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Abstract

Model-driven engineering (MDE) provides a foundation for automati-
cally generating software based on models. Models allow software designs
to be specified focusing on the problem domain and abstracting from
the details of underlying implementation platforms. When applied in the
context of formal modelling languages, MDE further has the advantage
that models are amenable to model checking which allows key behavioural
properties of the software design to be verified. The combination of for-
mally verified models and automated code generation contributes to a
high degree of assurance that the resulting software implementation sat-
isfies the properties verified for the model.

Coloured Petri Nets (CPNs) have been widely used to model and verify
protocol software, but limited work exists on using CPN models of pro-
tocol software as a basis for automated code generation. In this report,
we present an approach for generating protocol software from a restricted
class of CPN models. The class of CPN models considered aims at being
descriptive in that the models are intended to be helpful in understanding
and conveying the operation of the protocol. At the same time, a descrip-
tive model is close to a verifiable version of the same model and sufficiently
detailed to serve as a basis for automated code generation when annotated
with code generation pragmatics. Pragmatics are syntactical annotations
designed to make the CPN models descriptive and to address the problem
that models with enough details for generating code from them tend to
be verbose and cluttered.

Our code generation approach consists of three main steps, starting
from a CPN model that the modeller has annotated with a set of prag-
matics that make the protocol structure and the control-flow explicit. The
first step is to compute for the CPN model, a set of derived pragmatics
that identify control-flow structures and operations, e. g., for sending and
receiving packets, and for manipulating the state. In the second step, an
abstract template tree (ATT) is constructed providing an association be-
tween pragmatics and code generation templates. The ATT then directs
the code generation in the third step by invoking the code templates asso-
ciated with each node of the ATT in order to generate code. We illustrate
our approach using an example of a unidirectional data framing protocol.
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1 Introduction

Model-driven engineering (MDE) [7] provides a foundation for automatically
generating software based on models. Models allow software designs to be spec-
ified focusing on the problem domain – abstracting from the details of underlying
implementation platforms. If the MDE process starts from modelling languages
that have a precise behavioural semantics, we gain the additional advantage that
the models are amenable to model checking [1], which allows key behavioural
properties of the software design to be verified. The combination of formally
verified models and automated code generation increases the confidence that
the resulting software implementation is correct with respect to the properties
that have been verified for the model.

Coloured Petri Nets (CPNs) [6, 5] have been widely used for modelling and
verifying protocol software [9], but limited work exists on using CPN models of
protocol software as a basis for automated code generation. The hierarchical
structure of CPN models fits well with the protocol software domain and so
does the concurrency concept in CPNs. Since CPN models are executable,
simulations and state space-based verification can be conducted with the aim
of validating the correctness of a protocol model. In this report, we present an
approach for generating protocol software from a restricted class of CPN models.
The class of CPN models considered aims at being descriptive in that the models
are intended to be helpful in understanding and conveying the operation of the
protocol. At the same time, a descriptive model is close to a verifiable version
of the same model and sufficiently detailed to serve as a basis for automated
code generation when annotated with code generation pragmatics. Pragmatics
are syntactical annotations that are associated with CPN model elements (e. g.,
places, transitions, and inscriptions). The primary purpose of the pragmatics
is to address the problem that models with enough details for generating code
from them tend to be verbose and cluttered. The pragmatics considered fall
into three main types: structural, control-flow, and operation pragmatics. Our
approach furthermore relies on a set of core pragmatics that are intended to be
applicable to all protocols. In addition, our approach is extensible in that it
allows the modeller to add new pragmatics if required by the specific protocol
under consideration.

Our code generation approach consists of three main steps, starting from
a CPN model that the modeller has annotated with a set of pragmatics that
makes the protocol structure and the control-flow explicit. The first step is to
compute for the CPN model, a set of derived pragmatics that identify common
control-flow structures and operations, such as sending and receiving packets,
or manipulating states. In the second step, an abstract template tree (ATT)
is constructed providing an association (binding) between pragmatics and code
generation templates. Essentially, every node of the ATT is associated with a
code template. In the third step, the ATT is traversed and code is generated
by invoking the code templates associated with each node of the ATT.

This report is organised as follows: Section 2 describes a CPN model of a
unidirectional framing protocol that is used as a running example throughout
this report. Section 3 describes the required structure of the class of CPN mod-
els that can be used for code generation. Section 4 gives an overview of the
process of generating runnable protocol software using our approach. Section 5
shows how we capture common control-flow structures, and presents an associ-
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ated set of pragmatics. Section 6 presents some operation pragmatics. Section 7
describes the abstract template tree data structure that is used as an intermedi-
ate representation of the protocol during code generation. Section 8 details how
code is generated from abstract template trees. Finally, in Sect. 9, we provide
a summary and discuss directions for future work.

The reader is assumed to be familiar with Petri nets and the basic ideas of
high-level Petri nets, i. e., the combination of Petri nets with a programming lan-
guage. CPNs belong to the class of high-level Petri nets and uses the Standard
ML (SML) programming language as a basis for defining colour sets (types),
declaring variables, and implementing arc and guard expressions.

2 Protocol Example

To present our modelling approach and methodology which supports automated
code generation, we consider as an example a unidirectional framing protocol.
The overall service provided by this protocol is to send messages of arbitrary
length from a sender to a receiver by splitting up the message into smaller packets
sent across a unidirectional channel. The channel is assumed to be reliable and
to preserve the order of the transmitted packages (i. e. it is a reliable FIFO
channel). The protocol uses a final bit in each transmitted packet indicating
whether the payload of the packet is the final (last) part of the larger message.

A CPN model is hierarchically organised into a set of modules (pages) using
substitution transitions. Each substitution transition has an associated module
which then becomes a submodule of the module on which the substitution tran-
sition resides. Places connected to a substitution transition are called socket
places and are associated with port places on the submodule of the substitution
transition. Any token added/removed to a socket place will be added/removed
from an associated port place and vice versa. This implies that associated port
and socket places will always have the same marking and this provides the mech-
anism that allows submodules to exchange tokens with upper level modules.

Our modelling approach for protocols relies on structuring a CPN model into
three hierarchical levels: the protocol system level , the principal level , and the
service level . In the following we show how the unidirectional framing protocol
is modelled with our modelling approach. As we proceed with presenting the
CPN model, we also introduce the basic set of core pragmatics that are central
to our approach and which the modeller uses as part of the construction of the
CPN model. Pragmatics are by convention written in ⟨⟨ ⟩⟩ to distinguish them
from text labels (e. g., place and transition names) and SML inscriptions.

2.1 Protocol System Level

Figure 1 shows the top-level module of the CPN model which constitute the
protocol system level. The purpose of the protocol system level is to spec-
ify the protocol principals and the channels connecting them. This module has
three substitution transitions named Sender, Channel, and Receiver. Substitution
transitions are by convention indicated by a double lined borders, and the name
of the associated submodule is written in the small rectangular tag below the
substitution transition. The two substitution transitions Sender and Receiver
represents the two principals of the protocol, and the substitution transition
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Channel represents a channel between them. We use the ⟨⟨principal⟩⟩ pragmatic
to specify which substitution transitions represent protocol principals, and the
⟨⟨channel⟩⟩ pragmatic to specify substitution transitions representing channels.
The channel pragmatic has three associated properties specifying that the chan-
nel is unidirectional, reliable (i. e., the channel does not loose packets), and that
it preserves the order of packets. Our modelling methodology includes a set of
channel modules for common channel types and the specific module to be used
in the model is selected based on the properties specified for the channel prag-
matic. The two socket places SenderChannel and ReceiverChannel connecting
principals and channels are implicitly considered channel places which means
that messages added and removed from these places are assumed to be sent and
received, respectively. The ⟨⟨channel⟩⟩ pragmatic is used on places in lower level
modules to recognise modelling patterns representing the sending and reception
of messages on the channel.

Channel
<<channel

(reliable,order,unidirectional)>>

Channel

Receiver
<<principal>>

Receiver

Sender
<<principal>>

Sender

Receiver
Channel

Endpoint

Sender
Channel

Endpoint
Sender ReceiverChannel

Figure 1: The protocol system level

We require in our modelling methodology that the protocol system module
consists of one or more substitution transitions representing principals. A socket
place at the protocol system level can be connected to at most one principal
substitution transition and at most one channel substitution transition. This
requirement is needed since we use the socket places connecting principals and
channels to identify which channel or principal a message is intended for.

The concept of a channel represents a means for communication between
endpoints as determined by the colour set Endpoint defined as follows:

colset ChannelPacket = record src : EndpointId *
dest : EndpointId *
packet : Packet;

colset ChannelPackets = list ChannelPacket;

colset Endpoint = record name : EndpointId *
inb : ChannelPackets *
outb : ChannelPackets;

The protocol system level and the modelling of channels are parameterised
with two colour sets Packet and EndpointId in that we only assume the
existence of these two colour set and do not make any assumptions on how they
are realised. A ChannelPacket transmitted on the channel has a source (src),
a destination (dest) and a packet from the protocol using the channel. An
Endpoint of the channel consists of the name identifying the endpoint, an input
buffer (inb) and an output buffer (outb) for channel packets. Furthermore, a
set of protocol independent functions is available for accessing and manipulating
endpoints:
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(* -- initialise an endpoint -- *)
fun InitEndPoint epid =

{name = eipd, inb = [], outb = []} : Endpoint;

(* -- remove the first packet from the input buffer -- *)
fun RemovePacket ({name,inb,outb} : Endpoint) =

{name = name, inb = List.tl inb, outb = outb};

(* -- Check if input buffer is non-empty -- *)
fun PacketAvailable (ep : Endpoint) =

not (List.null (#inb ep));

(* -- add packet to output buffer -- *)
fun SendPacket (p,ep as

{name = sepid, inb = inb,outb = outb},depid) =
{name = sepid,inb = inb,
outb = outbˆˆ[{src = sepid, dest = depid,packet = p}]};

This class of functions also plays a central role in being able to recognize
common structural patterns in the CPN models which are captured by the
operation pragmatics to be presented in Sect. 6.

The concrete implementation of the Packet colour set in a protocol model
depends on the protocol data units exchanged among the principals in the pro-
tocol under consideration. For code generation purposes, the implementation
of the EndpointId colour set depends on the concrete channel used to realise
the communication between the principals. If for instance, the channel is re-
alised using the transport layer of the TCP/IP protocol stack, then the Endpoint
colour set will consist of a host (IP address) and a port (a process). Hence, in
a TCP/IP context, an endpoint can be implemented as a TCP/IP socket.

2.2 Principal Level

A submodule of a principal substitution transitions in the protocol system mod-
ule is, in our modelling approach, required to specify the services that are pro-
vided by the each principal as well as specifying the life-cycle of the principal.
This level is in the following referred to as the principal level . In addition to
specifying constraints on the order of service use, the principal level modules
may also model the state to be maintained across invocation of the services. The
explicit modelling of the methods that constitute the service in our approach
is required in order to generate code that can be integrated into different code
contexts.

Figure 2 shows the principal level CPN module for the sender principal.
This module is the submodule of the Sender substitution transition in Fig. 1.
The module has three substitution transitions annotated with the ⟨⟨service⟩⟩
pragmatic to indicate that they represent services that are to be exposed by the
implementation, i. e., be externally visible. In this case, the sender has three
services: Open (for opening/initialising communication with the receiver), Send
(for sending a message), and Close (for closing/completing the communication
with the receiver). The parameters of the ⟨⟨service⟩⟩ pragmatic specify the
parameter and return types, and properties of the services. In this case, all
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three services provided by the sender principal are synchronous services. We
discuss the parameters and return types in more detail when presenting the
service level modules.

Close
<<service 

(synchronous)>>

SenderClose

Send
<<service 

(msg : Message,synchronous)>>

SenderSend

Open
<<service 

(repid: EndPointId, synchronous)>>

SenderOpen

Open
<<LCV>>

UNIT

Idle
<<LCV>>

()

UNIT

Receiver
<<state>>

EndpointId

Sender
<<channel>>

I/O
Endpoint

I/O

SenderOpen

SenderSend

SenderClose

Figure 2: The Sender module

The principal can be in two different states: Idle (no communication ini-
tialised) and Open (messages can be transmitted to the receiver). A third
implicit state is also possible which is when neither the Idle nor Open places
have a token. This state is reached when the client is busy opening, sending
or closing. A place modelling a principal life-cycle state is annotated with the
⟨⟨LCV⟩⟩ pragmatic (Life Cycle Variable). The open service can be invoked only
when the principal is in state Idle; and once Open, messages can be sent, and the
communication can be closed. In the latter case, the sender returns to the Idle
state. An additional state variable Receiver is also maintained in the sender for
representing the endpoint created by Open, and is required by Send in order to
send messages. State variables are indicated using the ⟨⟨state⟩⟩ pragmatic. The
port place Sender (bottom) is associated with the SenderChannel socket place in
Fig. 1. In the sender module, the place Sender is annotated with the ⟨⟨channel⟩⟩
pragmatic, which is derived from the fact that the associated socket place at
the protocol system level is connected to a channel substitution transition.

Figure 3 shows the receiver principal CPN module specifying the three ser-
vices provided by the receiver principal. The pragmatics used in the receiver
principal module are similar to the pragmatics used in the sender principal mod-
ule. When the receiver is Idle, the Init service can be invoked and the receiver
becomes Ready to receive messages. When Ready, the Close service can be used
to stop the reception of messages.

The principal level modules do not specify how a wrong use of the services
should be handled, e. g., invoking the send service of the sender in a state where
the sender is not Ready. The associated error handling is platform dependent,
but should, as a minimum, be handled in a uniform manner across all service
invocations.
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Receive
<<service 

(synchronous) : Message>>

ReceiverReceive

Close
<<service (synchronous)>>

ReceiverClose

Init
<<service 

(repid: EndpointId, synchronous)>>

ReceiverInit

Ready
<<LCV>>

UNIT

Idle
<<LCV>>

()

UNIT

Receiver
<<channel>>

I/O

Endpoint

I/O

ReceiverInit ReceiverClose

ReceiverReceive

Figure 3: The Receiver module

2.3 Service Level

The submodules of the substitution transitions annotated with ⟨⟨service⟩⟩ on
the principal level specify the detailed behaviour of the principals for each of
the principal’s services. The detailed behaviour is modelled in a control-flow
oriented manner using ⟨⟨ID⟩⟩ pragmatics on places to make the control-flow
explicit. Modelling the services in a control-flow oriented manner serves two
main purposes. The first purpose is to provide for comprehensible models in
that the explicit control-flow provides a reading path to the model of the service.
This is in contrast to a pure event-oriented approach to modelling (e. g., as
discussed in [2]) from which no control-flow is explicit and which consists of
modelling a protocol principal using a single place to represent its state and a
set of transitions connected to this place which changes the state of the principal
depending on packets send and received. The second purpose of modelling in a
control-flow oriented manner is to automatically generate code with a structure
that resembles what a human programmer would implement. This makes it
easier to inspect and maintain automatically generated code, and provides code
with better performance since it reflects the intended use of the constructs
provided by the target programming language.

2.3.1 Sender Service Level CPN Modules

In the following, we present the models of the three services of the sender.

2.3.2 The SenderOpen Module

The module for sender open is shown in Fig. 4. At this level, the ⟨⟨service⟩⟩
pragmatic is used to indicate the single entry point for the corresponding service
primitive. Hence, it is possible to have only one transition annotated with
⟨⟨service⟩⟩. Transitions representing the termination/completion of the service
are annotated with the ⟨⟨return⟩⟩ pragmatic. In general, the ⟨⟨return⟩⟩ pragmatic
may take parameters representing return values. The parameters for the open
service specifies the endpoint of the receiver principal. These parameters are
stored in the Receiver state variable and also an endpoint is created on the
Sender channel place which the sender will use for sending packets.
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()

()

InitEndPoint sepid

repid

Open
<<service 

(repid : EndPointId,synchronous)>>
<<return>>

Open
<<LCV>>

Out

UNIT

Idle
<<LCV>>

In

()

UNIT

Sender
<<channel>>

Out
Endpoint

Receiver
<<state>>

Out

EndpointId

Out

Out

In

Out

Figure 4: The SenderOpen module

The InitEndPoint introduced earlier is used in the sender open module
to initialise the endpoint used for communication with the receiver.

2.3.3 The SenderSend module

Figure 5 shows the module for the send service of the sender principal. The
message to be sent is represented by the parameter msg of the ⟨⟨service⟩⟩ prag-
matic.1 The operation of the send primitive is to partition the message to be
sent into a sequence of smaller sub-messages which is placed on Outgoing. The
sender then executes a loop in which a packet is sent for each sub-message.
Places modelling the control-flow in the send primitive are annotated with an
⟨⟨ID⟩⟩ pragmatic. The modelling of the sender includes some intermediate states
(e. g., SendCompleted) which makes the model more verbose, but is used in our
approach for recognising control-flow constructs. It is worth noting that, in
the modelling of send, we remove the token from Open when sending in order
to prevent any further sending or invocation of close while executing the send.
This is because the protocol is not designed to handle multiple sends. From a
control-flow perspective, the send operation has an overall sequence (starting
at transition Start and ending at transition Complete), and a repeat-until loop
(starting at place Start and ending in place PacketSent.

The colour sets and functions used in the SenderSend module are as follows:

var ep : Endpoint;
var epid : EndpointID;

(* -- partition a string per character -- *)
fun partition msg =

List.map String.str (String.explode msg);

(* -- packets specific for this protocol -- *)

1For technical reasons related to CPN Tools and the binding of free variables from large
domains, we use msg on the arc from Send to Message and m on the arc from Message to
Partition. Ideally, msg should be used in both places.
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if mss = []
then (1,m)
else (0,m)

() mss

()

()

mss

m::mss

SendPacket(p,ep,epid)

ep

()

epid

partition  m

p

()

(1,m)

m

()

p

msg

(0,m)

()

Completed
<<return>>

Next

Allsent

Send
Packet

Next
Message

Partition

Send
<<service  

    (msg : Message,synchronous)>>

Send
Completed 
<<ID>>

UNIT

Sender
<<channel>>
I/O

Endpoint

Open
<<LCV>>

I/O

UNIT

Receiver
<<state>>

I/O
EndpointId

Outgoing
<<state>>

Messages

Packet Sent
<<ID>>

Packet

Created
<<ID>>

Packet

Start
<<ID>>

UNIT

Message
<<ID>>

Message

I/O

I/O

I/O

Figure 5: The SenderSend module

colset Message = string;
colset Messages = list Message;

var m : Message;
var mss : Messages;

colset BIT = int with 0..1;

colset Packet = product BIT * Message;
var p : Packet;
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2.3.4 The SenderClose module

Figure 6 shows the module of the close operation in the sender. The Close
operation removes the communication endpoint for the sender.

epid ep

()

()

Close
<<service (synchronous)>>

<<return>>

Receiver
<<state>>

In
EndpointId

Sender
<<channell>>

In
Endpoint

Open
<<LCV>>

In
UNIT

Idle
<<LCV>>

Out

()

UNIT
Out

In

InIn

Figure 6: The SenderClose module

2.3.5 Receiver Service Level Modules

In the following, we present the models of the three services of the receiver.

2.3.6 The ReceiverInit Module

The service level module for the receiver init operation is shown in Fig. 7. It
creates a communication endpoint on which messages can be received.

()

InitEndPoint(repid)

()

Init
<<service 

(repid: EndpointId,synchronous)>>
<<return>>

Ready
<<LCV>>

Out
UNIT

Receiver
<<channell>>

Out

Endpoint

Idle
<<LCV>>

In

()

UNIT
In

Out

Out

Figure 7: The ReceiverInit module

2.3.7 The ReceiverReceive Module

The service level module for the receiver’s receive operation shown in Fig. 8 is
dual to the send operation of the sender and the individual parts of the complete
message is received in turn. Once the complete message has been received (when
a packet with the final bit set arrives) the complete message is returned.

The function GetMessage used in this module for getting the submessage
(payload) contained in a packet are defined as follows:

fun GetMessage ({inb = (p::_),...} : Endpoint) =
(#2 (#packet p));
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()

ep

()

(RemovePacket ep)

()

()

mss^^[GetMessage ep]

GetPacket ep

(0,m)

concat mss

[]

()

mss

(1,m)

mss

msg

Intermediate
Packet

Complete
<<return (msg)>>

Final
Packet

Receive
Packet

[PacketAvailable ep]

Receive
<<service (synchronous) :  

Message>>

Ready
<<LCV>>

I/O
UNIT

Receiver
<<channel>>

I/O

Endpoint

AllReceived
<<ID>>

Message

Incoming
<<state>>

Messages

Packet
Received
<<ID>>

Packet

Next
<<ID>>

UNIT

I/O

I/O

Figure 8: The ReceiverReceive module

2.3.8 The ReceiverClose Module

The module for the close operation of the receiver is shown in Fig. 9 and consists
of removing the communication endpoint of the receiver from the channel.

()

ep

() Close 
<<service (synchronous)>>

<<return>>

Idle
<<LCV>>

Out

()

UNIT

Receiver
<<channel>>

In

Endpoint

Ready
<<LCV>>

In
UNIT

In

In

Out

Figure 9: The ReceiverClose module
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2.4 The Channel Module

The module for the reliable, unidirectional FIFO channel is shown in Fig. 10.
The single transition on this module models the transmission of packets from the
output buffer of an endpoint represented on place SenderChannel to the input
buffer of an endpoint on place ReceiverChannel. The guard of the transition
uses the function Delivery to determine whether transmission of a packet
from endpoint one (ep1) to endpoint two (ep2) is possible:

fun Delivery (ep1 as ({outb = (p::_),...} : Endpoint),
ep2 as {name,...} : Endpoint) =

((#dest p) = name)
| Delivery _ = false;

The Delivery function expresses the requirement that the first packet p in
the output buffer of endpoint 1 can be transmitted to the endpoint 2 provided
that the destination of the packet matches the name of endpoint 2 (i. e., the
packet is to be delivered to endpoint 2).

ep1 ep2

RemoveOutPacket ep1 AddInPacket (GetCPacket ep1) ep2
Transmit

[Delivery (ep1,ep2) ]

Sender
Channel

I/O

Endpoint

Receiver
Channel

I/O

Endpoint

I/OI/O

Figure 10: The Channel module

The functions RemoveOutPacket, AddInPacket, GetCPacket are used
to remove a packet from an output buffer of an endpoint and add a packet to
the input buffer of an endpoint:

var ep1,ep2 : Endpoint;

fun RemoveOutPacket {name,inb,outb = p::ps} =
{name=name,inb=inb,outb=ps};

fun AddInPacket p ({name,inb,outb} : Endpoint) =
{name=name,inb=inbˆˆ[p],outb=outb};

fun GetCPacket ({outb = (p::_),...} : Endpoint) = p;

2.5 Variants and Extensions

Below, we discuss some variants and extensions to the basic modelling approach
that has been presented in the previous subsections.

2.5.1 Channels

At the protocol system level (see Fig. 1), we represent channels with a substi-
tution transition and at most one socket place connected to each principal per
channel. Tokens on the socket place then represent endpoints for the attached
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principal. We could have considered having just a single place representing a
channel, and tokens on this place would then represent all endpoints of the pro-
tocol system. This, however, complicates the modelling of the principals as it
now becomes necessary (in submodules of the principals) to keep track of which
endpoints are owned by which principals which in turn clutters up the modelling
of the principals.

The long-term vision in our approach is that a set of common channel models
is available that can be automatically plugged into the model according to the
properties specified for the ⟨⟨channel⟩⟩ pragmatic at the protocol system level.

A channel corresponding to TCP (bi-directional reliable communication) can
be modelled as two unidirectional channels which are both reliable. Hence, they
can be modelled using two instances of the channel model in Fig. 10 (one for
each direction).

A unidirectional channel with loss, overtaking, and duplication can be mod-
elled as shown in Fig. 11.

Endpoint Endpoint

Sender
Channel

I/OI/O

Receiver
Channel

I/OI/O

ep1

ChannelPacket

Consume

RemoveOutPacket ep1

InChannel Deliver
cp

AddInPacket cp ep2

ep2

[Destination (cp,ep2)]

cp

cp

2`cp

DuplicateLoss

GetCPacket ep1

Figure 11: A unidiretioncal channel with loss, duplication, and overtaking

The function Destination is used to ensure that packets are delivered only
to endpoints corresponding to the destination of the packets, and the function
GetCPacket returns the first packet in the output buffer of an endpoint.

fun Destination (cp:ChannelPacket,
ep as {name,...}:Endpoint) =

((#dest cp) = name);

fun GetCPacket ({outb = (p::_),...} : Endpoint) = p;

A channel corresponding to UDP can be obtained from the channel model
in Fig. 11 by again using two instances (one for each direction).

It should be noted that the modelling of the channel models presented in this
section are not necessarily the most efficient channel models from the perspec-
tive of verification as the transmission of packets introduces many intermediate
states. A discussion of channel modelling for efficient verification purposes [3]
is outside the scope of this report.

2.5.2 Asynchronous Services

The services provided by the sender and receiver in the example were all syn-
chronous services which means that the caller of the service will be blocked until
the service returns. Clearly, a separate thread of execution can be created by
a user of the services prior to calling a synchronous service in order to avoid
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blocking and making long-running services acceptable. In some situations, it
may also be desirable for the protocol implementation to directly support long-
running services without having to block the caller (e. g., for receiving messages
or keeping connections alive).

Below we outline a concept of asynchronous services. The basic idea of an
asynchronous service is that the service returns control to the caller immediately,
but execution may continue in the implementation of the service (conceptually
in a separate thread). This allows the protocol implementation to have active
behaviour even when there is currently no service that is explicitly being exe-
cuted from the perspective of the users. An asynchronous service is declared
using the asynchronous property as part of a ⟨⟨service⟩⟩ pragmatic.

To illustrate the concept of asynchronous services, we discuss the model
of an asynchronous version of the receiver where the receive method itself is
not responsible for receiving the messages, but merely checks whether a full
message has been received. Figure 12 shows the asynchronous variant of the
receiver principal. The difference to the synchronous version of the receiver
is that the init service is now declared to be asynchronous (as it will have
some active behavior for receiving messages), a state place Messages has been
introduced where the init service accumulates messages as they are received,
and the receiver service no longer access the channel (since the reception of
message happens in the asynchronous part of the init service). The receive and
close services are still synchronous services.

Receive
<<service 

(synchronous) : Message>>

AsynchReceiverReceive

Close
<<service (synchronous)>>

ASynchReceiverClose

Init
<<service 

(repid: EndpointId, asynchronous)>>

ASynchReceiverInit

Ready
<<LCV>>

UNIT

Idle
<<LCV>>

()

UNIT

Receiver
<<channel>>

I/O

Endpoint

I/O

ASynchReceiverInit ASynchReceiverClose

AsynchReceiverReceive

Messages

1`[]

Messages
<<state>>

Figure 12: Receiver with an asynchronous init service

Figure 13 shows the init service. The init service returns immediately after
the service has been invoked, after which behavior will be executed correspond-
ing to the reception of messages. The reception of messages is essentially the
same as for the receive primitive in the synchronous variant (see Fig. 8) with the
exception that when a complete message has been received, it is put on place
Messages such that it can be accessed in the receive service.

Figure 14 shows the receiver service. It now implements a check (conditional
branch) on whether a message is ready on place Message – in which case it will
be returned. For simplicity, the empty string ("") is returned by the primitive
in case no messages are currently available.

Figure 15 shows the close service module of the receiver. It is similar to the
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Figure 13: The asynchronous init service

synchronous case expect that it now performs a cleanup of the newly introduced
place Messages when called. An extension of the asynchronous receiver would be
to add some life-cycle state that would more properly terminate the reception
of messages in the init service when the close primitive is invoked.

3 Requirements to the CPN Structure

In Sect. 2, we have discussed a simple unidirectional framing protocol, and we
have used a CPN model equipped with some additional pragmatics for formally
modelling the protocol. This CPN model follows some modelling rules. These
modelling rules serve two different purposes: First, the rules should help proto-
col designers to come up with clean and comprehensible CPN models. Second,
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Figure 14: The Receive service module of the asynchronous receiver
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Figure 15: The Close service module of the asynchronous receiver

the CPN models together with the additional pragmatics should contain all in-
formation for fully automatically generating the code from these models. This
would not be possible for arbitrary CPN models without any additional struc-
ture. The example of Sect. 2 exhibits most of these rules already. In this section,
we make the rules for CPN models and the way how to add pragmatics to them
explicit.

Generally, we distinguish three different levels when modelling a protocol:
the protocol system level, the principal level, and the service level. The protocol
system level, is the top level, which reflects the overall architecture, of the proto-
col, the possible communication partners involved, which are called principals,
and the channels between them. Figure 1 showed the protocol system level
of our example. For each principal of the protocol, there is one CPN module,
which models the life-cycle of each principal, i. e. it defines which services of
the principal can be invoked at which times. Figures 2 and 3 showed the two
modules of our example on the principal level. For each service of a principal,
there is a module on the service level, effectively modelling what happens, when
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this service is invoked. Figure 5 showed one example of such a service level
module.

For the structure of the CPN model, we have the following requirements and
conventions that apply to all levels of the model:

1. The CPN models do not contain modules with unassigned port and socket
places, i. e., all port places are related to a socket place.

2. Each pair of related port and socket places must be annotated with the
same pragmatics. If only the port (or the socket) is annotated with a prag-
matic, then a related socket (or port) automatically inherits the pragmatic.

In the next subsections, we present the requirements on the CPN model and
its submodules on the three levels in more detail. Some of the requirements
relate to pragmatics, which need to be explicitly added to the model by the
modeller. Therefore, a set of core pragmatics will be discussed in this section,
too.

3.1 Protocol System Level

The CPN model must have exactly one module at the top-level, which represents
the protocol system level. Since there is only one module on this level, we refer
to this module as the protocol system module. This module must meet the
following requirements:

1. The module may contain only substitution transitions and places (i. e.,
there are no ordinary transitions).

2. Each substitution transition is annotated with either a ⟨⟨principal⟩⟩ prag-
matic (referred to as principal transition) or a ⟨⟨channel⟩⟩ pragmatic (re-
ferred to as channel transition).

3. Any place at the protocol system level is connected to at most one principal
transition and at most one channel transition.

We do not go into further detail with the submodules associated with chan-
nel substitution transitions. The reason for this is that the internal operation
of these modules do not play a direct role in code generation. These modules
are present in the CPN model only in order to make the CPN model opera-
tional, i. e., for the principals to be able to exchange messages. For code gen-
eration purposes, we select platform communication primitives that conform to
the properties associated with the channel pragmatics (e. g., properties such as
reliable, order, unidirectional). We discuss properties of pragmatics further in
Sect. 3.4.

3.2 Principal Level

The principal level is represented by all the submodules of the CPN model
associated with a principal substitution transition at the protocol system level.
Each module at the principal level has the following requirements:

1. All transitions are substitution transitions and represent services provided
by the principal.
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2. All transitions are annotated with a ⟨⟨service⟩⟩ pragmatic, which specifies
the parameters of the service together with their types as well as the return
type of the service. Moreover, the ⟨⟨service⟩⟩ pragmatic specifies whether
the service is synchronous or asynchronous.

3. All non-port places are annotated with either a ⟨⟨LCV⟩⟩ pragmatic (rep-
resenting life-cycle variables) or a ⟨⟨state⟩⟩ pragmatic (representing global
state variables of the principal).

4. At any time in the dynamic behaviour of the protocol (in each reach-
able marking of the CPN model), each life-cycle and state variable place
contains at most one token.

Note that a principal’s life-cycle defines in which order the services of a
principal could be invoked in order not to violate the protocol. In the actual
code for these protocols, however, it is – in most cases – technically impossible
to prevent the invocation of services that are not allowed at a certain time
in the life-cycle. Therefore, it is left to the implementation, resp. the code
generator, how to deal with calls of services that are not expected according
to the principal’s life-cycle: e. g. the service could throw a runtime exception,
it could not terminate at all, or it could return some random result. Anyway,
the protocol would be violated; only if the service calls respect the life-cycle of
the principals, the generated code would reflect the behaviour of the modelled
protocol.

3.3 Service Level

The service level consists of the submodules of the substitution transitions at the
principal level. Each module at the service level has the following requirements.

1. In the case of synchronous services: There must be exactly one (initiating)
transition with a ⟨⟨service⟩⟩ pragmatic and exactly one transitions with a
⟨⟨return⟩⟩ pragmatic. The parameters of the service and return pragmatics
are required to match with the parameter and return types specified for
the corresponding substitution transition at the principal level.

2. In the case of asynchronous services: There must be exactly one (initi-
ating) transition with a ⟨⟨service⟩⟩ pragmatic; however, there must not
be any transition with a ⟨⟨return⟩⟩ pragmatic, since the call returns right
away – possibly spawning off a longer concurrently running computation.
The parameters of the service pragmatic are required to match with the
parameters specified for the corresponding substitution transition at the
principal level.

3. Each place is either annotated with an ⟨⟨ID⟩⟩ pragmatic (referred to as a
control flow place), a ⟨⟨state⟩⟩ pragmatic (referred to as a state place) or
it is a port place assigned to a channel socket place at the principal level
(referred to as a channel place). The net induced by the control flow places
of the service level module (i. e. the net that consists of all the control flow
places and the arcs and transitions directly attached to control flow places)
is called the control flow net of the service level module.
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4. Each transitions (except the one with a ⟨⟨service⟩⟩ or a ⟨⟨return⟩⟩ pragmat-
ics) has exactly one control flow place in its preset and exactly one control
flow place in its postset. The single transition with a ⟨⟨service⟩⟩ pragmatic
does not have a control flow place in its preset; if this transition also has a
⟨⟨return⟩⟩ pragmatic, there should be no control flow place in its postset;
if the ⟨⟨service⟩⟩ transition is no ⟨⟨return⟩⟩ transition, it must have exactly
one control flow place in its postset. A ⟨⟨return⟩⟩ transition that is not a
⟨⟨service⟩⟩ transition must have exactly one control flow place in its preset
and no control flow place in its postset.

5. The control flow net of the service level module should be decomposable
into blocks of control flow constructs (which is formally characterised in
Sect. 5.1).

6. At any time in the dynamic behaviour of the protocol (in any reachable
marking of the CPN model), the number of tokens on the control flow
places is equal to the number of active concurrent invocations of the ser-
vice. In the case without parallel invocations of a service, this implies that
there is at most one token on the control flow places at any given moment
in time.

7. Places of a service level module that have a ⟨⟨state⟩⟩ pragmatic and are
not socket places attached to the principle level module, are called local
state places. We require that at any time (in each reachable marking)
there are no token on local state places of a service level module, when
there are no tokens on any of its control flow places.

It should be noted that, when specifying the requirements above, we do not
allow substitution transitions in service level modules. This is done to make
the formulation of the requirement simpler. In practice, it is not a problem to
have substitution transitions in service level modules as long as the requirement
stated above holds for the service level module obtained where we have replaced
each substitution transition with the associated submodule.

3.4 Core Pragmatics

The example protocol described in Sect. 2 is annotated with several pragmatics.
In this section, we present a core set of pragmatics that are applicable to all
protocols modelled using our approach. These pragmatics are added by the
modeller in order to make explicit the protocol and principal levels of a protocol
and the control-flow of the services.

A pragmatic is specified in the form of a table giving the pragmatic’s key
features. These tables have the following fields:

Name is the name of the pragmatic.

Description provides a natural language description of the purpose of the
pragmatic.
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Name principal
Description Denotes a principal agent of the protocol system
Placement Substitution transitions on the protocol system level
Constraints The substitution transition can only be connected to

channel places
Parameters none
Type Structure
Category Core
Origin Explicit

Table 1: Description of principal pragmatic.

Placement describes where it is valid to put a pragmatic. This should in-
clude the levels where it belongs (protocol, principal or service) and what types
of model elements the pragmatic may be associated with (e. g., places and tran-
sitions).

Constraints specifies additional constraints to those described under place-
ment.

Type classifies the pragmatic into structure, control-flow, and operation.

Category classifies the pragmatic into core and protocol specific.

Origin is derived if the pragmatic may be automatically generated from the
net structure, explicit if the pragmatic must be added manually by the modeller.

Tables of this form will also be used later when introducing derived and
protocol-specific pragmatics.

The ⟨⟨principal⟩⟩ pragmatic (Table 1) specifies that the substitution transi-
tion, to which this pragmatic is connected, to be a principal agent or entity in
the protocol. The ⟨⟨principal⟩⟩ pragmatic can be used for substitution transitions
on the top module of the CPN model (protocol system level).

The ⟨⟨channel⟩⟩ pragmatic, described in Table 2, is associated with substitu-
tion transitions on the system protocol level, which represent the communication
channels between principals. The ⟨⟨channel⟩⟩ pragmatic has a parameter that
defines the channel’s characteristics such as reliable, ordered, and unidirectional
in Fig. 1. Based on this channel type, the code generator would select the ap-
propriate communication primitives at the given target platform, which meet
the characteristics. For analysis and verification purposes, however, the sub-
stitution transitions for channels can be associated with a CPN module, which
explicitly models the behaviour of the channel (Fig. 10 in our example). By
choosing this channel model, the protocol can be verified in different scenarios
(e. g. for showing lossless transmission in the presence of unreliable channels or
for showing robustness against attacks). The CPN module for the channel will,
however, not be used for code generation.

Note that the places that are attached to the channel substitution transition
have a ⟨⟨channel⟩⟩ pragmatic attached to them, which, however, is a derived
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Name channel
Description Denotes a communication channel
Placement Substitution transitions on the protocol system level and

port places related to a socket place of such a substitution
transition

Constraints
Parameters Channel types
Type Structure
Category Core
Origin Explicit

Table 2: Description of channel pragmatic.

Name ID
Description Denotes the control flow path of each service
Placement A place at the service level
Constraints none
Parameters none
Type Control-flow
Category Core
Origin Explicit

Table 3: Description of ID pragmatic.

pragmatics. This will be used in the service level modules in order to identify
send and receive operations.

The ⟨⟨ID⟩⟩ pragmatics, described in Table 3, denotes the control flow of the
service. ID can only annotate places that reside on the service level. The ⟨⟨ID⟩⟩
pragmatic is central to our code generation approach as it makes the control
flow explicit. This will be discussed in detail in Sect. 5.

The Life Cycle Variable (⟨⟨LCV⟩⟩) pragmatics, described in Table 4, denote
places that control the life cycle of the protocol by imposing pre- and post-
conditions on the invocation of services. In the example of Sect. 2, all these
places have the data type UNIT which the code generator interprets as boolean
set or unset values. Places with pragmatics ⟨⟨LCV⟩⟩ and ⟨⟨state⟩⟩ are used to
define the flow of the protocol, i. e. they define the order in which the envi-
ronment should call the services of the different principals of the protocol. As
discussed earlier, it is not always possible for the generated code to prevent
external programs from calling services, when this would be illegal according to
the protocol’s state. In that case, it is up to the implementation to deal with
this situation, by either raising an exception or returning error codes in some
uniform way. The generated code is guaranteed to work correctly only, when
the services are invoked in the order as defined by the life-cycle of the protocol.

The ⟨⟨service⟩⟩ pragmatic, described in Table 5, denotes an interface to the
environment such as a method or function. The ⟨⟨service⟩⟩ pragmatic can be
used to annotate substitution transitions on the protocol level and transitions
on the service level.

The ⟨⟨state⟩⟩ pragmatic is used to denote places that can hold data for a
principal or a service. In the example in Fig. 5 there are two state places. One
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Name LCV
Description Denote places which control the life cycle of the protocol

by imposing pre- and post-conditions on services
Placement Socket places at the principal level
Constraints
Parameters none
Type Control-flow
Category Core
Origin Explicit

Table 4: Description of LCV pragmatic.

Name service
Description Denotes an interface to the environment of such as a

method or function
Placement Substitution transition on the principal level and transi-

tions on the service level
Constraints Can exists on only one transition per module at the service

level. The arguments must be identical on service level to
that on the corresponding substitution transition on the
protocol level.

Parameters The parameters for the service with types and, as the fi-
nal parameter, the text “synchronous” or “asynchronous”
indicating whether this service should be considered syn-
chronous or asynchronous.

Type Structural at the principal level and control-flow at the
service level

Category Core
Origin Explicit

Table 5: Description of service pragmatic.
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Name state
Description Denotes a value holder on the principal or service level
Placement Places on the principal and service level
Constraints none
Parameters none
Type Structure
Category Core
Origin Explicit

Table 6: Description of state pragmatic.

Name return
Description Denotes the termination of a synchronous service.
Placement Transitions on the service level
Constraints Optionally the value that should be returned
Parameters The return value
Type Control-flow
Category Core
Origin Explicit

Table 7: Description of return pragmatic.

is the place named Outgoing which holds the list of the remaining outgoing
fragments. This state variable is local to the service and is not visible on the
principal level. The other state variable in the example is the place named
Receiver. This state holds the endpoint for the receiver. This place is a port
place referring to the Receiver place on the principal level as seen in Fig. 2. This
makes it a principal level state variable which is akin to a field variable in that
it is accessible by several services and service instances.

The ⟨⟨return⟩⟩ pragmatic is a service level pragmatic denoting the end of
a service. This is similar to the the return keyword in many programming
languages. The value that should be returned is determined by inspecting the
incoming arc or is given as a parameter. The type of the return value must
match the return type specified in the ⟨⟨service⟩⟩ pragmatic for the corresponding
service.

4 Overview of Code Generation

In Sect. 2, we presented a descriptive model for a simple communication protocol
that conforms to the structural requirements presented in Sect. 3. In this section,
we outline how code for implementing each of the principals can be automatically
generated from such a CPN model annotated with pragmatics.

Figure 16 gives an overview of the three main phases of the generation pro-
cess and the artifacts of the code generation process. On the top-left, the CPN
model (in the figure represented by a part of the model only, the SenderSend
module from Fig. 5) annotated with the explicit pragmatics is shown. From
this model, the code generation starts. In the first phase of the code generation
process, the derived pragmatics are added to the CPN model. The result of this
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phase is represented on the top-right of Fig. 16 – for the SenderSend module
again (the details will be discussed later again and are shown a bit bigger in
Fig. 22). In the next phase, an intermediate representation of the CPN model
and its pragmatics in the form of an abstract template tree (ATT ) is generated
from the CPN model with the derived pragmatics. An excerpt of the ATT is
shown at the bottom-left of Fig. 16, which is the part of the ATT corresponding
to the SenderSend module. The last phase, actually, generates the code from the
ATT. The bottom-right of Fig. 16 shows the code generated for the SenderSend
module – in this case, it is code in the Groovy programing language. These
three phases are discussed in more detail below.

The first phase in the code generation process is to automatically add further
pragmatics to the CPN model based on an analysis of the structure of the CPN
model. This analysis results in the addition of pragmatics that makes explicit
common control flow structures and pragmatics that represent operations used
to access state information and operations used to send and receive messages on
the underlying communication channels. The addition of further control flow
pragmatics exploits the requirements that the control flow places in the CPN
model annotated with the ⟨⟨ID⟩⟩ pragmatic conform to a certain block-oriented
pattern. The details of how we derive the additional control flow pragmatics will
be presented in Sect. 5. The details of how we identify operations pragmatics
are provided in Sect. 6.

The second phase is then to transform the CPN model into an ATT which
gets its overall structure from the hierarchical structure of the CPN. The root
element of the ATT has one sub-ATT for each principal. Each principal has
several nodes representing a service, these ATT nodes are bound to the sub-
stitution transitions on the top module of each principal which are annotated
with the ⟨⟨service⟩⟩ pragmatic. The process of obtaining the ATT also extracts
the control flow structure from the service level CPN modules and represents
it as an ordered tree structure where each node contains information on what
pragmatics are bound to the corresponding CPN model elements. Each node
of an ATT holds some additional information, which refers to some elements
from the CPN model and the associated pragmatics, along with their parame-
ters. The sub-ATT for the send service of the sender principal is shown at the
bottom-left of Fig. 16. The ATT structure below the send service node, roughly,
reflects the control flow structure of the SenderSend CPN model. The process
of constructing the ATT will be presented in detail in Sect. 7

The third and final phase is to transform the ATT into code. This is ac-
complished by associating the pragmatics of each node in the ATT with code
templates and use the templates to generate code. The binding of pragmatics
to templates for a certain platform is defined by a template binding. The ATT
drives the actual code generation (some example code is shown on the bottom-
right of Fig 16). Which templates are used depends on the target platform and
programming language. In the template, placeholders are filled with attribute
values from the respective ATT-node as well as code which is generated by the
templates of the sub-nodes – where applicable. The code is assembled using
the tree-structure of the ATT. The assembling is done by, from the bottom up,
replacing a special %%yield%% tag in the template with the contents of a node’s
children concatenated in order. The principals are considered the units code is
generated for. Further details of the code generation process will be given in
Sect. 8.
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         Start

    <<loop>>

     Completed

   <<return>>

 Next Message

   <<pop>>

   Send Packet

    <<send>>

   Packet Sent

 <<endLoop>>

→

class Sender {
def Idle = true
def Open

def SenderSend(){
if(!Open) throw new Exception...
def OutgoingMessage = ...
__TOKEN__ = null//()
def __LOOP_VAR__ = true
while(__LOOP_VAR__){

...
}
return

}
}

Figure 16: Overview of code-generation phases
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5 Control Flow Pragmatics and Blocks

Petri nets do not enforce any particular control flow structure. In order to be
able to generate code that uses the control flow constructs of typical program-
ming languages, we assume that the control flow net (induced by places of the
service level modules that are marked with ⟨⟨ID⟩⟩) can be decomposed into con-
trol flow blocks. In this section, we discuss the decomposition of a Petri net into
control flow blocks along with constructing an associated block tree. Moreover,
we introduce some derived pragmatics that ease the identification of the control
flow structure.

5.1 Block Decomposition

To this end, we systematically decompose each service level module into blocks
where the containment of the blocks defines the structure of the ATT. Actually,
we use only the control flow net of the service level module.

In order to be flexible, the decomposition is defined in terms of decomposition
rules, which are shown in Fig. 20. With these rules, the module SenderSend from
Figure 5 can be decomposed into a block, which is a sequence, where the first
element of that sequence is an atomic block, the second is a loop, which consists
of a sequence of two atomic blocks again as shown in Fig. 21.

In this section, we assume that the services are synchronous – i. e. the service
call returns only after the service is terminated. We also assume that there is
exactly one start place and one end place; the start place would be the control
flow place in the postset of the transition with ⟨⟨service⟩⟩ pragmatic (in Fig. 5
it is place Message); the end place is the control flow place in the preset of a
transition with ⟨⟨return⟩⟩ pragmatic (in Fig. 5 it is place SendCompleted). We
do not deal with the special cases here in which the ⟨⟨service⟩⟩ transition is also
a ⟨⟨return⟩⟩ transition.

Let us assume that we have the control flow net of the service level model
and that we have identified the start and an end place. From there, the ATT
is obtained by recursively decomposing the net into blocks, where each block
is a sub-net of the control flow net with a distinguished start and end place.
Mathematically, this decomposition into blocks is defined inductively. Figure 17
shows a graphical representation of a block in general, where the start and end
place of the block are graphically represented by arcs from resp. to the border
of the block.

Figure 17: Graphical representation of a block.

Now let us formalise the concept of a block.

Definition 1 (Block, atomic non-returning block).
Let N = (P, T, F ) be Petri net, then B = (N, s, e) with s, e ∈ P is a block.
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The block is atomic, if P = {s, e}, s ̸= e, |T | = 1 and for t ∈ T , we have
•t = {s} and t• = {e}.

The block has a safe entry, if s ̸= e and •s = ∅ (i. e. it will not return a
token to the start place itself). The block has a safe exit, if s ̸= e and e• = ∅
(i. e. it does not use a token from the end place itself).

An atomic block consists of a single transition, as shown in Figure 20 later.
For visualizing blocks with safe entry and safe exit, we introduce an additional
graphical notation, which is shown in Fig. 18. The crossed out arc from within
the block to the start place indicates that the block itself does not return a
token to the start place (safe entry); the crossed out arc from the end place to
the interior of the block indicates that the block itself does not remove a token
from its end place (safe exit).

Figure 18: Graphical representation of safe entry and safe exit.

For easing our notation, for a block Bi, we will denote its net by Ni =
(Pi, Ti, Fi), its start place by si and its end place by ei. Next we define the
general decomposition of a block into sub-blocks.

Definition 2 (Decomposition of a block).
Let B = (N, s, e) be a block with net N = (P, T, F ).

A set of blocks B1, . . . , Bn is called a decomposition of block B, if the fol-
lowing conditions are met:

1. The sub-blocks contain only elements from B, i. e. for each i ∈ {1, . . . , n},
we have Pi ⊆ P , Ti ⊆ T , and Fi ⊆ F ∩ ((Pi × Ti) ∪ (Ti × Pi)).

2. The sub-blocks contain all elements of B, i. e. P =
∪n

i=1 Pi, T =
∪n

i=1 Ti,
and F =

∪n
i=1 Fi

3. The inner structure of all sub-blocks are disjoint, i. e. for each i, j ∈
{1, . . . , n} with i ̸= j, we have Ti∩Tj = ∅ and Pi∩Pj = {si, ei}∩{sj , ej}.

Note that, in some cases, two consecutive blocks should be safe, which means
that either the exit of the preceding block is safe, or the entry of the succeeding
block is safe or both. We represent this graphically as shown in Fig. 19.

Figure 19: Safe join of two consecutive blocks
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Now, the block trees associated with blocks can be inductively defined by
using the decompositions into specific constructs. Note that the block trees are
ordered labelled trees, i. e. the tree nodes have a label and the order of the child
nodes of a node matter. These decomposition rules along with the resulting
block trees are graphically represented in Fig. 20.

Definition 3 (Tree decompositions of a block).
The block trees associated with a block are inductively defined:

• If B is an atomic block, then the tree with the single node B : atomic is
a block tree associated with B.

• If B is a block and B1 and B2 are a decomposition of B, and for some X,
B1 : X is a block tree associated with B1, and B2 : atomic is a block tree
associated with B2, and if B1 has a safe entry and a safe exit and s1 = s,
e1 = e, s2 = e, and e2 = s, then the tree with top node B : loop and the
sequence of sub-trees B1 : X and B2 : atomic is a block tree associated
with B.

• If B is a block and for some n with n ≥ 2 the blocks B1, . . . , Bn are
a decomposition of B, and have a safe entry and a safe exit, and B1 :
X1, . . . , Bn : Xn for some X1, . . . , Xn are block trees associated with
B1, . . . , Bn, and if for every i ∈ {1, . . . , n} we have si = s and ei = e,
then the tree with top node B : choice with the sequence of sub-trees
Bi : Xi is a block tree associated with B.

• If B is a block and for some n with n ≥ 2 the blocks B1, . . . , Bn are a
decomposition of B, and, for some X1, . . . , Xn, the trees B1 : X1, . . . , Bn :
Xn are block trees associated with B1, . . . , Bn, and if there exist different
places p0, . . . , pn ∈ P such that s = p0, e = pn, and for each i ∈ {0, . . . , n−
1} we have si = pi, ei = pi+1, and Bi has a safe exist or Bi+1 has a safe
entry, then the tree with top node B : sequence and the sequence of
sub-trees Bi : Xi is a block tree associated with B.

Note that in order to translate a sequence to programming language con-
structs, we need to make sure that the control never goes backwards – except
for explicit loops. To this end, the above definition requires for two blocks Bi

and Bi+1 of a sequence, that block Bi has a safe exit or block Bi+1 has a safe
entry. The side conditions on safe entry and exit of blocks make this definition
a bit more technical. The reason for introducing these side conditions is that
nets that actually can be decomposed into blocks do not need to introduce extra
control transitions between parts of the net representing different constructs –
just for making the net decomposable. Since these extra transitions would make
the nets required for code generation quite verbose and unnatural from a Petri
net modelling point of view, our blocks can be directly “glued together” at their
start and end places – under the given side conditions.

Figure 21 shows the control flow net of the SenderSend module from Fig. 5
with overlays that indicate the decomposition of the control flow net into blocks.
The resulting block tree is, roughly, the one shown at the bottom-left of Fig. 16.

Note that, in general, the decomposition rules are not deterministic. There
could be more than one tree associated with a given block – the tree is not
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Figure 20: Inductive definition of block trees
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Figure 21: Decomposition of the control flow net of module SenderSend

necessarily unique. For example, a longer sequence of atomic blocks could be
decomposed in many different ways in sub-sequences of sub-sequences. In prin-
ciple, any of these block trees would do for our purposes. The implementation,
however, maximises the number of sub-blocks of each sequence, so that there
would be only one maximal sequence of blocks. This way, avoiding unnecessary
substructures in the block tree generated from these blocks.

There are also nets that do not have a block decomposition at all, and no
tree associated with them. Such blocks cannot be transformed into an ATT,
and therefore not transformed to code. It is the modellers responsibility to make
sure that the control flow net of the service level modules can be decomposed
into a block tree. The only exception are service level modules that consist of
a single transition only. In this case, the single transition is considered to be
both the start and end node of the service and must be annotated with both
⟨⟨service⟩⟩ and ⟨⟨return⟩⟩ in addition to the corresponding pragmatics for any
operations that the service should complete. This is handled as a special case by
the ATT and code generation without relying on a decomposition into blocks.

A block tree associated with a control flow net of a service level module,
basically, represents the abstract syntax tree of the service level module. Tech-
nically, the ATT of the service level modules is constructed in a different way. In
order to identify the control flow in the net, the respective start and end places of
the choice and loop constructs are associated with a derived pragmatics, which
will be be discussed in Sect. 5.2 and 5.3.
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Name branch
Description Denotes the start of a branch in the control flow
Placement service level places
Constraints Only on places with the ID pragmatic in accordance with

the block decomposition rules
Parameters The condition
Type Control-flow
Category Core
Origin Derived

Table 8: Description of branch pragmatic.

Name merge
Description Denotes the end of a branch in the control flow
Placement Service level places
Constraints Only on places with the ID pragmatic and in accordance

with the block decomposition rules
Parameters none
Type Control-flow
Category Core
Origin Derived

Table 9: Description of merge pragmatic.

5.2 Conditional Pragmatics

The block decomposition rule for a conditional is shown in the third block rule
in Fig 20. A conditional begins with a place with a single in-arc and multiple
out-arcs. Each of the out arcs lead to some blocks where the end of these blocks
has a single outgoing arc to the conditional blocks merge place, of which there
may only exist one.

There are two pragmatics for conditionals, firstly the ⟨⟨branch⟩⟩ pragmatic
which represent the branching of the control flow and also the ⟨⟨merge⟩⟩ prag-
matic which represents the place where the branch is merged. These pragmatics
are described in Table 8 and Table 9. The ⟨⟨branch⟩⟩ pragmatic takes one pa-
rameter which contains the condition for taking one branch or the other. This
condition is given using a language which is described further in Sect. 6. In
the ATT, the branch node will become a container-node containing a single
container-node for each branch. At the end of each of the branches will be a
node with the ⟨⟨merge⟩⟩ pragmatic.

5.3 Loop Pragmatics

The loop block allows the creation of actions that are to be repeated several
times or even an infinite number of times. A loop have a start and an end place
connected by a block. The start loop has two incoming arcs, where at least one
is part of an atomic block originating at the end of the loop and terminating
at the start of the loop. The end of the loop has one incoming arc and two
outgoing where one of the outgoing arcs is part of the atomic block ending at
the first node of the loop.



31

Name startLoop
Description Denotes the start of a loop
Placement Service level places
Constraints Only on places with the ID pragmatic and in accordance

with the block decomposition rules
Parameters none
Type Control-flow
Category Core
Origin Derived

Table 10: Description of startLoop pragmatic.

Name endLoop
Description Denotes the end of a loop.
Placement Service level places
Constraints Only on places with the ID pragmatic and in accordance

with the block decomposition rules
Parameters the condition for continuing to loop
Type Control-flow
Category Core
Origin Derived

Table 11: Description of endLoop pragmatic.

The loop construct is accompanied by the ⟨⟨startLoop⟩⟩ and ⟨⟨endLoop⟩⟩
pragmatics which, analogously to the pragmatics for conditionals, mark the
beginning and the end of the loop respectively. The loop pragmatics are derived
based on the structure of the CPN model. The pragmatics can, however, be
seen in Fig. 22. In the future, it may be useful to add other loop constructs
such as for-loops and iterators. The pragmatics are described in Table 10 and
Table 11. The ⟨⟨endLoop⟩⟩ pragmatic takes one parameter which contains the
condition for continuing in the loop. This condition is given using a language
which is described further in Sect. 6.

In Fig. 22, a loop is present starting at the place Start and ending at the place
Packet Sent. In the ATT, the start node will become a container-node containing
a set of the subsequent nodes on the control flow path up to and including
Packet Sent, which will also be annotated with the ⟨⟨endLoop⟩⟩ pragmatic. The
⟨⟨endLoop⟩⟩ pragmatic must be on the last node contained in the loop.

6 Operation Pragmatics

In addition to the general structural core pragmatics and the pragmatics gov-
erning the control flow of services, another category of pragmatics is needed to
denote operations to be executed at various points in the control flow.

It is impossible to anticipate every possible operation that will be needed for
any protocol. Hence, we propose a set of operation pragmatics that are useful
in general and allow users to define their own pragmatics as well in order to
include sufficient flexibility in our approach. As with pragmatics in general, the
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operation pragmatics can be divided into several subcategories depending on
their function and generality.

One category of operation pragmatics is derived from typical structural pat-
terns related to accessing state variables and channels. A second category of
operation pragmatics is used to facilitate a mapping of the ML expressions and
functions used in the arc and guard inscriptions of the CPN model onto the plat-
form for which code is being generated. The latter means that the translation
of ML expression in the inscriptions will be based on a mapping determined by
pragmatics instead of explicitly parsing and translating ML expressions into the
target programming language of the platform for which code is being generated.
The general idea is that most of these pragmatics could, at least in principle,
be automatically be derived from the CPN models. The option of adding these
pragmatics manually leaves the possibility to add operations directly where de-
riving them automatically would not be worth the effort.

A fully annotated version of the send service in Fig. 5 is shown in Fig. 22.
Many additional operation pragmatics are present here that are not present
in Fig. 5. In the following, we discuss three of these additional pragmatics,
⟨⟨send⟩⟩, ⟨⟨pop⟩⟩, ⟨⟨partition⟩⟩ in more detail. It is expected that most or all of
these extra annotations will be automatically derived so that the modeller will
not actually have to add them to the model by hand except in rare cases.

An example of an operation which is useful for most or all network proto-
cols is sending data over the network. The ⟨⟨send⟩⟩ pragmatic is used to send
a message over the adjacent network channel. ⟨⟨send⟩⟩ is a derived pragmatic
which can be automatically derived from the CPN model by identifying a spe-
cific pattern in the model. The ⟨⟨send⟩⟩ pragmatic is present on the transition
SendPacket in the SenderSend module in Fig. 22. The pragmatic takes two pa-
rameters. The first is an identifier of the endpoint the message should be sent
to. The second parameter is the message that is to be sent. In this case this is
the __TOKEN__ value, which is the value of whatever data is in the token coming
from the control-flow input place. Analogously, we have a ⟨⟨receive⟩⟩ pragmatic
(not shown in the figure, but used in the receive service) that similarly takes two
arguments, Receiver which is assumed to contain the endpoint for the receiver
and the variable the received message should be put to.

Another example of a pragmatic that may be of general use is the ⟨⟨pop⟩⟩
pragmatic on the Next Message transition. Here the pop does basically the same
thing as the arcs to and from the Outgoing place.

An example of a protocol-specific pragmatic is the ⟨⟨partition⟩⟩ pragmatic
used on the Partition transition in Fig. 22. It denotes the partition function
used on the arc to Outgoing, which, for this particular protocol, specifies how
the messages are partitioned into sub-messages. In this case, the pragmatic will
be defined by the modeller which need to accompany the pragmatic with a code
template describing how partition is to be realised on the platform for which code
is being generated. The protocol-specific pragmatics enables the code generation
to rely on modeller-provided pragmatics and templates to handle net structure
and patterns that are not directly supported and can be recognised by the code
generation.
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if mss = []
then (1,m)
else (0,m)
(*<< SetToken(cond: ' (isEmpty OutgoingMessage)',  
[1_m], [0_m], ) >>*)
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Figure 22: The SenderSend module with all derived pragmatics

6.1 The Condition Language

The observant readers will have noticed that two of the pragmatics in Fig. 22
have parameters that have some more structure, representing the expressions
for the loop or expression. These are present in the cond parameter of the
⟨⟨endLoop⟩⟩ pragmatic on the place Packet Sent and in the cond parameter of
⟨⟨setToken⟩⟩ pragmatic which resides on the inscription of the arc between the
transition NextMessage and the place Created. In this section the language used
to write these two expressions will be briefly described.

The simplest expressions in the language are ones like the one in the cond
parameter of the ⟨⟨endLoop⟩⟩ pragmatic on the place Packet Sent which is also
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Operator Description
eq Check for equality between the two parameters
neq Check for inequality between the two parameters
t evaluates to true
isEmpty Checks whether the collection given as a parameter is empty

Table 12: The current list of operators for the conditional language

shown below:

(eq 1 __TOKEN__[0])

This expression simply checks for the equality of the two values 1 and
__TOKEN__[0]. The keyword eq denotes that this expression checks for equal-
ity. The __TOKEN__[0] is currently just passed through. This means that the
implementation platform must understand this to take the first element of the
collection that is held in the __TOKEN__ variable. To make this more general is
a part of future work

The language syntax is inspired by Lisp. Currently, only boolean expres-
sions are available, and all expressions follow the same syntactical structure:
(operator operands). The available operators are shown in Table 12. The
set of operators will be extended as needed as we develop our approach further.

7 Abstract Template Trees

An Abstract Template Tree (ATT) is an ordered tree of nodes that contain
information to generate code using templates. The ATT is inspired by the
abstract syntax trees that is frequently used by compilers as an intermediate
representation when generating executable code from programming language
code.

The two major types of nodes in the ATT are leaf (operation) and container
nodes. A leaf node contains pragmatics for one or more sequential operations
such as sending or removing an element from a list. A leaf node, as the name
suggest, does not have any children. A container node, however, contains an
ordered list of child nodes. The types of container nodes at the service level
mimics the blocks defined in Section 5 and have the same constraints.

An excerpt of the ATT generated for the example is shown in Fig. 23. The
first level below the root of the ATT is expected to contain only Principals,
which are considered block nodes. Each principal contains some service nodes.
Services are also block nodes in that they contain their function. If we look
at the SenderSend service under the PrincipalSender principal we see that it
contains three leaf nodes and one block node. The Block node is a Loop and
represent the loop in Fig. 5.

7.1 CPN to ATT

For technical reasons, the CPN model is first translated into an ePNK model.
This translation, although tedious, is fairly straightforward and will not be
discussed any further here. The first phase in generating an ATT is to add
the derived pragmatics to the Petri net structure. This is done by identifying
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Figure 23: Abstract Template Tree
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patterns for each of the derived pragmatics and adding the pragmatic wherever
the pattern fits. Although the patterns themselves may include adjacent nodes,
all the patterns can be matched against one node at a time, making the pattern
matching fairly efficient given small patterns.

With all derived pragmatics added, the ATT can be generated by a guided
walk through the model. This walk will start at the top module and for each
pragmatic it will generate a corresponding node in the ATT. On the next level,
the generator looks for modules with the ⟨⟨service⟩⟩ pragmatic which is trans-
formed to methods in the code. Each service module contains exactly one
transition also with the ⟨⟨service⟩⟩ pragmatic. This transition is the starting
point for the method modelled by the sub-module. The subsequent set of nodes
is divided up by the rules of the block structure described in Sect. 5. The ATT
for the CPN in Sect. 2 is shown in Fig. 23.

7.2 Template Binding

When the ATT is generated, and in order to finally generate code, the pragmat-
ics must be bound to templates. This is done by introducing another artefact
called a template binding. A template binding contains bindings for all prag-
matics that need to be translated into code for a specific platform. In addition
the bindings works as a configuration by picking the appropriate templates for
each pragmatic.

The bindings are given in a simple domain specific language (DSL) where
each line represents a binding. A binding consists of a name followed by a left-
parenthesis followed by some key value pairs where the keys can be pragmatic
which contains the name of the pragmatic, template which corresponding
value is the path to the template, isContainer which indicates whether this
pragmatic denotes a container or isMultiContainer which is an implemen-
tation detail in our tool. The isMultiContainer flag indicates whether or
not the container is either a loop or a conditional.

A small extract of the binding for groovy cab be seen in Listing 1.

Listing 1: Extract of Groovy bindings

Id(pragmatic: ’Id’)
Cond(pragmatic: ’Cond’, template: ’.../groovy/cond.tmpl’,

isContainer: true, isMultiContainer: true)
startLoop(pragmatic: ’startLoop’, template: ’.../groovy/loop.tmpl’,

isContainer: true, isMultiContainer: true)
endLoop(pragmatic: ’endLoop’, template: ’.../groovy/endLoop.tmpl’)

8 Code Generation

As a first step towards evaluating the approach described in the previous sec-
tions, we have generated software for the example in Sect. 2. The first step is
to translate the CPN model into an ATT. The second step is to translate the
ATT to code.
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8.1 ATT to Groovy Code

Generating the actual code is a matter of traversing the ATT and invoking the
associated templates for each node. Each pragmatic is bound to a template by
a mapping. Listing 1 shows a part of the mapping for Groovy programs. As
can be seen in the listing, the mapping is fairly straightforward linking between
pragmatic name and its corresponding template file.

When a pragmatic is transformed to code its template is run through a tem-
plate engine together with a number of parameters given by the pragmatics
definition and the CPN structure. The templates are sown together by replac-
ing a special tag in the container templates, %%yield%%, with the text of the
underlying templates in order.

As an example of a container template, the template for a Loop pragmatic
for the Groovy language is given in Listing 2. The template creates a while-loop
which continues while the __LOOP_VAR__ variable is true. The body of the loop
is populated by replacing the %%yield%% directive with the code generated by
the templates of the sub-nodes in the ATT. The __LOOP_VAR__ is updated at
the end of the loop by the ⟨⟨endLoop⟩⟩ pragmatic which is always present as
the last child element of a loop. The ⟨⟨send⟩⟩ pragmatic is an example of an
operation and is used to send a message over a channel. Listing 3 shows the
template for the ⟨⟨send⟩⟩ pragmatic which requires two parameters: one is the
name of the socket that the message should be sent on, and the other is the
variable that holds the message to be sent.

Listing 2: Template for loops in Groovy.

%%VARS:__LOOP_VAR__%%
__LOOP_VAR__ = true
while(__LOOP_VAR__){

%%yield%%
}

Listing 3: Template for sending a message.

${params[0]}.getOutputStream()
.newObjectOutputStream()
.writeObject(${params[1]})

%%VARS:${params[1]}%%

8.2 The Generated Code

As an example of the generated code the loop in the senderSend service in the
Sender principal is shown in Listing 4. The loop is started by defining a variable,
__LOOP_VAR__. This is done because the Groovy language does not support
do-while loops. After the __LOOP_VAR__ is defined the loop is entered. Inside
the loop the next fragment is code from the template bound to the ⟨⟨pop⟩⟩
pragmatic. This code removes the first element from OutgoingMessage and
assigns it to m. Then the code for the ⟨⟨setToken⟩⟩ pragmatic on the arc between
the transition NextMessage and the place Created. This code sets the __TOKEN__
variable in the code according to the conditional statement in the pragmatic:
if OutgoingMessage is empty then the message is prefixed by 1, otherwise it is
prefixed by zero. The next pragmatic that is found on the control flow path is
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the ⟨⟨send⟩⟩ pragmatic on the transition Send Packet. The socket Receiver is
used to send the value of the __TOKEN__ variable. In the code, this is done using
an ObjectOutputStream sending the list that is now in the __TOKEN__ variable.
Finally the template associated with the ⟨⟨endLoop⟩⟩ pragmatics has generated
the code for updating __LOOP_VAR__ according to the conditional expression
given as a parameter to the ⟨⟨endLoop⟩⟩ pragmatic.

Listing 4: The generated code for the loop of the senderSend service

__LOOP_VAR__ = true
while(__LOOP_VAR__){

def m = OutgoingMessage.remove(0)
if(OutgoingMessage.size() == 0){

__TOKEN__ = [1,m]
} else {

__TOKEN__ = [0,m]
}
Receiver.getOutputStream().newObjectOutputStream().

writeObject( __TOKEN__)
__TOKEN__
__LOOP_VAR__ = ( 0 == __TOKEN__[0] )

}

The readability of the generated code is, of course, difficult to measure with
confidence without extensive studies using human subjects, although some met-
rics exists [4]. However, assuming that humans are able to create code that
is fairly readable to humans attempting to emulate human generated code by
creating code using templates, also written by humans, is expected to create
fairly readable code. Also the sequential nature of service level modules makes
it possible to create templates so that the resulting code is readable.

8.3 Running the Generated Code

The full code for the example above is shown in Appendix A. The code has
been formatted to fit in this paper but is otherwise unaltered. Each principal is
represented by a single class and each service is a method in that class.

To execute the generated protocol software we created simple programs that
uses the API provided by the protocol. These programs for the sender and
receiver are shown in List. 5 and 6 respectively. When the programs are run,
the Receiver predictably prints out the line “The following message was received:
”the quick brown fox jumps over the lazy dog”” which was the expected result in
this case. Inspection of the network traffic confirms that the message is indeed
broken up into smaller frames before sending. In the interest of brevity we do
not include the network dump here.

Listing 5: The code for running the sender module

def sender = new Sender()
sender.SenderOpen([port: 31337, host:’localhost’])
sender.SenderSend("the quick brown fox jumps over the lazy dog")
sender.SenderClose()
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Listing 6: The code for running the receiver module

def reciever = new Receiver()
reciever.ReceiverInit(31337)
def res = reciever.ReceiverReceive()
println "\n\n\nThe following message was recieved: "+

"\"$res\"\n\n\n"

9 Conclusions and Future Work

In this technical report, we have outlined a technology, which allows us to au-
tomatically generate code for protocol software from models. To this end, we
introduced a simple, but complete example of a communication protocol. This
running example was used for discussing our modelling notation and method-
ology – CPN models with some extensions – and the concepts and techniques
for generating the code. There is a prototypical implementation of a code gen-
erator, which is based on these ideas. Actually, there were different variants of
such a prototype over time, and experimenting with these variants helped con-
solidating the concepts. The main purpose of this technical report is to present
a consolidated and consistent version of the notation, concepts, and techniques
of our approach.

The main objective of this approach is that the code can be generated from
what we call descriptive models. Descriptive models are typically used for un-
derstanding and explaining how a protocol works on a high level of abstraction.
Descriptive models focus on the concepts and not on the technical details and,
in many cases, these models can be used – with some additional tweaking –
also for analysing protocols and for verifying their correctness. Typical practise
today is that models are used for analysing a protocol and its specification and
for the verification of the protocol. Then, the protocol software is implemented
manually based – more or less – on these models. Our approach makes it possi-
ble to use, basically, the same descriptive model for analysis and verification as
well as for code generation – in both cases, the models are moderately extended.

In our approach, we chose to use Coloured Petri Nets (CPNs) [6] as a mod-
elling notation for descriptive models since they have successfully been used
for modelling, analysing, and verifying various kinds of systems [5] for a long
time now. Over the time, specific modelling styles, principles, and disciplines
have developed for using CPN for that purpose. These styles and principles are
mostly used informally – sometimes not even mentioned at all. In our approach,
we needed to make them into more rigorous rules.

Since descriptive models are conceptual in nature and on a high level of
abstraction, they often do not capture some technical aspects and implementa-
tion details. Examples of such information not contained in descriptive models
are the API and the interface for calling the services or operations of a proto-
col. Our approach caters for that by so-called pragmatics that can be added
to different elements of the model. This way, it is possible to attach additional
information without compromising the overall structure of the original model.
And our example shows, that all relevant technical information can be added to
the model in this way. Our approach comes with some predefined pragmatics
which are of general use. But, the approach is open for adding more pragmatics
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if need should be. Moreover, pragmatics can be used for adding more technical
information, which, in principle, could be derived automatically, but for which
no tool support is implemented yet. This way, it is possible to gradually extend
the degree of automation of our approach without changing the approach itself.

Another important objective of our approach is the generation of code for
different target languages and platforms. To this end, the abstract template
trees (ATTs) and template bindings were introduced; by replacing the set of
templates and template bindings, code for a different platform can be generated.
In a way, a set of templates along with a template binding can be considered as
a characterization of a target platform – working out the details is future work,
however. Also part of future work is to refine the way the ⟨⟨LCV⟩⟩ places are
handled by the code generator including making them thread-safe and guaran-
teeing that they will always be properly set after a service has finished.

In this technical report, we have shown that the approach works for a simple
example and for one target platform only. An evaluation for larger examples
and different target platforms is still missing – working out larger examples is
future work and part of the evaluation process. Likewise, we still need to show
that the same CPN models can be used for verification as well as for automatic
code generation. Though verification is not the main focus, future work will, in
the least, demonstrate that verification from the model is possible in principle.
A first step towards verification was taken already in [8].

This technical report focuses on the modelling concepts and notations of
our approach as well as the concepts and techniques for generating the code
from these models. In order to stay focused, we blatantly ignore other code
generation approaches and related work in general. This will be discussed in a
separate paper.
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A The Generated Code

Listing 7: The generated code for the sender module

class Sender {
def Idle = true
def Open
def Receiver

def SenderOpen(server){
if(!Idle){

throw new Exception(’unfulfilled precondition: Idle’)
}
/*vars: [socket]*/
def socket
socket = new Socket(server.host, server.port)
this.Receiver = socket
Open = true

}

def SenderSend(msg){
if(!Open){

throw new Exception(’unfulfilled precondition: Open’)
}
/*vars: [msg, OutgoingMessage, __LOOP_VAR__, __TOKEN__]*/

def OutgoingMessage
def __LOOP_VAR__
def __TOKEN__

OutgoingMessage = msg.getChars().toList().collate(5)
.collect{ new String(it.toArray(new char[0])) }

__TOKEN__ = null//()

__LOOP_VAR__ = true
while(__LOOP_VAR__){

def m = OutgoingMessage.remove(0)

if(OutgoingMessage.size() == 0){
__TOKEN__ = [1,m]

} else {
__TOKEN__ = [0,m]

}
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Receiver.getOutputStream().newObjectOutputStream()
.writeObject( __TOKEN__)

__TOKEN__
__LOOP_VAR__ = ( 0 == __TOKEN__[0] )

}

__TOKEN__ = null//()
return

__TOKEN__

Open = true

}

def SenderClose(){
if(!Open){

throw new Exception(’unfulfilled precondition: Open’)
}

/*vars: []*/
Idle = true

}
}

Listing 8: The generated code for the receiver module

class Receiver {
def Idle = true
def Ready
def Sender

def ReceiverInit(rport){
if(!Idle){

throw new Exception(’unfulfilled precondition: Idle’)
}

/*vars: [socket]*/
def socket
socket = new ServerSocket(rport).accept()
this.Sender = socket
Ready = true

}

def ReceiverClose(){
if(!Ready){

throw new Exception(’unfulfilled precondition: Ready’)
}
/*vars: []*/
Idle = true

}
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def ReceiverReceive(){
if(!Ready){

throw new Exception(’unfulfilled precondition: Ready’)
}
/*vars: [mss, __LOOP_VAR__, __TOKEN__]*/

def mss
def __LOOP_VAR__
def __TOKEN__

mss = []

__LOOP_VAR__ = true
while(__LOOP_VAR__){

def p = Sender.getInputStream().newObjectInputStream()
.readObject()

__TOKEN__ = p
mss.add(p)
__TOKEN__ = p
__LOOP_VAR__ = ( 0 == __TOKEN__[0] )

}

__TOKEN__ = null//()
StringBuffer sb = new StringBuffer()
mss.each{ sb.append(it[1].toString() ) }
__TOKEN__ = sb.toString()

__TOKEN__
return __TOKEN__

Ready = true
}

}


