

0

0

26664
37775,

v1w
v2w
v3w
vuw

266664
377775¼

0

0

1

0

26664
37775
ð72Þ

The first vector becomes the extensional eigenvector in the
degree-of-freedom space introduced in Step I. The back substitu-
tion of these modes is all performed using Eq. (46). However, we
have already introduced the eigenvectors in the original trans-
verse displacement space in the transformation matrices related
to this equation, Taw and Tw

3 and the back transformation is
obsolete for these modes. These eigenvectors are assembled in a
beam mode matrix Vb

w as follows:

Vb
w ¼ ½0 v1 trans

w v2 trans
w v3 rot

w � ð73Þ

The back substitution of the warping displacements remains. Of
course the pure axial extension warping vector is trivial and has
already been introduced as Taxial

O ¼ vaxialO , but we have to back-
substitute the other modes. This is done by first calculating the
axial (adjustment) component using Eq. (32) as follows:

Vb,a
O ¼ ½1 0 0 0��ðKsaa

OO Þ�1Ksar
OOV

b
w ð74Þ

The beam warping vectors related to the transverse beam
displacement modes can now be found using Eq. (24) as

Vb
O ¼ ½vaxialO v1 trans

O v2 trans
O v3 rot

O � ¼ Tr
OwV

b
wþTa

OV
b,a
O ð75Þ

The axial variation of the four modes has been identified in Eqs.
(31), (50) and (57) and can be assembled in the beam solution
function matrix WbðzÞ and multiplied by the vector of beam
displacement constants cb as

WbðzÞcb ¼
WaðzÞ 0 0

0 WaðzÞ 0

0 0 W3ðzÞ

264
375 ca

ca
c3

264
375 ð76Þ

in which we have introduced the integral of the axial solution as
Wa ¼ ½�z � 1

2 z
2�. This matrix function does not pertain to any

solution, and we might as well have set it to zero, since there are
no transverse displacements, vw

axial¼0, for the pure axial deforma-
tion mode in beam theory. However, this choice allows us to use
the derivative of the WaðzÞ matrix, which is the axial solution
Wua ¼ ½�1 �z�.

8. The full homogenous solution

The full homogenous solution can now be assembled from all
the eigenmode vectors and the solution functions. It turns out
that some of the eigenvalues and eigenvectors are complex.
However in the following we will just perform a direct formula-
tion in which we acknowledge that we are also dealing with
complex quantities corresponding to related complex eigenvalues
and complex axial solution functions. A transformation of the
complex quantities to pairwise coupled real modes and real
solution functions will be introduced in the second subsection.

8.1. Direct formulation

Let us assemble all the eigenvectors column-wise in a modal
matrix of transverse displacement vectors Vw and a modal matrix
of axial warping displacement vectors VO by joining the modal
matrices of the beam eigenvectors and the distortional eigenvec-
tors in the following sequence:

Vw ¼ ½Vb
w Vd

w�, VO ¼ ½Vb
O Vd

O� ð77Þ
The solution function matrices and the displacement constant
vectors can also be assembled using the previously defined block
matrices and vectors

WðzÞc¼
WbðzÞ 0

0 WdðzÞ

" #
cb
cd

" #
ð78Þ

The full homogeneous solution along the beam can be assembled
in the nodal solution vectors uw(z) and uz(z) as follows:

uwðzÞ ¼VwWðzÞc

uzðzÞ ¼ �VOWuðzÞc ð79Þ
The constants have to be determined by the boundary conditions
of the thin-walled beam.

To be able to present and discuss unique complex eigenmodes,
all the distortional vectors in Vw have been normalized after back
substitution in such a way that the largest absolute value of all
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components in each vector is one and that this component is real.
This has to be done to make them unique since complex eigenvec-
tors are determined except for an arbitrary complex constant.

8.2. Transformation to real modes and real solution functions

Some of the distortional displacement modes found and their
related eigenvalues are complex. Mathematical formulation with
the use of complex numbers simplify derivations and the use of
compilers, which include complex numbers with complex opera-
tions on matrices, will lead to simple algorithms. However it may
be easier to grasp the form and meaning of the solution in real
quantities.

Complex eigenvalues are always found as a pair of complex
conjugated eigenvalues with eigenvectors which are also complex
conjugated. For the jth complex eigenvalue, x2j , and its conjugated
j+1th eigenvalue, x2jþ1 ¼ x2j , let us introduce the following nota-
tion for the positive square root values and the related eigenvec-
tor columns vj and vj+1 of Vw:

xj ¼ ljþmji, xjþ1 ¼ xj ¼ lj�mji ð80Þ

vj ¼ ajþbji, vjþ1 ¼ vj ¼ aj�bji ð81Þ
in which we have introduced the real and imaginary parts of the
eigenvalues and eigenvectors. The complex eigenvectors in Eq.
(81) may be conveniently written as

½vj vjþ1� ¼ ½aj bj�
1 1

i �i

� �
ð82Þ

The constants of the related parts of the homogeneous solution
are also complex quantities. However we are able to assemble the
two complex conjugated modal solutions into two real (but
pairwise coupled) solutions by introducing the real constant
vectors ecj and ecjþ1 as follows:

cj
cjþ1

" #
¼ 1

2

1 �i

1 i

� � ecjecjþ1

" #
ð83Þ

The jth complex part of the full solution can now be rewritten
using the transformations in Eqs. (82) and (83). After multi-
plication and identification of real and imaginary parts, we find
the following result:

½vj vjþ1�
Wdj 0

0 Wdj

24 35 cj
cjþ1

" #
¼ ½aj bj�

ReðWdj Þ ImðWdj Þ
ImðWdj Þ ReðWdj Þ

24 35 ecjecjþ1

" #
ð84Þ

where the real and imaginary parts of the (in this case complex)
matrix Wdj introduced in (65) are

ReðWdj Þ ¼ ReðWdj Þ ¼ ½eljzcosmjz e�ljzcosmjz�

ImðWdj Þ ¼�ImðWdj Þ ¼ ½eljzsinmjz �e�ljzsinmjz� ð85Þ

whereby the real formulation in the right-hand side of Eq. (84)
becomes

½aj bj�
eljzcosmjz e�ljzcosmjz eljzsinmjz �e�ljzsinmjz

�eljzsinmjz e�ljzsinmjz eljzcosmjz e�ljzcosmjz

24 35
ecj1ecj2ecjþ11ecjþ12

266664
377775
ð86Þ

This allows us to rewrite the complex quantities into real
quantities. Let us modify the modal matrices Vw and VO and
introduce the modified modal matrices eVw and eVO by substituting
the complex pairs of eigenvectors with their respective real and

imaginary parts. Further more let us also introduce the modified
solution matrix eW and its related modified vector of constants ec
by substituting the solutions (and constants) of the complex pairs
using Eq. (84), i.e. Eq. (86). This allows us to write the full homo-
geneous solution along the beam with real numbers as

uwðzÞ ¼ eVw
eWðzÞec

uzðzÞ ¼�eVO
eWuðzÞec ð87Þ

We may choose to work with this real formulation or continue
working with complex numbers using the full homogeneous solu-
tion formulated in Eq. (79). Before elaborating on how to find the
solution constants, we will look at a couple of examples, showing
the different modes and eigenvalues.

9. Examples of transverse and axial displacement modes

Using the approach described, it is possible to identify all the
eigenvectors of the current GBT formulation, which is based on
simple constitutive relations, discretization of the cross-section
displacements in combination with a weak formulation of the
shear constraints and constrained wall width. The approach
allows direct analysis of both open and closed thin-walled
cross-sections without special considerations. Furthermore, the
mathematical solution of the problem is not approximate, but
performed as in non-proportionally damped modal analysis.

The following three examples illustrate the eigenmodes
related to the lowest eigenvalues of the formulated eigenvalue
problem for generalized thin-walled beams. The first example
relates to an open channel cross-section and the second relates to
a closed rectangular box cross-section. The third example illus-
trates the 3D behavior of distortional eigensolutions. The exam-
ples show that some of the important distortional modes and
related eigenvalues are complex. We have chosen to show both
real and imaginary parts of all the eigenmodes in order to
illustrate that they come in pairs and that the imaginary part of
the conjugated mode changes sign. However as we have seen in
Section 8.2 the conjugated pair can be replaced by two real modes
corresponding to the real and the imaginary part of one of the pair
bearing in mind that these two are then coupled and interact
along the beam. Even though we in our examples only show
results for real local distortional modes we have to state that a
few of the higher modes become complex, therefor we are not, on
the basis of these examples, able to draw conclusions on this.

The examples also illustrate that the pure St. Venant twist mode
is included with a linear axial solution for both closed and open
sections, while the exponential solution with pure rigid cross-
section twist does not seem to exist for the closed rectangular
cross-section, and an investigation of the mode found for the open
cross-section shows that it contains very small distortions.

9.1. Example 1: Eigenmodes of a lipped channel cross-section

Solving the generalized eigenvalue problem in Eq. (61) using
geometric parameters and values as given in Fig. 5 leads to a number
of modes corresponding to the number of degrees of freedom. The
first 13 eigenvalues are shown in Table 6. For this lipped channel
cross-section, modes 0, 1, 2, 3 are beammodes, modes 4, 5, 6, 7, 8 are
non-local distortional, and the remaining modes 9–84 are local
distortional modes. The designation of local and non-local distor-
tional modes is made on the basis of the difference in the attenuation
of the modes (difference in problem length scales) seen in relation to
the typical dimensions of the cross-section. Mode 4 is the exponen-
tially varying counterpart to pure St. Venant twist, but it also
contains wall distortions, which in this example are in the order of
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magnitude 10�3 of the twist displacements, and in this formulation
it is therefore an independent mode. The in-plane mode shapes
corresponding to the eigenvalues in Table 6 are shown in Fig. 6,
while the corresponding warping mode shapes are shown in Fig. 7.
Note that the imaginary part of the mode vector is about 10–100
times smaller than the real counterpart. The modes found seem very
similar to the most important modes found by Silvestre in [13]. Note
that Silvestre does not comment on the choice of numbering order,
where the modes in this paper are ordered according to the attenua-
tion length.

9.2. Example 3: Eigenmodes of a rectangular box cross-section

Using the geometric parameters and values as given in Fig. 8
leads to a number of modes corresponding to the number of
degrees of freedom. The first ten calculated eigenvalues are
shown in Table 7. For this channel cross-section, modes 0, 1, 2,
3 are beam modes, modes 4, 5 are non-local distortional modes,
and the remaining modes 6–94 are local distortional modes. Note
that there is no exponentially varying counterpart to pure St.
Venant twist. The in-plane mode shapes corresponding to the
eigenvalues in Table 7 are shown in Fig. 9, while the corresponding
warping mode shapes are shown in Fig. 10. Also note that for the
closed section the imaginary part of the mode vector is 10–100
times smaller than its real counterpart. The modes found seem very
similar to the modes found by Gonc-alves and Camotim in [4] and
seem to span the same deformation space.

9.3. Example 3: Two distortional eigensolutions for both channel and

box beams

In this example we show the two eigensolutions related to the
first complex distortional displacement mode of the channel and
box cross-sections. We choose to illustrate the mode corresponding

h = 50
w = 100
c = 25
t = 2.0
E = 2.1 × 105

G = 8.077 × 104

ν = 0.3
Node

h t

cc

w

Fig. 5. Geometry and parameter values of a lipped channel.

Table 6

Eigenvalues x2, the x value and the related axial solutions for the lipped channel cross-section.

Mode Eigenvalues Axial solution

Type Scale No. x2 � 106 x� 103 cðzÞ

Beam Global 0 0 0 �ca1z�ca2z
2

1 0 0 c11+c12z+c13 z2+c14z
3

2 0 0 c21+c22z+c23z
2+c24z

3

3 0 0 c31+c32z

Distortional Non-local 4 0.37 0.61 cd1e
xzþcd2e

�xz

5 3.36-26.52i 7 ð3:88�3:42iÞ cd3e
xzþcd4e

�xz

6 3.36+26.52i 7 ð3:88þ3:42iÞ cd5e
xzþcd6e

�xz

7 4.23�50.04i 7 ð5:22�4:80iÞ cd7e
xzþcd8e

�xz

8 4.23+50.04i 7 ð5:22þ4:80iÞ cd9e
xzþcd10e

�xz

Local 9 825.6 28.7 cd11e
xzþcd12e

�xz

10 951.1 30.8 cd13e
xzþcd14e

�xz

11 1823 42.7 cd15e
xzþcd16e

�xz

12 3359 58.0 cd17e
xzþcd18e

�xz

Fig. 6. Lipped channel – 13 in-plane deformation mode shapes.
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to the first complex distortional displacement mode, which are
mode j¼5 and j¼4 respectively for the channel and box cross-
sections. With the use of Eq. (86) in which the real part, a, and the
imaginary part, b, of the mode are multiplied by the solution
functions. We choose in Fig. 11 to illustrate two of the four
independent solution functions: one in which only ecj2 is non-zero
(shown as a and b in the figure), and the other (shown as c and d) in
which only ecjþ12

is non-zero. Thus sub-figures a and b correspond
to the solution e�ljzcosmjz � ajþe�ljzsinmjz � bj and sub-figures c and
d correspond to�e�ljzsinmjz � ajþe�ljzcosmjz � bj. The eigensolutions
shown in the figure therefore involves a coupled behavior of the real
part and imaginary part of the mode.

10. The degree of freedom space and related transformations

To apply the present work and make use of the solutions found
in a finite-element context, it is necessary to be able to relate to
the different degree-of-freedom spaces in use as well as to the
constraints introduced. In Step I, the introduction of shear con-
straints leads to a generalized beam theory (GBT) in which only
shear flow around closed cells is taken into account while all
other shears are constrained. With the exception of pure axial
extension, the axial displacements are determined from the axial
derivative of the transverse displacements. From the boundary
terms of the first variation of the potential energy given in Eq. (27), it
is seen that the (virtual) generalized boundary displacements are
pure axial extension ðzvaOÞ, transverse displacements ðcvwÞ, and the
axial derivative of the transverse displacements ðcvwÞu. However the
transverse displacements are unconstrained, which is not compa-
tible with classical Vlasov beam theory where the individual thin
wall of the cross-section is assumed to maintain its length (width)
within the cross-section, i.e. no cross-section centerline elongation.

This is overcome in Step II where the walls are constrained using a
set of multi-point constraint equations which eliminate constrained
transverse displacement degrees of freedom vw

c . The basic degrees of
freedom of the GBT formulation are the pure axial extension ðzvaOÞ,
the remaining transverse displacements ðcvgwÞ, and the axial deri-
vative hereof ðcvgwÞu. To be able to change degree-of-freedom space
from GBT space vw

g to finite element (FE) (original degree-of-free-
dom) space vw, the following transformation is introduced:

vw ¼ ½Tc
w Tg

w�
vcw
vgw

" #
ð88Þ

where

Tg
w ¼ ½Ti

w Tu
w� and Ti

w ¼

1 0 0

0 1 0

^ 0 1

^ 0

^

26666664

37777775
in which Tw

c and Tw
u have already been introduced in Step II, and Tw

i

is a matrix corresponding to three supplementary columns, which
pick out the degrees of freedom of the first node related to vw

1 , vw
2

and vw
3 .

10.1. From FE displacements to GBT displacements

If the transverse displacement vector vw already fulfills the
constraint equations, then we can find the GBT transverse
displacement vector by using Tg

w
T
, and the pure axial extension

by using Ta
O
T
as follows:

vgw
vaO

" #
¼

Tg
w
T 0

0 Ta
O
T

" #
vw
vO

" #
ð89Þ

This is the important transformation from FE space to GBT space,
which we will need to be able to find the constants of the
homogeneous solution.

10.2. From GBT displacements to FE displacements

However we may at some point also need the opposite
transformation, which involves the constraint equations intro-
duced in Eq. (42). Let us principally use the same method but
introduce the transformation Eq. (88) whereby the multi-point

Fig. 7. Lipped channel – 13 warping deformation mode shapes.

h = 50
w = 100
t = 2.0
E = 2.1 × 105

G = 8.077 × 104

ν = 0.3
Node

w

th

Fig. 8. Geometry and parameter values of a rectangular section.
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constraint equations take the form

CTc
wv

c
wþCTg

wv
g
w ¼ 0 3 Ccv

c
wþCgv

g
w ¼ 0 ð90Þ

in which Cc ¼ CTw
c has previously been introduced and Cg ¼ CTw

g

is introduced here. This allows us to express the constrained
degrees of freedom by the GBT transverse displacement vector as

vcw ¼�C�1
c Cgv

g
w ð91Þ

Introducing the equality (91) in the transformation Eq. (88), we
find that the total transformation condenses our problem as

follows:

vw ¼ ½Tc
w Tg

w�
�C�1

c Cgv
g
w

vgw

" #
¼ eTg

wv
g
w ð92Þ

where eTg

w ¼ Tg
w�Tc

wC
�1
c Cg has been introduced as the condensed

transformation. Using the transformation Eq. (24) that determines
the warping displacements from the amount of axial extension
and the transverse displacements we find

vO ¼ ½Tr
Ow Ta

O�
vw
vaO

" #
¼ ½Tr

Ow
eTg

w Ta
O�

vgw
vaO

" #
ð93Þ

Table 7

Eigenvalues x2, the x value and the related axial solutions for the rectangular box cross-section.

Mode Eigenvalues Axial solution

Type Scale No. x2 � 106 x� 103 cðzÞ

Beam Global 0 0 0 �ca1z�ca2z
2

1 0 0 c11+c12z+c13z
2+c14z

3

2 0 0 c21+c22z+c23z
2+c24z

3

3 0 0 c31+c32z

Distortional Non-local 4 0:72�36:95i 7ð4:34�4:26iÞ cd1e
xzþcd2e

�xz

5 0:72þ36:95i 7ð4:34þ4:26iÞ cd3e
xzþcd4e

�xz

Local 6 1205 34.7 cd5e
xzþcd6e

�xz

7 2661 51.6 cd7e
xzþcd8e

�xz

8 2050 45.3 cd9e
xzþcd10e

�xz

9 4837 69.6 cd11e
xzþcd12e

�xz

Fig. 9. Rectangular box cross-section – 10 in-plane deformation mode shapes.

Fig. 10. Rectangular box cross-section – 10 warping deformation mode shapes.

J. Jönsson, M.J. Andreassen / Thin-Walled Structures 49 (2011) 691–707704



Paper I 171

Using Eqs. (92) and (93) we find the following transformation

vw
vO

" #
¼

eTg

w 0

Tr
Ow

eTg

w Ta
O

24 35 vgw
vaO

" #
ð94Þ

This transformation is used to transform from GBT space to
FE space.

11. Displacement boundary conditions of the homogeneous
solution

Having solved the eigenvalue problem and formulated solu-
tion modes in the original FE degree-of-freedom space, we would
like to set up a method for determining the constants of the
homogeneous solutions found. This is to be done in the GBT space.
As seen from the first variation of the potential energy, the natural
boundary displacements of the GBT at each boundary are the pure
axial displacement ua

O of the beam, the transverse displacements
uw
g , and the axial derivative of the transverse displacements ug

wu.
The generalized internal displacements of the GBT beam can be
expressed by using the full homogeneous solution in Eq. (79) or
alternatively, as done in the following, by the real formulation in
Eq. (87) and the transformation from FE to GBT displacements
(89) as follows:

ua
z ðzÞ

ug
wðzÞ

ug
wuðzÞ

264
375¼

�Ta
O
T eVO

eWuðzÞ
Tg
w
T eVw

eWðzÞ
Tg
w
T eVw

eWuðzÞ

2664
3775ec ð95Þ

To determine the constants using displacement boundary condi-
tions as in finite element or stiffness formulations, we need the
boundary displacements at the two ends of a finite length beam,
i.e. at z¼0 and L where L is the length of the beam. The assemb-
led boundary displacement vector is denoted by ub. This leads to
the following equation for the determination of the solution

constants:

ub ¼

ua
z ð0Þ

ug
wð0Þ

ug
wuð0Þ
ua
z ðLÞ

ug
wðLÞ

ug
wuðLÞ

26666666664

37777777775
¼

�Ta
O
T eVO

eWuð0Þ
Tg
w
T eVw

eWð0Þ
Tg
w
T eVw

eWuð0Þ
�Ta

O
T eVO

eWuðLÞ
Tg
w
T eVw

eWðLÞ
Tg
w
T eVw

eWuðLÞ

2666666666664

3777777777775
ec ¼ eAec ð96Þ

) ec ¼ eA�1
ub ð97Þ

where we have introduced the matrix eA, which is an invertible
positive definite ‘‘square’’ matrix. However to avoid numerical
problems, the exponential solution functions in eWðzÞ may have to
be modified by replacing ecielz by ĉ ie

lðz�LÞ so that the positive lz
exponent is bounded.

The two solutions plotted by using Eq. (87) with only ecj2 being
non-zero in the upper half of Fig. 11 can also be found by using
the relevant boundary conditions in Eq. (97). To this end, we use
the real and imaginary vectorial parts, a and b, of the mode shape
and the modal solution functions and the derivative hereof. So in
Eq. (97), we would use

ub ¼

0

a

�la�mb
0

e�lLða cosmLþb sinmLÞ
�e�lLfaðl cosmLþm sinmLÞþbðl sinmL�m cosmLÞg

26666666664

37777777775
ð98Þ

and we should then find only the second constant of the jth
complex mode ecj2 to be non-zero. The two lower solutions plotted
in Fig. 11 correspond to boundary conditions in which only the
fourth constant ecj4 of the complex mode is non-zero.

It is also worth noting that just specifying the modal shape
with a zero derivative (otherwise built-in support) will lead to a
coupling to the remaining modes. For example, Fig. 12 shows the

a

c

b

d

Fig. 11. Two eigensolutions of the first complex distortional mode for a channel and a box section.
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displacements for the boundary displacements corresponding to
the real part of the first complex distortional eigenmode at one
end, but with zero axial displacements and zero displacements
and axial displacement derivatives at the other end, i.e. with the
following boundary condition:

uT
b ¼ ½0 aT 0 0 0 0�T ð99Þ

With this boundary condition many modes are invoked and to
achieve the zero derivative of the displacements, local distortional
plate modes have also been invoked. The problem length scales of
some of these modes are very small and will be difficult to see in
an overall plot of the deformation mode. The formulation above
enables finite-element formulation of advanced semi-discretized
thin-walled beam elements.

12. Conclusion

We have presented a new systematic method accompanied by a
detailed description for the whole semi-discretization process from
kinematic assumptions, potential energy, potential energy variation
leading to the formulation of the homogeneous differential equa-
tions of a generalized beam theory (GBT) and the establishment of
the full solution through identification of all eigenvalues and
eigenmodes. This new approach is a considerable theoretical and
practical development, since the obtained GBT equations are now
solved analytically and the formulation is valid without special
attention also for closed single or multi-cell cross-sections.

The beam displacement field was separated into a sum of
products of the cross-section displacement modes and their axial
variation. This displacement field was constrained to follow the
shear assumptions made in Vlasov beam theory by a weak
formulation of the constant shear flow assumption. This allows
the identical treatment of both open and closed cross-sections.

The coupled homogeneous fourth order differential equations
of GBT have not been solved approximately, but by a reduction of
order accompanied by a doubling of the number of equations and
the introduction of a state vector, as in non-proportionally
damped dynamic analysis. In traditional GBT analysis, the eigen-
value problem, which defines the distortional modes corresponds
to the solution of the undamped eigenvalue problem solved in
proportionally damped dynamic structural analysis (i.e. by
neglecting the shear stiffness matrix related to torsion). However
the related eigenvalues have not been used for assessment of the
attenuation behavior.

It is clear that the eigenvalues of the distortional modes found
are inverse length scale parameters or attenuation parameters
which define the axial solution functions and allow us to predict
the length of the distortional displacement field. This may be used
to determine the degree of discretization if the eigenmodes found
are to be used in a traditional type GBT finite-element

formulation with a reduced number of modes and with approx-
imate shape functions for the axial variation. Alternatively future
formulation of distortional beam elements may be based on the
found distortional modes with axial variations based on the
analytical solution functions. In a following paper we will address
the solution of the inhomogeneous GBT equations using the
eigenmodes found in this paper in order to decouple the non-
homogeneous differential equations.

The modes found in this paper seem to be similar to the modes
found in traditional GBT, see e.g. [13], as well as to the modes
found by the modified GBT formulation for closed cross-sections,
see [4]. In this relation it will be of interest to perform a proper
comparison of the found distortional modes and the modes found
by the conventional GBT formulation.
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[21] Ádány S, Schafer BW. Buckling mode decomposition of single-branched open
cross-section members via finite strip method: derivation. Thin-Walled
Structures 2006;44:563–84.
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a b s t r a c t

For thin-walled beams, the classic theory for flexural and torsional analysis of open and closed cross-

sections can be generalized by including distortional displacements. In a companion paper it is shown

that using a novel semi-discretization process, it is possible to determine specific distortional

displacement fields which decouple the reduced order differential equations. In this process the cross

section is discretized into finite cross-section elements, and the natural distortional modes as well as

the related axial variations are found as solutions to the established coupled fourth order homogeneous

differential equations of GBT.

In this paper the non-homogeneous distortional differential equations of GBT are formulated using

this novel semi-discretization process. Transforming these non-homogeneous distortional differential

equations into the natural eigenmode space by using the distortional modal matrix found for the

homogeneous system, we get the uncoupled set of differential equations including the distributed

loads. This uncoupling is very important in GBT, since the shear stiffness contribution from St. Venant

torsional shear stress as well as ‘‘Bredt’s shear flow’’ cannot be neglected nor approximated by the

combination of axial stiffness and transverse stiffness, especially for closed cross sections. The full

analytical solutions of these linear non-homogeneous differential equations are given, including four

illustrative examples, which illustrate the strength of this novel approach to GBT. This new approach is

a considerable theoretical achievement, since it without approximation gives the full analytical solution

for a given discretization of the cross section including distributed loading. The boundary conditions

considered in the examples of this paper are restricted to built in ends, which are needed for future

displacement formulation of an exact first-order distortional beam element.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Thin-walled members are often used in the civil, mechanical
and aerospace industry because of the high strength and the
effective use of material. Due to the increased consumption of
thin-walled structural elements there has been increasing focus
and need for more detailed calculations. Thus, it has been
necessary to extend the classic beam theory to include the
distortion of the cross section. Such an extension of the theory
is considered in this paper and in the companion paper [1] where
a novel approach to the determination of distortional displace-
ment modes of Generalized Beam Theory (GBT) is formulated.
This novel approach involves a new cross-section semi-discreti-
zation process as well as a novel determination of the natural
cross-section eigenmodes and related axial solution functions by
exact analytical solution of the related first-order GBT equations.
A variety of other formulations including distortional displacements

have been proposed for analysis of both open and closed cross
sections. Specially, the traditional first generation of generalized
beam theory, known as GBT, initially proposed by Schardt in 1966
[2], has been very popular and fostered a lot of research and
developments, mostly undertaken by a few independently working
European groups, among others by Schardt [3], Davies [4], Lepistö
[5], Baláž and Rendek [6], Sim~oes da Silva and Sim~ao [7], Gonc-alves
et al. [8], Gonc-alves and Camotim [9] and Camotim and Silvestre
[10,11]. In these developments the distortional modes of traditional
GBT have been extended (with ‘‘other’’ modes) in order to encom-
pass shear through shear modes, post buckling through inclusion of
transverse extension modes as well special modes to accommodate
shear lag. However, these extensions with other modes are not
considered in the present paper, since they are not part of a first
generation GBT and may be viewed as patches toward expanded use
of a generalized beam theory in a finite element context. For a more
elaborate introduction see the companion paper [1]. Particularly
relevant in relation to our research is the closely related work of
Hanf [12] as well as the work on distortional theory of thin-walled
beams by Jönsson [13]. In contrast to and as a considerable advance
on the traditional GBT formulation this novel GBT approach solves
the fourth-order differential equations to obtain the distortional
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journal homepage: www.elsevier.com/locate/tws
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displacements for a linear beam analysis. This advance will enable
future formulation of exact distortional beam elements with dis-
tributed load for first-order analysis using the found axial solution-
functions (solutions of the GBT equations) instead of conventional
interpolation by third-order polynomials.

Thus, in this paper the distortional differential equations includ-
ing distributed loads are formulated. Transforming the non-homo-
geneous distortional differential equations into an eigenmode space,
by using the distortional modal matrix found for the homogeneous
system, we get the diagonalized and thus uncoupled set of differ-
ential equations including the distributed loads. The full solution of
these uncoupled linear differential equations is given and followed
by four illustrative examples. The boundary conditions considered in
the examples of this paper are restricted to built in ends, which are
needed for future displacement formulation of an exact first-order
distortional beam element. It should be mentioned that the theory
and formulations in paper [1] remain valid, which implies that
mainly the development of the particular part and the following
final general solution will be presented in this paper. It was found
necessary to follow the individual steps of the transformations and
eliminations in the companion paper [1], in order to ensure a correct
formulation of the individual decoupled non-homogeneous differ-
ential equation, especially for the distortional modes where we have
utilized reduction of the order of the differential equations. Having
done this once we may use work or energy principles to identify the
individual load terms in a more direct manner.

2. Basic kinematic assumptions

The theories of beams are derived on the basis of assumed
displacement fields which correspond to extension, flexure, tor-
sion, warping and distortional displacements. This corresponds to

a modal separation in which each mode has a set of transverse
and axial displacement fields that may be coupled. Each of these
cross-section displacement fields is factorized in a displacement
mode which is a function of the in-plane coordinates, multiplied
by a function of the axial coordinate, which describes the axial
variation of the mode.

In the following the prismatic beam is described in a global
Cartesian ðx,y,zÞ coordinate system as shown in Fig. 1. The figure
introduces and shows the local coordinates ðz,n,sÞ correspond-
ing to the axial, normal and tangential directions. In the local
coordinate system the displacement components of one displace-
ment mode un, us and uz are given by the separated displacement
functions as follows

unðs,zÞ ¼wnðsÞcðzÞ ð1Þ

usðn,s,zÞ ¼
�
wsðsÞ�nwn,sðsÞ

�
cðzÞ ð2Þ

uzðn,s,zÞ ¼�
�
OðsÞþnwnðsÞ

�
c0ðzÞ ð3Þ

where the local components are shown in Fig. 2.
The corresponding strains become

ez ¼�ðOþnwnÞc
00

ð4Þ

es ¼ ðws,s�nwn,ssÞc ð5Þ

g¼ gzs ¼ uz,sþus,z ¼ ðws�O,s�2nwn,sÞc
0

ð6Þ

These are described in greater detail in the companion paper [1].

3. Energy assumptions

The internal energy potential introduced in paper [1] will be
briefly presented in this section followed by a separate introduc-
tion of the external energy potential for distributed loads.

3.1. Internal energy potential

In the classic beam theory simple constitutive relations are
used, which means that the material is assumed to be linear
elastic with a modulus of elasticity E and shear modulus G. In this
paper also a plate elasticity modulus Es ¼ E=ð1�n2Þ in the trans-
verse direction will be utilized. The axial stress is determined
as sz ¼ Eez, the shear stress as t¼ Gg and finally the transverse
stress as ss ¼ Eses. Thus taking the transverse plate bending effect
into account but neglecting the coupling of axial strain ez and
transverse strain es. With the constitutive relations assumed theFig. 1. Global and local Cartesian reference frames.

Fig. 2. Local components of displacements and assumed shear stresses.
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elastic energy potential becomes

Pint ¼

Z
V

1

2
Ee2

z þ
1

2
Gg2þ

1

2
Ese2

s

� �
dV ð7Þ

Let us introduce a thin-walled cross section assembled by using
straight cross sectional elements. This allows us to integrate the
internal energy across the volume of the thin-walled beam. In the
following we will denote the thickness of the individual plane
cross section elements by t and the width by bel. The elastic
potential energy of one mode takes the following form after the
introduction of the strains expressed by the separated displace-
ment functions:

Pint ¼
1

2

Z L

0

�X
el

Z bel

0

��
EtðOc00Þ2þ

1

12
Et3
ðwnc

00
Þ
2

�

þ

�
Gtðwsc

0
Þ
2
þGtðO,sc

0
Þ
2

�2Gtðwsc
0
ÞðO,sc

0
Þþ

1

3
Gt3
ðwn,sc

0
Þ
2

�

þ Estðws,scÞ2þ
1

12
Est

3ðwn,sscÞ2
� �	

ds

�
dz ð8Þ

The elastic energy terms have been grouped in axial strain energy,
shear energy, and transverse strain energy. Introducing the
displacement interpolation functions leads to the definition of
several stiffness sub-matrices as given in Table 1. The superscripts
s, t and s correspond to components of the axial stiffness, shear
stiffness and transverse stiffness, respectively.

3.2. External energy potential for distributed loads

Let us now introduce three types of distributed loads qz, qs, qn

which act on the mid plane of the individual walls in the z,s,n
directions, respectively. The external load potential for these
distributed loads can then for one mode be found as

Pext ¼�

Z L

0

Z bel

0



qzuzþqsusþqnun

�
ds dz ð9Þ

Using separation of variables for the distributed loads as for
the displacements, we introduce the following load variables
qs ¼ psðsÞfðzÞ, qn ¼ pnðsÞfðzÞ, qz ¼ pzðsÞfðzÞ. In this formulation ps,
pn, pz represent the cross-section load distribution, and the
function f represents the axial variation of the loads. In the
following formulation we operate with only one cross-section
load distribution, which may be modified by summation of
various different cross section load distributions and axial load
variation functions. The load separation is illustrated in Fig. 3 for a
distributed load qn ¼ pnðsÞfðzÞ on the upper flange of a thin-

walled beam. The local components of the loads and force vectors
for a cross section wall element are shown in Fig. 4. Hereby the
contribution to the external load potential of a single wall element
takes the following form:

Pext,el ¼�

Z L

0

Z bel

0
f


pswscþpnwnc�pzOc

0
�

ds dz ð10Þ

which is suited for adequate interpolation in the following. Note
that the two first load terms perform work through the transverse
displacements and the last load term performs work through the
axial warping displacements. Since the formulation of distortion

Table 1
Straight-element stiffness and load contributions.

ks
OO ¼

Z be

0
EtNT

ONO ds

ks
ww ¼

Z be

0

Et3

12
NT

nNn ds

ks
¼

Z be

0
EstNT

s,sNs,sþ
Est3

12
NT

n,ssNn,ss

� �
ds

kt
ww ¼

Z be

0
GtNT

s Nsþ
Gt3

3
NT

n,sNn,s

 !
ds

kt
OO ¼

Z be

0
GtNT

O,sNO,s ds

kt
wO ¼ ½k

t
Ow�

T ¼�

Z be

0
GtNT

s NO,s ds

rel
O ¼

Z be

0
NT
ONp ds pel

z þPel
O

rel
w ¼

Z be

0
NT

s Np ds pel
s þ

Z be

0
NT

nNp ds pel
n þPel

w

Fig. 3. Load distribution.

Fig. 4. Distributed loads and the resulting load vectors.
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has much in common with torsion the first two terms may
be described as distortional moment loads and the last term
as distortional bimoment load, see [13]. For the classic torsional
equilibrium equation including warping of the cross section,
see [14], these loads correspond to torsional moment load and
torsional bimoment load.

4. Interpolation within cross-section elements

The interpolations related to the cross section are the displace-
ment interpolations for ws, wn and O described in the companion
paper [1], and the interpolation of the cross section loads ps, pn and
pz introduced in the following. The distributed load shown in Fig. 3
will be defined by a linear interpolation of the load on each cross
section wall element multiplied by an axial shape function fðzÞ, for
which we will introduce a specific interpolation later in a following
section. The load interpolation in a cross-section wall is given by

ps ¼Nppel
s , pn ¼Nppel

n , pz ¼Nppel
z ð11Þ

in which NpðsÞ ¼ ½1�s=bel,s=bel� is the linear interpolation matrix,
and where the nodal end values of a cross-section wall element are
given as

pel
s ¼

ps1

ps2

" #
, pel

n ¼
pn1

pn2

" #
, pel

z ¼
pz1

pz2

" #
ð12Þ

Using the introduced interpolations for the displacements and the
loads, the external potential energy now takes the following form
for a single wall element:

Pext,el ¼�

Z L

0

Z bel

0

h
cvelT

w NT
s Nppel

s þcvelT

w NT
nNppel

n

�c0velT

O NT
ONppel

z

i
f ds dz ð13Þ

This formulation allows us to write the element load vector in the
same format as the element stiffness contributions from paper [1].
These are shown in Table 1, where we have also included the nodal
cross section wall loads Pel

w and Pel
O corresponding to line loads also

varying along the beam with f. Hereby the walls of the thin-walled
beam can be loaded by line loads acting at the cross section nodes,

and by surface loads acting on the mid-plane of a cross section wall.
Both of these loads are distributed along the beam as given by the
f-function. Now we can rewrite the external load potential of a
single wall element as

Pext,el ¼�

Z L

0
½cvelT

w rel
wf�c

0velT

O rel
Of� dz ð14Þ

where we have introduced the axial and transverse nodal load
components of a straight cross-section element as

rel
O ¼ ½r

el
O1 rel

O2�
T ð15Þ

rel
w ¼ ½r

el
w1 rel

w2 rel
w3 rel

w4 rel
w5 rel

w6�
T ð16Þ

These components are shown in Fig. 4 along with the direction of
the wall element coordinates (n,s) as well as the positive direction of
the load components. We choose to assemble the single element
components into two separate global vectors containing the axial
load and the transverse load, respectively. These global vectors we
will write as follows:

rO ¼ ½rO1 rO2 rO3 . . . �T ð17Þ

rw ¼ ½rw1 rw2 rw3 rw4 rw5 rw6 . . . �T ð18Þ

where the transformation from local to global components is
performed using a formal standard transformation of the compo-
nents in the cross-section plane, i.e.

rO ¼
X

el

TT
Orel

O ð19Þ

rw ¼
X

el

TT
wrel

w ð20Þ

See Table 2 for a overview of the important transformations used in
this and in the companion paper [1]. Now we can write the total
potential energy by summation of each element contribution as

Ptot ¼PintþPext where Pext ¼
X

el

Pext,el ð21Þ

where Pint is the contribution to the potential energy from the
internal properties found in paper [1], and Pext is the contribution
from the external loads. Introducing the described interpolation and

Table 2
Transformations.

No. Description Transformations

1 Transformation from local to global axial d.o.f. vO ¼ TOvel
O

2 Transformation from local to global transverse d.o.f. vw ¼ Twvel
w

3 Transformation from pure axial extension and other axial d.o.f. to global axial d.o.f. vO ¼ ½T
a
O To

O�
va
O

vo
O

" #

4 Transformation from transverse d.o.f. to the other axial d.o.f. (without pure axial extension) based on the shear constrains vo
O ¼ TOwvw

5 Transformation from transverse d.o.f. and pure axial extension d.o.f. to the global axial d.o.f. vO ¼ ½T
r
Ow Ta

O�
vw

va
O

" #

6 Transformation from pure transverse translation d.o.f., pure rotation d.o.f., constant wall-width constrained d.o.f. and

unconstrained d.o.f. to global transverse d.o.f. (wall-width constraints not applied) vw ¼ ½T
a
w T3

w Tc
w Tu

w�

vaw
v3

w

vc
w

vu
w

2
66664

3
77775

7 Transformation from pure transverse translation d.o.f., pure rotation d.o.f. and unconstrainedd.o.f. to global

transverse d.o.f. (wall-width constraints applied)
vw ¼ ½T

a
w T3

w
~T

u

w�

vaw
v3

w

vu
w

2
64

3
75

8 Transformation from constrained transverse d.o.f. and transverse GBT d.o.f. to global transverse d.o.f. vw ¼ ½T
c
w Tg

w�
vc

w

vg
w

" #

9 Transformation from FE space to GBT space
vg

w

va
O

" #
¼

TgT

w 0

0 TaT

O

" #
vw

vO

" #

10 Transformation from GBT space to FE space
vw

vO

" #
¼

~T
g

w 0

Tr
Ow

~T
g

w TaT

O

" #
vg

w

va
O

" #
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matrix calculation scheme allows us to write the total potential
energy as

Ptot ¼Pint�

Z L

0

n
ðcvT

wÞrwf�ðcvT
OÞ
0rOf

o
dz ð22Þ

The first term corresponds to the distortional moment load which
performs work through the transverse displacements. The second
term corresponds to the distortional bimoment load which performs
work through the axial displacements.

5. Modal loads and modal solutions

To obtain a formulation resembling the generalization of Vlasov
beam theory including distortion, the following three main steps are
performed as in the companion paper [1]. This allows us to properly
identify modal load components as well as the contributions to the
individual modal differential equations.

5.1. Step I–Pure axial load and shear constraints

Following the procedure which is used to identify pure axial
extension as an eigenmode and to introduce shear constraints, we
will identify the axial load components and separate these from
the remaining equations. The potential energy formulation
including the load terms in Eq. (22) have to be modified, so that
the pure axial extension is described by the separate degree of
freedom va

O, and so that the shear constraint equations are enforced.
This modification is performed using the following transformation
No. 5 described in Table 2:

vO ¼ Tr
OwvwþTa

Ova
O ð23Þ

To clarify the variational treatment of pure axial extension, we also
temporally rewrite the terms pertaining to axial extension using
zva

O ¼�c
0va

O. The modified elastic potential energy (for a single
mode) takes the following form:

Ptot ¼Pint�

Z L

0

n
ðcvT

wÞrwf�ðcvT
wÞ
0 TrT

OwrOfþðzva
OÞr

a
Of
o

dz ð24Þ

in which the pure axial loading is identified as ra
O. It is as given in

Table 3 identified as the product of the transpose of the pure axial
deformation mode and the global axial load vector.

To obtain the differential equations of GBT, the first variation
of the elastic potential energy is investigated by taking variations
in the complete displacement field. This gives

dPtot ¼ dPint�

Z L

0

n
dðcvT

wÞrwf�dðcvT
wÞ
0 TrT

OwrOfþdðzva
OÞr

a
Of
o

dz

ð25Þ

After performing partial integrations on the terms that involve
axial derivatives of the (virtual) varied displacement field, dð Þ0,
the first variation of the elastic potential energy takes the form

dPtot ¼ dPint�

Z L

0

n
dðcvT

wÞ½rwfþTrT

OwrOf
0
�þdðzva

OÞr
a
Of
o

ds

þ

h
dðcvT

wÞ½T
rT

OwrOf�
iL

0
ð26Þ

For internal variation in the displacement fields dðcvwÞ and
dðzva

OÞ, the elastic potential energy should be stationary and
therefore its first variation must be equal to zero. Here the terms
in the squared bracket correspond to the boundary loads and

boundary conditions. Substituting dPint from the companion paper
[1] leads to the following coupled non-homogeneous differential
equations of GBT in which we note that z¼�c0:

K
s

vwc
0000
�Ksra

OOva
Oz
000
�Ktvwc

00
þKsvwc

¼ rwfþTrT

OwrOf
0

ð27Þ

Ksar
OOvwc

000
�Ksaa

OO va
Oz
00
¼ ra

Of ð28Þ

Here the left hand side of the equations corresponds to the
homogeneous equations, and the right hand side are the non
homogeneous (load) terms. The stiffness matrices, K, are found
and described in paper [1].

These equations establish a coupled set of non-homogeneous
GBT differential equations that determine the displacements of a
thin-walled beam for a given set of boundary conditions. The
homogeneous parts of the solution have been found, and now we
seek particular solutions to the modal equations. Let us start out
by isolating the term va

Oz
00 in Eq. (28) as

va
Oz
00
¼ ðKsaa

OO Þ
�1
½Ksar

OOvwc
000
�ra

Of� ð29Þ

Let us then first consider the pure axial extension mode, which
has been identified as ðvw,va

OÞ ¼ ð0,1Þ, where we introduce the
notation bold zero 0 for a suitable size matrix or vector of zeroes.
Introducing this mode in Eq. (29) uncouples the equation (since
vw ¼ 0). Integrating the particular solution for the axial mode, the
complete solution for the axial variation is then given by adding
the homogeneous part of the solution and the particular part as
follows:

zðzÞ ¼ ½1 z�
ca1

ca2

" #
�ðKsaa

OO Þ
�1ra

O

ZZ
f dz dz ð30Þ

where ca1 and ca2 are constants determined by the boundary
conditions of axial extension.

In the context of the current work we will interpolate the cross
section load using one distribution function fðzÞ, which varies
linearly between two end values (f1 and f2) representing the
values of the multiplicative function at the ends of the profile.
Thus we introduce f as

f¼ 1�
z

L

z

L

h i
/ where /¼

f1

f2

" #
ð31Þ

Using this linear interpolation the full integrated solution of
Eq. (30) takes the form

zðzÞ ¼�W0ahðzÞca�W0apðzÞ/ ð32Þ

where

W0ah ¼�½1 z� ca ¼
ca1

ca2

" #

W0ap ¼
L2ra

O
6Ksaa

OO
3

z

L

� 2

�
z

L

� 3 z

L

� 3
� �

The introduced subscripts h and p denote the homogeneous and
the particular parts of the solution, respectively.

Next let us consider the formulation of the remaining transverse
displacement modes. Inserting Eq. (29) differentiated once into
Eq. (27) we eliminate pure axial extension. Introducing Ks as in
paper [1], we obtain the following non-homogeneous fourth order
differential equations for determination of the transverse (global,
distortional and local) distortional displacement modes of GBT:

Ksvwc
0000
�Ktvwc

00
þKsvwc¼ rwfþðTrT

OwrO�Ksra
OOðK

saa
OO Þ

�1ra
OÞf

0

ð33Þ

Table 3
Transformation of load vectors related to Step I.

ra
O ¼ TaT

O rO rO ¼ TrT

OwrO�Ksra
OOðK

saa
OO Þ

�1ra
O
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which we choose to abbreviate and write as

Ksvwc
0000
�Ktvwc

00
þKsvwc¼ rwfþrOf

0
ð34Þ

where rO is given in Table 3.

5.2. Step II—flexural loading and constant wall width

In this step we treat two modes corresponding to transverse
translations of the cross section, and one mode corresponding to
pure rotation. We also constrain the transverse displacement field
so that the wall widths remain constant, i.e. we enforce ws,s � 0.

Let us do this by first introducing transformation No. 7 from
Table 2 into the differential equations in (34), and also introduce
the null terms corresponding to the rigid-body modes and zero
shear strain for translational and flexural modes. Hereby the
differential equations including the load terms take the following
form:

Ks
aa 0 Ks

au

0 Ks
33 Ks

3u

Ks
ua Ks

u3 Ks
uu

2
64

3
75

vaw
v3

w

vu
w

2
64

3
75c0000�

0 0 0

0 Kt
33 Kt

3u

0 Kt
u3 Kt

uu

2
64

3
75

vaw
v3

w

vu
w

2
64

3
75c00

þ

0 0 0

0 0 0

0 0 Ks
uu

2
64

3
75

vaw
v3

w

vu
w

2
64

3
75c¼

raw
r3

w

ru
w

2
64

3
75fþ

raO

r3
O

ru
O

2
664

3
775f0 ð35Þ

where the transformed stiffness matrices are found and described
in paper [1] and the load vectors are given in Table 4. The two-
dimensional upper block matrix equation yields the translation
displacements as

vawc
0000
¼Ks�1

aa ½r
a
wfþraOf

0
�Ks

auvu
wc
0000
� ð36Þ

where a¼ 1 or a¼ 2. We can identify the two orthogonal pure
translational modes, ðv1

w,v2
w,v3

w,vu
wÞ ¼ ð1;0,0,0Þ and ð0;1,0,0Þ,

as eigenmodes or full solutions to the homogeneous part of
Eq. (35). A particular solution for the axial variation of the pure
translational modes is determined by quadruple integration of the
non-homogeneous load terms (since vu

w ¼ 0). The complete solu-
tion is then given by summation of the full homogeneous solution
and the particular solution, which we can express as

caðzÞ ¼ ca1þca2zþca3z2þca4z3

þ

ZZZZ
ðKs

aaÞ
�1
ðrawfþraOf

0
Þ dz dz dz dz ð37Þ

Remembering that we in the present context introduce f as one
linear function as given in Eq. (31), we can perform the quadruple
integration and get

caðzÞ ¼WahðzÞcaþWapðzÞ/ ð38Þ

Here ca is a vector containing four constants of the homogeneous
part of the solution, and

WapðzÞ ¼Ww
apðzÞþWO

apðzÞ ð39Þ

WahðzÞ ¼ ½1 z z2 z3� ð40Þ

Ww
apðzÞ ¼

L4

120
ðKs

aaÞ
�1raw 5

z

L

� 4

�
z

L

� 5 z

L

� 5
� �

ð41Þ

WO
apðzÞ ¼

L3

24
ðKs

aaÞ
�1raO 4

z

L

� 3

�
z

L

� 4 z

L

� 4
� �

ð42Þ

Having identified the solutions related to the two pure transla-
tional modes we return to the remaining block equations of
Eq. (35). Eliminating the two pure flexural degrees of freedom
using Eq. (36) we obtain the condensed version of the differential
Eq. (35) as

Ks
33 Ks

3u

Ks
u3 K

s
uu

" #
v3

w

vu
w

" #
c0000�

Kt
33 Kt

3u

Kt
u3 Kt

uu

" #
v3

w

vu
w

" #
c00

þ
0 0

0 Ks
uu

" #
v3

w

vu
w

" #
c¼

r3
w

rua
w

" #
fþ

"
r3
O

rua
O

#
f0 ð43Þ

The stiffness matrix K
s
uu is found in the companion paper [1] and

the vectors rua
w and rua

O are given in Table 4. This equation
constitutes the GBT differential equations constrained by shear
flow constraints and wall-width constraints after the elimination
of the classical axial and two translational (flexural beam) modes.

5.3. Step III—reduction of order and torsional load

The fourth order differential Eq. (43) can be transformed into
twice as many second order differential equations by introducing
a so called state vector. There are a number of different possible
formulations, however we choose the use of the state vector
ðv3

wc,vu
wc,v3

wc
00,vu

wc
00
Þ
T . By introducing this state vector we obtain

a reformulation of Eq. (43), leading to a formal second order
matrix differential equation of double size, which takes the form

0 0 0 0

0 Ks
uu 0 0

0 0 �Ks
33 �Ks

3u

0 0 �Ks
u3 �K

s
uu

2
66664

3
77775

v3
wc

vu
wc

v3
wc
00

vu
wc
00

2
66664

3
77775

�

Kt
33 Kt

3u �Ks
33 �Ks

3u

Kt
u3 Kt

uu �Ks
u3 �K

s
uu

�Ks
33 �Ks

3u 0 0

�Ks
u3 �K

s
uu 0 0

2
666664

3
777775

v3
wc

vu
wc

v3
wc
00

vu
wc
00

2
66664

3
77775

00

¼

r3
w

rua
w

0

0

2
6664

3
7775fþ

r3
O

rua
O

0

0

2
66664

3
77775f0 ð44Þ

To keep the matrix operations as simple as possible we introduce a
new vector ve

w, three new block matrices, Ks
ee, Ks

3e, and Ks
ue given by

ve
w ¼

v3
w

vu
w

" #
, Ks

ee ¼
Ks

3e

Ks
ue

" #
¼
½Ks

33 Ks
3u�

½Ks
u3 K

s
uu�

" #
ð45Þ

and the force vectors are given by

re
w ¼

0

0

� �
, re

O ¼
0

0

� �
ð46Þ

Introducing the new vectors and block matrices defined by
Eq. (45) and (46), and the transformed loads given in Table 5, the

Table 4
Transformation of load vectors related to Step II.

raw ¼ Ta T
w rw r3

w ¼ T3T

w rw

ru
w ¼

~T
u T

w rw
rua

w ¼ ru
w�Ks T

au ðK
s
aaÞ
�1raw

raO ¼ Ta T
w rO r 3

O ¼ T3T

w rO

ru
O ¼

~T
u T

w rO rua
O ¼ ru

O�Ks T
au ðK

s
aaÞ
�1raO

Table 5
Transformation of load vectors related to Step III.

rau3
w ¼ rua

w �Kt
u3Kt�1

33 r3
w re3

w ¼ re
wþKs

e3Kt�1

33 r3
w

rau3
O ¼ rua

O �Kt
u3Kt�1

33 r 3
O re3

O ¼ re
OþKs

e3Kt�1

33 r 3
O
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second order differential equations (44) can be rewritten as

0 0 0

0 Ks
uu 0

0 0 �Ks
ee

2
64

3
75

v3
wc

vu
wc

ve
wc
00

2
64

3
75

�

Kt
33 Kt

3u �Ks
3e

Kt
u3 Kt

uu �Ks
ue

�Ks
e3 �Ks

eu 0

2
64

3
75

v3
wc

vu
wc

ve
wc
00

2
64

3
75
00

¼

r3
w

rua
w

re
w

2
64

3
75fþ

r3
O

rua
O

re
O

2
664

3
775f0 ð47Þ

From the first equation we can isolate the pure rotational term
resulting in the following differential equation:

v3
wc
00
¼ �ðKt

33Þ
�1
ðKt

3uvu
wc
00
�Ks

3eve
wc
0000
þr3

wfþr3
Of
0
Þ ð48Þ

It can be seen that pure torsion (with free warping), corresponding
to the solution vector, ðv3

wc,vu
wc,ve

wc
00
Þ ¼ ðc32zþc31,0,0Þ, is a solu-

tion of the homogeneous second order differential equations in (47).
Hereby the particular solution for the axial variation of the pure
torsion mode is determined by double integration of particular part,
and the full solution is found by addition of the homogeneous
solution. This results in

c3ðzÞ ¼ c31þc32z�

ZZ
ðKt

33Þ
�1
ðr3

wfþr3
Of
0
Þ dz dz ð49Þ

Inserting the linear function f from Eq. (31) we can evaluate the
integrals in (49) and find the full solution of pure St. Venant torsion as

c3ðzÞ ¼W3hðzÞc3þW3pðzÞ/ ð50Þ

Here c3 is a vector containing two constants of the homogeneous part
of the solution, and

W3pðzÞ ¼Ww
3pðzÞþWO

3pðzÞ ð51Þ

W3hðzÞ ¼ ½1 z� ð52Þ

Ww
3pðzÞ ¼�

L2r3
w

6Kt
33

3
z

L

� 2

�
z

L

� 3 z

L

� 3
� �

ð53Þ

WO
3pðzÞ ¼�

Lr3
O

2Kt
33

2
z

L

� 
�

z

L

� 2 z

L

� 2
� �

ð54Þ

Using Eq. (48) we eliminate v3
w from the differential equations in

(47) and find the final distortional non-homogeneous differential
equations of GBT that determine all the distortional displacement
modes as

Ks
uu 0

0 �Ks
ee

" #
vu

wc
ve

wc
00

" #
�

K
t
uu�K

s
ue

�K
s
eu�K

s
ee

2
4

3
5 vu

wc
ve

wc
00

" #00

¼
rau3

w

re3
w

" #
fþ

rau3
O

re3
O

" #
f0 ð55Þ

The block matrices and the transformed stiffness matrices are
introduced in the companion paper [1] and the load vectors are
given in Table 5.

6. Solution of distortional equations

The distortional eigenvalue problem for the homogeneous
system of equations (55) was solved in the companion paper [1].
Here the eigenvalues, li ¼ x2

i , and the corresponding eigenvectors
was given by

vu
w

ve
wx

2

" #
i

¼

vu
w i

ve
w ix

2
i

" #
ð56Þ

In the presents context these eigenvectors can be used to
decouple the system of equations in (55). The i’th decoupled
equation which determines the axial variation cdiðzÞ of the

distortional eigenvector is found by inserting the i’th eigenvector
and pre multiplying by it, which results in the following equation:

vu
w

ve
wx

2

" #T

i

Ks
uu 0

0 �Ks
ee

" #
vu

w

ve
wx

2

" #
i

cdi

�
vu

w

ve
wx

2

" #T

i

K
t
uu�K

s
ue

�K
s
eu�K

s
ee

2
4

3
5 vu

w

ve
wx

2

" #
i

c00di

¼
vu

w

ve
wx

2

" #T

i

rau3
w

re3
w

" #
fþ

vu
w

ve
wx

2

" #T

i

rau3
O

re3
O

" #
f0 ð57Þ

which we abbreviate as

Kg
iicdi�Kd

iic
00
di ¼ rw

d
i fþrO

d
i f
0

ð58Þ

Normalizing this equation and introducing that the eigenvalue x2
i

is equal to Kg
ii=Kd

ii , it takes the following standard form:

c00di�x
2
i cdi ¼�

1

Kd
ii

ðrw
d
i fþrO

d
i f
0
Þ ð59Þ

The above introduced distortional stiffness and load terms are
given in Table 6. Note that rw

d
i c is the distortional moment load

and rO
d
i c
0 is the distortional bimoment load.

We find that the full solution of each of these uncoupled non-
homogeneous linear 2 order differential equations is given by

cdiðzÞ ¼ c1exizþc2e�xiz�
1

2xi
exiz

Z
e�xiz

1

Kd
ii

ðrw
d
i fþrO

d
i f
0
Þ dz

þ
1

2xi
e�xiz

Z
exiz

1

Kd
ii

ðrw
d
i fþrO

d
i f
0
Þ dz ð60Þ

Using that f is a linear function as given in Eq. (31) and per-
forming integration or by guessing the solution we get

cdi
ðzÞ ¼Wdhi

ðzÞcdi
þWdpi

ðzÞ/ ð61Þ

Here cdi is a vector containing the two constants cd2i�1
and cd2i

of
the homogeneous part of the solution, and

Wdpi
ðzÞ ¼Ww

dpi
ðzÞþWO

dpi
ðzÞ ð62Þ

Wdhi
ðzÞ ¼ ½exiz e�xiz� ð63Þ

Ww
dpi
¼

rw
d
i

x2
i Kd

ii

1�
z

L

z

L

h i
ð64Þ

WO
dpi
¼

rO
d
i

x2
i Kd

ii

�1

L

1

L

� �
ð65Þ

This concludes the determination of all the solutions for all the
displacement modes of GBT.

7. Assembly of the full solution

The axial variation of the four beam modes have been identified
in Eqs. (32), (37) and (50) and can be assembled in the beam
solution function matrices WbhðzÞ and WbpðzÞ which are multiplied
by the vector of beam displacement constants cb and the load vector

Table 6
Modal distortional stiffness and load terms.
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/ respectively. This results in

WbhðzÞcbþWbpðzÞ/¼

WahðzÞ 0 0

0 WahðzÞ 0

0 0 W3hðzÞ

2
64

3
75

ca

ca
c3

2
64

3
75þ

WapðzÞ

WapðzÞ

W3pðzÞ

2
64

3
75/ ð66Þ

where

WahðzÞ ¼
W1hðzÞ 0

0 W2hðzÞ

" #
ð67Þ

WapðzÞ ¼
W1pðzÞ

W2pðzÞ

" #
ð68Þ

Furthermore the distortional solution functions can be assembled
and described as

WdhðzÞcdþWdpðzÞ/¼

Wdh1
ðzÞ 0 0 � � �

0 Wdh2
ðzÞ 0 � � �

0 0 Wdh3
ðzÞ � � �

^ ^ ^ &

2
66664

3
77775

cd1

cd2

cd3
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3
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ðzÞ
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^

2
66664

3
77775/ ð69Þ

Now all the solution functions are obtained and can be assembled
using the previously defined block matrices and vectors as

WhðzÞcþWpðzÞ/ ð70Þ

in which

WhðzÞc¼
WbhðzÞ 0

0 WdhðzÞ

" #
cb

cd

" #
ð71Þ

and

WpðzÞ/¼
WbpðzÞ

WdpðzÞ

" #
/ ð72Þ

As we are using the in-plane modes found in the companion
paper [1], the back substitution process of distortional and
eliminated beam displacement in-plane modes is identical to
the process performed in the companion paper. Hereby all the in-
plane modes are assembled column-wise in a modal matrix of
transverse displacement vectors Vw and a modal matrix of axial
warping displacement vectors VO, by joining the modal matrices
of the beam eigenvectors and the distortional eigenvectors as

Vw ¼ ½V
b
w Vd

w� VO ¼ ½V
b
O Vd

O� ð73Þ

Having obtained and assembled all the full solution functions
and in-plane modes, the full solution along the beam can be
presented in the nodal solution vectors uwðzÞ and uOðzÞ as follows:

uwðzÞ ¼ Vw½WhðzÞcþWpðzÞ/�

uzðzÞ ¼�VO½W0hðzÞcþW0pðzÞ/� ð74Þ

The constants, c, have to be determined by the boundary condi-
tions of the thin-walled beam.

7.1. Transformation to real modes and real solution functions

Some of the distortional solution functions found are complex.
Because these complex numbers are awkward to handle it is a
matter of considerable importance to construct a more conveni-
ent complete solution when we have complex numbers. In [1] we
introduce the following notation for the positive square root
values and the related eigenvector columns vj and vjþ1:

xj ¼ ljþmji, xjþ1 ¼ xj ¼ lj�mji ð75Þ

vj ¼ ajþbji, vjþ1 ¼ vj ¼ aj�bji ð76Þ

in which we have introduced the real and imaginary parts of the
eigenvalues and eigenvectors. The complex eigenvectors in
Eq. (76) may be conveniently written as

½vj vjþ1� ¼ ½aj bj�
1 1

i �i

� �
ð77Þ

The constants of the related parts of the homogeneous solution
are also complex quantities. However we are able to assemble
the two complex conjugated modal solutions into two real (but
pairwise coupled) solutions by introducing the real constant vectors
~cj and ~cjþ1 as follows:

cj

cjþ1

" #
¼

1

2

1 �i

1 i

� � ~cj

~cjþ1

" #
ð78Þ

The j’th complex part of the full solution in Eq. (74) can now be
rewritten using the transformations in Eqs. (77) and (78). After
multiplication and identification of real and imaginary parts we find
the following result:
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2
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3
5 f1

f2

" #9=
; ð79Þ

Hereby it is possible to rewrite the complex quantities into real
quantities. Now the modal matrices Vw and VO are modified as ~Vw

and ~VO by substituting the complex pairs of eigenvectors with their
respective real and imaginary parts. Furthermore we also introduce
the modified solution matrices ~Wdh and ~Wdp and the related
modified vector of constants ~c by substituting the solutions (and
constants) of the complex pairs using Eq. (79). Now the full solution
along the beam can be written using real numbers as

uwðzÞ ¼ ~Vw½
~WhðzÞ ~cþ ~WpðzÞ/�

uzðzÞ ¼� ~VO½
~W 0hðzÞ ~cþ

~W 0pðzÞ/� ð80Þ

Hereby it is possible to work with this real formulation or continue
working with complex numbers using the full solution formulated
in Eq. (74). In the following context we will use the real formulation
in Eq. (80).

8. Displacement boundary conditions

In this section we will introduce a method for determining the
constants of the non-homogeneous solutions found. This is to be
done in the GBT space, which has been constrained by the
relevant assumptions of the beam theory. As seen from the first
variation of the potential energy, the natural boundary displace-
ments of the GBT at each boundary are the pure axial displace-
ment ua

O of the beam, the transverse displacements ug
w, and the

axial derivative of the transverse displacements ug0
w. In the

following the generalized internal displacements of the GBT beam
will be expressed by using the transformation from FE to GBT
displacements as follows:
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To determine the constants using displacement boundary condi-
tions as in finite element or stiffness formulations, the boundary
displacements at the two ends of a finite length beam are needed,
i.e. at z¼0 and at z¼L, where L is the length of the beam. The
assembled boundary displacement vector is denoted by ub. This
leads to the following equation for the determination of the
solution constants:

ub ¼

ua
z ð0Þ

ug
wð0Þ

ug0
wð0Þ

ua
z ðLÞ

ug
wðLÞ
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¼ ~A ~cþ ~B/ ð84Þ

) ~c ¼ ~A
�1
ðub�

~B/Þ ð85Þ

where we have introduced the matrix ~A and ~B, where ~A is an
invertible positive definite ‘‘square’’ matrix. To avoid numerical
problems the exponential solution functions in ~WhðzÞmay have to
be modified by replacing ~cie

xiz by ĉ ie
xiðz�LÞ so that the positive xiz

exponent is bounded.
To see the effect of the load as it would be in a finite element

context with built in edges, we choose to plot the solution by
using Eq. (80), with all boundary displacements being zero (built
in) as

uT
b ¼ ½0 0 0 0 0 0�T ð86Þ

This is done in the following examples.

9. Examples

In this section four examples will be given and nodal displace-
ment results as well as stress distribution results of GBT will be
compared to those found using the commercial FE program
Abaqus. In the examples we consider a lipped channel and a
box beam, both for two different load cases. For all load cases the
loads are uniformly distributed and thus given by a cross-section
load distribution multiplied by fðzÞ ¼ 1. In all four examples the
beams have a length of L¼2000 mm, an elasticity modulus
E¼ 2:1� 105 MPa and a Poisson ratio of n¼ 0:3.

The results found using Abaqus are based on isotropic material
and the S4 shell element with full 4 point integration. The linear
elastic finite element calculations are based on a structured
rectangular mesh with a side length seed of 5 mm.

9.1. Example 1—flexural load on lipped channel

Using the full solution in Eq. (80) with parameters, discretiza-
tion and distributed cross-section load as given and shown in
Fig. 5 leads to the deformations shown in Fig. 6. Here it is seen
that the main deformation is related to flexure, however also an
in-plane deformation of the cross section becomes clear. This
points out the importance of taking distortion into account in

order to obtain a good approximation of the deformation shape
even in simple load cases.

Comparing a nodal displacement of GBT to the one found from
a model in the commercial FE program Abaqus gives the values
and the corresponding deviations shown in Table 7. The values
correspond to the node marked on the deformed plot of the GBT
solution in Fig. 6 at mid-span of the beam. From Table 8 the
deviation from Abaqus results of the displacement, ux, in the
horizontal direction is 0.6%. As the present approach is based on a
beam theory this deviation may be expected. In contrast, the
deviation for the vertical displacement, uy, is as large as 3.3%,
however this can be explained by the formulation of the present
theory, which is based on a beam theory where the shear
deformations are neglected. In our Abaqus model we are using
shell elements which include in-plane shear deformation. Calcu-
lating the contribution of shear deformations to the displacement

h = 50
w = 100
c = 25
t = 2.0
pn = 0.1 N/mm

Node

Fig. 5. Geometry, parameter values and load for the lipped channel.

Fig. 6. GBT plot of the lipped channel with a flexural load.

Fig. 7. Comparison between the axial normal stress distributions obtained with

GBT and Abaqus at mid-span. All values are in MPa.

Fig. 8. Comparison between the transverse bending stress distributions obtained

with GBT and Abaqus at mid-span. All values are in MPa.
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as follows gives

DuyðzÞ ¼
1

8

pL2

AwebG
¼ 0:31 mm ð87Þ

which is based on a web area of Aweb ¼ 2ht and a load of p¼ pnw
in which h is the height of one of the two webs and w is the width
of the loaded flange. Adding this contribution to the vertical GBT
displacement value in Table 7 gives uy ¼ 10:844 mmþ0:3 mm¼
11:144 mm, which then corresponds to a deviation of 0.6%.
Having compared the nodal displacement obtained with GBT
and Abaqus we will now take a look at the stress distributions.
A comparison of the membrane stresses in the z direction at mid-
span is shown in Fig. 7 which gives a maximum deviation of 0.5%
as shown in Table 8. As the present approach is based on a beam
theory this deviation may be expected. The transverse bending
stresses at mid-span are shown in Fig. 8 and show a maximum
deviation in the corner at the bottom of 5.3% which is caused by
the approach based on a beam theory and by the chosen mesh
size. Reducing the mesh side length seed to 3 mm the maximum
deviation is reduced to 3.1%.

9.2. Example 2—distortional load on lipped channel

In this example the same lipped channel cross section as in
the first example is now loaded by a distortional load as shown
in Fig. 9. Solving the equations leads to the GBT deformation
solution shown in Fig. 10, which has displacements of the lips in
both transverse coordinate directions with the maximum value at
mid-span. It is seen that the distortional deformation dominates
and that the boundary conditions give raise to relatively local end
effects, whereas the deformations around mid span are relatively
constant. Comparing the nodal displacements of the node marked
in Fig. 10 to the displacements found using a model in the
commercial FE program Abaqus gives the displacement values
and the corresponding deviations shown in Table 9. Here the
deviation according to the maximum displacement in the hor-
izontal direction, ux, is 0.2% and the deviation for the vertical
direction, uy, is 0.4%. Again we also want a comparison between
the stress distributions obtained with GBT and Abaqus. In order to
have comparable values different from zero the results concern-
ing the axial normal stresses are obtained from the end section.

A comparison of the axial membrane stresses in the z direction is
shown in Fig. 11 and show a maximum deviation of 7.9% as given
in Table 10. This deviation can be explained by shear lag as the
results are here from the end section. The transverse bending
stresses at mid-span are shown in Fig. 12. Here the maximum
deviation is 0.2% and obtained at the corner in the bottom.

9.3. Example 3—flexural load on box section

In this third example a box beam is loaded by a flexural load.
The geometry, parameters values, discretization of the cross
section and the distributed vertical load are as given and shown

Table 8
Example 1: stress comparison of GBT and FE analysis.

GBT (MPa) Abaqus (MPa) Difference (%)

sz 154.0 154.8 0.5

ss �73.1 �69.4 5.3

ps = 0.1 N/mm

psps

Fig. 9. Distributed distortional load.

Fig. 10. GBT plot of the lipped channel with a distortional load.

Table 9
Example 2: nodal displacements of GBT and FE analysis.

GBT (mm) Abaqus (mm) Difference (%)

ux �2.847 �2.841 0.2

uy 2.093 2.084 0.4

Fig. 11. Comparison between the axial normal stress distributions obtained with

GBT and Abaqus at the end of the beam. All values are in MPa.

Table 10
Example 2: stress comparison of GBT and FE analysis.

GBT (MPa) Abaqus (MPa) Difference (%)

sz 127.7 138.7 7.9

ss 197.2 196.9 0.2

Fig. 12. Comparison between the transverse bending stress distributions obtained

with GBT and Abaqus at mid-span. All values are in MPa.

Table 7
Example 1: nodal displacements of GBT and FE analysis.

GBT (mm) Abaqus (mm) Difference (%)

ux 2.409 2.395 0.6

uy �10.844 �11.213 3.3
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in Fig. 13. This leads to the deformation shown in Fig. 14. As seen
for the lipped channel in example 1, the main deformation is also
here related to flexure of the beam. A comparison of the
displacement values found using GBT to the FE results found
using a Abaqus model is given in Table 11. Here it is seen that the
deviation of the maximum displacement in the horizontal direc-
tion, ux, is 0.0% and the deviation for the vertical direction, uy, is
5:5%. Again the large deviation can be explained by the neglected
shear deformations. Calculating the effect of shear deformations
as in Eq. (87) gives a contribution to the displacement of DuyðzÞ ¼

0:31 mm and thus a total displacement of uy ¼ 6:802 mmþ
0:31 mm¼ 7:112 mm. Hereby the deviation is reduced to 1.2%.

h = 50
w = 100
t = 2.0
pn = 0.1 N/mm

Node

Fig. 13. Geometry, parameter values and load for the box beam.

Fig. 14. GBT plot of the box beam with a flexural load.

Table 11
Example 3: nodal displacements of GBT and FE analysis.

GBT (mm) Abaqus (mm) Difference (%)

ux 0.056 0.056 0.0

uy �6.802 �7.200 5.5

Fig. 15. Comparison between the axial membrane stress distributions obtained

with GBT and Abaqus for at mid-span. All values are in MPa.

Table 12
Example 3: stress comparison of GBT and FE analysis.

GBT (MPa) Abaqus (MPa) Difference (%)

sz 142.8 144.0 0.8

ss �11.9 �11.7 1.7

Fig. 16. Comparison between the transverse bending stress distributions obtained

with GBT and Abaqus at mid-span. All values are in MPa.

ps = 0.1 N/mm

ps

Fig. 17. Distributed distortional load.

Fig. 18. GBT plot of the box beam with a distortional load.

Table 13
Example 4: nodal displacements of GBT and FE analysis.

GBT (mm) Abaqus (mm) Difference (%)

ux 0.266 0.262 1.5

uy 0.515 0.509 1.2

Fig. 19. Comparison between the axial normal stress distributions obtained with

GBT and Abaqus at mid-span of the beam. All values are in MPa.

Fig. 20. Comparison between the transverse bending stress distributions obtained

with GBT and Abaqus at mid-span. All values are in MPa.
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Making a comparison between the stress distributions obtained
with GBT and Abaqus we obtain the following results. Concerning
the axial membrane stresses in the z direction at mid-span we
obtain the values and distribution presented in Fig. 15. In this case
a maximum deviation of 0.8% is obtained as given in Table 12. The
transverse bending stresses at mid-span are shown in Fig. 16 and
show a maximum deviation of 1.7%.

9.4. Example 4—distortional load on box section

In this last example the same box beam as in the previous
third example is now loaded by a distortional load as shown in
Fig. 17. Solving the differential equations of GBT leads to defor-
mations shown in Fig. 18. A comparison of the GBT displacements
of the node marked in the figure to those found using the Abaqus
finite element model, the values is given in Table 13. Here it is
seen that the deviation of the maximum displacement in the
horizontal direction, ux, is 1.5% and the deviation for the vertical
direction is 1.2%. Having compared the nodal displacement obtained
with GBT and Abaqus we take a look at the stress distributions.
A comparison of the membrane stresses in the z direction at mid-
span are shown in Fig. 19 which gives a maximum deviation of 2.5%
as shown in Table 14. The transverse bending stresses at mid-span
are shown in Fig. 20. In this case a maximum deviation of 0.2% is
obtained.

10. Conclusion

In this paper we have included distributed loads in a novel semi-
discretized formulation of the distortional differential equations.
By using the distortional modal matrix found for the homogeneous
system we have transformed the non-homogeneous distortional
differential equations into the eigenmode space, and then obtained
the uncoupled set of differential equations including the distributed
loads. This uncoupling is very important in GBT, since the shear
stiffness contribution cannot be neglected nor approximated by the
combination of axial stiffness and transverse stiffness, especially for
closed cross sections. This means that conventional modal analysis
(corresponding to orthogonal damping) cannot be used to solve the
equations and analytical solutions must therefore be based on the
eigenmodes found for the reduced order distortional differential

equations. Examples have been given for thin-walled beams with
distributed uniform loads. The chosen examples show solutions
which are applicable to finite element formulation of a future
distortional beam element with applied loads, i.e. with fixed
boundary conditions. The boundary conditions will be handled by
the eigenmodes of the homogeneous solution. The examples also
show that shear deformation is only included for ‘‘Bredt’s shear
flow’’ around closed cells. The examples also show that the
presented theory does not include shear lag effects. However these
and other effects may be included as extensions in approximate
energy based finite element formulations which may be used to
extend the capabilities of beam elements. The novel approach
presented in this paper is a considerable theoretical achievement,
since it without approximation gives the full analytical solution of
the GBT equations with distributed loads for a given discretization of
the cross section.
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This paper presents distorting buckling solutions for semi-discretized thin-walled columns using the

coupled differential equations of a generalized beam theory (GBT). In two related papers recently

published by the authors a novel semi-discretization approach to GBT has been presented. The cross

section is discretized and analytical solutions are sought for the variation along the beam. With this

new approach the general GBT equations for identification of a full set of deformation modes

corresponding to both homogeneous and non-homogenous equations are formulated and solved.

Thereby giving the (complex) deformation modes of GBT which decouple the state space equations

corresponding to the reduced order differential equations.

In this paper the developed semi-discretization approach to generalized beam theory (GBT) is

extended to include the geometrical stiffness terms, which are needed for column buckling analysis and

identification of buckling modes. The extension is based on an initial stress approach by addition of the

related potential energy terms. The potential energy of a single deformation mode is formulated based

on a discretization of the cross section. Through variations in the potential energy and the introduction

of the constraints related to beam theory this leads to a modified set of coupled homogeneous

differential equations of GBT with initial stress for identification of distortional displacement modes. In

this paper we seek instability solutions using these GBT initial stress equations for simply supported

columns with constrained transverse displacements at the end sections and a constant axial initial

stress. Based on the known boundary conditions the reduced order differential equations are solved by

using the trigonometric solution functions and solving the related eigenvalue problem. This gives the

buckling mode shapes and the associated eigenvalues corresponding to the bifurcation load factors.

Thus the buckling modes are found directly by the analytical solution of the coupled GBT-equations

without modal decomposition. Illustrative examples showing global column buckling, distortional

buckling and local buckling are given and it is shown how the novel approach may be used to develop

signature curves and elastic buckling curves. In order to assess the accuracy of the method some of the

results are compared to results found using the commercial FE program Abaqus as well as the

conventional GBT and FSM methods using the software packages GBTUL and CUFSM.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

An assessment of the structural performance of thin-walled
beams includes linear static analysis and linear buckling analysis
of the behavior. Linear buckling analysis is used to achieve an
estimate of the load level at which certain types of structures
exhibit a loss of stability through large non-linear deformations.
Typically for these structures membrane strain energy is con-
verted into flexural strain energy with very little change in
externally applied load. In slender columns and thin plates or
shells, the membrane stiffness is much greater than the bending

stiffness, and large strain energy can be stored with very small
membrane deformations. Therefore, the deformations of the
fundamental state are neglected and the displacements are
measured from the initial perfect configuration. As the membrane
stiffness is much greater than bending stiffness, comparatively
large bending deformations are needed to absorb the membrane
strain energy released when buckling occurs. In most buckling
cases of practical interest this means that the geometric stiffness
term (for compressional loading) gives a negative contribution to
the total stiffness. In other words, instability may be considered
as the load level at which added elastic stiffness terms are fully
neutralized by a change in added negative geometric stiffness
terms in the potential energy. In this paper we therefore include
initial stress contributions to the potential energy which allow us
to perform linear distortional buckling analysis of semi-discre-
tized thin-walled members.
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The classic stability analysis of thin-walled columns is based on a
combination of the ‘‘in-plane rigid’’ cross-section displacement modes
(Vlasov modes, [1]) corresponding to: Uniform axial extension, major
axis bending, minor axis bending and torsion with related warping.
An important feature missing here is the deformation of the cross
section, which undergoes in-plane deformations by local and distor-
tional modes. Concerning analysis of thin-walled members including
distortion of the cross section there are a number of methods
available among which are: (i) The use of shell finite elements in
the finite element method (FEM), [2,3], perhaps with utilization of
recursive substructuring, [4], (ii) the finite strip method (FSM), [5–9],
and (iii) the use of approximate GBT-finite beam elements. In this
context the first application of the first generation of GBT to buckling
analysis was published in 1970 by Schardt [10]. Among others also
Davies [11], Lepistö [12], Sim~ao [13] and Camotim [14] has investi-
gated the area. This paper deals with a novel method based on
solution of the differential initial stress equations of GBT obtained
through semi-discretization and application of beam constraints. In
the two related papers by the authors [15,16] a novel finite element
based semi-discretization approach to generalized beam theory (GBT)
is presented. In contrast to the traditional GBT formulations which do
not solve the differential equations but establish a weak solution
through introduction of mode shapes (based on an orthogonal shear
stiffness assumption) and use approximate modal amplitude func-
tions, the novel approach in [15,16] finds the exact modes shapes and
amplitude solutions of the reduced order GBT equations related to the
discretized cross section. In the same context the novel approach in
[15,16] adhere to the definition of the warping function given by
Kollbrunner and Hajdin, [17], which adds the integral of the shear
flow strains, see also [18,19]. For a more elaborate description see the
companion paper, [15].

In this paper the developed semi-discretization formulation is
extended by including the initial stress terms. The potential energy of
a single deformation mode is formulated based on the discretization
of the cross section. Through variations in the potential energy and
the introduction of the constraints related to beam theory this leads
to a modified set of coupled homogeneous differential equations of
GBT with initial stress for identification of distortional buckling
modes. In this paper we seek ‘‘simple’’ instability solutions using
these GBT initial stress equations for the classical simply supported
columns with constrained transverse displacements at the end
sections and a constant axial initial stress. Based on the known
boundary conditions the reduced order differential equations are
solved by introducing the relevant trigonometric solution function
and solving the related eigenvalue problem. This directly gives us the
cross-section buckling mode shape and the eigenvalue corresponding
to the bifurcation load factor. This is done as in conventional FSM
without the use of modal decomposition as conventionally performed
in GBT.

Let us shortly make an outline of this paper. We will start out
by introducing the basic assumptions and kinematic relations in
Section 2. The displacements of a single mode are separated into the
products of cross-section displacement functions and the axial varia-
tion functions. Furthermore the expressions for the strains are derived
and the element interpolation functions as well as the nodal
displacement components of a straight cross-section element are
described. Based on simple constitutive relations the potential elastic
energy as well as the potential energy contribution of the factored
initial stress is formulated in Section 3. Furthermore the global
geometrical stiffness matrix is formulated and the load parameter l
is introduced. Section 4 is split into two main steps leading to the
final distortional differential equations of double size to which we
want to find solutions. In step I we perform variations in the potential
energy whereby the pure axial extension mode and its homogeneous
solution is identified and eliminated. In Step II the constraint
equations relating to the assumption of a constant wall width are

introduced, and the rigid translations and the rigid rotational cross-
section displacement eigenmodes are identified and orthogonalized.
As in classic beam theory the elimination or separate formulation of
the flexural and torsional buckling equations (including initial stress
terms) are not possible since they now couple with each other and
with the remaining distortional equations. This results in global
modes which always include distortion of the cross section to a
certain degree. The order of the differential equations is reduced by
doubling the number of equations through the introduction of a state
vector with components of different differentiation levels. From the
final differential equations the eigenvalue problem is formulated. In
Section 5 trigonometric solutions of the eigenvalue problem are
considered. Finally Section 6 is devoted to illustrative examples
including development of classic buckling curves and comparison of
results with finite element results found using Abaqus, [20], as well as
with FSM and conventional GBT results found using the freely
available software packages CUFSM and GBTUL, see [21,22].

2. Basic assumptions and kinematic relations

The prismatic beam is described in a global Cartesian ðx,y,zÞ
coordinate system as shown in Fig. 1. From the figure it is seen
that a local coordinate system ðz,n,sÞ corresponding to the normal
and tangential directions is introduced. In the local coordinate
system the displacements un, us and uz are introduced as

unðs,zÞ ¼wnðsÞcðzÞ ð1Þ

usðn,s,zÞ ¼
�
wsðsÞ�nwn,sðsÞ

�
cðzÞ ð2Þ

uzðn,s,zÞ ¼�
�
OðsÞþnwnðsÞ

�
c0ðzÞ ð3Þ

For the local transverse displacements unðs,zÞ and usðn,s,zÞ, the
components wsðsÞ and wnðsÞ are the local displacements of the
centerline and cðzÞ is the function which describes the axial
variation of the in-plane distortional displacements. For the axial
displacements uzðn,s,zÞ generated by the out-of-plane distortional
cross-sectional displacements, the axial (warping) displacement
mode OðsÞ has been included with a variation corresponding to
the negative axial derivative of the axial variation factor, �c0, and
due consideration of local transverse variation through the term
nwn. The local components are shown in Fig. 2.

The corresponding strains referred to as axial strains, trans-
verse strains and engineering shear strains, respectively, are
introduced as

ez ¼�ðOþnwnÞc
00

ð4Þ

es ¼ ðws,s�nwn,ssÞc ð5Þ

gzs ¼ ðws�O,s�2nwn,sÞc
0

ð6Þ

In this approach the thin-walled cross section is discretized in
straight cross-sectional elements. The thickness of the individual

Fig. 1. Global and local Cartesian reference frames.

M.J. Andreassen, J. Jönsson / Thin-Walled Structures 51 (2012) 53–6354



Paper III 193
Author's personal copy

plane cross-section element is denoted by t and the width of the wall
element by bel. The modal displacements of the individual wall
element is interpolated using the following interpolation functions:

Oc0 ¼NOvel
Oc
0

ð7Þ

wsc¼Nsv
el
wc ð8Þ

wnc¼Nnvel
wc ð9Þ

in which NOðsÞ and NsðsÞ are linear interpolation matrices and NnðsÞ is
a cubic (beam) interpolation matrix. Furthermore we have introduced
the axial and transverse nodal displacement components of a straight
cross-section element as

vel
O ¼ ½v

el
O1 vel

O2�
T

vel
w ¼ ½v

el
w1 vel

w2 vel
w3 vel

w4 vel
w5 vel

w6�
T ð10Þ

The nodal components and the direction of the section coordinates
(n,s) are shown in Fig. 3. Assembling the local element degrees of
freedom, the global displacement vectors for the total cross section
are given as

vO ¼ ½vO1 vO2 vO3 . . . �T

vw ¼ ½vx1 vy1 f1 vx2 vy2 f2 . . . �T ð11Þ

where the axial displacements and the transverse displacements are
separated into two vectors. The number of degrees of freedom ndof in
the cross section is four times the number of nodes, ndof ¼ 4nno.

3. Energy assumptions and initial stress

The internal energy potential introduced in paper [15,16] will be
briefly presented in this section as well as the new contribution to the
potential energy of the initial stress terms, which are adequate for
distortional buckling analysis of thin-walled members.

In the classic beam theory simple constitutive relations are
used, which means that the material is assumed to be linear
elastic with a modulus of elasticity E and shear modulus G. In this
paper also a plate elasticity modulus Es ¼ E=ð1�n2Þ in the trans-
verse direction is utilized. The axial stress is determined as
sz ¼ Eez, the shear stress as t¼ Gg and finally the transverse
stress as ss ¼ Eses. Thus taking the transverse plate bending effect
into account but neglecting the coupling of axial strain ez and
transverse strain es. With the constitutive relations assumed the
basic elastic energy potential becomes

Pint ¼

Z
V

1

2
Ee2

z þ
1

2
Gg2þ

1

2
Ese2

s

� �
dV ð12Þ

Let us next introduce the contribution to the potential energy of a
constant uniform initial stress s0 which is adequate for column
buckling analysis. Following conventional methods the initial stress
s0 will be scaled by a factor l. After having utilized linear equilibrium
of the pre-buckling state and neglected contribution corresponding to
the squared strain term 1

2 ls
0u2

z,z ¼
1
2 ls

0e2 the potential energy
contribution of the factored initial stress is given by

P0 ¼

Z
V

1

2
ls0u2

s,zþ
1

2
ls0u2

n,z

� �
dV

¼

Z
V

1

2
ls0ðu0sÞ

2
þ

1

2
ls0ðu0nÞ

2

� �
dV ð13Þ

Fig. 2. Local components of the displacement field and assumed shear stresses.

Fig. 3. Nodal components of a straight single flat element.
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Let us introduce a thin-walled cross section assembled by
using straight cross-sectional elements. This allows us to inte-
grate the internal energy across the volume of the thin-walled
beam. The elastic potential energy of a single mode takes the
following form after the introduction of the strains expressed by
the separated displacement functions:

Pint ¼
1

2

Z L

0

"X
el

Z bel

0
EtðOc00Þ2þ

1

12
Et3
ðwnc

00
Þ
2

� ��

þ

�
Gtðwsc

0
Þ
2
þGtðO,sc

0
Þ
2
�2Gtðwsc

0
ÞðO,sc

0
Þþ

1

3
Gt3
ðwn,sc

0
Þ
2

�

þ Estðws,scÞ2þ
1

12
Est

3ðwn,sscÞ2
� �	

ds

#
dz ð14Þ

The elastic energy terms have been grouped in axial strain energy,
shear energy, and transverse strain energy.

The factored initial stress contribution of a single mode to the
potential energy takes the following form after introduction of
straight cross-sectional wall elements, displacement derivatives
and integration through the thickness:

P0 ¼
1

2

Z L

0

"X
el

Z bel

0
ls0

n
tðwnc

0
Þ
2
þtðwsc

0
Þ
2
þ

1

12
t3ðwn,sc

0
Þ
2
o

ds

#
dz

ð15Þ

Introducing the displacement interpolation functions into the
internal elastic potential energy leads to the definition of several
stiffness sub-matrices as given in Table 1. The superscripts s, t
and s correspond to components of the axial stiffness, shear
stiffness and transverse stiffness, respectively. After transforma-
tion of the individual wall elements to global degrees of freedom
vw and vO and assembly, the cross-section elastic potential as
introduced in [15] takes the form

Pint ¼
1

2

Z L

0

h
cvT

w cvT
O

i00 Ks
ww 0

0 Ks
OO

" #
cvw

cvO

" #00(

þ

h
cvT

w cvT
O

i0 Kt
ww Kt

wO

Kt
Ow Kt

OO

" #
cvw

cvO

" #0

þ

h
cvT

w cvT
O

i Ks 0

0 0

" #
cvw

cvO

" #)
dz ð16Þ

Besides the global stiffness matrices K in Eq. (16), a bold zero 0
denotes here and in the following a suitable size matrix or vector
of zeroes.

Let us also perform the same operations with the initial stress
contribution to the potential energy. The introduction of the
displacement interpolations leads to the definition of the

geometric stiffness matrix for a single wall element as follows:

k0
¼

Z be

0
ts0½NT

nNn�

n
þts0½NT

s Ns�þ
1

12
t3s0½NT

n,sNn,s�

	
ds ð17Þ

Transforming from local, vel
w, to global, vw, components using a

standard formal finite element transformation and assembly matrix
Tw we get the following global geometrical stiffness matrix:

K0
¼
X

el

TT
wk0Tw ð18Þ

Hereby Eq. (15) in reduced form can be rewritten as

P0 ¼
1

2

Z L

0

h
cvT

w cvT
O

i0 lK0 0

0 0

" #
cvw

cvO

" #0( )
dz ð19Þ

which is the contribution to the potential energy from the factored
initial stress.

4. GBT differential equations with initial stress

To obtain a formulation resembling a generalization of Vlasov
beam theory including distortion, the following main steps need
to be performed as in the related papers [15,16].

4.1. Step I: pure axial extension and influence of shear constraints

In this step, we introduce the shear constraint equations that bind
axial and transverse modes together and at the same time simplify or
condense Eq. (16). In this process we need to eliminate the singularity
in the shear stiffness matrix related to pure axial extension. Perform-
ing step I as in the related papers the differential equations governing
the stability problem can be derived by considering the first variation
of the initial stress contributions to the potential energy in the same
way as the first variation of the traditional elastic potential energy
provided the differential equations in the related papers [15,16]:

dP0 ¼

Z L

0

n
dðcvT

wÞ
0lK0
ðcvwÞ

0
o

dz ð20Þ

After performing partial integration the variation of the initial stress
contributions to the potential energy take the form:

dP0 ¼

Z L

0

n
dðcvT

wÞ½�ðlK0vwc
0
Þ
0
�

o
dsþ

h
dðcvT

wÞ½lK0
ðcvwÞ

0
�

iL

0
ð21Þ

where the term in the square bracket correspond to the boundary
loads and boundary conditions. As in the related paper [15] the pure
axial displacement mode is identified and denoted by superscript a

and the remaining axial displacement modes by superscript r.
Substituting dPint from the related paper leads to the following
coupled homogeneous differential equations of GBT including initial
stresses in which we note that z¼�c0:

ðK
s

vwc
00
Þ
00
�ðKsra

OOva
Oz
0
Þ
00
�ð½KtvwþlK0vw�c

0
Þ
0
þKsvwc¼ 0 ð22Þ

ðKsar
OOvwc

00
Þ
0
�ðKsaa

OOva
Oz
0
Þ
0
¼ 0 ð23Þ

These equations establish a coupled set of homogeneous GBT
differential equations, that determine the displacements of a thin-
walled beam for a given set of boundary conditions. Note that va

O is
one component that corresponds to the amount of pure axial
extension.

Now we seek solutions to the equations. As in paper [15] we can
identify pure axial extension as a solution which takes the form

zðzÞ ¼�c0ðzÞ ¼ ca1þca2z¼�W0aðzÞ ca ¼ ½1 z�
ca1

ca2

" #
ð24Þ

Table 1
Elastic stiffness contributions of one wall element.

ks
OO ¼

Z be

0
EtNT

ONO ds

ks
ww ¼

Z be

0

Et3

12
NT

nNn ds

ks
¼

Z be

0
EstNT

s,sNs,sþ
Est3

12
NT

n,ssNn,ss

� �
ds

kt
ww ¼

Z be

0
GtNT

s Nsþ
Gt3

3
NT

n,sNn,s

 !
ds

kt
OO ¼

Z be

0
GtNT

O,sNO,s ds

kt
wO ¼ ½k

t
Ow�

T ¼�

Z be

0
GtNT

s NO,s ds
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where ca1 and ca2 are constants determined by the boundary
conditions of axial extension.

Having identified the ‘‘trivial’’ displacement mode, pure axial
extension, we turn to the solution of the transverse displacement
modes. Eliminating z00 by using the fact that z00 ¼ �c000 and assuming
that c000a0, we find:

va
O ¼�ðK

saa
OO Þ

�1Ksar
OOvw ð25Þ

Using this equation or Eq. (23), we eliminate the second term in
Eq. (22). This results in the following homogeneous fourth order
differential equations for determination of the transverse (global,
distortional and local) distortional displacement modes of GBT:

Ksvwc
0000
�



½Kt
þlK0

�vwc
0
�0
þKsvwc¼ 0 ð26Þ

where Ks, Kt and Ks which are constants are given in the related
paper [15]. In general K0 is a function of the axial coordinate z

corresponding to the longitudinal contribution of the initial stress.
However, in the present context the initial stress will be assumed
uniformly distributed and constant whereby K0 is also independent
of the axial coordinate z and the equation simplifies to

Ksvwc
0000
�½Kt

þlK0
�vwc

00
þKsvwc¼ 0 ð27Þ

This set of GBT column stability equations resemble the conventional
equation for classic column stability. Now the number of degrees of
freedom is ndof ¼ 3nno, since all (nno) axial dofs vO have been
eliminated by the shear constraint equation and the pure axial
deformation mode.

4.2. Step II: translations, constant wall width and reduction of order

In this step we treat two modes corresponding to transverse
translations of the cross section and one mode corresponding to
pure rotation. We also constrain the transverse displacement field
so that the wall widths remain constant, i.e. we enforce ws,s � 0.

Let us do this by first using the following transformation fully
described in [15]:

vw ¼ ½T
a
w T3

w
~T

u

w�

vaw
v3

w

vu
w

2
64

3
75 ð28Þ

Here the two orthogonal translational eigenmodes are ordered in the
transformation matrix Taw and the orthogonal pure rotational eigen-
mode in T3

w. The identification of the constrained degrees of freedom
to be eliminated is performed by a transformation matrix Tc

w while
the remaining unconstrained degrees of freedom are identified in the
transformation matrix Tu

w. By expressing the constrained degrees of
freedom by the unconstrained we find the total condensed transfor-
mation introduced as ~T

u

w, as derived in [15].
Using this transformation to transform the differential equa-

tions in (27), and introducing the null terms corresponding to the
rigid-body modes and zero shear strain for translational and
flexural modes, the differential equations take the following form:

Ks
aa 0 Ks

au

0 Ks
33 Ks

3u

Ks
ua Ks

u3 Ks
uu

2
64

3
75

vaw
v3

w

vu
w

2
64

3
75c0000�

0 0 0

0 Kt
33 Kt

3u

0 Kt
u3 Kt

uu

2
64

3
75

0
B@

þl

K0
aa K0

a3 K0
au

K0
3a K0

33 K0
3u

K0
ua K0

u3 K0
uu

2
664

3
775
1
CCA

vaw
v3

w

vu
w

2
64

3
75c00 þ

0 0 0

0 0 0

0 0 Ks
uu

2
64

3
75

vaw
v3

w

vu
w

2
64

3
75c¼

0

0

0

2
64

3
75

ð29Þ

The transformed stiffness matrices are found and described in paper
[15] and the K0-matrices are given in Table 2. Now the number of
degrees of freedom depends on the geometry of the cross section. We
have constrained the transverse displacement field so that the wall

widths remain constant, i.e. we enforce ws,s � 0. This means that a
single ws�dof is eliminated for each element in the cross section. For
a lipped channel cross section with nel ¼ nno�1 elements this means
that ndof ¼ 3nno�nel ¼ 2nnoþ1. For a box cross section with nel ¼ nno

elements it means that ndof ¼ 3nno�nel ¼ 2nno.
To solve this differential equation we choose to reduce the

differential order of the coupled fourth-order differential equa-
tions and the related quadratic eigenvalue problem to twice as
many coupled second-order differential equations with a related
linear eigenvalue problem of double size. This is done in the
following. This method is equivalent to the one used for the
solution of the coupled homogeneous problem of one-mode
distortion and torsion analyzed in [23].

The fourth order differential Eq. (29) can be transformed into
twice as many second order differential equations by introducing
what is called a state vector. There are a number of different
possible formulations, but we have chosen the use of the state
vector uS ¼ ½vawc,v3

wc,vu
wc,vawc

00,v3
wc
00,vu

wc
00
�T . Introducing this

state vector (and using related equality block equations) yields
a reformulation of Eq. (29) as a formal second order matrix
differential equation of double size which takes the form:

which we choose to abbreviate as follows using the block
structure shown in Eq. (30):

~K
s

0

0 � ~K
s

" #
~vwc
~vwc

00

" #

�
~K
t
� ~K

s

� ~K
s

0

" #
þl

~K
0

0

0 0

" # !
~vwc
~vwc

00

" #00
¼

0

0

� �
ð31Þ

Table 2
Transformation of K0-stiffness matrices related to Step II.

K0
aa ¼ Taw

T
K0Taw K0

a3 ¼ Taw
T
K0T3

w K0
au ¼ Taw

T
K0Tu

w

K0
3a ¼ T3

w

T
K0Taw K0

33 ¼ T3
w

T
K0T3

w K0
3u ¼ T3

w

T
K0 ~T

u

w

K0
ua ¼

~T
u

w

T
K0Taw K0

u3 ¼
~T

u

w

T
K0T3

w K0
uu ¼

~T
u

w

T
K0 ~T

u

w
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This is the set of differential equations to which we want to find
solutions.

5. The distortional initial stress eigenvalue problem

In the reduced order differential equations in (31) we sub-
stitute A, B, C and uS for the respective matrices and vector in the
equation. This means that A and B are linear stiffness matrices, C a
geometrical stiffness matrix and uS a vector containing the long-
itudinal amplitude functions. Thus it takes the following form:

AuS�½BþlC�u00S ¼ 0 ð32Þ

This set of differential equations are homogeneous with constant
coefficients and therefore lead to solution functions of
exponential type.

By postulating exponential solutions of the form uS ¼ vScðzÞ,
where the state space vector vS is independent of the axial
coordinate z and cðzÞ ¼ exz, and inserting the solution the follow-
ing special eigenvalue problem is obtained:

AvS�x
2
½BþlC�vS ¼ 0 ð33Þ

In the classic stability theory the solution function cðzÞ is
normally assumed to be a trigonometric function in order to
satisfy suitable simple boundary conditions, see [24]. This means
that x¼ mi is a known (complex) parameter and that l can be
determined as the eigenvalue equivalent to the instability load
factor, which determines the level of stress at which the structure
becomes unstable. The eigenvalues and the corresponding eigen-
vectors vS can be found by solving the eigenvalue problem.

In order to satisfy suitable simple boundary conditions let us
therefore assume that the solution is of a simple trigonometric
form here chosen as

cðzÞ ¼ sin mz ð34Þ

where m¼ np=L in which n is equal to the number of buckles, i.e.
half-wavelengths. This solution satisfies boundary conditions
corresponding to simple supports with restrained transverse
cross-section displacements at z¼0 and z¼L. Inserting this
postulated solution in Eq. (32) and remembering the change of
sign related to double differentiation of the sine function leads to
the following generalized linear symmetric matrix eigenvalue
problem, in which the eigenvalues, l, correspond to the buckling
factor and the eigenvectors are the distortional state space
buckling modes:

Aþ
np
L


 �2

B

� �
vSþl

np
L


 �2

CvS ¼ 0 ð35Þ

Eliminating the second half of vector vS corresponding to ~vwc
00 in

Eq. (31) leads to the following final generalized linear symmetric
matrix eigenvalue problem:

½KþlG� ~vw ¼ 0 ð36Þ

in which K and G are given in Table 3 as functions of the inverse
length scale parameter m.

From the results of this eigenvalue problem we know at which
load (l) the corresponding mode has a homogeneous solution
function which is sinusoidal with a number of half-waves corre-
sponding to n. Here the number of degrees of freedom for a lipped
channel cross section is ndof ¼ 2nnoþ1, while the number of
degrees of freedom for a box cross section is ndof ¼ 2nno. The
number of dofs is equal to the number of eigenvalues. In the
following we will see this applied in the examples.

6. Examples

In this section the developed GBT approach is used to give
illustrative examples of the trigonometric buckling solutions of
the differential GBT equations with initial stress. The ability of the
GBT approach to produce buckling curves and predict buckling is
shown. The examples consider simply supported columns in
uniform compression. The end sections are constrained against
transverse displacements, but otherwise free to warp (and thus
also rotate). The two examples are based on a lipped channel
section and a rectangular hollow section, respectively.

In each example the buckling signature curves of the cross
section are developed corresponding to the buckling stress versus
the buckling half-wavelength for the four lowest buckling modes.
This is done by solving the GBT eigenvalue problem for consecu-
tive values of the half-wavelength. For each buckling curve it is
shown that the transverse buckling mode shape varies with the
buckle half-wavelength. The buckling signature curve is used to
develop the overall buckling curve including multiple buckling
waves by shifting the signature curve sides ways corresponding to
a number of half-wavelengths. Chosen buckling modes for given
column lengths are used to illustrate local, distortional and global
buckling modes. The accuracy of the results are assessed by
comparison to results obtained by the use of the commercial FE
program Abaqus.

The results found using Abaqus are based on isotropic material
and the 4 node S4 shell element with full 4 point integration. The
linear elastic finite element calculations are based on a structured
rectangular mesh with a side length seed of 5 mm. The cross
section is fixed in the transverse directions at both ends and fixed
at one node against longitudinal translation. All supports are
continuous line supports. Two identical normal forces are applied
as a uniform distributed shell edge load; one at each end. For
further and more detailed explanations see also [20]. This finite
element model results in local transverse stress near the end
supports due to the Poisson effect. These end stresses have an
influence on the buckling, which is not included in the FSM or
GBT models.

6.1. Example 1: buckling of a lipped channel column

In this example the buckling of a simply supported lipped
channel column in pure compression is analyzed. The chosen in-
plane geometry and the discretization is shown in Fig. 4.

Solving the GBT initial stress eigenvalue problem given in
Eq. (35) with n¼1 for half-wavelengths L varying from 10 mm to
3000 mm (logarithmical spaced) allows the development of the
signature curve (buckling stress versus the buckle half wave-
length) as shown in Fig. 5. Thus the buckling curves shown in the
figure correspond to the four lowest buckling modes with one
half-wave buckle, n¼1. For three different half-wavelengths the
transverse buckling mode shape has been included in the figure. It
is clear that the mode shape of each curve changes gradually as a
function of the length. The chosen half-wavelengths correspond
to the dashed lines at 70 mm, 500 mm and 2000 mm, respec-
tively. To illuminate the changes in the deformation modes for
increasing length we have chosen also to show the buckling mode
shapes in 3D in Fig. 6. The mode shapes are shown as a 3D
representation even though the results are provided by a one-
dimensional beam formulation.

Table 3
Definition of K and G.

K¼ ~K
s
þm2 ~K

t
þm4 ~K

s
G¼ m2 ~K

0
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From the figures it is seen that each developing mode repre-
sents its own curve placed in a hierarchical order according to the
stress level. However, the curves are able to change place in the
hierarchy at a certain column length. This phenomenon can for
example be seen for buckling mode 1 and 2 (two lowest ranking
graphs) at a column length of approximately 1000 mm. The
signature curve, shown bold, is achieved as the very lowest of
the buckling curves. For this curve a short column lengths
correspond to local buckling, while for increasing column lengths
it corresponds to distortional buckling and finally for large
column lengths it corresponds to global buckling. The signature
curve is similar to the finite strip buckling curve obtained by
Hancock [25].

As mentioned Fig. 5 is for a half-wave number n¼1. As the
buckling loads also depend on the number of n half waves in the
buckled shapes, this means that points lower than the signature
curve can exist for a greater number of buckles, n41. To show
this phenomenon the signature curve has been created for a
varying number of n as shown in Fig. 7.

This means that the bold curve shown in Fig. 7 represents the
absolute lowest curve for the buckling stress versus column
length. However, to illustrate the multitude of buckling modes
for each column length, let us look at a column length of
L¼1000 mm. In Fig. 7 this length is represented by the vertical
dashed line. For this length we can find the buckling modes
m¼ 1;2,3: : ordered from lowest to highest critical stress, each
having a different number of half waves n.

In Table 4 the buckling stresses of FE analysis using Abaqus
[20] versus the presented GBT method, conventional GBT using
GBTUL [22] and FSM using CUFSM [21] are compared. The
comparison is performed for suitable mode numbers (m-values)
and the associated relevant buckling modes are depicted in Fig. 8,
which shows the local buckling mode corresponding to the lowest
critical stress (m¼1), the global beam buckling mode (m¼20) and
a distortional mode shape (m¼24), respectively. The three values
of m have been chosen to show the spectrum of modes repre-
sented at the given beam length.

From Table 4 it is seen that for a column length of 1000 mm
buckling will occur as local buckling consisting of thirteen sine
half waves and have an associated buckling stress of 350 MPa.
Further more it is seen that the buckling mode shape for mode
m¼20 is global column buckling with one buckle, n¼1, at a stress
level of 590 Mpa and finally for m¼24 distortional column
buckling occurs at a stress level of 918 Mpa.

Comparing the GBT buckling stresses with Abaqus we obtain a
deviation of 13.4% for local plate buckling, 1.7% for global
buckling and 1.7% for distortional buckling. Hereby it is seen that
good results are obtained for global and distortional buckling,
while a rather large deviation is obtained for local buckling. The
same phenomenon is seen from the GBTUL results which are
based on the classic GBT theory. Here a deviation of 7.9% is
obtained for local plate buckling and 1.6% for global buckling. In
contrast to these beam theory results, Table 4 also shows results
obtained from the CUFSM program which is based on a plate
theory. Here we obtain a deviation of 2.0% for local plate buckling,
0.2% for global buckling and 0.3% for distortional buckling,
showing that good results are obtained in all cases. From the
deviations it is obvious that GBT and GBTUL are based on beam
theories while CUFSM is based on plate theory. The rather large
deviation of 13.4% for the GBT results compared with the devia-
tion of 7.9% obtained with GBTUL, can to a certain extent be
explained by the very simple constitutive relations used in the
current GBT formulation. Making a calculation in Abaqus with
similar very simple non-coupling constitutive relations the devia-
tions obtained now corresponds to (350 MPa) 0.0%, (582 MPa)
1.4% and (888 MPa) 3.4%, respectively. Hereby good matches
between the two approaches are obtained, however, also differ-
ence in the modeling of the boundary conditions can affect the
results. Thus demonstrating that this new developed GBT
approach provides reasonably accurate results with a very small
computational cost, making it an alternative to the traditional and
time consuming FE calculations and the other available methods.
However, the constitutive relations should be modified to achieve
a higher accuracy for local plate buckling.

6.2. Example 2: buckling of a rectangular hollow section column

In this example a simply supported rectangular hollow section
(RHS) column is analyzed. The discretization of the cross section
and the used parameters are as given in Fig. 9. Considering the
given cross section and solving the eigenvalue problem in Eq. (35)
the buckling signature curves can be established as depicted in
Fig. 10. The buckling curves depicted corresponds to the lowest
four buckling modes with a single half-wave buckle, n¼1. In this
example we have chosen to show the buckling mode shapes of
the four lowest curves. The mode shapes are shown for two
values of the half-wave buckling length corresponding to 200 mm
and 900 mm, respectively. The corresponding 3D plots of the
column buckling mode shapes are shown in Fig. 11.

From the figures it is seen that each developing mode repre-
sents its own curve placed in a hierarchical order according to
the stress level. Also here it is seen that the curves are able to
change place in the hierarchy. Looking at the very lowest curve

Fig. 4. Geometry, discretization and parameter values of a lipped channel column.

Fig. 5. Buckling signature curve corresponding to the lowest four modes with a

single half-wave buckle, n¼1.
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(the signature curve) shown as the bolded curve it is seen that
short column length corresponds to local buckling, while larger
column lengths correspond to global buckling.

As mentioned Fig. 10 is for a half-wave number of n¼1. To
show the signature curve for a varying number of n half waves in

the buckled shapes Fig. 13 has been created. This means that
Fig. 13 represent the absolute lowest curve for the buckling stress
versus column length for the section given in Fig. 9. To illustrate
the multitude of buckling modes for a given column length let us
look at a column length of L¼1000 mm. For this length we look at
the ordered buckling modes, m¼ 1;2,3: : each having a different
number of half-wave buckles. In Fig. 13 this length is represented
by the vertical dashed line.

In Table 5 the buckling stresses of FE analysis [20] versus the
presented GBT method and FSM using CUFSM [21] are compared
for suitable m-values. Further more the associated relevant

Fig. 6. Column buckling modes associated with Fig. 5 for single (n¼1) half wavelengths of 70 mm, 500 mm and 2000 mm.

Fig. 7. Buckling stress versus column length for the lipped channel section in

compression.

Table 4
Comparison of buckling stresses for FE analysis versus the presented GBT method,

GBTUL and CUFSM, respectively. The comparisons are related to the vertical

dashed m-line in Fig. 7.

m Nr. of half

waves n

Abaqus

(MPa)

GBT

(MPa)

Diff.

(%)

GBTUL

(MPa)

Diff.

(%)

CUFSM

(MPa)

Diff.

(%)

1 13 404 350 13.4 436 7.9 412 2.0

20 1 580 590 1.7 589 1.6 581 0.2

24 3 903 918 1.7 – – 906 0.3
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buckling configurations are depicted in Fig. 12 representing a
local buckling at the lowest critical stress (m¼1) and a global
buckling (m¼22). The two values of m have been chosen to show
the spectrum of modes represented at a given column length.

Comparing the buckling stresses corresponding to the figures
in Fig. 12 with the commercial FE program Abaqus a maximum
deviation of 14.1% is obtained for the first buckling mode (m¼1)
corresponding to local plate buckling while a deviation of 4.2% is
obtained for m equal to 22 corresponding to global column
buckling with some distortion included. Also here it is seen that
good results are obtained for global buckling while a rather large
deviation is obtained for local buckling. Using the CUFSM soft-
ware we obtain FSM results with a deviation of 1.8% for local plate
buckling and 0.7% for global buckling which confirms good results
in both cases. From the given deviations it is clear that GBT results
are based on a beam theory while FSM results are based on a plate
theory. In contrast to Example 1 a comparison using the GBTUL

software is not performed in this example as GBTUL cannot
currently handle closed cross sections. The large deviation of
14.1% obtained by the presented GBT method can to a great
extent be explained by the chosen constitutive relations in the
current approach. Using identical simple non-coupling constitu-
tive relations in the Abaqus finite element model the deviations
now corresponds to (330 MPa) 0.0% and (941 MPa) 4.9%, respec-
tively. Hereby reasonable matches between the two approaches
are obtained for a rectangular hollow section, thus confirming
that this new developed GBT approach provides adequate results
with a very small computational cost, making it an alternative to
the traditional and time consuming FE calculations and the other
available methods. However, there is a need to improve the
constitutive assumptions related to the local plate behavior.

7. Conclusion

This paper presented the extension of the novel GBT approach
developed by the authors in [15,16] to include the geometrical
stiffness terms which are need for column buckling analysis. The
distortional differential equations developed in papers [15,16] are
extended to a formulation including geometrical stiffness terms
by using the initial stress approach to formulate the instability
problem. The derived GBT differential equations with initial stress
have been solved as an eigenvalue problem leading to a number
of buckling modes and associated buckling stresses for simply
supported columns in compression. Illustrative examples have
been given dealing with a lipped channel column section and a
rectangular hollow column section, respectively. In order to
illustrate the application and validity of the approach the results
have been compared with FE results obtained using the

Fig. 8. GBT column buckling mode shapes of a lipped channel column in pure

compression.

Fig. 9. Geometry and parameter values of a rectangular hollow section column.

Fig. 10. Buckling signature curve corresponding to the lowest four modes with a

single half-wave buckle, n¼1.
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commercial program Abaqus as well as with FSM and conven-
tional GBT results found using the freely available software
packages CUFSM and GBTUL, respectively. For both sections
reasonable matches are obtained confirming that this new devel-
oped GBT approach including geometrical stiffness terms pro-
vides reasonable results with a very small computational cost
making it an alternative to the traditional and time consuming FE
calculations and the other available methods. However, the
constitutive relations may have to be modified in order to achieve
higher accuracy for local plate buckling.

References

[1] Vlasov VZ. Thin-walled elastic beams. 2nd ed. Jerusalem, Israel: Israel
Program for Scientific Translations; 1961.

[2] Zienkiewicz OC, Taylor RL. The finite element method. In: Basic formulations
and linear problems, vol. 1, 4th ed. UK: McGraw-Hill Book Company; 1989.

Fig. 11. Column buckling modes associated with Fig. 10 for single (n¼1) half wavelengths of 200 mm and 900 mm.

Table 5
Comparison of buckling stresses for FE analysis versus the presented GBT method

and CUFSM, respectively. The comparisons are related to the vertical dashed

m-line in Fig. 13.

m Nr. of half

waves n

Abaqus

(MPa)

GBT

(MPa)

Diff. (%) CUFSM

(MPa)

Diff.

(%)

1 12 384 330 14.1 391 1.8

22 1 947 987 4.2 940 0.7

Fig. 12. GBT column buckling mode shapes of a rectangular hollow section

column in pure compression.

Fig. 13. Buckling stress versus column length for the rectangular hollow section in

compression.

M.J. Andreassen, J. Jönsson / Thin-Walled Structures 51 (2012) 53–6362



Paper III 201
Author's personal copy

[3] Hughes TJR. The finite element method: linear static and dynamic finite
element analysis. Englewood Cliffs, NJ: Prentice-Hall, Inc.; 2000.

[4] Jönsson J, Krenk S, Damkilde L. Recursive substructuring of finite elements.
Computers & Structures 1995;54:395–404.

[5] Cheung YK. Finite strip method in structural analysis. Oxford: Pergamon
Press; 1976.

[6] Cheung YK, Tham LG. The finite strip method. Boca Raton: CRC Press; 1998.
[7] Williams FW, Wittrick WH. Computational procedures for a matrix analysis

of the stability and vibrations of thin flat-walled structures in compression.
International Journal of Mechanical Sciences 1968;11:798–979.

[8] Loja M, Mota Soares CM, Mota Soares CA. Modelling and design of adaptive
structures using B-spline strip models. Composite Structures 2002;57(1–4)
245–51.
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Due to the increased consumption of thin-walled structural elements there has been increasing focus and

need for more detailed calculations as well as development of new approaches. In this paper a thin-

walled beam element including distortion of the cross section is formulated. The formulation is based on

a generalized beam theory (GBT), in which the classic Vlasov beam theory for analysis of open and closed

thin-walled cross sections is generalized by including distortional displacements. The beam element

formulation utilizes a semi-discretization approach in which the cross section is discretized into wall

elements and the analytical solutions of the related GBT beam equations are used as displacement

functions in the axial direction. Thus the beam element contains the semi-analytical solutions. In three

related papers the authors have recently presented the semi-discretization approach and the analytical

solution of the beam equations of GBT. In this approach a full set of deformation modes corresponding to

the homogeneous GBT equations are found. The deformation modes of which some are complex decouple

the state space equations corresponding to the reduced order differential equations of GBT and allow the

determination of the analytical solutions. Solutions of the non-homogeneous GBT differential equations

and the distortional buckling equations have also been found and analyzed. Thus, these related papers

are not dealing with an element but dealing with analytical solutions to the coupled differential

equations.

To handle arbitrary boundary conditions as well as the possibility of adding concentrated loads as

nodal loads the formulation of a beam element is needed. This paper presents the formulation of such a

generalized one-dimensional semi-discretized thin-walled beam element including distortional contri-

butions. It should be noticed that we are only dealing with a basic generalized beam theory and not an

extended finite element formulation of an approximate beam element, which allows the addition of

special (transverse extension and shear lag) modes. Illustrative examples showing the validity and the

accuracy of the developed distortional semi-discretized thin-walled beam element are given and it is

shown how the novel approach provides accurate results making it a good alternative to the traditional

and time consuming FE calculations.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In the civil, mechanical and aerospace industry thin-walled
members are often used because of the high strength and the
effective use of material. Due to the increased consumption of
thin-walled structural elements there has been increasing focus
and need for more detailed calculations. Thus, it has been
necessary to extend the classic beam theory to include the
distortion of the cross section. Such an extension of the theory
is considered in this paper and in a number of companion papers
published by the authors [1–3], where a novel approach to

generalized beam theory is formulated. A variety of other for-
mulations and methods taking distortional displacements into
account have been proposed for analysis of both open and closed
cross sections. Thus, concerning analysis of thin-walled members
including distortion of the cross section there are a number of
methods available among which are: (i) the use of shell finite
elements in the finite element method (FEM) [4,5], perhaps with
utilization of recursive substructuring [6], (ii) the finite strip
method (FSM) [7–11], and (iii) the use of approximate GBT-finite
beam elements. Concerning approximate GBT-finite beam ele-
ments, specially the traditional first generation of generalized
beam theory, known as GBT, initially proposed by Schardt in 1966
[12], has been very popular and fostered a lot of research and
developments, mostly undertaken by a few independently work-
ing European groups, among others by Schardt [13], Davies [14],
Lepistö [15], Sim ~oes da Silva and Sim~ao [16], Gonc-alves et al. [17],
Gonc-alves and Camotim [18] and Camotim and Silvestre [19].
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Silvestre and Camotim also extended the theory to include
orthotropic materials, see [20,21], and experimental verifications
have been presented by for example Rendek and Balaz [22].
Furthermore, Silvestre presents buckling solutions as well as
non-linear post buckling solutions in [19]. For an overview and
information about the research and development of GBT, see
Camotim et al. [23,24].

The present novel approach to Generalized Beam Theory (GBT)
involves a cross-section semi-discretization process as well as a
determination of the natural cross-section eigenmodes and related
axial solution functions by exact analytical solution of the related
first-order GBT equations. Hereby the approach is different from
the traditional GBT formulation developed by Schardt [12,13].
When Schardt uses the GBT equations to find distortional defor-
mation modes the shear coupling stiffness terms are neglected.
This corresponds to modal analysis with orthogonal (Rayleigh)
damping in dynamic structural analysis. The solution of the shear
coupled GBT equations for closed cross-sections was published by
Hanf only in his thesis [25]. For closed (single or multi celled
hollow) thin-walled cross-sections Schardt shows in his presenta-
tion of GBT [13] that the theory needs a relaxation of the Vlasov
assumption of negligible shear strain in order to include the
warping deformation associated with the ‘‘Bredt’s shear flow’’
around each cell. However, it complicates the solution of the
conventional GBT equations by introducing non-negligible shear
coupling terms (off diagonal) in the GBT equations as can be seen
in recent GBT formulations for closed thin-walled cross-sections,
e.g. [26,17,27]. The present formulation therefore adheres to the
definition of the warping function given by Kollbrunner and
Hajdin [28], which adds the integral of the shear flow strains,
see also [29–31].

The present GBT formulation for thin walled beams with both
open and closed (single or multi cell) cross-sections can be
regarded as an extension of classical Vlasov thin-walled beam
theory to include distortional deformation modes as well as
constant shear flows in the walls of the cross-section, see
[32,28,33]. The innovative theoretical developments performed
by introducing semi-discretization leads to a formulation, in
which the rotational degrees of freedom are included, thus
including local plate modes in the formulation even for the
simplest discretization. It makes it possible to analyze thin-walled
members with cross-section distortion and local plate behavior in
a one-dimensional formulation through the linear combination of
pre-established modes of deformation. In contrast to and as a
considerable advance on the traditional GBT formulation this
novel finite element based semi-discretization approach to gen-
eralized beam theory (GBT) solves the fourth-order differential
equations to obtain the distortional displacements for a linear
beam analysis. This means that we find the analytical solution to
the differential GBT equations which through the magnitude of
the eigenvalues gives a much better knowledge of the length
scales of the modes. This also means that we find the exact mode
shapes and amplitude solutions of the reduced order GBT equa-
tions related to the discretized cross section. In contrast, the
conventional GBT formulation solves the equations using the
approximate engineering methods, in which the shear coupling
terms are neglected, producing orthogonal axial and transverse
normal stress modes. In such a case the differential equations are
not solved but a weak solution may be found through the
introduction of the established approximate mode shapes and
use of approximate modal amplitude functions. Thus the conven-
tional GBT formulations use the produced approximated modes
as shape functions in a virtual work or potential energy formula-
tion leading to approximated finite GBT beam elements and the
discretization has to be performed without proper prior knowl-
edge of the problem length scales of the individual modes.

With respect to buckling the first application of the first
generation of GBT to buckling analysis was published in 1970 by
Schardt [34]. Among others also Davies [35], Sim~ao [16] and
Camotim [36] have investigated the area. Buckling analysis using
GBT beam elements is an alternative to the use of finite-strip
methods (FSM), see [37]. However, GBT is as its name states
essentially a beam theory, whereas FSM essentially is based on
plate theory. Therefore, FSM does not contain a natural decom-
position into basic beam, distortional, local and other modes.
Furthermore, conventional GBT does not contain other modes as
mentioned above. Since the modal decomposition may lead to
advantages in design of thin-walled structures using FSM a great
deal of work has been performed by Ádány and Schafer to develop
a constrained finite strip method (cFSM) and modal decomposition
methods for open (single-branched) cross-sections, see [38–40].
The modal approaches of extended conventional GBT and cFSM
formulations have been compared in [41]. The present novel
developed semi-discretization approach to Generalized Beam The-
ory (GBT) is extended in [3] to include the geometrical stiffness
terms which are needed for column buckling analysis and identi-
fication of buckling modes.

When cross sections distort, it means that they change shape.
Distortional displacements can be of a local character in which
the length scale is typically equal to or less than the cross section
dimension or it can be non-local in which case the length scale is
typically several times the cross section dimension or even longer.
In the recent buckling literature and especially in codes there is a
tendency, with respect to buckling, to distinguish between these
two behaviors as distortional buckling and local buckling. In [1–3]
we are operating with global, distortional non-local and distor-
tional local modes when we define first-order displacement
modes. However, in paper [3] which concerns buckling we have
chosen to distinguish between distortional buckling and local
buckling as in the recent codes and literature.

It should be noticed that shear deformation accommodating
Bredt’s shear flow around closed cells is included in the theory
through the specific definition of the warping function, see
Ref. [28]. Since we are dealing with a basic generalized beam
theory and not an extended finite element formulation of an
approximate beam element it makes sense to neglect the overall
transverse shear deformation as in conventional beams. It is also
important to note that shear lag is not included and that it would
not be included even by including shear deformation as described
by Kollbrunner and Hajdin [28]. Thus, we are only dealing with a
beam element adhering to generalized beam theory and not an
extended weak formulation of a finite beam element that allows
the addition of special (transverse extension and shear lag) modes.

Let us introduce the contents of the following sections and
illuminate the development. In the theories of beams, the dis-
placements assumed are typically separated into a sum of
displacement fields. In the sections involving the determination
of such a displacement field, only one of these displacement fields
is considered in the variational formulation. The basic kinematic
assumptions of one of these displacement fields are introduced in
Section 2. The displacements are separated into the product of
cross-section displacement functions and the axial variation
functions. Following this, the strain fields are derived. In Section
3 constitutive energy assumptions lead to the formulation of the
internal and external elastic energy potential. In Section 4 the
cross-section is discretized by straight wall elements in which the
local transverse displacements, the warping displacements and
the loads are interpolated. The element interpolation functions
are introduced and the total elastic potential energy (for a single
mode) is formulated in a semi-discretized form. To get a formula-
tion resembling a generalization of Vlasov beam theory [32],
Section 5 first briefly describes three main steps leading to the
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derivation and solution of the full set of GBT differential equations.
Following this, Section 5 briefly describes the notation and solution
of the final condensed distortional differential equations of GBT.
The full solution functions are assembled and the full solution
along the beam is presented by nodal solution vectors. In section 6
the beam element stiffness matrix and load vector for the full
solution is found. In Section 7 the introduction of the boundary
conditions is described and the necessarily transformation from
the degree-of-freedom finite element space to the reduced degree-
of-freedom GBT space is also introduced. Section 8 is devoted to
the development and assembling of the exact full generalized
displacement solution along the beam element. Here the general-
ized displacements of the homogeneous solution and the general-
ized displacements of the non-homogeneous solution are
assembled to describe the full generalized displacement solution
along the beam element. Four illustrative examples are given in
Section 9.

2. Beam kinematics of a single mode

The potential energy is expressed in terms of displacements
and strains. Hereby a representation of the generalized displace-
ment field is a part of the evaluation of the potential energy. For
the present beam theory the displacement field is represented in
terms of generalized displacements describing extension, flexure,
torsion, warping and distortion.

The straight beam of constant cross section is described in
a global Cartesian ðx,y,zÞ coordinate system as shown in Fig. 1.
From the figure it is seen that a local coordinate system ðn,s,zÞ

corresponding to the normal and tangential directions is defined.
In the local coordinate system, the displacements un, us and uz of a
material point are defined as

unðs,zÞ ¼wnðsÞcðzÞ ð1Þ

usðn,s,zÞ ¼ wsðsÞ�nwn,sðsÞ
� �

cðzÞ ð2Þ

uzðn,s,zÞ ¼�
�
OðsÞþnwnðsÞ

�
c0ðzÞ ð3Þ

For the local transverse displacements unðs,zÞ and usðn,s,zÞ, the
corresponding displacement components wsðsÞ and wnðsÞ are
the local displacements of the centerline and cðzÞ is the function
which describes the variation along the beam. For the axial
displacements uzðn,s,zÞ generated by the out-of-plane distortional
cross-sectional displacements, the axial (warping) displacement
mode OðsÞ has been included with a variation corresponding to
the negative axial derivative of the axial variation factor, �c0, and
due consideration of local transverse variation through the term
nwn. The local components are shown in Fig. 2. The notation
indicates the two dimensions of the cross-section planes and the
single dimension associated with the variation along the beam.

The strain components associated with the given displace-
ments are found as

ez ¼�ðOþnwnÞc
00

ð4Þ

es ¼ ðws,s�nwn,ssÞc ð5Þ

gzs ¼ ðws�O,s�2nwn,sÞc
0

ð6Þ

Here the given strains are the axial strains, transverse strains and
engineering shear strains.

The present approach is based on a semi-discretization process
in which the thin-walled cross section is discretized in straight
finite cross-sectional wall elements of constant thickness. The
thickness of the individual plane cross-section element is denoted
by t and the width of the wall element by bel.

3. Strain energy assumptions of a single mode

In this section the internal energy potential as well as the
external energy potential are derived.Fig. 1. Global and local Cartesian reference frames.

Fig. 2. Local components of the displacement field and assumed shear stresses.
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3.1. Internal energy potential of a single mode

In the following we will adhere to simple constitutive rela-
tions, i.e. the material is assumed to be linear elastic with a
modulus of elasticity E and a shear modulus G. In the transverse
direction we will assume a plate type elasticity modulus Es ¼

E=ð1�n2Þ, in which n represents the Poisson ratio. The axial stress
is determined as s¼ Ee, the shear stress as t¼ Gg and the
transverse stress as ss ¼ Eses. Thus we are using non-coupling
constitutive relations or in other words we neglect the coupling of
axial strain e and transverse strain es. Note that this means that
we also neglect the equivalent coupling between axial and
transverse curvatures in the constitutive relations for the plate
moments, but with some changes it is possible to include the
coupling of the curvatures. With the simple constitutive relations
assumed, the elastic energy potential becomes

Pint ¼

Z
V

1

2
Ee2þ

1

2
Gg2þ

1

2
Ese2

s

� �
dV ð7Þ

Let us now introduce a thin-walled cross-section assembled using
straight cross-sectional elements, see Fig. 3, and let us integrate
through the thickness, t, across the widths, be, of the elements,
and over the length, L, of the thin-walled beam.

The elastic potential energy takes the following form after
the introduction of the strains expressed by the displacement in
separated form

Pint ¼
1

2

Z L

0

"X
el

Z bel

0

��
EtðOc00Þ2þ

1

12
Et3
ðwnc

00
Þ
2

�

þ

�
Gtðwsc

0
Þ
2
þGtðO,sc

0
Þ
2

�2Gtðwsc
0
ÞðO,sc

0
Þþ

1

3
Gt3
ðwn,sc

0
Þ
2

�

þ

�
Estðws,scÞ2þ

1

12
Est

3ðwn,sscÞ2
�)

ds

#
dz ð8Þ

In Eq. (8) the elastic energy terms have been grouped in axial

strain energy, shear energy, and transverse strain energy. Note
that the shear constraints associated with constant shear flow and
the transverse extension constraint have not been introduced yet.
In the current work we wish to establish a set of displacement
modes by using semi-discretization. To achieve this, the cross-
section will be divided into discrete straight-line elements, in
which we interpolate the transverse and axial displacements.

3.2. External energy potential of a single mode

Let us introduce three types of distributed loads qz, qs, qn which
act on the mid-plane of the individual walls in the z,s,n directions,
respectively. The external load potential for these distributed
loads can then for a single mode be found as

Pext ¼�

Z L

0

Z bel

0
½qzuzþqsusþqnun� ds dz ð9Þ

Using separation of variables for the distributed loads as for
the displacements, we introduce the following load variables
qs ¼ psðsÞfðzÞ, qn ¼ pnðsÞfðzÞ, qz ¼ pzðsÞfðzÞ. In this formulation ps,
pn, pz represent the cross-section load distribution, and the
function f represents the axial variation of the loads. In the
following formulation we operate with only one cross-section
load distribution, which may be modified by summation of
various different cross-section load distributions and axial load
variation functions. The load separation is illustrated in Fig. 4 for a
distributed load qn ¼ pnðsÞfðzÞ on the upper flange of a thin-
walled beam. The local components of the loads and force vectors
for a cross-section wall element are shown in Fig. 5.

Hereby the contribution to the external load potential of a
single wall element takes the following form:

Pext,el ¼�

Z L

0

Z bel

0
f½pswscþpnwnc�pzOc

0
� ds dz ð10Þ

which is suited for adequate interpolation in the following. Note
that the two first load terms perform work through the transverse
displacements and the last load term performs work through the
axial warping displacements.Fig. 3. Nodal components of a straight single flat element.

Fig. 4. Load distribution.

M.J. Andreassen, J. Jönsson / Thin-Walled Structures 62 (2013) 142–157 145



Paper IV 209
Author's personal copy

4. Interpolations

In the present approach we introduce interpolations related to
the cross-section displacements, ws, wn and O, using the nodal
degrees of freedom shown in Fig. 3 and to the cross-section loads,
ps, pn and pz shown in Figs. 4 and 5.

4.1. Displacement interpolations

Within each single straight finite cross-section wall element
the displacements are interpolated using the following interpola-
tion functions:

Oc0 ¼NOvel
Oc
0

ð11Þ

wsc¼Nsv
el
wc ð12Þ

wnc¼Nnvel
wc ð13Þ

in which NOðsÞ and NsðsÞ are linear interpolation matrices and
NnðsÞ is a cubic (beam) interpolation matrix. Furthermore, the
axial and transverse nodal displacement components of a straight
cross-section element are defined as

vel
O ¼ ½v

el
O1 vel

O2�
T

vel
w ¼ ½v

el
w1 vel

w2 vel
w3 vel

w4 vel
w5 vel

w6�
T ð14Þ

The nodal components and the direction of the section coordi-
nates (n,s) are shown in Fig. 3.

Using the introduced interpolations for the displacements and
introducing the straight-wall element stiffness contributions
given in Table 1, the internal potential energy now takes the
following form for a single wall element

Pint,el ¼
1

2

Z L

0

�
cvelT

w cvelT

O

� �00 ks
ww 0

0 ks
OO

" #
cvel

w

cvel
O

" #00
:

þ

�
cvelT

w cvelT

O

�0 kt
ww kt

wO

kt
Ow kt

OO

" #
cvel

w

cvel
O

" #0

þ

�
cvelT

w cvelT

O

�
ks 0

0 0

" #
cvel

w

cvel
O

" #)
dz ð15Þ

In Eq. (15) and in the following, a bold zero 0 denotes a suitable
size matrix or vector of zeroes.

Assembling the local element degrees of freedom, the global
displacement vectors for the total cross section are given as

vO ¼ ½vO1 vO2 vO3 . . . �T

vw ¼ ½vx1 vy1 f1 vx2 vy2 f2 . . . �T ð16Þ

where the axial displacements and the transverse displacements
are separated into two vectors.

In Eq. (16) vO holds the local axial element degrees of freedom
and vw holds the local transverse element degrees of freedom,
corresponding to two displacements and one rotation for each
node. The transformation from local to global components is
performed using a formal standard transformation of the compo-
nents in the cross-section plane, i.e. vO ¼ TOvel

O and vw ¼ Twvel
w.

The local stiffness matrices are given in Table 1 and the global
assembly of stiffness matrices found by summation of the con-
tribution from each element are as illustrated in Table 2.

4.2. Load interpolations

Having described the displacement interpolations for ws, wn

and O as also described in the companion paper [1], the inter-
polation of the cross-section loads ps, pn and pz are introduced in
the following. The distributed load shown in Fig. 4 is defined by a
linear interpolation of the load on each cross-section wall element
multiplied by an axial shape function fðzÞ, for which we will
introduce a specific interpolation later in a following section. The
load interpolation in a cross-section wall is given by

ps ¼Nppel
s , pn ¼Nppel

n , pz ¼Nppel
z ð17Þ

in which NpðsÞ ¼ ½1�s=bel,s=bel� is the linear interpolation matrix,
and where the nodal end values of a cross-section wall element
are given as

pel
s ¼

ps1

ps2

" #
, pel

n ¼
pn1

pn2

" #
, pel

z ¼
pz1

pz2

" #
ð18Þ

Using the introduced interpolations for the displacements and the
loads, the external potential energy now takes the following form

Fig. 5. Distributed loads and the resulting load vectors.

Table 1
Straight-element stiffness and load contributions.

ks
OO ¼

Z be

0
EtNT

ONO ds

ks
ww ¼

Z be

0

Et3

12
NT

nNnds

ks
¼

Z be

0

�
EstNT

s,sNs,sþ
Est3

12
NT

n,ssNn,ss

�
ds

kt
ww ¼

Z be

0

�
GtNT

s Nsþ
Gt3

3
NT

n,sNn,s

�
ds

kt
OO ¼

Z be

0
GtNT

O,sNO,s ds

kt
wO ¼ kt

Ow

	 
T
¼�

R be

0 GtNT
s NO,s ds

rel
O ¼

Z be

0
NT
ONpds pel

z þPel
O

rel
w ¼

Z be

0
NT

s Npds pel
s þ

Z be

0
NT

nNpds pel
n þPel

w

Table 2
Assembly into total cross-section stiffness contributions.

Ks
OO ¼

P
elT

T
Oks

OOTO Kt
ww ¼

P
elT

T
wkt

wwTw

Ks
ww ¼

P
elT

T
wks

wwTw Kt
OO ¼

P
elT

T
Okt

OOTO

Ks
¼
P

elT
T
wksTw Kt

wO ¼
P

elT
T
wkt

wOTO
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for a single wall element:

Pext,el ¼�

Z L

0

Z bel

0
cvelT

w NT
s Nppel

s þcvelT

w NT
nNppel

n

h
�c0velT

O NT
ONppel

z

i
f ds dz ð19Þ

This formulation allows us to write the element load vector in the
same format as the element stiffness contributions. These are also
shown in Table 1, where we have also included the nodal cross-
section wall loads Pel

w and Pel
O corresponding to line loads also

varying along the beam with f. Hereby the walls of the thin-walled
beam can be loaded by line loads acting at the cross-section nodes,
and by surface loads acting on the mid-plane of a cross-section wall.
Both these loads are distributed along the beam as given by the
f-function. For a single displacement mode we can now rewrite the
external load potential of a wall element as follows:

Pext,el ¼�

Z L

0
cvelT

w rel
wf�c

0velT

O rel
Of

h i
dz ð20Þ

where we have introduced the axial and transverse nodal load
components of a straight cross-section element as

rel
O ¼ ½r

el
O1 rel

O2�
T ð21Þ

rel
w ¼ ½r

el
w1 rel

w2 rel
w3 rel

w4 rel
w5 rel

w6�
T ð22Þ

These components are shown in Fig. 5 along with the direction of
the wall element coordinates (n,s) as well as the positive direction
of the load components.

We choose to assemble the single element components into two
separate global vectors containing the axial load and the transverse
load, respectively. These global vectors we will write as follows:

rO ¼ ½rO1 rO2 rO3 . . . �T ð23Þ

rw ¼ ½rw1 rw2 rw3 rw4 rw5 rw6 . . . �T ð24Þ

where the transformation from local to global components is
performed using a formal standard transformation of the compo-
nents in the cross-section plane, i.e.

rO ¼
X

el

TT
Orel

O ð25Þ

rw ¼
X

el

TT
wrel

w ð26Þ

See Table 2 in paper [2] for a overview of the important transfor-
mations used in this and in the companion papers [1–3].

4.3. Total elastic energy potential of a single mode

Now we can write the total potential energy for a single mode
of deformation by summation of each element contribution as

Ptot ¼
X

el

ðPint,elþPext,elÞ ð27Þ

Introducing the described interpolation and matrix calculation
scheme, the total elastic potential energy for a single mode now
takes the following form:

Ptot ¼
1

2

Z L

0

("
cvT

w cvT
O

#00"
Ks

ww 0

0 Ks
OO

#"
cvw

cvO

#00

þ

"
cvT

w cvT
O

#0"
Kt

ww Kt
wO

Kt
Ow Kt

OO

#"
cvw

cvO

#0

þ

"
cvT

w cvT
O

#"
Ks 0

0 0

#"
cvw

cvO

#

�ðcvT
wÞrwfþðcvT

OÞ
0rOf

)
dz ð28Þ

The axial stiffness from transverse displacements, submatrix
Ks

ww, has a rank deficiency equal to the number of free end nodes
plus the number of ‘‘internal’’ nodes between corner points of
the cross section. The in-plane cross-section distortional stiffness
submatrix Ks has a rank deficiency of 3, corresponding to three in-
plane ‘‘rigid body’’ or rather non-distortional displacements of the
cross section. Finally the whole shear stiffness matrix related to
torsion has a rank deficiency of 3, corresponding to the existence of
pure axial extension and two pure flexural modes without shear. It
turns out that since the pure axial displacement only involves the
sub matrix Kt

OO, this matrix has a rank deficiency of one. The first
load term corresponds to the distortional moment load which
performs work through the transverse displacements. The second
load term corresponds to the distortional bimoment load which
performs work through the axial displacements, see [30].

5. Eigenmodes and solution functions

To get a formulation resembling a generalization of Vlasov
beam theory [32] the following three main steps are performed:

� In step I it is first acknowledged that the pure axial extension
mode is a separate mode with only pure unit warping dis-
placement which varies along the beam as function of the axial
parameter zðzÞ ¼�c0ðzÞ. Second the shear constraint equations
that bind axial, vO, and transverse, vw, degrees of freedom
together are used to eliminate all the axial warping degrees of
freedom except from the pure axial extension. Finally varia-
tions of the condensed version of the potential energy in
Eq. (28) are taken with due acknowledgement of the pure axial
extension mode leading to the identification of all the general
differential equations of GBT. This leads to the identification,
solution and elimination of the axial extension mode as an
eigenmode.
� In step II two eigenmodes corresponding to transverse transla-

tion of the cross section are identified, solved and eliminated.
Also a pure rotational (torsional) eigenmode is identified for
solution and elimination in the next step. Furthermore, the
transverse displacement field is constrained, so that transverse
normal strains in the middle surface of the cross section are
zero, i.e. ws,s ¼ 0, see Eq. (5).
� In step III the order of the coupled fourth order differential

equations is reduced by doubling the number of equations
through the introduction of a state vector with components
of different differentiation levels. The pure St. Venant torsion
mode is identified, solved and eliminated as an eigenmode
with its linear axial solution. This reveals the final set of
(reduced order) distortional differential equations.

For a more elaborate description of the steps performed see
the companion papers [1,2].

The four identified eigenmode vectors corresponding to the
displacements of conventional beam theory are ordered consecu-
tively in the transverse beam displacement mode matrix Vb

w and
the beam warping mode matrix Vb

O as

Vb
w ¼ ½0 v1 trans

w v2 trans
w v3 rot

w � ð29Þ

Vb
O ¼ ½v

axial
O v1 trans

O v2 trans
O v3 rot

O � ð30Þ

and the related homogenous analytical solutions for each of the
four modes are given by

caðzÞ ¼�ca1z�
1

2
ca2z2 ¼WaðzÞca ¼ ½�z �1

2z2�
ca1

ca2

" #
ð31Þ
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c1ðzÞ ¼ c11þc12zþc13z2þc14z3 ¼W1ðzÞc1 ¼ ½1 z z2 z3�

c11

c12

c13

c14

2
66664

3
77775
ð32Þ

c2ðzÞ ¼ c21þc22zþc23z2þc24z3 ¼W2ðzÞc2 ¼ ½1 z z2 z3�

c21

c22

c23

c24

2
66664

3
77775
ð33Þ

c3ðzÞ ¼ c31þc32z¼W3ðzÞc3 ¼ ½1 z�
c31

c32

" #
ð34Þ

To enable pre-multiplication by the beam mode matrix we
assemble the beam displacement constants in cb and the homo-
genous solution functions in the beam solution matrix WbhðzÞ as
follows:

WbhðzÞcb ¼

WaðzÞ 0 0 0

0 W1ðzÞ 0 0

0 0 W2ðzÞ 0

0 0 0 W3ðzÞ

2
66664

3
77775

ca

c1

c2

c3

2
66664

3
77775 ð35Þ

Note that the integral of the axial solution Wa ¼ ½�z � 1
2 z2� does

not pertain to any solution; however, it allows us to use its
derivative as the axial solution for extension W0a ¼ ½�1 �z�.

Using the identified beam eigenmode vectors the non-homo-
geneous equilibrium equations can be uncoupled and the load
terms identified, see [2]. With respect to the axial variation of the
cross-section load we will interpolate it using the distribution
function fðzÞ. This function varies linearly between two end
values (f1 and f2) representing the values of the multiplicative
function at the ends of the profile. Thus we introduce f as

f¼ 1�
z

L

z

L

h i
/ where /¼

f1

f2

" #
ð36Þ

Using this linear interpolation of the loads we find and write a
fully integrated particular beam solution matrix multiplied by the

intensity load values as

WbpðzÞ/¼

WapðzÞ

W1pðzÞ

W2pðzÞ

W3pðzÞ

2
66664

3
77775/ ð37Þ

where Wap, W1p . . . each hold the two components of the poly-
nomial solution expressions. The polynomial expressions for the
particular load contributions are derived and given in the second
companion paper [2].

Following the completion of steps I–III the final distortional
differential equations are solved by seeking solutions of exponen-
tial form and solving the related eigenvalue problem (giving twice
as many eigenvectors as conventional GBT). Two examples of such
transverse mode shapes are shown in Figs. 6 and 7 respectively.
The shown mode shapes correspond to a lipped channel and a box
section used in the example section.

The transverse displacements and the related warping displa-
cements of the found distortional eigenvectors are ordered
column wise in the distortional mode matrices Vd

w and Vd
O. The

ith distortional eigenvector corresponds to a solution cdi
ðzÞ which

takes the form

cdi
ðzÞ ¼ cd2i�1

exizþcd2i
e�xiz ¼Wdi

ðzÞcdi
¼ ½exiz e�xiz�

cd2i�1

cd2i

" #
ð38Þ

in which constants cd2i�1
and cd2i

are assembled in the vector cdi

and depend on the boundary conditions of the problem at hand.
All the distortional solution functions are assembled in the
homogenous distortional solution matrix Wdh and multiplied by
the assembled vector of distortional constants cd as follows:

WdhðzÞcd ¼

Wd1
ðzÞ 0 0 � � �

0 Wd2
ðzÞ 0 � � �

0 0 Wd3
ðzÞ � � �

^ ^ ^ &

2
66664

3
77775

cd1

cd2

cd3

^

2
66664

3
77775 ð39Þ

The particular load contributions are found by using the state
eigenvectors to decouple the equations and integrate the solu-
tions as described in the second companion paper [2]. The
particular solutions may be written as follows using the

Fig. 6. Lipped channel—13 in-plane deformation mode shapes.
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introduced linear cross-section load interpolation along the
beam:

WdpðzÞ/¼

Wdp1
ðzÞ

Wdp2
ðzÞ

^

2
64

3
75/ ð40Þ

where Wdpi
each hold the two components of the polynomial

solution expressions. The more elaborate polynomial expressions
for the particular load contribution are derived and given in the
second companion paper [2].

Finally we are able to assemble the full modal matrices for the
problem. The eigenmode vectors of the full solution can now
be assembled from the beam eigenvectors and the distortional
eigenvectors as follows:

Vw ¼ ½V
b
w Vd

w�, VO ¼ ½V
b
O Vd

O� ð41Þ

The related homogenous and particular solution matrices are
assembled as

WhðzÞc¼
WbhðzÞ 0

0 WdhðzÞ

" #
cb

cd

" #
ð42Þ

and

WpðzÞ/¼
WbpðzÞ

WdpðzÞ

" #
/ ð43Þ

This concludes the determination of all the solutions for all the
displacement modes of GBT.

After having obtained and assembled the cross-section dis-
placement modes in Vw and VO as well as all the homogeneous
and particular solution functions in Wh and Wp the full solution
along the beam is presented using the nodal solution vectors
uwðzÞ and uOðzÞ as

uwðzÞ ¼ Vw½WhðzÞcþWpðzÞ/�

uzðzÞ ¼�VO½W0hðzÞcþW0pðzÞ/� ð44Þ

The constants, c, have to be determined by the boundary condi-
tions of the thin-walled beam.

6. Element stiffness matrix and load vector

In this section the global beam element stiffness matrix and
load vector needed for the determination of the nodal element
solution are found. As the load has no influence on the stiffness
contributions we use the full assembled homogeneous solution
along the beam found in the companion paper [1]. We also use
the homogeneous displacement modes to generate the nodal load
vector. Some of the distortional displacement modes found and
their related eigenvalues are complex. In contrast to paper [1]
where a transformation to real modes and real solutions are
performed we will here continue working with complex numbers.
This means that the use of compilers which include complex
numbers with complex operations on matrices will lead to simple
algorithms based directly on the following formulations.

The homogeneous solution vectors along the beam are given
by the first part of the full solution in Eq. (44) as

uwðzÞ ¼VwWhðzÞc

uzðzÞ ¼�VOW0hðzÞc ð45Þ

where the given constants have to be determined by the GBT-space
boundary conditions of the thin-walled beam as described in Ref. [1].
To establish the stiffness matrix and load vector for a single beam
element the constants are viewed as temporary element degrees of
freedom. The transformation between these constants and the final
end displacements of the beam element will be determined by
setting up the necessary GBT boundary conditions. Using the homo-
geneous solution vectors given in Eq. (45) the potential energy
including all the homogeneous modes in Eq. (28) can be written as

P¼
1

2

Z L

0
cT WT

hVT
w WT

hVT
O

h i00 Ks
ww 0

0 Ks
OO

" #
VwWh

VOWh

" #00
c

(
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w WT
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O

h i0 Kt
ww Kt

wO

Kt
Ow Kt
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" #
VwWh

VOWh

" #0
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hVT
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hVT

O

h i Ks 0

0 0
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c

�cT ðWT
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wÞrwf�cT ðWT
hVT

OÞ
0rOf

)
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ð46Þ

Fig. 7. Rectangular box cross-section—10 in-plane deformation mode shapes.
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or in integrated form as

P¼ 1
2cT ð ~Kc�~rÞ ð47Þ

where ~K is the stiffness matrix and ~r the load vector related to the
modal displacement constants c. The stiffness matrix and the load
vector are found by integration and addition of the individual sub
matrix products in the potential energy equation (46) as

~K ¼ ~K
s
wwþ

~K
s
OOþ

~K
t
wwþ

~K
t
wOþ

~K
t
Owþ

~K
t
OOþ

~K
s

ð48Þ

and

~r ¼ ~rwþ ~rO ð49Þ

The stiffness matrix contributions are given in Table 3 and the two
load vector contributions are given in Table 4. Let us now turn to
a reformulation of eigenvectors and solution functions which enables
clearer analytical integration.

6.1. Formulation enabling analytical integration

In the potential energy formulation in Eq. (46) the modal
matrix of transverse displacement vectors Vw and the modal
matrix of axial warping displacement vectors VO contain all the
found eigenmode vectors assembled column-wise. However, each
eigenvector is only represented once. To ease the integration of
the products of the longitudinal amplitude functions Wh we will
here introduce a matrix format Wh corresponding to a diagonal
representation of the solution functions. This can only be done if
we also introduce an expanded representation of the eigenvectors
Vw and VO. By doing this each eigenvector is represented twice
for double roots and four times for quadruple roots. To obtain this
format we will use a transformation matrix H to expand the
transverse displacement vectors Vw and the axial warping dis-
placement vectors VO into the full space by

Vw ¼VwH ð50Þ

VO ¼ VOH ð51Þ

The transformation matrix also gives a transformation from the
diagonalized solution function matrix to the original format in
Eq. (42) by

Wh ¼HWh ð52Þ

The transformation matrix can be subdivided into a part Hb

related to the transformation of the classic beam modes and a
part Hd related to the transformation of the distortional modes by

H¼
Hb 0

0 Hd

" #
ð53Þ

Concerning the conventional beam displacements as given in
Eqs. (29) and (30) the expanding transformation matrix Hb takes
the following form:

Hb ¼

1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1

2
6664

3
7775 ð54Þ

and for the distortional displacements the expanding transforma-
tion takes the form

Hd ¼

1 1 0 0 0 0 � � �

0 0 1 1 0 0 � � �

0 0 0 0 1 1 � � �

^ ^ ^ ^ ^ ^ &

2
66664

3
77775 ð55Þ

To be clear let us repeat the formulation of the solution functions
in the new diagonalized formulation. The integral of the pure
axial solution in diagonalized form takes the form

WaðzÞca ¼
�z 0

0 �1
2z2

" #
ca1

ca2

" #
ð56Þ

while the axial variation of the pure translational modes deter-
mined by quadruple integration as described in paper [1] is
represented in diagonalized form as

W1ðzÞc1 ¼

1 0 0 0

0 z 0 0

0 0 z2 0

0 0 0 z3

2
6664

3
7775

c11

c12

c13

c14

2
66664

3
77775

W2ðzÞc2 ¼

1 0 0 0

0 z 0 0

0 0 z2 0

0 0 0 z3

2
6664

3
7775

c21

c22

c23

c24

2
66664

3
77775 ð57Þ

The axial variation of the pure twist mode (St. Venant torsion) is
represented by

W3ðzÞc3 ¼
1 0

0 z

� �
c31

c32

" #
ð58Þ

Substituting these full diagonalized solution matrices into a diag-
onal block matrix formulation similar to Eq. (35) the assembled full
diagonalized axial classic beam solution functions Wb are obtained.

Concerning the distortional analytical solution functions the
ith eigenvalue results in following diagonal solution matrix
representation:

Wdi
ðzÞcdi

¼
exiz 0

0 e�xiz

" #
cd2i�1

cd2i

" #

The full diagonalized distortional solution functions are assembled
in the (diagonal block) distortional solution matrix Wd and multi-
plied by the assembled vector of distortional constants cd similar
to Eq. (39). Finally the longitudinal classic beam amplitude
solution functions as well as the longitudinal distortional ampli-
tude solution functions are assembled using diagonal block
matrices as

WðzÞc¼
WbðzÞ 0

0 WdðzÞ

" #
cb

cd

" #
ð59Þ

where c are the original displacement constants. Using the
transformation matrix H as given in Eq. (53) we can obtain
the original formulation of the solution function matrix by using
the transformation as shown in Eq. (52).

Introducing the transformation given in Eq. (52) of the long-
itudinally varying amplitude solution functions in the integrals
given in Table 3, followed by the use of Eqs. (50) and (51) and
noting that only the diagonal amplitude solution functions are

Table 3
Beam element stiffness contributions.

~K
s
ww ¼

R L
0 W

00T

h VT
wKs

wwVwW00h dz ~K
s
OO ¼

R L
0 W

00T

h VT
OKs

OOVOW00h dz

~K
t
ww ¼

R L
0 W

0T

h VT
wKt

wwVwW0h dz ~K
t
Ow ¼

R L
0 W

0T

h VT
OKt

OwVwW0h dz

~K
t
wO ¼

R L
0 W

0T

h VT
wKt

wOVOW0h dz ~K
t
OO ¼

R L
0 W

0T

h VT
OKt

OOVOW0h dz

~K
s
¼
R L

0 WT
hVT

wKsVwWh dz

Table 4
Beam element load vector contributions.

~rw ¼
R L

0 WT
hf dz VT

wrw ~rO ¼
R L

0 W0hTf dz VT
OrO
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dependent on z allows us to see that the product terms become
simple. Thus the individual components of the stiffness matrix
only contain integrals of one product term. For example the
transverse stiffness contribution is reformulated as follows:

~K
s
¼

Z L

0
W

T

hHT VT
wKsVwHWh dz¼

Z L

0
WhV

T

wKsVwWh dz

¼V
T

wKsVwJ

Z L

0
WJW dz ð60Þ

in which J is a matrix of unit components (i.e. all components are
equal to one) and the mathematical symbol J represents the
Hadamard product also known as the ‘‘entry-wise product’’ or the
‘‘Schur product’’. It is seen that only the diagonal matrix W is a
function of z and that the integral of the product terms are easily
solved analytically due to the simple longitudinal cðzÞ solution
functions. This means that the formulation of the respective beam
element stiffness contributions in Table 3 can be reformulated as
given in Table 5.

6.2. Generalized displacements

The generalized displacements of the present GBT formulation
are determined by the first variation of the potential energy, shear
constrains and the multi point constraint equations, as described
in Ref. [1]. This degree of freedom space is what we refer to as the
GBT-space. In this space the degrees of freedom are determined
as the value of the pure axial extension ua

z ðzÞ, the values of the
remaining unconstrained transverse displacements ug

wðzÞ and
their axial derivatives ug

w
0

ðzÞ as given by the expressions involving
the eigenmode vectors, solution functions and solution constants

ua
z ðzÞ

ug
wðzÞ

ug0

wðzÞ

2
64

3
75¼

�TaT

O VOW0hðzÞ

TgT

w VwWhðzÞ

TgT

w VwW0hðzÞ

2
6664

3
7775c ð61Þ

Here the transformations are taken directly from Ref. [1], which in
detail describes these. As in a basic beam element formulation we
will specify the boundary displacements at the two ends of the beam,
i.e. at z¼0 and at z¼L where L is the beam length. Denoting the
assembled boundary displacement vector by ub we can write the
following equation for the determination of the solution constants:

ub ¼

ua
z ð0Þ

ug
wð0Þ

ug0

wð0Þ

ua
z ðLÞ

ug
wðLÞ

ug0

wðLÞ

2
6666666664

3
7777777775
¼

�TaT

O VOW0hð0Þ

TgT

w VwWhð0Þ

TgT

w VwW0hð0Þ

�TaT

O VOW0hðLÞ

TgT

w VwWhðLÞ

TgT

w VwW0hðLÞ

2
6666666666664

3
7777777777775

c¼Ac ð62Þ

This equation defines the ‘‘square’’ invertible matrix A and allows the
determination of the solution constants by the beam end displace-
ments as

) c¼A�1ub ð63Þ

The first variation of the elastic potential energy in Eq. (47) then takes

the form

dP¼ dcT ð ~Kc�~rÞ ð64Þ

Substituting beam boundary displacements for the solution constants
using Eq. (63) we redefine the formulation to include the end
displacements in GBT-space as follows:

dP¼ duT
bA�T ~KA�1ub�duT

bA�T ~r ¼ duT
b ðKeub�ReÞ ð65Þ

where we have introduced the beam element stiffness matrix in GBT-
space as

Ke ¼A�T ~KA�1
ð66Þ

and the beam element load vector in GBT-space as

Re ¼A�T ~r ð67Þ

For stationarity the first variation of the potential energy must be
equal to zero whereby we can write the single element equations as

Keub ¼Re ð68Þ

Having a prismatic structure of multiple beam elements we have to
setup a global system in which the end boundary displacements (in
GBT-space) are assembled. Using a standard finite element proce-
dure to assemble the global system we obtain

Ku¼R 3 u¼K�1R ð69Þ

where K has to be a positive definite ‘‘square’’ matrix and R is the
load vector corresponding to the chosen load. However, in order to
achieve a positive definite matrix it is necessary to apply boundary
conditions, for example as described in the next section.

In a conventional finite element formulation the displacement
field between the nodes is usually interpolated using approxi-
mated shape functions. In the present formulation we do not use
approximated interpolation functions as we have found the exact
shape functions as given in Eq. (61). Furthermore, we can adjust
the internal displacement field to the distributed loads on the
individual beam element using the particular solutions with
adequate boundary conditions as described after the next section.

7. Boundary conditions and nodal loads

In the present formulation the global stiffness matrix K is
related to sets of beam end degrees of freedom uGBT in the GBT-
space and after assembling the individual element matrices this
global matrix will be singular corresponding to the rigid body
movements. Thus we have to specify at least six conditions to
keep the beam fixed in space in order to solve the equations.

Of the methods used to introduce boundary conditions in the
finite element equations (69) we have chosen the simple method
of adding stiff springs. As the present formulation is in the
constrained, eliminated and transformed GBT-space it is rather
difficult to apply directly to the desired boundary conditions.
Therefore, the boundary stiffness contributions DKFE are formu-
lated in the unconstrained FE-space uFE corresponding to all nodal
degrees of freedom shown in Fig. 3 and the axial derivatives of
transverse components of these. For more clarity let us show the
GBT and FE-space displacement vectors and their transformation
as deduced from the companion paper [1]

uGBT ¼

ua
z

ug
w

ug
w

2
64

3
75¼

TaT

O 0 0

0 TgT

w 0

0 0 TgT

w

2
6664

3
7775

uz

uw

u0w

2
64

3
75¼ TuFE ð70Þ

Thus the beam end spring stiffness contributions DKFE are
transformed into GBT space by

DKGBT ¼ TTDKFET ð71Þ

Table 5
Beam element stiffness contributions enabling analytical integration.
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and the nodal loads (at beam element ends and intersections) are
transformed from FE-space to GBT-space by the transformation

DRGBT ¼ TTDRFE ð72Þ

Using this method quite a wide range of situations may be analyzed.
However, other methods involving coupling with traditional finite
plate elements is envisioned to be possible and should be further
investigated in the future.

8. Internal element displacements

The internal beam displacements are represented by the cross-
section node displacement vectors uzðzÞ and uwðzÞ as a function of
the axial coordinate z. In the beam element these internal
displacements are found by superposition of the internal
displacements induced by the nodal displacements without dis-
tributed loading and the displacements induced by the loading
on the beam with zero nodal displacements.

8.1. Nodal displacements

Adhering to this concept Eq. (73) gives us the first contribution as

uwðzÞ ¼VwWhðzÞc

uz ðzÞ ¼�VOW0hðzÞc ð73Þ

where the constants c¼A�1ub are determined by the nodal
displacements of the element ub.

8.2. Loading induced displacements

The second contribution involves the solution of the differen-
tial equations with boundary conditions corresponding to zero
nodal displacements. As the particular solution does not abide
to zero displacements at the nodes, this has to be achieved by
addition of a homogeneous solution. The boundary conditions for
the GBT equations are formulated in the companion paper [2],
which in the present complex formulation corresponds to

ub ¼

�TaT

O VOW0hð0Þ

TgT

w VwWhð0Þ

TgT

w VwW0hð0Þ

�TaT

O VOW0hðLÞ

TgT

w VwWhðLÞ

TgT

w VwW0hðLÞ

2
6666666666664

3
7777777777775

cpþ

�TaT

O VOW0pð0Þ

TgT

w VwWpð0Þ

TgT

w VwW0pð0Þ

�TaT

O VOW0pðLÞ

TgT

w VwWpðLÞ

TgT

w VwW0pðLÞ

2
6666666666664

3
7777777777775
/¼AcpþB/ ð74Þ

which also defines the particular solution matrix B that gives the
displacement values of the particular solutions at the beam bound-
aries when multiplied by the two end load intensity values in /.
Inserting that the nodal displacements are zero we find the constants
cp, which are determine the homogeneous solutions to add to the
particular solution in order to abide the boundary conditions

ub ¼ 0) cp ¼�A�1B/ ð75Þ

With this knowledge the second contribution is given by Eq. (44) as

uwðzÞ ¼Vw½WhðzÞcpþWpðzÞ/�

uz ðzÞ ¼�VO½W
0

hðzÞcpþW0pðzÞ/� ð76Þ

8.3. Superpositioned displacements

Finally we can superimpose the two solutions and and
find the semi-analytically determined internal displacement

vectors as

uwðzÞ ¼Vw

h
WhðzÞ cþcp

� �
þWpðzÞ/

i
uzðzÞ ¼ �VO W0hðzÞ cþcp

� �
þW0pðzÞ/

h i
ð77Þ

where c¼ A�1ub and cp ¼�A�1B/. Now we are able to find
displacements, strains and stress at any point in the beam
element. In the next section some examples illustrating this
new approach are given.

9. Example

In this section four illustrative examples are given and nodal
displacement results as well as stress distribution results of GBT
are compared to those found using the commercial FE program
Abaqus. In the examples we consider a simple supported lipped
channel beam and a box beam each with a length of 1500 mm
consisting of and assembled by three single beam elements of
500 mm. The end sections are constrained against transverse
displacements, but otherwise free to warp (and thus also rotate).
Further, one of the ends is fixed at a single node against long-
itudinal translation. Different load cases have been chosen for the
four examples. An elasticity modulus E¼ 2:1� 105 MPa and a
Poisson ratio of n¼ 0:3 have been used.

The results found using Abaqus are based on isotropic material
and the S4 shell element with full 4 point integration. The linear
elastic finite element calculations are based on a structured
rectangular mesh with a side length seed of 5 mm. The cross
section is fixed in the transverse directions at both ends and fixed
at a single node against longitudinal translation.

All stress comparisons between the present novel approach
and the commercial FE program Abaqus are performed in relation
to the given maximum stress at the cross section.

9.1. Example 1: Uniform distributed load on a simple supported

lipped channel beam

In this example a simple supported lipped channel beam
loaded as shown in Fig. 8 is analyzed.

Using the parameters as given in Figs. 20 and 21 and the full
solution from Eq. (77) leads to the deformed configuration shown
in Fig. 10 and the associated displacement values in Table 6 from
the marked node at mid-span. It is seen that the main

Fig. 9. Example 1: Geometry and discretization for a lipped channel beam

consisting of three elements.

h = 50
w = 100
c = 25
t = 2.0
pn = 0.1 N/mm2

Node

Fig. 8. Example 1: Geometry, in-plane discretization, parameter values and load

for the lipped channel beam.
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deformation is related to flexure; however, also an in-plane
deformation of the cross section becomes clear. This points out
the importance of taking distortion into account in order to obtain
a good approximation of the deformation shape even in simple
load cases.

The bold lines shown in the figure correspond to the deformed
end cross sections at the nodes of the assembled beam elements.
These nodes are also shown in Fig. 9.

Comparing the nodal displacements of GBT to the one found
from a model in the commercial FE program Abaqus gives the
values and the corresponding deviations shown in Table 6. The

values correspond to the node marked on the deformed plot of
the GBT solution in Fig. 10 at mid-span of the beam. From Table 6
the deviation from Abaqus results of the displacement, ux, in the
horizontal direction is 2.5%. In contrast, the deviation for the
vertical displacement, uy, is 0.9%. Based on the poor discretization
of the cross section and according to the present approach which
is based on a beam theory these deviations may be expected.
Having compared the nodal displacements obtained with GBT and
Abaqus we take a look at the stress distributions. A comparison of
the membrane stresses in the z-direction at mid-span are shown
in Fig. 11. Comparing the stresses in relation to the maximum
stress at the cross section a maximum deviation of 0.3% is
obtained as shown in Table 7. The transverse bending stresses at
mid-span are shown in Fig. 12. In this case a maximum deviation
of 4.3% is obtained which is caused by the approach based on a
beam theory and by the poor discretization of the cross section as
well as the chosen fine mesh size used in the Abaqus model.

9.2. Example 2: Point loads on a simple supported lipped channel

beam

In this example a simple supported lipped channel beam
loaded by two point loads symmetrically placed in the same
cross section as shown in Fig. 13 is analyzed.

Using the parameters as given in Figs. 13 and 14 and the full
solution in Eq. (77) leads to the deformed configuration shown in
Fig. 15. Here it is seen that the global deformation is related to
flexure of the beam, non-local distortional deformation of the
cross section and a very local plate deformation of the lips related
to the location of the point loads. Thus three length scales are
represented, the global flexural beam mode as seen in Fig. 15, the
non-local distortional deformation of the lips as shown in Fig. 16
and the local distortional plate deformation of the lip as shown in

Fig. 10. Example 1: GBT plot of the lipped channel with a flexural load.

Table 6
Example 1: Nodal displacements of GBT and FE analysis.

GBT (mm) Abaqus (mm) Difference (%)

ux 2.504 2.443 2.5

uy �16.236 �16.378 0.9

Fig. 11. Example 1: Comparison between the axial normal stress distributions

obtained with GBT and Abaqus at mid-span. All values are in MPa.

Table 7
Example 1: Stress distributions of GBT and FE analysis.

GBT (MPa) Abaqus (MPa) Difference (%)

sz 260.4 261.4 0.3

ss �274.7 �263.0 4.3

Fig. 12. Example 1: Comparison between the transverse bending stress distribu-

tions obtained with GBT and Abaqus at mid-span. All values are in MPa.

h = 50
w = 100
c = 25
t = 2.0
pn = 1 KN

Node

Fig. 13. Example 2: Geometry, in-plane discretization, parameter values and load

for the lipped channel beam.

Fig. 15. Example 2: GBT plot of the lipped channel with point loads.

Fig. 14. Example 2: Geometry and discretization for a lipped channel beam

consisting of three elements.
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close-up in Fig. 17. This example points out the importance of
taking distortion into account in order to obtain a good approx-
imation of the deformation shape.

From Fig. 17 it is seen that the deflection in the longitudinal
z-direction decreases exponentially in the y–z-plane. It should
also be noted that the deformation is so local that it is difficult to
see that the surface is C1 continuous. The decreasing non-local
distortion is clear in the x–z-plot shown in Fig. 16, which
represents a part of the beam symmetrically about the loaded
cross section. Comparing the nodal displacements of the marked
node to the displacement found using a model in the commercial
FE program Abaqus gives the displacement values and the
corresponding deviations shown in Table 8. From Table 8 the
deviation from Abaqus results of the displacement, ux, in
the horizontal direction is 0.6% while the deviation for the vertical
displacement, uy, is 1.6%. Due to the poor discretization of the
cross section and the present approach which is based on a beam
theory these deviations may also be expected.

Having compared the nodal displacement obtained with GBT
and Abaqus we take a look at the stress distributions. A compar-
ison of the membrane stresses in the z-direction is shown in
Fig. 18. Comparing the stresses in relation to the maximum stress
at the cross section a maximum deviation of 4.8% is obtained as
shown in Table 9. This deviation level is expected as the chosen
point is subjected to very local complex phenomena. The trans-
verse bending stresses are shown in Fig. 19. In this case a
maximum deviation of 2.1% is obtained.

9.3. Example 3: Line load on a simple supported lipped channel

beam

In this example a simple supported lipped channel beam
loaded as shown in Fig. 20 is analyzed. The length of the beam
elements is 500 mm whereby the total beam length is 1500 mm.

Using the parameters as given in Figs. 20 and 21 and the full
solution in Eq. (77) leads to the deformed configuration shown in
Fig. 22. Here it is seen that the main deformation is related to
flexure; however, also an in-plane deformation of the cross
section becomes clear. Comparing the nodal displacements of
the marked node at mid-span to the displacement found using a
model in the commercial FE program Abaqus gives the displace-
ment values and the corresponding deviations shown in Table 10.
The bold lines given in the figure are describing the connection
points between the assembled elements as also shown in Fig. 21.

Fig. 16. Example 2: GBT plot of the lipped channel to shown the exponential

decrease in the x–z-plane.

Fig. 17. Example 2: GBT plot of the lipped channel to shown the exponential

decrease in the y–z-plane.

Fig. 18. Example 2: Comparison between the axial normal stress distributions

obtained with GBT and Abaqus. All values are in MPa.

Table 9
Example 2: Stress distributions of GBT and FE analysis.

GBT (MPa) Abaqus (MPa) Difference (%)

sz �31.2 �38.6 4.8

ss 492.3 481.9 2.1

Fig. 19. Example 2: Comparison between the transverse bending stress distribu-

tions obtained with GBT and Abaqus. All values are in MPa.

h = 50
w = 100
c = 25
t = 2.0
1.0 N /mm

Node

Fig. 20. Example 3: Geometry, in-plane discretization, parameter values and load

for the lipped channel beam.

Fig. 21. Example 3: Geometry and discretization for a lipped channel beam

consisting of three elements.

Table 8
Example 2: Nodal displacements of GBT and FE analysis.

GBT (mm) Abaqus (mm) Difference (%)

ux �1.424 �1.415 0.6

uy 4.697 4.772 1.6

M.J. Andreassen, J. Jönsson / Thin-Walled Structures 62 (2013) 142–157154



218
Author's personal copy

The values in Table 10 corresponds to the node marked on
the deformed plot of the GBT solution in Fig. 22 at mid-span of the
beam. From Table 10 the deviation from Abaqus results of the
displacement, ux, in the horizontal direction is 2.0%. In contrast,
the deviation for the vertical displacement, uy, is 0.6%. Based on
the chosen discretization of the cross section and according to the
present approach which is based on a beam theory these devia-
tions may be expected. Having compared the nodal displacement
obtained with GBT and Abaqus we take a look at the stress

distributions. A comparison of the membrane stresses in the z

direction at mid-span is shown in Fig. 23. Comparing the stresses
in relation to the maximum stress at the cross section a maximum
deviation of 0.5% is obtained as shown in Table 11. The transverse
bending stresses at mid-span are shown in Fig. 24. In this case a
maximum deviation of 9.0% is obtained. This is due to the use of
the minimum possible discretization of the cross section lip with
only one cross section wall element.

9.4. Example 4: Flexural–torsional load on a simple supported box

beam

In this example a simple supported box beam loaded as shown
in Fig. 25 is analyzed.

Using the parameters as given in Figs. 25 and 26 and the full
solution given in Eq. (77) leads to the deformed configuration shown

Fig. 23. Example 3: Comparison between the axial normal stress distributions

obtained with GBT and Abaqus at mid-span. All values are in MPa.

Fig. 24. Example 3: Comparison between the transverse bending stress distribu-

tions obtained with GBT and Abaqus at mid-span. All values are in MPa.

h = 50
w = 100
c = 25
t = 2.0
ps = 0.1 N/mm2

Node

Fig. 25. Example 4: Geometry, in-plane discretization, parameter values and load

for the box beam.

Fig. 27. Example 4: GBT plot of the box beam with a flexural-torsional load.

Fig. 26. Example 4: Geometry and discretization for a box beam consisting of

3 elements.

Fig. 22. Example 3: GBT plot of the lipped channel with a line load.

Table 10
Example 3: Nodal displacements of GBT and FE analysis.

GBT (mm) Abaqus (mm) Difference (%)

ux �0.870 �0.853 2.0

uy 3.634 3.657 0.6

Table 11
Example 3: Stress distributions of GBT and FE analysis.

GBT (MPa) Abaqus (MPa) Difference (%)

sz 71.9 72.3 0.5

ss 8.7 3.7 9.0
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in Fig. 27 and the associated displacement values in Table 12 from
the marked node at mid-span. Here it is seen that the main
deformation is related to flexure and torsion; however, also an in-
plane deformation of the rigid box section becomes clear.

Comparing the nodal displacements of the marked node to the
displacement found using a model in the commercial FE program
Abaqus gives the displacement values and the corresponding
deviations shown in Table 12. The deviations from the Abaqus
results of the displacement, ux, in the horizontal direction is 1.5%
while the deviation for the vertical displacement, uy, is 2.0%.
Based on the chosen discretization of the cross section and
according to the present approach which is based on a beam
theory these deviations may be expected.

Having compared the nodal displacement obtained with GBT
and Abaqus we take a look at the stress distributions. A compar-
ison of the membrane stresses in the z-direction at mid-span are
shown in Fig. 28. Comparing the stresses in relation to the
maximum stress at the cross section a maximum deviation of
1.6% is obtained as shown in Table 13. The transverse bending
stresses at mid-span are shown in Fig. 29. In this case a maximum
deviation of 3.1% is obtained.

10. Conclusion

In this paper we have presented the formulation of a distor-
tional semi-discretized thin-walled beam element. Using the full
assembled homogenous solution along the beam, the beam
element stiffness matrices have been found. From the full
assembled homogenous solution as well as the full assembled
non-homogeneous solution the displacements of the full semi-
analytical solution along the beam have been found in the context
of a beam element. Illustrative examples including both open and
closed cross sections as well as different load cases have been
given. The chosen examples show solutions which are applicable
to the finite element formulation. The novel approach presented
in this paper is a considerable theoretical achievement, since it
without approximation gives the full analytical solution along
the loaded beam for a given discretization of the cross section.
Reasonable matches are obtained in all cases confirming that this
new developed GBT approach provides reasonable results with a
very small computational cost making it an alternative to the
traditional finite element calculations and the other available
methods.
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Querschnitten. Berlin: Springer-Verlag; 1972, 1975.

[29] Jönsson J. Determination of shear stresses. Computers Structures 1998;68:
393–410.

[30] Jönsson J. Distortional theory of thin-walled beams. Thin-Walled Structures
1999;33:269–303.

[31] Jönsson J. Distortional warping functions and shear distributions in thin-
walled beams. Thin-Walled Structures 1999;33:245–68.

[32] Vlasov VZ. Thin-walled elastic beams. Israel program for scientific transla-
tions, Jerusalem, Israel, second ed; 1961.
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Abstract. The classic thin-walled beam theory for open and closed cross-sections can be gen-
eralized by including distortional displacement modes. The introduction of additional displace-
ment modes leads to coupled differential equations, which seems to have prohibited the use of
exact shape functions in the modelling of coupled torsion and distortion. However, if the distor-
tional displacement modes are chosen as those which decouple the differential equations as in
non proportionally damped modal dynamic analysis then it may be possible to use exact shape
functions and perform analysis on a reduced problem. In the recently developed generalized
beam theory (GBT) the natural distortional displacement modes are determined on the basis of a
quadratic eigenvalue problem. However, as in linear modal dynamic analysis of proportionally
damped structures this problem has been solved approximately using linear eigenvalue analysis
of modified sub problems. This seems to have worked well for open cross sections but not for
closed. It will be shown that it is possible to solve the distortional quadratic eigenvalue problem
and find the natural distortional displacement modes using a method equivalent to that used for
non proportionally damped (linear) dynamic modal analysis. The beam displacement field is
separated into a sum of products of the cross-section displacement modes and their axial vari-
ation. This displacement field will then be constrained to follow the shear assumptions made
in Vlassov beam theory, which condenses the problem considerably and reduces the number of
possible eigen modes.
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1 INTRODUCTION

Thin-walled structural beams are extremely efficient due to the minimizing of the thickness
to width ratio of the cross-section walls. The thin walls are a primary aspect of the behavior and
design. Thin-walled structures are everywhere and include high rise industrial and residential
buildings, storage racks, box girder bridges, ship hulls, aircraft skins, silos, tanks, pipes, wind
turbine towers and wings and many others. Current practice of maximum strength at minimum
cost drives classic engineering materials such as concrete, steel and aluminium as well as newer
materials such as fibre reinforce materials (glass and carbon fibres in polyester or epoxy resin) to
be used as thin-walled structures.

Several formulations have been developed to study the behavior of thin-walled members,
some of them with respect to the distortion of the cross section, e.g. the Generalized beam
theory (GBT).

Generalized beam theory (GBT) is a theory devoted to the analysis of thin-walled members,
and proposed first by Schardt [1] in 1966, and have since fostered a lot of research, e.g. by
Schardt [2], Davies [3], Jönsson [4] and Camotim & Silvestre [5]. Also Hanf [6], Rendek &
Balaz [7], and Simao & Silva [8] has investigated the area. For further information about the
research development see e.g. [9], [10] and [11]. The theory can be regarded as a fusion between
the classical Vlasovs theory for thin-walled members and the plate theory [12], [13], and is an
alternative to the classical finite strip and finite element methods. It enables the analysis of
thin-walled members with the allowance of cross-section distortion and local plate behavior, in
a one-dimensional formulation through the linear combination of pre-established deformation
patterns - the modes of deformation.

2 BASIC AND KINEMATICS ASSUMPTIONS

The prismatic thin-walled beam is described in a global Cartesian (x, y, z) coordinate system
where the z-axis is in the longitudinal direction of the beam, see Figure 1. A cross-section co-
ordinate s is introduced as a curve parameter, which runs through the section along the center
line and n is the coordinate along the local normal. Subscripts n and s are used for the com-
ponents in the local coordinate system corresponding to the normal and tangential directions.
Subscripts following a comma are used for derivatives, for example un,ss = d2un(s)/ds

2 or
us,n = ∂us(s, n)/∂n. A prime, ’, is used for the axial derivative, d/dz.

Figure 1: Global and local Cartesian reference frames of the thin-walled beam. Modified from [4].
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The theories of beams are derived on the basis of assumed displacement fields, which corre-
spond to extension, flexure, torsion, warping and distortional displacements. The main idea is to
separate the cross section displacements into axial and transverse displacement fields. Each of
these transverse or axial displacement fields are factorized in a displacement mode, which is a
function of the in-plane coordinates, multiplied by a function of the axial coordinate, which de-
scribes the axial variation of the mode. In the following we will propose a method for finding the
natural distortional displacement modes. In the definition of the displacements and strains the in-
fluence of curved cross section walls is neglected and it is assumed that the radius of curvature is
sufficiently large, so that curvature effects vanish. The local effects at corners and joints are also
neglected. Only shear contributions from torsion and shear flow around cells will be allowed.
The components un and us of the in-plane cross section displacements in the local coordinate
system at a point (n, s) in the cross-section are introduced as

un(s, z) = wnψ (1)
us(n, s, z) = (ws − nwn,s)ψ (2)

where ws(s) and wn(s) are the local displacements of the centre line as shown in Figure 2 and
ψ(z) is the function, which describes the axial variation of the in-plane distortional displace-
ments. The axial displacements uz(n, s, z) generated by the in-plane distortional displacements
are introduced as

uz(n, s, z) = −(Ω + nwn)ψ
′ (3)

Here the axial displacement mode Ω(s)(warping) has been included with a variation correspond-

Figure 2: Local components of displacements and assumed shear stresses. Modified from [14] and [15].

ing to the axial derivative of the axial variation factor ψ and due consideration of local transverse
variation. Thus neglecting shear deformation. The corresponding axial strains are

ε = u′
z = −(Ω + nwn)ψ

′′ (4)
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The cross section distortional strains are

εs = (ws,s − nwn,ss)ψ (5)

The engineering shear strain in the walls of the cross section becomes

γ = γzs = uz,s + us,z = (ws − Ω′s − 2nwn,s)ψ
′ (6)

In order to cope with the shear flow around closed cells we introduce the shear strain in the
middle of the wall as

γ̄d = (ws − Ω′s)ψ
′ (7)

Bernoulli beam theory is based on the assumption of negligible shear strain and sets the shear
strain equal to zero and thus determines the warping displacements (flexural modes) by the dif-
ferential equation Ω′s = ws. The weak formulation of Bernoulli beam theory does therefore not
include shear contributions and the axial equilibrium equation of a section cut-out is not fulfilled,
thus leading to the use of Grashofs method for determination of the shear stresses. However if
we are to analyse closed cross sections as in Vlasow beam theory we have to allow for a constant
shear flow around the cells and the warping of the cross section then has to be determined by the
differential equation Ω′s = ws − γ̄d as

Ω(s) =

∫ s

0

wsds−
∫ s

0

γ̄dds+ Ω0 (8)

In the current context the warping function will be determined from a weak formulation of the
assumption of a constant shear flow T̄d in the walls of the cross section, (where T̄d = Gtγ̄d). The
strong formulation of the constraining assumption is that the contribution of the shear flow to the
axial equilibrium equation of a section cut-out is zero, i.e.

T̄d,s = 0 (9)

Multiplying by a virtual centreline axial displacement δūz and integrating over the cross section
we find the virtual work of the shear stresses in a cross section as

∫

C

T̄d,sδūzds = 0 (10)

Performing a partial integration and noting that the shear stress flow is zero at all free edges we
find the weak formulation that will be used to determine the warping function

[
T̄dδūz

]
free edges

−
∫

C

T̄dδūz,sds = 0 ⇒
∫

C

T̄dδūz,sds = 0 (11)

This equation is the constraint equation that we will use to enforce the assumption of zero axial
work performed by the shear flow around the cells.
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3 STRAIN ENERGY ASSUMPTIONS

In the following we will adhere to simple constitutive relations, i.e. the material is assumed
to be linear elastic with a modulus of elasticity E and a shear modulus G. The axial stress is
determined as σ = Eε, the shear stress as τ = Gγ and the transverse stress as σs = Eεs. Thus
the coupling of axial strain ε and transverse strain εs is neglected. The elastic energy potential
thus becomes

Π =

∫

V

(
1
2
Eε2 + 1

2
Gγ2 + 1

2
Eε2s

)
dV (12)

Let us introduce a thin-walled cross section assembled using straight cross sectional elements,
see Figure 3, and let us integrate through the thickness t, across the widths, be, of the elements,

Figure 3: Components of the displacements vectors of a straight cross section element.

and over the length, L, of the thin-walled beam. The elastic potential energy takes the following
form after introduction of the strains expressed by the displacement in separated form

Π= 1
2

∫ L

0

[∑

el

∫ bel

0




Et(Ωψ′′)2 + Et3

12
(wnψ

′′)2

+Gt(wsψ
′)2 +Gt(Ω,sψ′)2 − 2Gt(wsψ

′)(Ω,sψ′) + 1
3
Gt3(wn,sψ

′)2

+Et(ws,sψ)
2 + Et3

12
(wn,ssψ)

2



ds

]
dz

(13)
In equation 13 the elastic energy terms have been grouped in axial strain energy, shear en-

ergy and transverse strain energy. In conventional beam theory we usually introduce rigid cross
sectional displacement modes and the elastic energy will be described by a summation of the
energy stored in all displacement modes. However we have to remember the shear constraints
induced on our formulation from a constant shear flow assumption. In the current work it is
the goal to establish a natural set of displacement modes. To achieve this, the cross section will
be divided into discrete straight line elements in which we interpolate the transverse and axial
displacements.

4 INTERPOLATION WITHIN CROSS SECTION ELEMENTS

The axial displacements Ω within each flat element will be interpolated linearly correspond-
ing to a linear variation of the warping functions, the in-plane transverse displacement of the
elements will also be interpolated linearly (although a constant displacement might be more
appropriate) and finally the transverse displacement will be interpolated by cubic interpolation
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corresponding to beam elements. The displacements in a flat element are thus interpolated as
follows

Ωψ′ = NΩv
e
Ωψ

′ , where NΩ(s) is a linear interpolation matrix (14)
wsψ = Nsv

e
wψ , where Ns(s) is a linear interpolation matrix

wnψ = Nnv
e
wψ , where Nn(s) is a cubic (beam) interpolation matrix

where we in equation 14 have introduced the axial and transverse nodal displacement compo-
nents of a straight cross section element as

ve
Ω = [Ω(0),Ω(be)]

T (15)
ve
w = [ws(0),−wn(0),−wn,s(0),ws(be),−wn(be),−wn,s(be)]

T

Here be is the width of the flat element. Nodal components and the direction of the section
coordinates (n,s) are shown in Figure 3.

The element stiffness contributions to the axial strain, shear strain and transverse strain en-
ergy can now be found using the displacement interpolations. The found stiffness contributions
are shown in Table 1 in which the left column holds two axial stiffness contributions and the
transverse distortional stiffness term, whereas the second column holds the shear strain stiffness
contributions. Let us prepare for the formulation of the total cross section elastic energy by intro-

kσ
ΩΩ =

∫ be
0

EtNT
ΩNΩds kτ

ww =
∫ be
0

(
GtNT

s Ns +
Gt3

3 NT
n,sNn,s

)
ds

kσ
ww =

∫ be
0

Et3

12 NT
nNnds kτ

ΩΩ =
∫ be
0

GtNT
Ω,sNΩ,sds

ks =
∫ be
0

(
EtNT

s,sNs,s +
Et3

12 NT
n,ssNn,ss

)
ds kτ

wΩ =
[
kτ
Ωw

]T
= −

∫ be
0

GtNT
s NΩ,sds

Table 1: Straight element stiffness contributions.

Kσ
ΩΩ =

∑
el T

T
Ωk

σ
ΩΩTΩ Kτ

ww =
∑

el T
T
wk

τ
wwTw

Kσ
ww =

∑
el T

T
wk

τ
wwTw Kτ

ΩΩ =
∑

el T
T
Ωk

τ
ΩΩTΩ

Ks =
∑

el T
T
wk

sTw Kτ
wΩ =

∑
el T

T
wk

τ
wΩTΩ

Table 2: Assembly into total cross section stiffness contributions.

ducing global displacement vectors as an assembly of the local element degrees of freedom. The
axial displacements and the transverse displacements are separated into two vectors as follows:

vΩ = [vΩ1 vΩ2 vΩ3 . . .]T (16)
vw = [vx1 vy1 φ1 vx2 vy2 φ2 . . .]T

The transformation from local to global components is performed using a standard transforma-
tion of the components in the cross section plane, i.e. vΩ = TΩv

el
Ω and vw = Twv

el
w . The global
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assembly of stiffness matrixes are found by summation of the contribution from each element as
illustrated in Table 2. Introducing the described interpolation and matrix calculation scheme the
elastic potential energy in equation 13 now takes the following form,

Π =
1

2

∫ L

0

{[
ψvT

w ψvT
Ω

]′′ [
Kσ

ww 0
0 Kσ

ΩΩ

] [
ψvw

ψvΩ

]′′
(17)

+

[
ψvT

w ψvT
Ω

]′ [
Kτ

ww Kτ
wΩ

Kτ
Ωw Kτ

ΩΩ

] [
ψvw

ψvΩ

]′

+

[
ψvT

w ψvT
Ω

] [
Ks 0
0 0

] [
ψvw

ψvΩ

]}
dz

In equation 17 the 0 denotes a suitable size matrix of zeroes. The axial stiffness from transverse
displacements sub matrix Kσ

ww has a rank deficiency equal to the number of free end nodes
plus the number of “internal” nodes between corner points of the cross section. The in cross
section plane distortional stiffness sub matrix Ks has a rank deficiency of 3 corresponding to
3 in plane “rigid body” or rather non distortional displacements of the cross section. Finally
the shear stiffness matrix Kτ has a rank deficiency of 3 corresponding to the existence of pure
axial extension and two pure flexural modes without shear. It turns out that since the pure axial
displacement only involves the sub matrix Kτ

ΩΩ this matrix has a rank deficiency of 1.
To find the natural displacement modes we will investigate the first variation of the elastic

potential energy by making variations in the complete displacement field. We will denote the
virtual variation of a property by a δ in front of the varied property, such as for example δ(vwψ)

′

as the variation of the first derivative of the transverse displacement expressed by the product of
the transverse displacement and the axial variation. After using integration by parts twice we
find the following expression for the first variation of the elastic potential energy:

δΠ=

∫ L

0

δ

[
ψvT

w ψvT
Ω

]{[
Kσ

ww 0
0 Kσ

ΩΩ

][
vw

vΩ

]
ψ′′′′−

[
Kτ

ww Kτ
wΩ

Kτ
Ωw Kτ

ΩΩ

][
vw

vΩ

]
ψ′′+

[
Ks 0
0 0

][
vw

vΩ

]
ψ

}
dz

+

[
δ

[
ψvT

w ψvT
Ω

]′ [
Kσ

ww 0
0 Kσ

ΩΩ

] [
vw

vΩ

]
ψ′′

+δ

[
ψvT

w ψvT
Ω

]{
−

[
Kσ

ww 0
0 Kσ

ΩΩ

] [
vw

vΩ

]
ψ′′′ +

[
Kτ

ww Kτ
wΩ

Kτ
Ωw Kτ

ΩΩ

] [
vw

vΩ

]
ψ′
}]L

0

(18)

The last terms in the bracketed parenthesis correspond to the boundary loads and boundary con-
ditions, which will not concern us in the current presentation.

For internal variations in the displacement fields δ[ψvT
w ψvT

Ω] the elastic potential energy
should be stationary and therefore its first variation must be equal to zero. Taking internal vari-
ations reveals the following fourth order coupled homogeneous differential matrix problem for
determination of the transverse and axial displacement modes:

[
Kσ

ww 0
0 Kσ

ΩΩ

] [
vw

vΩ

]
ψ′′′′ −

[
Kτ

ww Kτ
wΩ

Kτ
Ωw Kτ

ΩΩ

] [
vw

vΩ

]
ψ′′ +

[
Ks 0
0 0

] [
vw

vΩ

]
ψ =

[
0
0

]
(19)
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In order to get a formulation resembling a generalization of Vlasov beam theory the following
three main steps must be performed:

• In step I we introduce the shear constraint equations that bind axial and transverse modes
together and at the same time simplifies or condenses equation 19. In this process we need
to eliminate the singularity in the shear stiffness matrix related to pure axial extension.

• In step II we will constrain the transverse displacement field, so that we do not allow
transverse normal strains in the middle surface of the cross section, i.e. we will enforce
ws,s ≡ 0, see equation 5 .

• In step III we will condense our eigenvalue problem by removing singularities due the
two remaining shear stiffness singularities belonging to pure flexural deformation without
shear.

Hereby the following condensed version of equation 19 is obtained,

K̄σ
eev

ue
w ψ′′′′ −Kτ

eev
ue
w ψ′′ +Ks

eev
ue
w ψ = 0 (20)

This concludes the three steps and now the solution of this quadratic matrix equation is wanted.

5 THE DISTORTIONAL QUADRATIC EIGENVALUE PROBLEM

We will start the solution of the final condensed differential equation 20 by seeking solution
to this fourth order matrix equation by guessing that the solutions are of the form

ψ(z) = eξz (21)

where ξ is a length scale parameter which may be complex. Inserting the guess leads to a
quadratic eigenvalue problem, which we choose to write in the following form to illuminate
the next transformation of the problem:

ξ2K̄σ
ee(ξ

2vue
w )− ξ2Kτ

eev
ue
w +Ks

eev
ue
w = 0 (22)

This quadratic eigenvalue problem may be transformed into a linear eigenvalue problem of dou-
ble size by introducing the following “state” vector v = [vue

w ξ2vue
w ]T . There are a number

of different possible formulations of this eigenvalue problem however we choose to keep a sym-
metric formulation and formulate the problem as the following symmetric generalized eigenvalue
problem:

[
Ks

ee 0
0 −K̄σ

ee

] [
vue
w

ξ2vue
w

]
− ξ2

[
Kτ

ee −K̄σ
ee

−K̄σ
ee 0

] [
vue
w

ξ2vue
w

]
=

[
0
0

]
(23)

Solving the symmetric generalized eigenvalue problem in equation 23 leads to a number of
modes corresponding to the number of degree of freedom. Some of the relevant eigenvalues are
shown in Table 3, and the corresponding modes are shown in Figure 4.

8
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Mode Eigenvalue ξ2 Length scale parameter ξ

1 3.3573 · 10−6 − 2.6519 · 10−5i ±(3.8787 · 10−3 − 3.4186 · 10−3i)
2 3.3573 · 10−6 + 2.6519 · 10−5i ±(3.8787 · 10−3 + 3.4186 · 10−3i)
3 4.2311 · 10−6 − 5.0044 · 10−5i ±(5.2180 · 10−3 − 4.7954 · 10−3i)
4 4.2311 · 10−6 + 5.0044 · 10−5i ±(5.2180 · 10−3 + 4.7954 · 10−3i)
5 0.00082381 ±0.028702
6 0.00095079 ±0.030835
7 0.00179050 ±0.042315
8 0.00333320 ±0.057734

Table 3: Eigenvalues ξ2 and corresponding length scale parameters ξ.

Figure 4: Lipped channel 8 in-plane deformation mode shapes.

From Table 3 and Figure 4 it is seen that some of the solutions give complex eigenvalues,
which leads to length scale parameters that becomes complex, and to modes containing both a
real part and an imaginary part. The eigenvalues of mode 2 and mode 4 are complex conjugated
eigenvalues of mode 1 and 3. To handle the complex solutions we use Euler’s formula and some
boundary conditions to find the constants, which will combine the real part and the imaginary
part.

6 CONCLUSION

As shown in Figure 4 relevant deformation modes have been found by formulating and solving
the distortional quadratic eigenvalue problem. Hereby it is shown that it is possible to solve the
distortional quadratic eigenvalue problem and find the natural distortional displacement modes
using a method equivalent to that used for non proportionally damped (linear) dynamic modal
analysis. The beam displacement field has been separated into a sum of products of the cross-
section displacement modes and their axial variation. This displacement field has been con-
strained to follow the shear assumptions made in Vlassov beam theory, which has condensed the
problem considerably and reduced the number of possible eigen modes.

Having solved the distortional quadratic eigenvalue problem allows us to sort and arrange the

9
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calculated modes and enables the formulations of a generalized one dimensional beam element
which can handle the extra distortional contributions. Afterwards, the generalization of the for-
mulation have to be extended to perform stability– and dynamic analysis of advanced issues by
the formulation of advanced dimensional bar elements.
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DISTORTIONAL EIGENMODES AND SOLUTIONS FOR 
THIN-WALLED BEAMS 

Michael J. Andreassen and Jeppe Ji:insson 

Technical University a/Denmark, Department a/Civil Engineering, Kgs. Lyngby, Denmark 

Abstract: This paper presents a generalization of the classic theory for thin-walled beams by 
including distortional displacements. A condensed presentation of the novel finite-element
based displacement approach in [1,2] is given, where specific distortional displacement fields, 
which decouple the differential equations for generalized beam theory (GBT), are determined 
via a semi-discretization procedure. The distortional displacement fields are found as solu
tions to a distortional homogeneous eigenvalue problem which produce distortional displace
ment eigenmodes. Using the distortional modal matrix found for the homogeneous system the 
final uncoupled set of distortional differential equations including the load terms are pre
sented and the full solution is given, including an illustrative example. This new approach is 
an altemative to the traditional first order GBT method. 

L INTRODUCTION 

A number of formulations have been developed to study the behavior of thin-walled mem
bers, some of them including the distortion of the cross-section, e.g. the Generalized beam 
theory (GBT), a designation which is associated with a modal discretization perfOlmed at the 
cross-section level. GBT is a theory devoted to the analysis of thin-walled members, proposed 
first by Schardt [3], and has led to a lot of research, for example by Schardt [4], Davies [5], 
Ji:insson [6], Camotim & Silvestre [7] and Hanf [8]. The theory can be considered as an exten
sion of classical Vlasov theory for thin-walled members [9] and is an altemative to the classi
cal finite strip and finite element methods. It enables the analysis of thin-walled members 
with the allowance of cross-section distortion and local plate behaviour, in a one-dimensional 
formulation through the linear combination ofpre-established modes of defOlmation. 

In the present paper a new and altemative approach [1,2] to traditional GBT will shortly be 
presented. Via this new approach it is possible to determine specific distortional displacement 
fields which decouple the differential equations for generalized beam theory (GBT) via a 
semi-discretization procedure. Here the cross-section is discretized into finite elements, and 
the axial variation of the displacement functions are solutions to the established coupled 
fourth order differential equations. This novel finite-element-based displacement approach is 
introduced in combination with a weak formulation of the shear constraints and constrained 
wall widths. 

The order of the distortional homogeneous equations is reduced, and the related distor
tional homogeneous eigenvalue problem of double size is solved as in non-proportionally 
damped stlUctural dynamic analysis. From the distortional homogeneous eigenvalue problem 
the eigenvalues and the conesponding distortional displacement eigenmodes are found. Some 
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of the distortional displacement modes found and their related eigenvalues are complex but 
rewritten into real quantities. The distortional differential equations including the load terms 
are presented. Transforming these distortional differential equations into the eigenmode 
space, by using the distortional modal matrix found for the homogeneous system, the final 
diagonalized and thus uncoupled set of differential equations including the load terms are ob
tained. The full solution to these uncoupled linear second order differential equations is given. 

2. BASIC ASSUMPTIONS AND KINEMATIC RELATIONS 

In [1,2] the prismatic thin-walled beam is described in a global Cartesian (x, y, z) coordi
nate system where the z-axis is in the longitudinal direction of the beam, see Fig. 1. A cross
section coordinate s is introduced as a curve parameter, which runs through the section along 
the centreline and n is the coordinate along the local normal. Subscripts nand s are used for 
the components in the local coordinate system corresponding to the normal and tangential di
rections. 

as: 

~x 4" z z 
Fig. 1: Global and local Cartesian reference frames of the thin-walled beam including load distribution 

The components of the cross section displacements in the local coordinate are introduced 

u
l1
(S,z) = w

l1
(s)ljI(z) 

us(n,s,z) = (ws(s) - nw
l1

,s (s)) ljI(z) 

uz(n,s,z) = (D(s) + nw
l1
(s))IjI'(z) 

(1) 

(2) 

(3) 

Here ws(s) and wn(s) describes the local displacements of the centreline as shown in Fig. 2, 
ljI(z) describes the function which defines the axial variation of the in-plane distortional dis
placements and ,0(8) (warping) describes the axial displacement mode. 

The corresponding strains appears as: 
€ = U z' = -(,0 + nw,JIjI" (4) 

8, = (w"s - nW I1 ,s,)1jI (5) 

y = Yzs = uz,s +u,·,z = (ws -D,s -2nw l1,,)Ij/ (6) 

For a greater explanation and description see paper [1,2]. 

""" 
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A: 

B: 

s 

11. 

W",s7f! 
-.::-.:----if 

C-C: 

, , , 

Fig. 2: Local components of displacements and assumed shear stresses 

3. ENERGY POTENTIAL 

The total energy potential can be expressed as 

IT 101 = IT illl + IT exl 

135 

(7) 

Here II;nt is the contribution to the potential energy from the internal properties, see paper 
[1], and IText is the contribution from the external loads, see paper [2]. 

Introducing the strains expressed by the separated displacement functions, the total poten
tial energy takes the following form: 

IT ,al = H:'[ LeJ:)eI{ [Et(!1V/')2 + 12 Et\W Il Ij/')2]+ [Gt(w sV// + Gt(!1,s wY 
- 2Gt(w sV/)(!1,s W') + tGt3(WIl.sWY]+ [EAw s.sW)2 + 12EJ\w ll.ssW)2] (8) 

-!p[PswsW+ PIlWIlW- pz!1V/] }ds ]dz 
The interpolations connected to the cross-section are the displacement interpolations for 

Ws, Wn and !1 which is described in [1]. The interpolation of the cross-section loads Ps, pn and 
]J: are introduced in [2]. Introducing these interpolations and the calculation scheme as de
scribed in [1,2] we can write the total potential energy as 

11 ,0, =H: {[VJV~ WV~([K~", K:J[~:r +[VJV~ 

[
KS 

+[WV~ VJV~] 0 
(9) 

To get a fonnulation resembling a generalization of Vlasov beam theory [9] the following 
three main steps are performed: 
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® In step I the shear constraint equations that bind axial and transverse modes together 
are introduced and at the same time Eq. (9) are simplified or condensed. In this proc
ess the singularity in the shear stiffness matrix related to pure axial extension is 
needed to be eliminated. 

® In step II two eigenmodes conesponding to transverse translation of the cross section 
are identified and eliminated. Also a pure rotational eigenmode is identified for elimi
nation in the next step. Furthermore the transverse displacement field is constrained, 
so that transverse nOlmal strains in the middle surface of the cross section are not al
lowed, i.e. wn.ss=O is enforced, see Eq. (5). 

® In step III the order of the coupled fourth order differential equations is reduced and 
the eigenvalue problem is condensed by removing singularities due pure St. Venant 
torsion. 

Hereby the following condensed version of the final distortional differential equations is 
obtained: 

(l0) 

The block matrices and the transfOlmed stiffness matrices, K, are introduced in paper [1] 
while the load vectors, r, are introduced in paper [2]. 

4. SOLUTION OF DISTORTIONAL EQUATIONS 

The solution of the final condensed differential Eq. (l0) is obtained by first seeking a solu
tion to the homogeneous part of this fOUlih order matrix equation. In this context the follow
ing form of the solutions are postulated: 

If/(Z) = e(Z (11) 

where ~ is a length scale parameter which may be complex. Insetiing the postulated solution 
leads to the following homogeneous generalized linear matrix eigenvalue problem, in which 
the eigenvalues are c} and the eigenvectors are the searched distOliional modes: 

[K:lU _ 0
0
][ ~:e] _(;2[_K:t~ = K~e][ ~:e ] = [~] (12) 

o Kce (; Vw Keu Kee (; Vw 

Now the found eigenvectors are used to decouple the system of equations in (10). Trans
fOlming the distOliional differential equations into the eigenmode space, by using the distor
tional modal matrix, VI, found for the homogeneous system, we get the final diagonalized 
and thus uncoupled set of differential equations of GBT (reduced system) including the load 
terms as 

KO] [ U] - ue Vw 'f _ KO c;C2 If/di 
ee V \VS i 

[
Vu ]T[r"U3] [VU ]1'[rOU3] w w + \v n I c ;C2 c3 rp c ;C2 ,e3 rp 

V wS i fw V \VS i In 

(13) 

which is abbreviated as 
Kg Kd 11- d,/, d ,/,' (14) 

ii If/d i - ii If/ d i - rw iif' + rQ iif' 

Normalizing Eq. (14) and specifying that the eigenvalue ~? is equal to K;NK/, the follow
ing standard fOlm is obtained: 
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(15) 

The introduced distortional stiffness and load tenns are given in [2]. It should be noticed 
that r,:;r/J is the distortional moment load and r/1ir/J' is the distortional bimoment load. 

Now the full solution of each of the uncoupled non-homogeneous linear 2. order differen
tial equations in (15) is given by 

1 -"zf ,.z 1 d d ')d +-e ' e' -er .rn+r m Z 2): Kd w,'I' g ,'I' 
SI 11 

(16) 

This concludes the detelmination of all the solutions for all the displacement modes of 

GBT. After having obtained and assembled all the full solution functions in Wand in-plane 

modes in Y , the full solution along the beam is presented in real numbers using the nodal so
lution vectors uw(z) and uQ(z) as 

uw(z) = Yw[W h (z)c + W p(z)q>] 

U z (z) = -Yn[W~ (z) c + W~ (z)q>] 
(17) 

The constants, C, have to be detennined by the boundary conditions of the thin-walled 
beam. 

5. BOUNDARY CONDITIONS 

To determine the constants using displacement boundary conditions as in finite element 
formulations, the displacements at the boundary at the ends of the beam are needed, i.e. at 
z=O and at z=L, where L is the length of the beam. As in [1,2] the assembled boundary dis
placement vector is denoted by UbI Hereby the following equation for the determination of the 
solution constants is obtained: 

U;(O) _rTy 'P' (0) _rTy W'(O) 
n n h n n p 

u~(O) 
T~ ~ TgTy W (0) T! Vw'l\(O) w w p 

U~ '(0) 
T,-...- ,.....-, T"""-' ,-...." 

U = T! Vw'l\ (0) C+ 
T,~ Vw 'I" p (0) 

=Ac+B b T~ ~ 

_rTy W' (L) u;(L) - T~ Vn'l";, (L) (18) n n p 

u:v(L) 
T~ ~ T~ ~ 

T! Vw'l"h(L) T,~ Vw'l"p(L) 
u~ '(L) T! Tyw W;, (L) T"""" "'"""-', 

T,~ Vw 'I" p (L) 

=> c = A-l(u
b 
-B) 

Here the matrices A andB are introduced, were A is an invertible positive definite ma
trix. In the following example all boundary displacements are chosen to be zero. This is to 
compare the influence of the load with a similar finite element context with built in edges. 
Hereby Eq. (18) is presented as 

U!' [0 0 0 0 0 Or 

which is used in the following example . 

(19) 
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6. EXAMPLE 

By using an example, some nodal displacement results of GBT will now be compared to 
results found using the commercial FE program Abaqus. A lipped channel beam is considered 
with a load as shown in Fig. 3. 

t 

~ 

Ps ~ h 

~ 
t 
~ ~ 

c c 

w 
Fig. 3: Geometry, parameter values and load for the lipped channel 

The load is 0.1 N/mm, unifonnly distributed as shown in Fig. 3 and hereby given by a 
cross-section load distribution multiplied by 9(Z)= 1. The dimensions of the cross-section are 
w=100 mm, h=50 mm, c=25 mm and t=2 mm. Furthermore the beam has a length of L=2000 
mm, an elasticity modulus E=2.l·105 MPa and a Poisson ratio of v=0.3. The comparison re
sults found by using Abaqus are based on isotropic material and the S4 shell element with full 
4 point integration. The linear elastic finite element calculations are based on a structured rec
tangular mesh with a side length seed of 10 mm. 

First the solution of the final condensed differential equation is found by solving the ho
mogeneous generalized linear matrix eigenvalue problem in Eq. (12) including the geometry 
and parameter values as described above. Solving the eigenvalue problem leads to a number 
of modes corresponding to the number of degree of freedom. Some of the relevant eigenval
ues are shown in Table 1, and the corresponding modes are shown in Fig. 4. 

Mode 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Table 1: Eigenvalues?/ and corresponding length scale parameters r:; 

Eigenvalue </;2 Length scale parameter </; 

o 
o 
o 
o 

0.3710-6 

3.3610-6 - 2.6510-5 i 
3.3610-6 + 2.65·1O-5i 
4.23'10-6 -5.001O-5i 
4.23'10-6 +5.0010-5 i 

825.6'10-6 

951.110-6 

182310-6 

335910-6 

o 
o 
o 
o 

0.61'10-3 

±(3.881O-3 
- 3.421O-3i) 

±(3.88·1O-6 + 3.421 0-3 i) 
±(5.221O-3 -4.80 10-3 i) 
±(5.221 0-3 +4.801 0-3 i) 

±28.7'l0-3 
±30.81O-3 

±42.71O-3 

±58.01O-3 

Here mode 0-3 are global beam modes, mode 4-8 are non-local distortional modes and 
mode 9-12 are local distortional modes. From table 1 it is seen that some of the impOliant dis
tortional modes and related eigenvalues are complex, come in pairs and that the imaginary 

...... 
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Fig. 4: Lipped channel- 13 in-plane deformation mode shapes. 
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7,8 
(I m) x 24.0 

part of the conjugated mode changes sign. It is also observed that all the eigenvalues concern
ing the distortional local modes (9-12) are real. However, also complex solutions for a few 
high number local distortional modes are obtained and it is not known whether other cross
sections may produce real distortional modes. 

Using the found eigenvectors to decouple the system of equations in (l0), it is possible to 
find the full solution of each of the uncoupled non-homogeneous linear 2. order differential 
equations in Eq. (16). Having obtained and assembled all the full solution functions and in
plane modes, the full solution along the beam can be presented in the nodal solution vectors 
uwCz) and uo(z) using (17). Using the full solution in Eq. (17) with parameters, discretization 
and distributed cross-section load as given and shown in Fig. 3 leads to the defolmations 
shown in Fig. 5 and table 2. 

Fig. 5: GBT plot of the lipped channel with a torsional load 

Table 2: Nodal displacements ofGBT and FE analysis 

GBT (mm) Abaqus (mm) Diff. (%) 
lIx -4.719 -4.824 2.2 
11" -6.892 -7.135 3.4 

Comparing a nodal displacement of GBT to the one found from a model in the commercial 
FE program Abaqus, gives the values and the corresponding deviations shown in Table 2. The 
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value cOl1'esponds to the node marked on the deformed cross-section plot of the GBT solution 
in Fig. 5 at mid-span of the beam. From table 2 the deviation from Abaqus results of the dis
placement, Ux , in the horizontal direction is 2.2% and the deviation for the vertical direction, 
uy, is 3.4%. These deviations can be explained by the formulation of the present theory, which 
is based on a beam theory where the shear deformations are neglected. 

7. CONCLUSIONS 

A novel finite-element-based displacement approach is shortly presented, where specific 
distortional displacement fields, which decouple the differential equations for generalized 
beam theory (GBT), was determined via a semi-discretization process. The distortional dis
placement fields were found as solutions to a distortional homogeneous eigenvalue problem 
which produce distortional displacement eigenmodes. Using the distortional modal matrix 
found for the homogeneous system the final uncoupled set of distortional differential equa
tions including the load terms was formulated and the full solution was given, including an 
illustrative example. The presented approach is a theoretical improvement of the traditional 
GBT approach, in view of the fact that the obtained GBT equations are now solved analyti
cally and the formulation is valid for open as well as closed single or multi cell cross-sections 
without special attention. 
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ABSTRACT

A generalized beam theory can be formulated based on the assumption that the displacements
can be described as a sum of displacement fields. These displacement fields are each assumed
to be separable into the products of functions of the local transverse coordinates and functions
of the axial coordinate z. Thus in a single displacement field as shown in Fig. 1 the transverse
displacements are described by the product of a transverse displacement mode wn(s), ws(s)
and a function ψ(z) of the axial coordinate. Further more due to shear constraints the related
axial warping of the transverse displacement is described by the product of the related warping
function Ω(s) and the derivative ψ ′(z) of the axial function. To establish these displacement
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Figure 1: Displacement assumptions and discretization of the cross section in a straight elements.

fields the thin-walled cross section is discretized in elements in which the displacement modes
and warping functions are interpolated. Introducing the constraining assumptions of beam
theory the remaining degrees of freedom of the interpolated functions are ṽw. Thus the thin-
walled beam has been semi-discretized and the governing differential equilibrium equations
for determination of the transverse displacement modes ṽw and the axial variation ψ(z) takes
the following form

K̃σṽwψ
′′′′ −

[
K̃τ + λK̃0

]
ṽwψ

′′ + K̃sṽwψ = 0 (1)

in which the matrices K̃σ, K̃τ , K̃0 and K̃s correspond to axial stiffness, shear stiffness, ini-
tial stress influence and transverse stiffness respectively. The magnitude of the initial stress is
governed by the λ factor. The semi-discretization approach treated in this paper is developed
in [1]-[3]. In the classic stability theory the solution functions ψ(z) = eξz are normally as-
sumed to be trigonometric functions, ψ(z) = eiµz = sinµz = sin(nπz/L), in order to satisfy
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suitable simple boundary conditions. These solutions are illustrated as the conventional half
wavelength buckling curves or so called cross section signature curves in the upper left part of
Fig. 2. On the other hand seeking general solutions to the differential equations it is necessary
to fix the initial stress level and thus perform calculations with fixed values of λ. Furthermore
it is necessary to reduce the order of the differential equations and introduce a state vector with
twice the number of dof. Through solution of the related linear eigenvalue problem of double
size the state space displacement solutions are identified. The eigenvalues ξ are functions of
the initial stress level and correspond to complex solution length scales (π/ξ) plotted in the
upper right part of Fig. 2. The changes in solution modes and length scales are shown in the
lower part of the figure.
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Figure 2: Signature curves, solution length scale curves and solution mode development.
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In several industries such as the civil, mechanical and aerospace, thin-walled structures are often used 
due the high strength and effective use of the materials. Because of the increased consumption there 
has been increasing focus on optimizing and more detailed calculations. However, more detailed calculati-
ons are very time consuming, if not impossible, due to the large amount of degrees of freedom needed.

This thesis deals with a novel mode based semi-discretization approach concerning more detailed 
calculations in the context of distortion of the cross section and model distortion by a limited number of 
degrees of freedom. This new approach is a considerable theoretical and practical development, since the 
obtained differential equations of generalized beam theory are now solved analytically and the formula-
tion is valid without special attention and approximation also for closed single or multi-cell cross sections.
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