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ABSTRACT 
Wood is a hygro-mechanical, non-isotropic and inhomogeneous material concerning both modulus 
of elasticity (MOE) and shrinkage properties. In stress calculations associated with ordinary timber 
design, these matters are often not dealt with properly. The main reason for this is that stress 
distributions in inhomogeneous glued laminated members (glulams) and in composite beams 
exposed to combined mechanical action and variable climate conditions are extremely difficult to 
predict by hand. Several experimental studies of Norway spruce have shown that the longitudinal 
modulus of elasticity and the longitudinal shrinkage coefficient vary considerably from pith to bark. 
The question is how much these variations affect the stress distribution in wooden structures 
exposed to variable moisture climate. The paper presents a finite element implementation of a beam 
element with the aim of studying how wooden composites behave during both mechanical and 
environmental load action. The beam element is exposed to both axial and lateral deformation. The 
material model employed concerns the elastic, shrinkage, mechano-sorption and visco-elastic 
behaviour of the wood material. It is used here to simulate the behaviour of several simply-
supported and continuous composite beams subjected to both mechanical and environmental 
loading to illustrate the advantages this can provide. The results indicate clearly both the 
inhomogeneity of the material and the variable moisture action occurring to have had a significant 
effect on the stress distribution within the cross-section of the products that were studied.  
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1. INTRODUCTION 

Solid timber is naturally suited as a source of members to be subjected to the combined effects of 
axial and flexural actions, since such solid members are sawn from the trunk of a tree. The high 
degree of stiffness and strength of the trunk in the axial direction makes the timber capable of 
withstanding high level of tension and of compression stress. Most structures and structural systems 
for building purposes consist of (solid or composite) beams, columns and frames that can be of 
differing types. The lamination and finger jointing of wood has also enabled timber beams and 
frames of virtually any length and shape to be produced. These products are usually graded higher 
than solid timber due to the fact that the natural and drying-related defects (such as knots, shakes 
and cracks) present in the wood material can be discarded.  
 
During the last few decades extensive research has been carried out on material properties of wood 
and how these affect the quality and the surface performance of the final timber product. It is well 



known, for example, that wood is very sensitive to climate changes in terms both of shrinking or 
swelling and of direct effects on its stiffness and strength properties [Bodig and Jayne (1982), 
Kollmann and Côté (1968), and Dinwoodie (1989)]. Wood is a hygroscopic material, meaning that 
it constantly attempts to come into equilibrium with climate conditions in the surroundings. This 
dynamic moisture process can result in solid timber and laminated timber products becoming 
markedly distorted (twisted, bowed, cupped or crooked) when they are exposed to climatic 
variation; see e.g. Johansson and Kliger (2002), Ekevad (2005), Ormarsson and Cown (2005), 
Astrup (2009) and Gereke et al. (2010). It is also well documented that wood is an inhomogeneous 
material concerning such parameters as the modulus of elasticity (MOE) [Dahlblom et al. (1999a)] 
and shrinkage coefficients in the fibre direction [Yamashita et al. (2009), and Dahlblom et al. 
(1999b)]. For normally grown trees, the MOE often increases quite linearly (up to factor of two) 
from pith to bark whereas the shrinkage coefficient usually decreases [Wormuth (1993), and 
Dahlblom et al. (1999b)]. It may be noted that variation in MOE and shrinkage properties is highly 
linked to the variation in the microfibril angle (MFA), high MFA results in low MOE and high 
shrinkage properties (see e.g. Persson 2000). For timber containing reaction wood, the 
inhomogeneity becomes stronger and the shrinkage or swelling is also considerably greater than for 
normal wood; see e.g. Ormarsson et al. (2000). The main reason for this is that the compression 
wood in general has much higher MFA than normal grown wood.  
 
The fact that wood is an inhomogeneous material is not dealt with in EC5 more than in terms of 
encapsulation in connection with certain safety and modification factors. In textbooks on timber 
design; see e.g. Thelandersson and Larsen (2003), Porteous and Kermani (2007), and Larsen and 
Enjily (2009), it is often noted that the moisture sensitivity of the wood material needs to be taken 
into account and that structural timber should be dried (or conditioned) down to an average moisture 
content (MC) that corresponds to the expected climate conditions found during the service life of 
the wood product. In the EC5-rules for ultimate limit state (ULS) design, the moisture and load-
duration effects on the strength properties of timber and wood-based products is dealt with by use of 
the modification factor kmod. The values of the factor are based on three service classes representing 
different climate conditions and on five different duration-classes. For both solid timber and glued 
laminated timber, the kmod values are similar for service classes 1 and 2 despite the differences 
between these two classes in terms of climate conditions. For the service limit state (SLS) design of 
EC5, the moisture effects on long-term deflection caused by creep is taken account of by means of 
the factor kdef, which predicts the larger deflections occurring in more humid environments. The 
problem here, however, is that natural moisture movements (shrinking and swelling) during the 
service life of the wood material can generate complex stress profiles (over the cross-section) that 
should better be taken into account in the process of designing timber structures. It is also 
interesting to study how mechano-sorption and creep deformations affect the stress distribution. 
Several experimental studies have been conducted to investigate how mechano-sorption and creep 
affect the deflection of wooden beams subjected to bending and to climate variation; see e.g. 
Bengtsson (2001), Bengtsson and Kliger (2003) and Mårtensson (1994).  
 
Glued-laminated products consisting of inhomogeneous laminations to which MOE and shrinkage 
coefficients apply, as well as laminations of different strength classes, and laminations with 
differing moisture content when the final product is created, show a tendency for stresses to build up 
during changes in moisture level, due to the internal constraints that generate within the cross-
section of the product. It is difficult, however, to predict how moisture-related stresses will develop 
during the service life of the product as a whole, especially if mechano-sorption effect and visco-
elastic behaviour need to be taken account of as well. A simple finite element model was developed 



with the aim of obtaining a better understanding of how (inhomogeneous) laminated products 
behave during combined mechanical and environmental loadings. It is a conventional beam model 
developed further so as to be able to simulate moisture related stresses in beams having an arbitrary 
number of inhomogeneous laminations. The wood lamellas are assumed to be fully fixed (glued) 
together, resulting in no-slip deformations along the glue lines. The MOE, the shrinkage coefficient 
and MC-changes can vary in an arbitrary manner within each lamella, which can result in 
discontinuous functions at the glue lines. The model is an incremental beam model that can predict 
the stress history as a whole of an arbitrary location within the beam. The material model employed 
deals with elastic, shrinkage or swelling, mechano-sorption and visco-elastic behaviour. The model 
(expanded beam theory) has been implemented in the finite element program CALFEM (2004).  
 
2. THEORY 
This section describes a finite element theory used for the simulation of inhomogeneous beams of 
wood. The longitudinal modulus of elasticity E(x,y) and the longitudinal shrinkage coefficient α(x,y) 
are allowed to vary arbitrarily over the beam depth (y-coordinate) and along the element length (x-
coordinate); see Fig. 1. All the material parameters are assumed to be constant across the beam z-
direction. A beam element can be subjected to combined axial and uniaxial flexure (around the z-
axis) as well as to environmental loading in terms of arbitrary variations in moisture content change 
∆w(x,y) within the beam. The variation in moisture content changes over the cross section is e.g. 
affected by: different climate conditions at the beam surface, different MC states in the lamellae 
directly after gluing and different EMC and sorption isotherms for the lamellae. The material model 
employed deals with such phenomena as linear elasticity, shrinkage or swelling, mechano-sorption 
and visco-elastic wood behaviours. 
 

 
 
Figure 1. Diagram of the beam element studied: 

(a) Geometry, loads and degrees of freedom 
(b) Examples of how the modulus of elasticity E(y), the shrinkage coefficient α(y) and 
       the moisture content change ∆w(y) can vary across the depth of the cross-section. 

 
2.1 The normal force centre (NFC) of the cross section 
For markedly inhomogeneous cross sections (showing unsymmetrical variations in MOE across the 
depth of the beam) the normal force centre (NFC) and the centroid (C) can differ significantly in 
location within the cross-section. The NFC is the only point within the cross-section at which 
normal force action only generates extension or compression across the cross-section as a whole. In 
selecting the beam axis (origin of the cross-sectional coordinate system (y,z); see Fig. 1) at the NFC, 
the extension and the bending can be treated separately. For the coordinate system ),( zy  the 
location of the NFC can be calculated as 
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The field ),( yxE  represents the effective modulus of elasticity in the beam direction. Based on the 
NFC location ),(0 xy  the field ),( yxE  can then be transformed to ),,( yxE  which refers to the 
cross-sectional coordinate system. If the wood fibres are not oriented in the beam direction because 
of skewed sawing, spiral grain or some other misalignment, ),( yxE  can be calculated as  
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where C11 is the first diagonal value in the compliance matrix ,C  referring to the global coordinate 
system ),,( zyx . The transformation from the local coordinate system for the wood material 
directions ),,( trl  to the global one ),,( zyx  is given by 
 

11 -T- GCGC =               (5) 
 
where G is the transformation matrix and C  is the compliance matrix referring to the local 
coordinate system ),,( trl  for wood being described in Ormarsson et al. (1998).  
 
2.2 Constitutive relations 
To simulate hygro-mechanical and (long-term) visco-elastic deformations in wood, the material 
model needs to take account of elastic, free shrinkage, mechano-sorption and visco elastic 
behaviour. For predicting the behaviour connected with mechano-sorption and creep, the theory 
needs to be expressed in an incremental form. The total strain rate in the beam direction is assumed 
to be the sum of four strain rates, i.e.  
 

cmwe εεεεε  +++=              (6) 
 
where a dot is a time derivative, ε  is the total strain, eε  the elastic strain, wε  the moisture-induced 
strain, mε  the mechano-sorption strain and cε  the creep strain. The stress rate can be calculated as 
 

)( cmwe EE εεεεεσ  −−−==            (7) 
 
The beam theory presented below needs to fulfil the beam specification termed Bernoulli´s 
hypothesis “The cross-sections are planar and perpendicular to the longitudinal material fibres 
before and after the deformation of the member”. This means that the total strain ε  has to vary 
linearly over the cross sections whereas the strain portions cmwe εεεε  , , ,  can vary arbitrarily over the 



cross sections. For an inhomogenous beam element (in the xy-plane) subjected to combined axial 
and bending action, the different strain distributions can be expressed as 
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where the rate of the creep driver ),,( tyxnγ  is given by the integral  
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The matrices mα  and  are shrinkage/swelling and mechanosorption matrices given in Ormarsson et 
al. (1998), matrix G


 being the first row in the inverse of the transformation matrix 1-G  and G


 

being the transformation matrix 1)−T(G . The variables nn τφ   and  are constants that describe the 
shape of the relative creep curve representing the whole service life of the studied products. The 
relative creep is calculated as a sum of different exponential functions becoming active during 
different time periods in the series; see Ormarsson et al. (2010) for more detailed description. The 
time t is the total time of the analysis, whereas 't  represents different times at which the structure is 
subjected to new stress increments in terms of both mechanical and moisture action. For 
inhomogeneous (or unsymmetrical) cross sections in which the origin of the cross-sectional 
coordinate (y) is located at the NFC, the section force rate becomes 
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where (x)DEA  and (x)D

zEI  represent the axial and the bending stiffness of the cross section whereas 

(x)N p
  and (x)M

zp
  represent the incremental pseudo-section forces caused by free shrinkage strain, 

mechano-sorption strain and creep strain. These quantities are all cross-section related values given 
by  
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or 
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For inhomogeneous beams, the variation in shear stress rate ),( yxτ  can be estimated by 
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and where V  is a shear force caused by mechanical and moisture-related bending action, y)(xD A

ES z
,

*

 
is the first moment of area (weighted by ),( yxE ) above the shear stress level around the z-axis, 

(x)D
zEI  is the bending stiffness as presented earlier, and (y)b  is the width of the beam at the shear 

stress level.  
 
2.3 Finite element formulation 
As based on static equilibrium, the differential equations (strong form) for a beam subjected to axial 
and bending action is given by 
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where the terms qx, and qy represent distributed loads acting in the x- and y-directions, respectively. 
The integral form (weak form) of these equations can be expressed as 
 

[ ] 0=−− ∫∫ dxqvNvdxN
dx
dv b

a
xx

b
ax

b

a

x          (21) 

 

[ ] 02

2

=++







− ∫∫ dxqvVvM

dx
dv

dxM
dx

vd b

a
yy

b
ay

b

a
z

y
b

a
z

y        (22) 

 
Addition and differentiation of these expressions with respect to time yields the final (incremental) 
weak formulation in a matrix form as 
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Based on the weak formulation given in Eq. (23) and the approximation v = Nc for the arbitrary 
weight functions, the global FE-formulation can be expressed as 
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where N is the shape function matrix, c is an arbitrary constant vector and .~NB ∇=  Insertion of the 
constitutive relation (13b) yields 
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The total strain/curvature vector ζ can be expressed as 
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where u = [u v]T is the displacement vector and a is the global nodal displacement/rotation vector. 
Insertion of Eq. (27) into Eq.(26) yields 
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Based on the above expression, the finite element equation becomes 
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where wf , mf  and cf  are the pseudo-load vectors for free shrinkage, mechano-sorption and creep 
strain, respectively. For a planar beam element (with 6 degrees of freedom, see Fig 1(a)), the 
element displacement/rotation vector ea , the element shape function matrix eN and the associated 
strain/curvature matrix eB  are given by 
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where the shape functions for the axial and flexural deformation are 
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3. NUMERICAL EXAMPLES 
 
The beam theory presented above has been implemented in the finite element software CALFEM, 
which is an FE-toolbox in the Matlab environment; see CALFEM (2004). The beam model is a  
finite element model suitable for simulation of hygro- and visco-elastic behaviours in 
inhomogeneous structural timber elements (beams, columns and frames). It is an incremental model 



that can deliver historical output for displacements and rotations (v, φ), section forces (M, V, N), 
curvatures and strains (κ, ε) and stresses (σ, τ) during the service life of the structure. All integral 
expressions concerning variation over the cross section of the beam or along it are performed using 
numerical integration. The material parameters in addition to E(y) and α(y) are the same as used in 
Ormarsson (1999). The creep data employed is based on experimental work presented by Gressel 
(1984). Additional information concerning the relative creep curve can be found in Ormarsson et al. 
(2010). 
 
3.1 Simply supported beam 
A laminated I-beam consisting of three solid wood lamellae was used to study how variations in the 
modulus of elasticity E(y) and the shrinkage coefficient α(y) affect the cross-sectional stress pattern 
in laminated timber products. The beam was 3 m long and simply supported. It functioned as a 
typical composite beam since the laminations were assumed to be assembled by gluing, so that no 
slip deformation between the lamellae would arise. The cross-sectional dimensions and the curves 
representing variation in E(y), α(y) and ∆w(y) are shown in Fig. 2. For the flange members, E(y) and 
α(y) vary linearly over the cross-section, whereas they are evenly distributed within the web. Each 
of the members is exposed to a constant moisture change ∆w = − 4% (drying). Figure 2 shows two 
stress profiles, the first one (Sim.1) presenting a linear elastic stress response occurring directly after 
drying, the second one (Sim. 2) showing a stress profile as it appeared after 50 years. The entire 
drying process (4%) was assumed to occur during the first year of service life, whereas the creep 
deformation, in contrast, developed over a period of 50 years. The mechano-sorption effect had only 
a slight effect on stress profile 2, since the normal stresses were rather slight and the drying was also 
limited. Generally, the mechano-sorption effect in wood is relatively small in the fibre direction (l) 
as compared to what happens in the other material directions (r, t). The results show the maximum 
tensile stress (approx. 1.7 MPa) present at the boundary between the flanges and the web. At these 
locations the stress jumps from about 1.7 MPa in tension to about − 0.7 MPa in compression. The 
stress jumps occur because the E(y) and α(y) curves being discontinuous at these locations. 
 

 
 
 
 

Figure 2. Stress distribution in an inhomogeneous simply-supported I-beam exposed to constant 
                 change in moisture content (∆w = − 4%). 
 



 
    

 
 
Figure 3. Stress distribution in an inhomogeneous simply-supported I-beam exposed to a linearly 
                distributed change in moisture content over the cross section, (E(y) and α(y) are the 
                same functions as in Fig. 2).  
 
The stress curves within the flanges are quadratic because of the linear variations in E(y) and α(y) 
that occurred. The stress profile is symmetrical since the input data shows symmetrical variation 
over the cross-section. The stress distribution also implies that the normal force, the moment and the 
curvature become zero. When the material shrinks or swells, an internal constraint is generated due 
to the inhomogeneity of the shrinkage parameters. There is also a stress reduction due to the creep 
deformation that takes place despite there being no axial displacement or flexure. The creep model 
used is a linear Kelvin model in terms of which the creep effect is proportional to the stress state in 
the material. Figure 3 shows stress profiles for the same I-beam as presented in Fig. 2. It is exposed 
to linearly distributed changes in moisture content over the cross section, i.e. 8% drying at the 
bottom edge down to zero at the top edge. For both simulations, the beam became bent having a 
constant curvature of κ = − 0.0029 m-1 and a maximum deflection of vmax= 3.3 mm. Since the beam 
was simply-supported (statically determinate) and was only exposed to environmental loading, the 
moment and the normal force became zero. The maximum tensile stress is about 2.7 MPa at the 
boundary between the bottom flange and the web. The stress curves within the flanges are curved 
whereas they are linear functions within the web. The maximum jumps in the stress curves occur at 
the same location as the maximum tensile stresses. As before, the stress is reduced due to the creep 
deformation that occurs, despite the total deformation being unchanged.  
 
Figure 4 shows stress results for the I-beam when it is exposed to a linearly distributed change in 
moisture content across the flanges, resulting in drying in the bottom flange and moistening in the 
top flange. The beam becomes bent, having a constant curvature of κ = − 0.0025 m-1 and a 
maximum deflection of vmax= 2.8 mm. The maximum stress becomes almost 3.0 MPa in 
compression at the boundary between the bottom flange and the web. As in the previous example, 
the stress graphs are curved within the flanges and linear in the web, the maximum stress jumps 
occurring at the same location as the maximum stresses, the creep deformation reducing the stresses 
despite the total deformation of the beam being unchanged, the moment and the normal force also 
being zero. 



 
 
Figure 4. Stress distribution in an inhomogeneous simply-supported I-beam exposed to a linearly 
                distributed change in moisture content within the flanges and to no moisture change 
                within the web, (E(y) and α(y) being the same functions as in Fig. 2).  
 
3.2 Continuous beam 
To study how structural constraints affect the stress distribution, a continuous I-beam spanning two 
3 m long spans was studied. Both the material data and the changes in moisture content were the 
same as for the beam shown in Fig. 4. Stress variations (with and without creep) over the cross-
section above the middle support are shown in Fig. 5. The maximum stresses there were now  
 

 

  
 
Figure 5. Stress distribution in an inhomogeneous two-span I-beam exposed to the same changes in 
                moisture content as shown in Fig. 4, (E(y) and α(z) being the same functions as in Fig. 2).  



approximately 6.0 MPa in both tension and compression, the maximum stresses being located at the 
top and at the bottom surfaces of the flanges. As before the stress graphs are curved within the 
flanges and linear within the web. Note that in this case the maximum stresses are up to 40% of the 
design strength of solid timber of strength class C24 subjected to a medium load-duration, despite 
the change in moisture content being relatively small. Since the beam is statically indeterminate,  
 

 
 

Figure 6. Moment distribution along the I-beam presented in Fig. 5, (E(y) and α(y) are the same 
                functions as in Fig. 2).  
 

 
 

Figure 7. Stress distribution along the top surface of the I-beam shown in Fig. 5, (E(z) and α(z) 
                being the same functions as in Fig. 2).  
 
moment variation is built up along the beam. Figures 6 and 7 show how the moment and the stresses 
at the top surface vary linearly along the beam. The moment is zero at the end supports and 
increases linearly to about 5.3 kNm above the middle support. Again, this is a major moment, one 
that is generated by a relatively small change in moisture content in combination with one structural 
constraint (the middle support). The moment becomes so large because of the beam striving to bend 
upwards while it is fixed in position at the middle support. The stresses at the top surface vary in a 



manner similar to the moment to maximum compression stress of about − 6 MPa present at the 
middle support. Both the moment and the stresses were reduced significantly because of creep 
deformation. Figure 8 shows the deflection curve of the beam, which displays about the same 
deflection before as after creep deformation. Thus, the reduction in the elastic strain is of about the 
same magnitude as the increase of the creep strain. The maximum deflection is slightly above 0.8 
mm (upwards) in the middle of the spans and zero at the supports. 
 

   
Figure 8. Deflection of the continuous I-beam presented in Fig. 5, (E(y) and α(y) are the same 
                functions as in Fig. 2).  
 
3.3 Glulam beam 
The final example given presents simulation results for a glulam beam subjected to combined 
mechanical flexure and environmental loading. The beam is a 3 m long and simply-supported beam 
having a cross-section of six 45x100 mm lamellae. It is loaded with an evenly distributed line load 
qd = − 8.0 kN/m along the beam. Figure 9 shows four different stress profiles over the cross-section 
of the beam. The first two simulations (Sim. 1 and Sim. 2) show an elastic stress distribution caused 
by the distributed load for a beam with a constant E = 14,000 MPa and one for a beam with a linear 
variation in the E-modulus within each lamella, extending from 12,000 MPa on the bottom side to 
16,000 MPa on the top side. Typical linear variation was found for the first simulation and a slightly 
curved and discontinuous curve for the second simulation. The jumps occurred at the boundaries 
between the lamellae, where the discontinuity in the modulus of elasticity was found. On the top 
side, the stresses increased from about 7.0 MPa in the first simulation to about 9.0 MPa in the 
second one. This increase took place because of the modulus of elasticity having its maximum value 
on the top surface of the lamellae. Note that the deflection presented in Figure 11 shows about the 
same flexure in both of these simulations. In the third simulation (Sim. 3), the top lamella was 
exposed to 2% moistening and the lamella below to 2% drying. This could have occurred through 
the lamellae that were glued together differing in their moisture content. This moisture loading 
increased the stress on the top surface from 9.0 MPa to about 11.5 MPa. Thus, the maximum stress 
in the first simulation (for a constant E-modulus) increased by 55%. This indicates clearly how 
important it is to take the inhomogeneity (variation in the E-modulus) of the wood material and the 
moisture related loading into account. The last simulation (Sim. 4) shows the stress profile after 50 
years of creep deformation. The stress reduction is greatest in the two top lamellae, where the 
moisture-related stresses are largest. Note that the creep deformation has no effect on stresses 
caused by mechanical load.  



 
 
Figure 9. Stress distribution in a glulam beam: 
                Sim 1: constant E-modulus E = 14000 MPa and distributed load qd = − 8.0 kN/m;  

Sim 2: E(y) varying linearly from 12000 to 16000 MPa, the mechanical load being the 
               same as in Sim.1; 

Sim 3: Sim. 2 exposed to an additional 2% of moistening of the top lamella and a 2% 
               drying of the lamella below; 

Sim 4: Sim. 3 plus the creep deformation that occurred during a period of 50 years.  
 
 

 
 
Figure 10. Variations in stress along the top surface of the glulam beam shown in Fig. 9.  
 



 
Figure 10 shows the variation in stress along the top edge of the beam. It illustrates clearly how the 
stress increases from the first simulation to the third, and the constant reduction in stress due to 
creep deformation (Sim. 4). It also shows that the stresses in simulations 3 and 4 are not zero at the 
ends of the beam. The reason for this is that the beam theory only requires the normal force and the 
moments but not the stresses to be zero at the supports.  

 
 
Figure 11. Deflection graphs of the glulam beam shown in Fig. 9.  
 

 
 
Figure 12. Moment variation along the glulam beam shown in Fig. 9.  
 
The deflection of the beam is shown in Fig. 11. The first and the second simulation (Sim. 1-2) 
shows about the same deflection. This is because the constant modulus of elasticity in the first 
simulation was the average value of the modulus of elasticity variation in the second one. The 



deflection is reduced slightly when the beam is subjected to the moisture load since the moisturising 
of the top lamella tends to produce upward deflection. The creep deformation in simulation four 
causes considerable deflection because of the strong bending action caused by the distributed load.     
 
Figure 12 shows the moment distribution along the beam. It displays clearly the same moment 
distribution as in all the simulations. Since the beam is statically determined, the moment is caused 
only by the mechanical load, which results in a maximum moment of Mmax = 9.0 kNm at the centre 
of the beam and a zero moment at the supports.    
 
4. DISCUSSION AND CONCLUSIONS 
¶ 
For composite beams, the approach of employing the modular ratio is commonly used in timber 
design because of the differences in stiffness of the laminations. However, if the composites are 
exposed to variable changes in moisture, the theory involved becomes very complex, especially if 
the composites are assumed to be inhomogeneous regarding their stiffness and shrinkage properties. 
The numerical results presented in the paper show that the finite element theory for the beam 
element studied can be used successfully for simulating combined elastic, hygro-mechanical and 
visco-elastic behaviour in inhomogeneous laminated timber beams. Adequate knowledge of the 
stiffness, shrinkage or swelling, and creep properties involved is needed, however, to obtain 
satisfactory simulation results for variations in stress over the cross-section. The model is small (in 
terms of number of degrees of freedom), flexible and effective and can easily be developed further 
for more complex behaviours and cross-sectional geometries. If one has information available 
concerning variations in climate over a long period in time, the model can be used to study how 
timber structures behave (in terms of deflection, creep and stresses) during their service life as a 
whole. The particular advantage of the model is thus that it can simulate complex  behaviour with 
use of very limited computer power.  
 
The results of the simulation show that moisture-related stresses can become relatively large even 
when there is only a limited change in moisture content within the wood lamellae. Since the 
variations in stress over the cross-section can also be quite complex (their being both nonlinear and 
discontinuous), it is difficult to know where the maximum stress will be located. Variations in the 
modulus of elasticity also have a significant effect on the stress profile, the maximum stress value 
increasing. The computations made also provided interesting results regarding the interaction 
between creep, moisture-related stress, boundary conditions and structural constraints.   
 
On the basis of the numerical results presented, it can be concluded that knowledge of material 
inhomogeneity and of stresses caused by changes in climate should be taken more careful account of 
in the process of designing timber structures. There is a strong need for simple and effective 
simulation tools being developed, in particular for advanced timber design. The importance of this 
type of modelling is that it makes it possible to analyse statically indeterminate trusses and frame 
structures exposed to combined mechanical and environmental loading during their whole service 
life. The theory has also a high potential to be developed further for curved timber structures and 
composite beams with nailed longitudinal joints. The theory is needed within the field of timber 
engineering to better understand the climate related and long term structural behaviour of timber 
structures. It can be implemented for practical use through user-friendly software which can be a 
step forward in the process to implement this type of load actions in the future timber standards.  
¶ 
5. FUTURE WORK 
¶ 
The beam model presented can be developed further, for example regarding more complex cross-
sectional geometries, variations in geometry along the beam A(x), biaxial bending, arbitrary 



variation in E(x,y,z) and α(x,y,z) over the cross-section, curved annual rings, twist deformation and 
geometrical nonlinearity. Until now, the moisture content history for the cross-section involved has 
been given as known input data. To obtain better predictions of the moisture history, it could instead 
be simulated by a two-dimensional moisture flow analysis coupled with the beam stress analysis. It 
would also be possible to develop the beam element further for simulation of beams having 
mechanical joints that allow small slip deformations to occur. In addition, the material model could 
also be expanded so as to include a non-linear visco-elastic model and finite shear deformations.  
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