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Abstract

Liner shipping networks are the backbone of international trade
providing low transportation cost, which is a major driver of globaliza-
tion. These networks are under constant pressure to deliver capacity,
cost effectiveness and environmentally conscious transport solutions.
This article proposes a new path based MIP model for the Liner ship-
ping Network Design Problem minimizing the cost of vessels and their
fuel consumption facilitating a green network. The proposed model
reduces problem size using a novel aggregation of demands. A decom-
position method enabling delayed column generation is presented. The
subproblems have similar structure to Vehicle Routing Problems,
which can be solved using dynamic programming. An algorithm has
been implemented for this model, unfortunately with discouraging re-
sults due to the structure of the subproblem and the lack of proper
dominance criteria in the labeling algorithm.

Keywords liner shipping, network design, mathematical programming,
column generation, green logistics

1 Introduction

Global liner shipping companies provide port to port transport of contain-
ers, on a network which represents a billion dollar investment in assets and
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operational costs.

750 FFE Mediterranean – Halifax
150 FFE Europe- Halifax
       150 FFE Asia- Halifax
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200 FFE Canada East - Asia

Figure 1: A Canada-Northern Europe service. FFE is Forty Foot Equiva-
lent unit container used to express the volume of containers in each cargo
category.

The liner shipping network can be viewed as a transportation system
for general cargo not unlike an urban mass transit system for commuters,
where each route (service) provides transportation links between ports and
the ports allow for transshipment in between routes (services). The liner
shipping industry is distinct from other maritime transportation modes pri-
marily due to a fixed public schedule with a given frequency of port calls
(Stopford 2009). The network consists of a set of services. A service con-
nects a sequence of ports in a cycle at a given frequency, usually weekly
as an industry standard. In Figure 1 a service connecting Montreal-Halifax
and Europe is illustrated. The weekly frequency means that several vessels
are committed to the service as illustrated in the figure, where four vessels
cover a round trip of 28 days placed with one week in between vessels. This
round trip for the vessel is referred to as a rotation. Note that the Montreal
service carries cargo to North Europe, the Mediterranean and Asia, with the
two latter transshipping in Bremerhaven. In a similar way cargo headed for
Canada has multiple origins. This illustrates that transshipments to other
connecting services is at the core of liner shipping. Therefore, the design of
a service is complex, as the set of rotations and their interaction through
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Figure 2: Two connecting services. The Montreal service from Figure 1
and a Europe-Mediterranean service with a round trip time of 2 weeks il-
lustrated by two white vessels. The cargo composition on board vessels
illustrate transshipments at the core of the liner shipping network design.
The light blue incomplete service illustrates a larger service transporting
cargo between Europe and Asia.

transshipment is a transportation system extending the supply chains of
a multiplum of businesses. Figure 2 illustrates two services interacting in
transporting goods between Montreal-Halifax and the Mediterranean, while
individually securing transport between Montreal-Halifax and Northern Eu-
rope, and Northern Europe and the Mediterranean respectively. The Mon-
treal service additionally interacts with a service between Europe and Asia,
which is partly illustrated.

1.1 Modelling the Liner Shipping Network Design Problem
(LSNDP)

The Liner Shipping Network Design Problem (LSNDP) aims to optimize the
design of the networks to minimize cost, while satisfying customer service
requirements and operational constraints. The mathematical formulation of
the LSNDP may be very rich as seen in Løfstedt et al. (2011), where a com-
pact formulation along with an extensive set of service requirements and
network restrictions is presented. A rich formulation like the one presented
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in Løfstedt et al. (2011) serves as a description of the LSNDP domain, but
is not computationally tractable as the number of feasible services is ex-
ponential in the number of ports. Therefore, a formulation of the LSNDP
is typically restricted to an interpretation of the domain along with the
core costs and constraint structures of the problem. The LSNDP has been
modelled as a rich Vehicle Routing Problem (VRP) (Baldacci et al. 2010),
where transhipments are not allowed and vessels can be assumed to return
empty to a single main port of a voyage in, e.g., Fagerholt (2004) and Kar-
laftis et al. (2009). The structure is applicable for regional liner shippers
referred to as feeder services as opposed to global liner shipping in focus in
the present paper. Models where the LSNDP is considered as a specialized
capacitated network design problem with multiple commodities are found
in Reinhardt and Kallehauge (2007), Agarwal and Ergun (2008), Alvarez
(2009), and Plum (2010). The network design problem is complicated by
the network consisting of disjoint cycles representing container vessel routes
as opposed to individual links. The models allow for transshipments, but
transshipment cost is not always part of the objective (e.g.,Agarwal and Er-
gun (2008)). The vessels are not required to be empty at any time. The
works of Agarwal and Ergun (2008), Alvarez (2009) identify a two tier struc-
ture of constraint blocks: the first deciding the rotations of a single or a
collection of vessels resulting in a capacitated network and the second re-
garding a standard multicommodity flow problem with a dense commodity
matrix. The cost structure of LSNDP places vessel related costs in the first
tier and cargo handling cost and revenue in the second tier. The work of
Plum (2010) has identified two main issues with solving the LSNDP as a
specialized capacitated network design problem:

1. Economy of scale on vessels and the division of cost and revenue on
the two tiers results in highly fractional LP solutions.

2. The degeneracy of the multicommodity flow problem results in weak
LP bounds.

Furthermore, it is well known that the linear multicommodity flow problem
and hence capacitated network design problems are increasingly complex to
solve with the number of distinct commodities. Computational results for
existing models confirm the hardness of this problem and the scalability is-
sues, struggling to solve instances with 10-15 ports and 50-100 commodities.

The model presented in this paper has a single tier and combines revenue
with total cost in the service generation problem. The motivation is to
ensure efficient capacity utilization of vessels and avoid highly fractional LP
solutions. Service generation is based on pick-up-and-delivery of cargoes
transported entirely or partly on the service. The cost of a service reflects
asset, operational and port call costs of the vessels on the service, along
with the cargo handling cost and revenue of collected cargo on the service.
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The cargo handling cost includes load, unload and transshipment costs.
The model is inspired by the Pick-up-and-Delivery VRP problem, but is
considerably more complex as we allow transshipments on non-simple cyclic
routes, where the vessel is not required to be empty at any point in time.

The degeneracy of the multicommodity flow problem is mitigated both
by modeling the flow as assignments to services as opposed to the traditional
multicommodity flow formulation, but also by exploiting the liner shipping
concept of trade lanes to aggregate the number of distinct commodities to
a minimum. Trade lanes are based on the geographic distances within a set
of ports and their potential to import/export to another region.

Maritime shipping produces an estimated 2.7% of the worlds CO2 emis-
sion, whereof 25% is accounted to container vessels according to the World-
ShippingCouncil (2010). Many liner shipping companies focus on the envi-
ronmental impact of their operation and the concept of slow steaming has
become a value proposition for some liner shipping companies List (2010).
Cariou (2011) estimate that the emissions have decreased by 11 % since 2008
by slow steaming alone. A break down of the cost of a service to each vessel
Stopford (2009) state that 35-50% of the cost is for fuel (bunker) whereas
capital cost accounts for 30-45%, OPEX (crew, maintenance and insurance)
accounts for 6-17% and port cost for 9-14%. Slow steaming minimizes the
fuel cost, but comes at an asset cost of additional vessels deployed to main-
tain weekly frequency (Notteboom and Vernimmen 2009). Slow steaming
is not always an option as some cargo may have crucial transit times. Cur-
rent models of LSNDP assumes fixed speed on a service. The model of
Alvarez (2009) explicitly aims at minimizing the fuel cost and consumption
in the network by varying the speed of services in the model. The works of
Løfstedt et al. (2011), Notteboom and Vernimmen (2009), Fagerholt et al.
(2009) state that the speed on a service is variable on each individual voyage
between two ports. Calculating fuel consumption based on an average fixed
speed on a roundtrip is an approximation, as the fuel consumption is a cubic
function of speed (Stopford 2009). As a result the actual fuel consumption
of a service cannot be estimated until the schedule is fixed. Tramp ship-
ping companies often model their routing and scheduling problem as rich
Pick-up-and-Delivery VRP problems with Time Windows (Fagerholt and
Lindstad 2007, J. E. Korsvik and Laporte 2011). Fagerholt et al. (2009) is
the first article within tramp shipping with variable speed between each port
pair in the routing. The optimization of speed and hence minimizing the
fuel consumption and environmental impact is driven by the time windows
and the optional revenue of spot cargoes. (Fagerholt et al. 2009, I. Norstad
and Laporte 2011) report significant improvements in solution cost using
variable speed. Minimizing the fuel consumption of the network can be a
post optimization regarding speed of the liner shipping network, when de-
ciding on the schedule in terms of berthing windows or the transit time of
individual cargo routings. The path based model presented in this paper
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assumes a fixed speed for each vessel class and in the dynamic programming
algorithm the number of vessels deployed to a service is rounded up to the
nearest integer in order to ensure that a weekly frequency can be maintained
on each service.

The path based model is inspired by operations research techniques
within the airline industry, where the optimization is divided into faces.
Therefore, a solution to the path based model is a generic capacitated net-
work of cyclic services based on a weekly frequency of port calls. The generic
network is transformed into an actual network by deciding a specific sched-
ule, deploying vessels and deciding on the speed of the individual voyages
and actual flow of all distinct commodities. The slow steaming speed of a
vessel is 12 knots and depending on size and age a vessel has a maximal
speed of 18 to 25 knots. If the fixed speed is chosen 30-40% above slow
steaming speed for each vessel class, rounding up the number of vessels will
allow post optimization of the schedule to achieve an energy efficient network
with focus on slow steaming, while ensuring the transit time of products.
The generic network facilitates the design of a green liner shipping network,
while at the same time enabling scalability due to a more general description
of the network.

1.2 Demand Aggregation

In models of the LSNDP using a specialized capacitated network design for-
mulation the second tier is a standard multicommodity flow problem. The
work of Alvarez (2009) identifies solving the multicommodity flow problem
as prohibitive for larger problem instances due to the large number of com-
modities considered. In Alvarez (2009) the commodities are aggregated by
destination, giving a smaller model to solve. This could result in worse LP
bounds as identified in Croxton et al. (2007), since the LSNDP will have
a concave cost function, due to the economies of scales of deploying larger
vessels, and high start up costs, as at least one vessel must be deployed.

A contribution of this paper is to formulate a model that considers ag-
gregated aspects of the demand instead of specific origin-destination (o-d)
pairs. This is motivated by the trade-centric view of liner-shipping present
in the liner shipping industry instead of the o-d -centric view considered in
the literature. As seen in Figure 1, the (o-d demand from Halifax to Rot-
terdam could be considered, but in practice it will be hard to estimate such
a specific demand. More realistically one could estimate the volume of ex-
ports from Halifax to Northern Europe and reversely the volume of imports
from East Coast Canada to Rotterdam (or exports from Mediterranean to
Halifax as in Figure 2). Each commodity k ∈ K will then be characterized
by a volume dXY from a region X to a region Y i.e. East Coast Canada or
Northern Europe as seen in Figure 1 on the vessels in deep sea. Each set
of X,Y will symbolize a trade. Each port p ∈ X will also have an export
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and import in the trade: dpY , dXp, where
∑

p∈X d
pY =

∑
p∈Y d

Xp as seen in
Figure 1 on the vessels in a region. In effect a port as Halifax will be ensured
a volume of export to Mediterranean ports and each of these will be insured
a volume of imports from East Coast Canadian ports, without specifying
the concrete origin-destination pairs. Note the difference in aggregation ap-
proach, compared with the models of Croxton et al. (2007), as we are now
aggregating by trade origin-region to destination-region, instead of aggrega-
tion by destination port. This should give the benefit of fewer variables due
to the aggregation, while we still have quite tight LP-relaxations.

The aggregation of demand may be more or less fine grained according
to the definition of ports, regions and trade lanes, enabling both detailed
networks for a smaller region and coarse network designs for a larger set of
ports that may be refined by subsequent optimization methods. We foresee
a computational tractability trade-off between the number of ports and the
number of distinct commodities when defining regions for ports.

This can also be seen in the light of forecasting accuracy, usually the
more detailed the level of forecasting is the more inaccurate it will be. This
allows a forecasting to be done at a more natural level, i.e. on total trade
volumes and total port import and export volumes.

In the following we will present a path-based formulation of the LNSDP
and a column generation approach generating capacitated, cyclic rotations
with assigned flow. We will outline a dynamic programming algorithm to
solve the pricing problem. Preliminary computational results of an imple-
mentation of the algorithm will be given, which reveals poor performance
for solving the pricing problem. This leads us to believe that alternative
methods must be developed to efficiently solve the pricing problem, for the
approach to be able to solve instances of a significant size. This work is an
extension of a contribution to the proceedings of IMECS 2011 of Jepsen,
Løfstedt, Plum, Pisinger, and Sigurd (2011).

2 Service Based Model

In the following we introduce a model based on a combination of feasible
services for each vessel class, into a generic liner shipping network solution.
The service based model is based on a Dantzig-Wolfe decomposition of the
model presented in Løfstedt et al. (2011). Let Sv denote the set of feasible
services for a vessel class v ∈ V and let S = ∪v∈V Sv. Let αXYkps and βXYkps
be the amount of respectively load and unload of containers from region X
to region Y on the k’th visit to port p on service s ∈ S. We assume that
αXYkps = βXYkps = 0,∀p /∈ X ∪ Y ∪GXY , where GXY is the set of ports where
transshipments is allowed for trade XY . Let Mp be the maximal number of
port visits to port p for each service. Furthermore, let γpq equal the number
of times the service sails between ports p ∈ P and q ∈ P . The move cost
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in a port p for a trade XY ∈ K consist of the unload cost uXYp and load

cost lXYp . For ports p ∈ X the transshipment cost is included in the unload

cost and the revenue is rXYp . For ports p ∈ P \ X the transshipment cost
is included in the load cost. Each vessel of vessel type v ∈ V has costs
cv for fuel-, crew- and depreciation of vessel value or time-charter-costs per
week. The cost of vessel type v calling a port q is cvq . The number of vessels
used by the service is the round trip distance of the service divided by W v

d ,
the weekly distance covered by vessel type v at the predefined speed. This
value is rounded up to ensure the vessels can complete the round trip at
the predefined speed. The number of vessels used by the service is given as

ns =
⌈∑

p∈P
∑

q∈P
dpqγpqs
W v

d

⌉
. The cost of a service s ∈ S is given as:

cs =
∑

XY ∈K

∑
p∈X

∑
k∈Mp

rXYp (αXYkps − βXYkps )

−
∑

XY ∈K

∑
p∈P

∑
k∈Mp

(lXYp αXYkps + uXYp βXYkps )

− cvns −
∑
p∈P

∑
q∈P

cvqγpqs
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The model based on services is as follows:

max
∑
s∈S

csλs (1)

s.t 0 ≤
∑
s∈S

∑
k∈Mp

(αXYpks − βXYpks )λs ≤ dpY ∀XY ∈ K,∀p ∈ X

(2)

0 ≥
∑
s∈S

∑
k∈Mp

(αXYpks − βXYpks )λs ≥ −dXp ∀XY ∈ K,∀p ∈ Y

(3)∑
s∈S

∑
k∈Mp

(αXYpks − βXYpks )λs = 0 ∀p ∈ GXY , ∀XY ∈ K

(4)∑
s∈S

∑
p∈X∪Y

∑
k∈Mp

(αXYpks − βXYpks )λs = 0 ∀XY ∈ K

(5)∑
s∈Sv

nsλs ≤ |v| ∀v ∈ V

(6)

αXYkps , β
XY
kps ∈ Z+ ∀s ∈ S,∀XY,∀p ∈ X,∀k ∈Mp

(7)

λs ∈ {0, 1} ∀s ∈ S
(8)

The objective (1) maximizes the profit, constraints (2) and (3) ensure that
the difference between what is loaded and unloaded (unloaded and loaded)
by all services in a port is positive and less than the export capacity (import
capacity) of the port for the given trade. Constraints (4) ensure that the
amount of containers loaded equals the amount of containers unloaded in a
transhipment port and constraints (5) ensure that all containers loaded are
unloaded for each trade. Constraints (6) ensure that the number of available
vessels for each vessel class is not exceeded and the binary domain on the
variables is defined by (8).

The key issue with the service based model is that the set of feasible
services S can be exponential in the number of ports. Therefore, we can-
not expect to solve instances of significant size. To overcome this issue we
propose to write up the model gradually using delayed column generation
and then solve the problem through Branch-and-Cut-and-Price. Branching
is done by imposing a limit on the number of times an arc can be used by
a given vessel class. We will investigate the possibility of applying an enu-
meration technique similar to the one used within CVRP (Baldacci et al.
2008).
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2.1 Pricing Problem

The pricing problem calculates a non-simple cycle σ centered around any
starting node ps with associated loads and unloads. The cycle respects the
capacity of the vessel class, Cv, at every port p, ensures feasibility of a
weekly frequency for the vessel class v given the distance of the schedule,
and lastly, that port p is visited no more than Mp times ∀p ∈ P . The pricing
problem returns a variable representing a load and an unload pattern, which
implicitly defines a non-simple cycle starting and ending at the same port
p ∈ P v, deploying ns vessels to maintain weekly frequency at the fixed speed
enforced on the service pattern. The above problem has a similar structure
to the pricing problems of Vehicle Routing Problems modelled as a Resource
Constrained Shortest Path problem (see Irnich and Desaulniers (2005). The
Resource Constrained shortest Path Problem is often solved by label setting
algorithms. As it is possible for the demand to be split on different paths,
we need to ensure that we allow all possibilities of transshipments. This
necessitates that, labels are created for each integral unit of the demand up
to the minimum of the available capacity or the demand.

2.1.1 Objective function of the pricing problem

The objective function of the pricing problem is to find the best reduced cost
of a master problem variable at the given iteration of the master problem.
For each XY ∈ K a port p ∈ P is present in at most one of the constraints
(2) to (4). Let ωXYp ,∀XY ∈ K,∀p ∈ X ∪ Y ∪ GXY denote the duals from

(2) to (4). Let δXY be the dual variables of constraints (5) and πv are the
duals of constraints (6).

For each vessel class v ∈ V the reduced cost of a service (column) s ∈ Sv

ĉs =cs −
∑

XY ∈K

∑
p∈X∪Y ∪GXY

∑
k∈Mp

ωXYp (αXYkps − βXYkps )

−
∑

XY ∈K

∑
p∈X∪Y

∑
k∈Mp

δXY (αXYkps − βXYkps )− πvns

Expanding the term ĉs and rearranging the terms according to load and
unload combined with the port belonging to either X,Y or Gk we obtain
the following reduced cost:
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ĉs =
∑

XY ∈K

∑
p∈X

∑
k∈Mp

(rXYp − lXYp − ωXYp − δXY )αXYkps

+
∑

XY ∈K

∑
p∈X

∑
k∈Mp

(−rXYp − uXYp + ωXYp + δXY )βXYkps

+
∑

XY ∈K

∑
p∈Y

∑
k∈Mp

(−lXYp − ωXYp − δXY )αXYkps

+
∑

XY ∈K

∑
p∈Y

∑
k∈Mp

(−uXYp + ωXYp + δXY )βXYkps

+
∑

XY ∈K

∑
p∈GXY

∑
k∈Mp

(−lXYp − ωXYp )αXYkps

+
∑

XY ∈K

∑
p∈GXY

∑
k∈Mp

(−uXYp + ωXYp )βXYkps

− (πv + cv)ns −
∑
p∈P

∑
q∈P

cvqγpqs

The reduced cost can be rewritten as a cost connected to loading, unloading,
and sailing in terms of the number of vessels deployed and the cumulative
port call cost. The cost of (un)loading a demand from trade XY depends
on the region of the port. If the port is from the origin region X a revenue is
obtained for loading and subtracted for unloading at the port. This ensures
that revenue is only collected at the initial load. The costs are the (un)load
cost, and the dual values from constraints (2)-(4) concerning the flow con-
servation and the dual value from the flow balance constraint for the trade
(5). If the port is from the destination region Y the cost is the (un)load
cost, and the dual values from constraints (2)-(4) concerning the flow con-
servation and the dual value from (5). For a transhipment port p ∈ GXY
the cost is only related to (un)load cost and the dual values of (2)-(4).

l̂XYp =


rXYp − lXYp − ωXYp − δXY ∀p ∈ X
−lXYp − ωXYp − δXY ∀p ∈ Y
−lXYp − ωXYp ∀p ∈ GXY

ûXYp =


−rXYp − uXYp + ωXYp + δXY ∀p ∈ X
−uXYp + ωXYp + δXY ∀p ∈ Y
−uXYp + ωXYp ∀p ∈ GXY

Finally, the port call cost cvq is paid upon each sailing/extension onto a
new port p ∈ P and the cost ĉv = πv + cv is inferred each time the distance
of W v

d is traveled.
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2.1.2 Label setting algorithm for LSNDP

The |V | pricing problems for each vessel class can be formulated as the
following graph problem. Given a directed graph Gv = (Nv, Av) where the
node set is Nv = P v ∪ Lv ∪ Uv. P v is the set of ports ∈ P compatible
with vessel class v, Lv =

⋃
w∈P v Lw the set of load nodes. The sets Lw =

{ρXYw |∀XY ∈ K,w ∈ X ∨ Y ∨GXY } represents all possible loads at port w,
Uv =

⋃
w∈P v Uw is the set of unload nodes. The sets Uw = {µXYw |∀XY ∈

K,w ∈ X ∨ Y ∨ GXY } represents all possible unloads at port w. In order
to correctly identify transshipments and unloads of a trade each demand
XY ∈ K is associated with a set of load nodes LXY ⊆ Lv and a set of
unload nodes UXY ⊆ Uv, where LXY = {ρXYw |w ∈ X ∪ Y ∪ GXY } and
UXY = {µXYw |w ∈ X ∪ Y ∪GXY }.

The arc set is Av = As ∪ Au ∪ Al. Define the function h : Uv ∪ Lv →
P v, Lq 7→ q, Uq 7→ q for mapping between the load and unload nodes and
the actual port q ∈ pv of the (un)load. The set of sailing arcs is defined as
follows As = {(i, j)|i ∈ Lv ∪ Uv, j ∈ P v \ {h(i)}} , the set of unload arcs
Au = {(i, j)|i ∈ P v, j ∈ Ui} ∪ {(i, j)|i ∈ Uv, j ∈ Uh(i)} and the set of load

arcs Al = {(i, j)|i ∈ P v, j ∈ Li} ∪ {(i, j)|i ∈ Uv = µXYh(i), j ∈ Lh(i) \ {ρ
XY
h(i)}} ∪

{(i, j)|i ∈ Lv, j ∈ Lh(i)}. The graph topology is illustrated in Figure 3. The
distance of an arc depends on the arc type:

dij =

{
dh(i)j (i, j) ∈ As
0 (i, j) ∈ Al ∪Au

(9)

In a label setting algorithm, a label Ei is associated with a node i and
represents a (partial) path with a (reduced) cost C of the service and a num-
ber of resources θ accumulated along the path. A resource may be associated
with lower and upper bounds often referred to as a resource window. The
proposed pricing problem differs significantly from the Elementary Shortest
Path Problem with Resource Constraints (ESPPRC) known from VRP:

• The path is not elementary as Mp ≥ 1.

• The path represents a cycle, σ.

• It is a longest cycle problem as the reduced cost ĉs ≥ 0.

• We do not have a designated starting node and hence will have to start
the algorithm in every possible port p ∈ P v.

• The ability to perform a load on the partial path, which can be un-
loaded at a previous node of the cycle σ. A second pass of all ports
in the cycle σ must be performed only allowing the unload extension
function to check for load balance.

• There are multiple commodities.

12
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Figure 3: A network representation of a graph associated with the label
setting algorithm. The set of port call nodes P v(blue nodes) form a clique.
For port w ∈ P v the sets Uw (light red nodes), Lw(grey nodes) are illus-
trated. They represent possible loads and unloads at port w. The sets
Uw, Lw form a cliques. A path in the network will follow sequences of
n ∈ Pv → Un → Ln → m ∈ Pv. It is possible to only unload or load.
The load set of a port w is not connected to the unload set of w. Each
trade XY ∈ K is associated with a loadset LXY and an unloadset UXY as
illustrated.
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• The route is combined with a loading/unloading pattern not unlike
the labelling algorithm for the SDVRPTW in Desaulniers (2010).

In the label setting algorithm for LSNDP a label E contains the following
information:

• Current port, pc

• Start port, ps

• (reduced) cost, t

• Accumulated distance, ds

• The load of each trade, FXY ∀XY ∈ K

• Current load, Fc =
∑

XY ∈K F
XY

• Visit number, kp ∀p ∈ P v

The resources are ds, (F
XY )XY ∈K , Fc, (kp)p∈P v i.e. we have 2 + |K| +

|pv| resources. The extension function (Irnich and Desaulniers 2005) of the
distance is defined as ed(ij)(Ei) = d(Ei) + dij . The feasibility and resource
consumption of extending label Ei along an arc depends on the arc type:

• Case 1: extending along a sail arc (i, j) ∈ As
A feasible extension of label Ei to node j along a sail arc (i, j) ∈ As
must satisfy the following conditions:⌈

ed(ij)(Ei)

W v
d

⌉
≤ |v| (10)

kij + 1 ≤Mj (11)

Here, (10) ensures the feasibility of the number of vessels deployed to
the service and (11) ensures the number of port calls to port j does
not exceed Mj . If the extension is feasible a new label Ej is created.
Define

$ =

⌈
ed(ij)(Ei)

W v
d

⌉
−
⌈
d(Ei)

W v
d

⌉
(12)

$ expresses whether the label extension will require an additional
vessel on the service to maintain weekly frequency. The following
extension functions are applied to create label Ej : p

j
c = j, pjs = pis, t

j =

ti − cvj − ĉv ·$, d = ed(ij)(Ei), F
j
C = F iC , F

XY
j = FXYi , kjj = kij + 1, kjp =

kip ∀p ∈ P v \ {j})
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• Case 2: extending along an unload arc (i, j) ∈ Au, j = µXYp
A feasible extension of label Ei to node j along unload arc (i, j) ∈ Au
must satisfy the following conditions:

FXY > 0 (13)

where (13) ensures that the commodity XY is currently loaded on
the vessel i.e. that a previous visit to a node in LXY has been per-
formed. To ensure that all possible transhipment and unload patterns
are considered all integral unloads in o ∈ {1, . . . ,max{dXY , FXYi }}
are created with separate labels.

If the extension is feasible a new label Eoj is created using the extension
functions:
pjc = h(j), pjs = pis, t

j = ti+ ûXYp ·o,d = ed(ij)(Ei), F
j
C = F iC −o,FXYj =

FXYi − o,FZWj = FZWi ∀ZW ∈ K \ {XY }, kjp = kip ∀p ∈ P v.

• Case 3: extending along a load arc (i, j) ∈ Al, j = ρXYp
A feasible extension of label Ei to node j along a load arc (i, j) ∈ Al
must satisfy the following conditions:

F ic < Cv (14)

(14) ensures that the vessel has excess capacity for loading. To ensure
that all possible transhipment and load patterns are considered all
integral loads in o ∈ {1, . . . ,max{dXY , Cv − F iC}} are created with
separate labels. If the extension is feasible a new label Eoj is created

with the following extension function: pjc = h(j), pjs = pis, t
j = ti + l̂ ·

o,d = ed(ij)(Ei), F
j
C = F iC + o,FXYj = FXYi + o,FZWj = FZWi ∀ZW ∈

K \ {XY }, kjp = kip ∀p ∈ P v.

A state is feasible when the start node is reached (pc = ps) and the
containers are balanced for all trades (FXY = 0 ∀XY ∈ K) by applying
unload extensions to the cycle starting from ps ending in ps. To obtain the
solution to a service the auxiliary data of what has actually been loaded
and unloaded has to be stored and a mapping from L to α and from U to β
creates the column entries for (un)load in the master problem. For an exact
solution to the pricing problem the service with the best reduced cost (max
ĉs) is added to the master problem. However, the label setting algorithm
may find several services, where the cost t is greater than 0 and add several
columns in an iteration to accelerate convergence of the column generation
algorithm.
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2.2 Dominance

In order to dominate a label it must hold that the dominating label has
the same possibilities for extensions and that no extension of the dominated
label can yield a better reduced cost than the dominating label.

A label E1 dominates a label E2 if the following holds

• p1c = p2c

• p1s = p2s

• t1 ≥ t2

• d1s ≤ d2s

• k1p ≤ k2p ∀p ∈ P v

• F 1
c ≤ F 2

c

• FXY1 = FXY2 ∀XY ∈ K

Requiring the cargo loads to be identical gives rise to a weak dominance
criteria. This means that the labelling algorithm resorts to being practically
brute force and a vast number of labels are generated even for relatively
small instances. In recent work on dominance criteria for the Pick-up-and-
Delivery problem (Ropke and Cordeau 2009) the dominance criteria for the
cargo loads are strengthened by relaxing such that in our case we would
have

• FXY1 ≤ FXY2 ∀XY ∈ K

if the delivery triangle inequality defined by Ropke and Cordeau (2009) as
dij + djk ≥ dik holds ∀i, j, k ∈ V . Here j is a delivery node. It is however
not trivial to see, whether this relaxation holds for the pricing problem in
this paper as each commodity may have several delivery nodes attached and
there are no precedence relation between pickup and delivery nodes, due to
the cyclic nature of a route.

2.3 Complexity

Let T denote an upper bound on the distance of a service. The running
time of the label setting algorithm can be shown to be
O((T |P |C |K|

∏
p∈X d

pY
∏
p∈GXY C)2). Increasing the number of trades and

the number of transshipment ports will increase the number of states in the
Dynamic Programming algorithm. To solve practical problem instances it
is therefore important to make a careful choice of the trades and the ports,
where transshipment is allowed.
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2.4 Relaxation of pricing problem

In CVRP a pseudo polynomial relaxation is used when solving the strongly
NP-hard pricing problem (Baldacci et al. 2008) to reduce the practical run-
ning time of the algorithm. The method has proven to be very powerful for
the CVRP. A pseudo polynomial relaxation of our pricing problem can be
obtained as follows: Each port is assigned the minimal load and unload cost
and the bounds on the load are removed. In each port the number of differ-
ent states will then be limited to T |P ||C| and a running time of O(T |P |2|C|)
can be obtained. However, defining a strong bound for the minimal load and
unload cost for each port is not trivial as several commodities may origin or
transship at a given node and further research must be conducted in order
to achieve a relaxation with a good bound.

As the pricing problem is very complex, we need not solve the pricing
problem to optimality in each iteration, but one could stop once a sufficient
amount of columns with positive reduced cost has been found. An easy way
to do this is to run the dynamic programming algorithm using a greedy
variant adding any reduced cost column instead of the best reduced cost
column.

3 Preliminary computational Results

The described algorithm has been implemented using CPLEX to solve the
master problem and a labelling algorithm to solve the pricing problem. The
results are currently not satisfactory for solving the pricing problem. The
structure of the labelling algorithm, the lack of proper dominance criteria
and especially the need to generate labels for all integral steps of load and un-
loads (o ∈ {1, . . . ,max{dXY , FXYi }} respectively o ∈ {1, . . . ,max{dXY , Cv−
F iC}}) creates a huge number of very similar labels. The combinations of
these causes the labelling algorithm to effectively be a brute force algorithm
in an extremely large search space. Even for very small graphs (n = 4) the
number of considered labels are in the 10’ths of millions.

A simplification of the model is to only consider demand paths, which
are fully loaded or unloaded either regarding the demand or capacity, i.e.
o = {FXYi , dXY } respectively o = max{dXY , Cv − F iC}. Unfortunately, this
approach is inconsistent with the idea of aggregated demands, as these will
need to split to reach their respective origins / destinations, discouraging
this direction.

As a result we have not pursued methods such as bounding to improve
upon the current algorithm of the pricing problem as we believe alternative
solution methods must be applied for an efficient algorithm to solve the
pricing problem. Another alternative is the design and implementation of
efficient heuristics to generate variables and subsequently solve a heuristic
implementation of a Branch-and-Price algorithm similar to the one seen in

17



Agarwal and Ergun (2008).

4 Conclusion

We have presented a new model for LSNDP. Among the benefits of the
proposed model is a novel view of demands in liner-shipping, which are
considered on a trade basis. This has the advantage of giving a natural
understanding, and requiring fewer variables. The model assigns cargo to
routes, which may result in a tighter search space for a branch-and-bound
algorithm.
A solution approach using delayed column generation has been presented,
where the proposed subproblem is related to the pricing problems in VRP,
where Branch-&-Cut-&-Price has been used with great success. We have
discussed a pseudo polynomial relaxation to be used as bounding function,
when solving the pricing problem in combination with heuristics and other
techniques that have been effective in solving VRP problems. In the VRP
context resource limitations have proven to be effective for the dynamic
programming algorithms in reducing the state space. In the dynamic pro-
gramming algorithm presented in this paper these resource limitations do
not reduce complexity of the subproblem sufficiently, because dominance
criterions are different. The proposed algorithm has been implemented but
showed disappointing results, due to the lack of dominance criteria and a
large search space for the label setting algorithm. We still believe that the
main ideas in this paper can be useful to solve the LSNDP, i.e. the thoughts
of combining cost and revenue in a single pricing problem and especially the
notion of demand aggregation, which lends to a natural understanding in
Liner Shipping. However, we must conclude that alternative methods or
extensions of the current dynamic programming algorithm will be needed to
solve a pricing problem, where cargo load patterns for multiple commodities
are combined with a routing.

Further work with richer formulations of LSNDP, considering aspects as
transit time limits on paths, and other operational constraints from liner
shipping will tighten the search space of the pricing problems. However, it
is uncertain whether additional real-life complexity in the pricing problem
will allow for effective dominance criteria in a label setting algorithm.
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Liner shipping networks are the backbone of international trade providing low transportation cost, 
which is a major driver of globalization. These networks are under constant pressure to deliver 
capacity, cost effectiveness and environmentally conscious transport solutions.

This article proposes a new path based MIP model for the Liner shipping Network Design Problem 
minimizing the cost of vessels and their fuel consumption facilitating a green network. The pro-
posed model reduces problem size using a novel aggregation of demands. A decomposition method 
enabling delayed column generation is presented. The subproblems have similar structure to Vehicle 
Routing Problems, which can be solved using dynamic programming. An algorithm has been imple-
mented for this model, unfortunately with discouraging results due to the structure of the subprob-
lem and the lack of proper dominance criteria in the labeling algorithm.
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