
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 10, 2024

Aspergillus hydrophobins - Identification, classification and characterization

Jensen, Britt Guillaume

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Jensen, B. G. (2012). Aspergillus hydrophobins - Identification, classification and characterization. Department
of Systems Biology, Technical University of Denmark.

https://orbit.dtu.dk/en/publications/862a72f0-1a5c-4592-9944-3649974bbe3b


Preface                                                                                 PhD Thesis Britt Guillaume Jensen 
Aspergillus  hydrophobins – Identification, classification and characterization 

I 

 

 

Preface 

This thesis is submitted to the Technical University of Denmark and describes the results 

obtained during my PhD study. The work was carried out at the Center for Microbial 

Biotechnology (CMB) at the Department of Systems Biology from January 1
st 

2009 to March 

1
st
 2012. The project was financed by the Technical University of Denmark.  

First and foremost, I would like to thank my main supervisor Kristian Fog Nielsen for 

excellent guidance, constructive criticism and interesting discussions. My co-supervisor 

(previous main supervisor), Ib Søndergaard, is thanked for the initial opportunity to engage in 

the PhD study and very useful help and guidance. Both are highly appreciated for their 

endless support both in scientific and private matters. Special thanks go to my co-supervisor 

and former office mate, Mona Højgaard Pedersen, for endless discussions, guidance and 

memorable journeys to Paris and California. Thank you for having been my “hydrophobin 

partner in crime”. I would also like to thank my co-supervisors Jens Christian Frisvad, Lars 

Jelsbak and Susanne Jacobsen for invaluable help, guidance and exiting discussions 

throughout the years.  

As part of my PhD project several molecular biology techniques have been used. A big 

“merci beaucoup” goes to Jakob Blæsbjerg Nielsen for teaching me the ways and for your 

everlasting patience in the lab. Also big thanks to Anita and Olivera for being such great 

office mates. Thanks for the laughs and continuous supply of cookies and liquorice. 

Furthermore, a big thanks to the rest of CMB for providing such an inspiring environment. 

My collaboration with Søren Dohn, Anja Boisen and Thomas Pedersen at Department of 

Micro- and Nanotechnology is also highly appreciated; Søren for unravelling the world of 

cantilevers and Thomas for hours in front of the SEM.  

Finally, I would like to thank my family and friends for their endless support and 

encouragement. To my husband Peter, a big thanks for your everlasting patience and interest 

in my project. Thank you for always being there.     

  

Britt Guillaume Jensen 

Kgs. Lyngby, September 2012 



Preface                                                                                 PhD Thesis Britt Guillaume Jensen 
Aspergillus  hydrophobins – Identification, classification and characterization 

II 

 

 

 

 



Summary                                                                              PhD Thesis Britt Guillaume Jensen 
Aspergillus  hydrophobins – Identification, classification and characterization 

III 

 

 

Summary 

Aspergillus species are a diverse group of fungi found ubiquitously in nature, and include 

species used in industry as well as human pathogens causing pulmonary infections. For 

immunocompromised individuals these infections are often fatal, due to lack of adequate 

treatment. Hydrophobins, a class of small hydrophobic proteins, are uniquely found in 

filamentous fungi including Aspergillus species. Little is known about their roles in 

Aspergillus or their possible involvement in disease. Aspergillus species and the bacterium 

Pseudomonas aeruginosa both commonly colonize the lungs of cystic fibrosis (CF) patients, 

but limited research has dealt with Aspergillus-P. aeruginosa interactions. Whether, 

hydrophobins are involved in the Aspergillus-P. aeruginosa interaction is not known. The 

overall aim of this PhD study was to provide an overview of Aspergillus hydrophobins and to 

achieve a deeper understanding of the roles of hydrophobins in Aspergillus species. 

Furthermore, Aspergillus-P. aeruginosa interactions were examined.   

In recent years the genomes of the main Aspergillus species have become available providing 

a unique amount of data for research. Using bioinformatics, Aspergillus species were found to 

display a varying number of putative hydrophobins ranging from two in A. oryzae to eight in 

A. niger. Over 50 % of the Aspergillus hydrophobins could not be classified into the two 

original classes (I and II) defined by the physical properties and hydropathy patterns of 

hydrophobins, but displayed intermediate forms. The majority of the identified Aspergillus 

hydrophobins were either class I hydrophobins or intermediate forms. Only a single class II 

hydrophobin was found in A. terreus. 

To characterize hydrophobins in Aspergillus species, a number of different A. nidulans 

hydrophobin deletion strains (rodA∆, dewA∆, AN0940∆, AN1837∆, AN6401∆) were 

constructed. Deletion of the hydrophobins rodA or dewA resulted in reduced expression of 

other hydrophobins. Interestingly, deletion of both hydrophobins rodA and dewA resulted in a 

synthetic genetic interaction and an increased expression of the hydrophobin AN7539. The 

deletion strains were additionally used to test a number of previously proposed biological 

functions of hydrophobins. Lack of single hydrophobins had no effect on colony surface 

hydrophobicity or the ability of the strains to breach from an aqueous environment. 

Phenotypes were only apparent in rodA∆ strains, known to be involved in rodlet formation, 

and the dewA∆ strain, thus the role of the other hydrophobins in A. nidulans proved hard to 
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determine. If the hydrophobins AN0940, AN1837 and AN6401 are located on the conidia 

surface, they do not play dominant roles. These hydrophobins may only be found on the 

mycelium surface or secreted to the surrounding environment  

An examination of the interactions between different Aspergilli and P. aeruginosa revealed 

that all tested Aspergilli were suppressed by P. aeruginosa. An increase in production of 

phenazines, a class of anti-fungal compounds produced by P. aeruginosa, was observed in the 

contact zone of the two organisms. However, A. fumigatus differed from the other Aspergilli 

by not stimulating production of phenazines. Using P. aeruginosa mutants, factors involved 

in the rpoN pathway were found to be involved in the interaction. Furthermore, common late 

stage CF mutations in P. aeruginosa seemed to alter the interaction pattern rendering the 

bacterium more susceptible to A. fumigatus. Hydrophobins did not seem to play a role in the 

interaction as no differences could be observed between a control strain and hydrophobin 

deletion strains.  
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Dansk resumé 

Slægten Aspergillus er en broget gruppe af svampe, som findes overalt i naturen, og som 

inkluderer både arter benyttet i industrien, og sygdomsfremkaldende arter impliceret i specielt 

humane lungeinfektioner. Disse svampeinfektioner kan, på grund af manglende 

behandlingsmuligheder, være fatale for immunkompromitterede individer.  

Hydrofobiner er en gruppe af små hydrofobe proteiner, som kun eksisterer i filamentøse 

svampe som Aspergillus. Der eksisterer kun begrænset viden omkring hydrofobinernes rolle i 

Aspergillus arter og deres potentielle involvering i sygdomsmekanismer. Både Aspergillus 

arter og bakterien Pseudomonas aeruginosa koloniserer ofte lungerne af cystisk fibrose (CF) 

patienter, men der er på nuværende tidspunkt begrænset viden omkring interaktionen mellem 

Aspergillus og P. aeruginosa. Hvorvidt, hydrofobiner spiller en rolle i Aspergillus-P. 

aeruginosa interaktioner er endnu ukendt.  

Formålet med dette PhD projekt var at identificere Aspergillus hydrophobiner og få en dybere 

forståelse for hydrofobiners rolle i Aspergillus arter. Desuden blev Aspergillus-P. aeruginosa 

interaktioner undersøgt.   

I de seneste år er de vigtigste Aspergillus genomer blevet tilgængelige, hvilket har resulteret i 

en guldmine af data. Ved brug af bioinformatik, blev et vekslende antal af hydrofobiner i 

Aspergillus arterne fundet, varierende fra to i A. oryzae til otte i A. niger. Hydrofobiner er 

oprindeligt blevet opdelt i to klasser (I og II) på baggrund af deres fysiske egenskaber og 

hydropati-plot, men over 50 % af de fundne Aspergillus hydrofobiner kunne ikke inddeles i 

de to klasser. Disse hydrofobiner synes at være intermediære former. Af de fundne 

Aspergillus hydrofobiner, var størstedelen enten klasse I eller intermediære hydrofobiner. Kun 

et enkelt hydrofobin i A. terreus blev fundet til at være et klasse II hydrofobin. 

Forskellige A. nidulans hydrofobin deletions stammer (rodA∆, dewA∆, AN0940∆, AN1837∆, 

AN6401∆) blev konstrueret for at karakterisere hydrofobiner i Aspergillus og benyttet til at 

undersøge tidligere foreslåede biologiske funktioner af hydrofobiner. Mangel på hydrofobinet 

rodA eller dewA resulterede i lavere gen-ekspression af andre hydrofobiner. Dog resulterede 

manglen på begge hydrofobiner i en syntetisk genetisk interaktion, hvorved en stigning af 

ekspressionen af hydrofobinet AN7539 blev observeret. Mangel på et enkelt hydrofobin 

havde imidlertid ingen effekt på overflade hydrofobicitet eller stammernes evne til at bryde 

igennem en vandoverflade. En visuel fænotype kunne kun observeres i rodA∆ stammer, hvor 
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rodA er kendt for at være involveret i dannelsen af ”rodlets”, og i dewA∆ stammen, hvorfor 

rollen af de resterende hydrofobiner i A. nidulans var svær at fastlægge. Hvis AN0940, 

AN1837 og AN6401 hydrofobinerne findes på spore overfladen, har disse hydrofobiner ingen 

dominerende rolle. Disse hydrofobiner findes muligvis kun på overfladen af mycelium eller 

bliver udskilt til omgivelserne. 

En undersøgelse af interaktionen mellem forskellige Aspergillus arter og P. aeruginosa viste, 

at P. aeruginosa hæmmede alle undersøgte Aspergillus svampe. P. aeruginosa øgede sin 

produktion af de antifungale stoffer kaldet phenaziner i kontaktzonen mellem de to 

organismer. I modsætning til andre Aspergillus svampe, stimulerede A. fumigatus dog ikke 

produktionen af phenaziner. Ved at benytte forskellige P. aeruginosa mutanter, blev faktorer, 

involveret i den regulatoriske mekanisme af rpoN, fundet til at være involveret i interaktionen. 

Desuden synes almindelig forkomne sen-stadie CF mutationer i P. aeruginosa at ændre 

interaktionsmønstret, således at P. aeruginosa ikke kunne hæmme A. fumigatus. Der kunne 

ikke observeres nogen forskel i interaktionen mellem P. aeruginosa og henholdsvis A. 

nidulans kontrol stammer og hydrofobin deletions stammer, hvorved hydrofobiner ikke synes 

at spille en rolle i interaktionen. 
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Thesis outline 

Aspergillus species are found ubiquitously in nature including soils, decaying vegetation and 

dust
1,2

 and many Aspergillus species have the ability to cause pulmonary diseases in humans 

ranging from benign allergies in healthy individuals to more severe and often fatal infections 

in immunocompromised individuals
3
. The majority of infections are caused by Aspergillus 

fumigatus being responsible for approximately 90 % of all Aspergillus infections
3,4

. 

Unfortunately, only few antifungal drugs are effective against Aspergillus and even these 

display low efficiency
4
. Due to increasing numbers of Aspergillus infections, high fatality 

rates and lack of sufficient treatment, Aspergillus infections have become a devastating 

opportunistic infection causing a significant burden on society
5
.  

This thesis consists of two parts. The main and first part of the thesis deals with 

hydrophobins, a family of small proteins found uniquely in filamentous fungi. These proteins 

are important for growth and survival of the fungi, but may also play a role in disease. Only 

few hydrophobins have been studied in Aspergillus species, and therefore knowledge of the 

roles of hydrophobins in Aspergilli is limited. The second part of the thesis examines a 

possible interaction between Aspergillus species and Pseudomonas aeruginosa. Both 

organisms are found in the lungs of cystic fibrosis patients, but little is known about their 

interactions. No knowledge is available of the potential role of hydrophobins in Aspergillus-P. 

aeruginosa interactions. 

The overall aim of this PhD study was to achieve a deeper understanding of the roles of 

hydrophobins in Aspergillus species. The objectives were to generate an overview of putative 

hydrophobins from full-genome sequenced Aspergilli (Chapter 3) and create and characterize 

hydrophobin mutants from the model organism Aspergillus nidulans (Chapter 4). Furthermore 

an aim was to investigate the interactions between Aspergillus species and P. aeruginosa 

using chemical analysis of secondary metabolites (Chapter 5) and by developing a cantilever 

lab-on-a-chip system (Chapter 6).   

To achieve this the thesis is divided into seven chapters, each with special focus on Aspergilli. 

The first chapter introduces hydrophobins and their biological roles. Furthermore, the chapter 

introduces fungal-bacterial interactions with special focus on Aspergillus-P. aeruginosa 

interactions. Chapter 2 outlines the experimental setup for the thesis. Chapters 3-6 describe 
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the results obtained during the PhD study, where chapters 3 and 4 focus on hydrophobins. 

Chapter 3 deals with the identification and classification of hydrophobins from Aspergillus 

species using a bioinformatics approach. Chapter 4 describes a current study involving the 

production and characterization of hydrophobin mutants from A. nidulans. The next two 

chapters focus on interactions between Aspergillus species and P. aeruginosa, where chapter 

5 deals with the interactions between P. aeruginosa and different Aspergillus species with 

focus on A. fumigatus and secondary metabolite production. The involvement of 

hydrophobins is also examined. Chapter 6 describes results regarding the development of a 

cantilever lab-on-a-chip system to study interactions between Aspergilli and P. aeruginosa.  

Finally, chapter 7 is the overall discussion and conclusion.  

References 

 1.  Raper, KB, Fennell, DI, and Austwick, PKC (1965) The genus Aspergillus. Huntington: Robert 

E. Krieger Publishing Company. 686 p. 

 2.  Dyer PS, O'Gorman CM (2012) Sexual development and cryptic sexuality in fungi: insights 

from Aspergillus species. FEMS Microbiol Rev 36: 165-192. 

 3.  Latge JP (1999) Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12: 310-350. 

 4.  Denning DW (1998) Invasive aspergillosis. Clin Infect Dis 26: 781-803. 

 5.  Lin S-J, Schranz J, Teutsch SM (2001) Aspergillosis case-fatality rate: systematic review of the 
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1 Introduction 

Aspergillus – a filamentous fungus 

Fungi are a diverse group of eukaryotes, where some species are filamentous moulds such as 

Ascomycetes, Basidiomycetes and Zygomycetes, while others are unicellular fungi like 

yeasts
1,2

. The focus of this thesis is the Ascomycete genus Aspergillus found ubiquitously in 

nature including soils, decaying vegetation and dust
3,4

 (figure 1). Pier Antonio Micheli (1729) 

was the first to use the name Aspergillus after examining a mould microscopically and finding 

the structure of its conidiophores to resemble the aspergillum (a device used in Catholic 

churches to sprinkle holy water)
3
. Today more than 250 species are classified as Aspergillus 

and include beneficial species used in industry, but also species able to contaminate 

agricultural crops and building materials as well as human pathogens
3–5

. 

 

Figure 1: Aspergillus species can display a variety of different colony colours. From left: A. oryzae, A. flavus, A. terreus, A. 

niger and A. nidulans.  

Many Aspergillus species have been full genome sequenced in the last 10 years, including A. 

fumigatus, A. flavus, A. oryzae, A. niger, A. terreus, A. clavatus and A. nidulans
6–10

. In this 

thesis the focus has been on the full genome sequenced Aspergilli and a short description of 

the life cycle and the different full genome sequenced Aspergilli follows below.   

As a genetic model organism for other Aspergilli, Aspergillus nidulans is frequently used. In 

contrast to many Aspergilli, A. nidulans has a well-characterized sexual cycle, and is therefore 

also named by its perfect state; Emericella nidulans
10

. Recently, the sexual cycle of among 

others Aspergillus fumigatus (teleomorph: Neosartorya fumigata) and Aspergillus flavus 

(teleomorph: Petromyces flavus) has also been found
11–13

. Using A. nidulans as a model 

organism, the life cycle of Aspergilli can shortly be described (figure 2).  
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Figure 2: The life cycle of A. nidulans. The sexual cycle is connected with pink arrows, the asexual cycle with orange arrows 

and the parasexual cycle with green arrow. See text for explanation. Figure from Casselton et al. 200214. 

The asexual cycle is initiated by the swelling and germination of asexual spores called conidia 

resulting in the formation of germ tubes. Elongation of the germ tubes leads to the formation 

of hyphae, which branch and form a large network of hyphae called the mycelium. Some 

hyphae may differentiate into conidiophores consisting of the conidiophore stalk carrying 

metulae, phialides and mature chains of conidia. After vegetative growth, some Aspergilli 

(like A. nidulans) can enter the sexual cycle and produce multicellular fruiting bodies called 

cleistothecia
1,2,14,15

. These are often surrounded by Hülle cells, which are believed to “nurse” 

the cleistothecia during development
4
. Upon maturation these fruiting bodies contain 

thousands of sexual spores termed ascospores. These ascospores are gathered in asci with 
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eight ascospores in each. The ascospores, conidia and pieces of mycelium may initiate a new 

fungal life cycle. A. nidulans is homothallic (it is self-fertile) and therefore has a parasexual 

cycle, which may be initiated by the fusion of hyphae containing genetically different nuclei 

and thereby form a heterokaryon. The two nuclei can then fuse within the hyphae to create a 

diploid homokaryon, which through haploidization and mitosis can result in a haploid 

homokaryon and a new fungal life cycle can be initiated
1,2,14,15

. 

The most prevalent airborne fungal pathogen is Aspergillus fumigatus causing severe and 

often fatal infections in immunocompromised individuals. Due to its abundant sporulation and 

readily airborne conidia, several hundreds of conidia are inhaled by humans each day
16

. 

Healthy individuals readily clear inhaled conidia, while immunocompromised individuals 

may acquire severe pulmonary infections
16

. Although A. fumigatus is responsible for app. 

90% of human infections, other Aspergilli can also cause human infections including A. 

flavus, A. niger, A. nidulans and A. terreus
16,17

.  

Aspergillus flavus is the second leading cause of aspergillosis in humans, but may likewise 

cause diseases in humans and animals due to the consumption of contaminated food and 

agricultural crops spoiled by the fungus
18

. Furthermore, it produces aflatoxins the most toxic 

and carcinogenic biological compounds known
19,20

. 

Aspergillus oryzae has for many years been suspected of being a domesticated form of A. 

flavus
21

. A. oryzae is widely used in the Japanese fermentation industry incl. rice wine, 

vinegar and soy sauce production
22

, and also in the production of enzymes for baking and 

brewing
23

. For these processes it is listed as “Generally Regarded As Safe” (GRAS) by the 

U.S. Food and Drug Administration (FDA), which is further supported by The World Health 

Organisation
22

.  

Aspergillus niger is likewise widely used in industry and many enzymes from A. niger are 

listed as GRAS by the FDA
24

. A. niger is further used as a cell factory for the production of 

gluconic acid and citric acid, where citric acid is used as an acidulant in, among others, the 

food and beverage industries
24,25

. A. niger can, however, produce the mycotoxins fumonisins 

and ochratoxins, which may be problematic on contaminated food and feedstuff, but not under 

industrial conditions
26,27

. 

Aspergillus clavatus is rarely pathogenic, but may cause allergies known as malt worker´s 

lung
8,28,29

. It spoils agricultural crops and has caused disease in cattle
29

. 
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Finally, Aspergillus terreus is used for the production of lovastatin (an anti-cholesterolemic 

drug)
30

 and itaconic acid
31,32

. 

As previously stated, many Aspergillus species have been full genome sequenced in recent 

years
6–10

 providing large amounts of data for research. This data can among others be used to 

examine the Aspergillus genomes for different gene families, where one such family consists 

of small cysteine-rich hydrophobic proteins called hydrophobins (see below, chapter 3 and 

chapter 4). These proteins are the focus of this thesis. 

 

Hydrophobins 

Hydrophobins are small proteins first described in the beginning of the 1990´s by Wessels and 

co-workers
33,34

. The name “hydrophobins” was inspired by the hydrophobic structures found 

in walls of many prokaryotic and eukaryotic microorganisms
33

. Shuren et al.
34

 had sequenced 

two genes, SC3 and SC4, from Schizophyllum commune and found that these genes, together 

with the SC1 gene, had similar nucleotide sequences and hydrophobicity patterns, when 

translated into amino acid sequences. All three hydrophobins were excreted by S. commune in 

culture medium and found in the fungal walls of aerial hyphae (SC3) and fruit body hyphae 

(SC1 and SC4)
33,35

. Concurrently, Stringer et al.
36

 had discovered a gene (rodA) in A. 

nidulans with similarities to the S. commune hydrophobin genes. This gene likewise encoded 

a protein situated in the fungal cell wall. Following the discovery of hydrophobins, other 

proteins were reclassified by comparing their amino acid sequence with the available 

hydrophobins, leading to the identification of the hydrophobin cerato-ulmin (CU) from 

Ophiostoma ulmi.
37

 Within a few years, de Vries et al.
38

 showed that hydrophobins were 

found in several other filamentous fungi.  

With the availability of several fungal genomes the number of hydrophobin sequences has 

significantly increased and it seems that hydrophobins can be found in all filamentous fungi
39

. 

Nevertheless, the majority of knowledge concerning hydrophobins has been based on few 

isolated hydrophobins from selected species (e.g. SC3), resulting in several general 

assumptions being made regarding the function and properties of hydrophobins across 

phylogenetically distinct species. Whether these assumptions are valid in Aspergillus species 

can only be assessed after isolation and characterization of the different hydrophobins.  

Below hydrophobins will be described in general followed by a description of current 

knowledge regarding Aspergillus hydrophobins.  
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Hydrophobins in general 

Hydrophobins are small hydrophobic proteins, approximately 100-150 amino acids in size
40

. 

These proteins appear unique to the fungal kingdom and have been found in Ascomycetes, 

Basidiomycetes and Zygomycetes
38,41,42

. They have been detected on fungal spores, aerial 

hyphae and the surface of fruiting bodies
41

. Many fungi have several genes encoding 

hydrophobins, thus different hydrophobins are probably expressed at different times during 

the life cycle of the fungi, under different environmental conditions and may serve individual 

functions
39

. As an example the localization of six hydrophobins from Cladosporium fulvum 

can be mentioned. Hydrophobins HCf-1, HCf-2, HCf-3 and HCf-4 were found on conidia and 

aerial hyphae. HCf-4 also localized on submerged hyphae, HCf-5 only appeared on early 

aerial hyphae and HCf-6 was secreted
43,44

. As HCf-6, many hydrophobins contain a signal 

sequence and thereby have the ability to be secreted into the surroundings, but may also be 

retained in the fungal structures
40,42,45

. Unfortunately, no method is currently available to 

predict whether a hydrophobin is secreted or not
45

. It is only possible to predict potential 

signal sequences (see chapter 3). 

Based on hydropathy plots and solubility characteristics, hydrophobins were originally 

divided into two classes; class I and class II (figure 3+4)
46

.  

 

Figure 3: Hydrophobins display very low sequence similarity, but all display eight cysteines (highlighted in yellow) in a 

characteristic pattern forming four disulphide bonds. The disulphide bonds are shown by connecting lines between the 

cysteines. Only sequence from the first to the eighth cysteine is displayed due to high variation in the rest of the sequence. 

Class I hydrophobins shown are SC4 (Schizophyllum commune), PRI2 (Agrocybe aegerite), SC3 (Schizophyllum commune), 

ABH1 (Agaricus bisporus), EAS (Neurospora crassa), HCF1 (Cladosporium fulvum), MPG1 (Magnaporthe grisea) and 

RODA (Aspergillus fumigatus). Class II hydrophobins are HFBI (Trichoderma reesei), HFBII (Trichoderma reesei), SRH1 

(Trichoderma harzianum), CU (Ophiostoma ulmi), CRP (Cryphonectria parasitica), MGP (Magnaporthe grisea), HCF6 

(Cladosporium fulvum) and HYD4 (Giberella moniliformis). Figure from Sunde et al. 200847. 
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Class I hydrophobins have been found in Ascomycetes and Basidiomycetes, while class II 

hydrophobins only occur in Ascomycetes
39,42

. The overall sequence conservation between 

hydrophobins is tremendously low
40

, but all hydrophobins originally classified contain eight 

cysteine residues in a characteristic pattern including two cysteine pairs (figure 3)
40

. This 

definition is however currently being broadened (see discussion). Nevertheless, the 

conservation of the cysteine pattern suggests that the cysteine residues are important for 

function and structure of hydrophobins
39,48

. In class I hydrophobins, the cysteine pairs are 

followed by hydrophilic amino acids, while the cysteine pairs are followed by hydrophobic 

amino acids in class II hydrophobins (figure 4)
40

.  

 

Figure 4: Hydrophobins have traditionally been divided into two classes based on their hydropathy plots and solubility 

characteristics. Class I hydrophobins (SC3, EAS and RodA) display hydrophilic amino acids after the cysteine pairs, while 

hydrophobic amino acids are found in class II hydrophobins (HFBI and HFBII). Hydrophobic amino acids are shown above 

the x-axis, while hydrophilic amino acids are shown below. The amino acids of the hydrophobins are shown along the x-axis, 

where cysteines are indicated by vertical lines. Only sequence from the first to the eighth cysteine is displayed in the 

hydropathy plot.  

The cysteine spacing likewise varies between the two classes, where class I hydrophobins 

have a larger distribution of sequence lengths and higher sequence variation than class II 
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proteins
39

. All eight cysteines are involved in disulphide bridges
38

 and form four disulphide 

bridges
49

. Based on the structure of class II hydrophobin HFBII from Trichoderma reesei
49

 

and class I hydrophobin EAS from Neurospora crassa,
50

 the disulphide bonds have been 

found to be between Cys1-Cys6, Cys2-Cys5, Cys3-Cys4 and Cys7-Cys8 (figure 3)
50

. 

Few structures are available for hydrophobins and have so far included the crystallographic 

studies of the two class II hydrophobins HFBI and HFBII from T. reesei and a NMR study of 

the class I hydrophobin EAS from N. crassa (figure 5).  

 

Figure 5: Three hydrophobin structures have currently been solved and deposited in the Brookhaven Protein Data Bank 

(www.pdb.org). All three hydrophobins contain a β-barrel of four antiparallel β-sheets. The class I hydrophobin EAS (pdb 

code: 2FMC) from N. crassa has an additional β-sheet, while class II hydrophobins HFBI (pdb code: 2FZ6) and HFBII (pdb 

code: 2B97) from T. reesei contain an α-helix. PDB files visualized using PyMOL. Loops are shown in green, sheets in 

yellow and helices in red. 

Despite very low sequence similarity between the three hydrophobins, a similar core fold of 

an irregular β-barrel consisting of four antiparallel β-sheets is seen in the structures. In EAS 

two of the four disulphide bonds are found in the centre of the barrel, while the remaining two 

bonds connect the surface of the barrel with a nearby loop and an additional antiparallel β-

sheet
50

. In contrast to EAS, HFBI and HFBII contain an α-helix instead of the additional 

structures found in EAS. Two disulphide bonds are found in the centre of the barrel, one 

bridge connects the β-barrel and α-helix and one bridge attaches the β-barrel and the N-

terminal loop
49,51,52

. If Aspergillus hydrophobins have similar overall structures remains to be 

determined, but these hydrophobins presumably have a similar core fold consisting of an 

irregular β-barrel. 

 

Aspergillus hydrophobins 

With the availability of many Aspergillus full genome sequences, it has become apparent that 

these species (as with other fungal species) contain a varying amount of hydrophobin genes
6–

EAS HFBI HFBII 
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10
. Table 1 provides an overview of identified hydrophobins in full genome sequenced 

Aspergilli. The majority of these hydrophobins have only putatively been identified and only 

few have been characterized in each species. 

 

Table 1:  Putative and characterized Aspergillus hydrophobins 

Species Genes and common names Characterized 

Aspergillus 

fumigatus 

Afu5g09580 (RodA)
53,54

, Afu1g17250 (RodB)
53,54

, Afu8g07060 (RodC)
53,54

, 

Afu5g01490 (RodD)
53,54

, Afu8g05890 (RodE)
53,54

, Afu5g03280 (RodF)
53,54

 

Afu2g14661
54

, Afu5g09960
54

, Afu7g00970
54

, Afu8g01770
54

 

RodA
55–57

 

RodB
58

 

Aspergillus 

nidulans 

AN0940
54,59

, AN1837
54,59

, AN6401
54,59

, AN7539
54,59

, AN8006 (DewA)
54,59

, 

AN8803 (RodA)
54,59

, AN4845
54

, AN5290
54

, AN7327
54

, AN6807
54

 

RodA
36,57,60

 

DewA
60,61

 

Aspergillus 

niger 

An01g10940 (hypB)
25,54

, An03g02360 (hypC)
25,54

, An03g02400 (hypD)
25,54

, 

An04g08500 (hypE)
25,54

, An07g03340 (hypF)
25,54

, An15g03800 (hypG)
25,54

, 

An09g05530 (hypH)
25,54

, An08g01360
54

, An07g09260
54

, An08g09880
54

 

- 

Aspergillus 

oryzae 

AO090012000143 (RolA)
54

, AO090020000588
54

, AO090012000878
54

, 

AO090020000095
54

, AO090701000512
54

, AO090701000610
54

 

RolA
62

 

Aspergillus 

flavus 

AFLA_094600
54

, AFLA_131460
54

, AFLA_060780
54

, AFLA_014260
54

, 

AFLA_063080, AFLA_098380, AFLA_064900
54

, AFLA_059840
54

, 

AFLA_098980
54

, AFLA_101340
54

 

- 

Aspergillus 

clavatus 

ACLA_001890
54

, ACLA_044810
54

, ACLA_010960
54

, ACLA_072820
54

, 

ACLA_018290
54

, ACLA_007980
54

, ACLA_025850
54

, ACLA_044070
54

, 

ACLA_059220
54

, ACLA_066600
54

 

- 

Aspergillus 

terreus 

ATEG_10285
54

, ATEG_08089
54

, ATEG_07808
54

, ATEG_06492
54

, 

ATEG_04730
54

, ATEG_02302
54

, ATEG05178
54

, ATEG_06080
54

, 

ATEG_07140
54

, ATEG_10323
54

 

- 

Genes in bold are included in chapter 3 as these hydrophobins fulfil all original criteria40 including having a minimum of eight cysteines, two 

cysteine pairs, an intact cysteine pattern, a signal sequence and have an appropriate size. For more information see chapter 3.  

Two Aspergillus species have been and are currently being used to study hydrophobins. One 

species, A. nidulans, is used due to its role as a model organism for other Aspergilli, and the 

other, A. fumigatus, due to its pathogenicity (figure 6).  

De Groot et al.
59

 performed a genomic analysis of the A. nidulans cell wall genes finding six 

hydrophobins including RodA (AN8803), DewA (AN8006), AN0940, AN1837, AN6401 and 

AN7539. Hydrophobins AN1837 and RodA were predicted to be GPI 

(glycosylphosphatidylinositol) proteins, having the potential to attach to the cell wall 

carbohydrate structure and predominately exist in the plasma membrane. AN6401 had an 

ambiguous GPI anchor, while AN0940, AN7539 and DewA had no GPI anchor
59

. All six 

hydrophobins are typical hydrophobins, having eight cysteines and a signal sequence (figure 

6). 

In A. fumigatus, Beauvais et al.
53

 described six hydrophobins (figure 6). The hydrophobins 

RodA (AFUA_5G09580), RodB (AFUA_1G17250), RodC (AFUA_8G07060) and RodF 

(AFUA_5G03280) are typical hydrophobins containing eight cysteine residues and a signal 
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sequence. The hydrophobin RodD (AFU5G_01490) only has seven cysteines, lacks a cysteine 

pair, but still has a signal sequence, while RodE (AFUA_8G05890) has no signal peptide and 

contains eleven cysteines. The A. fumigatus hydrophobins were expressed under different 

conditions, where RodA and RodC were not expressed under vegetative growth. RodB and 

RodE mRNA was found in mycelium grown under static aerial conditions and RodA and 

RodF mRNA was detected in mycelium grown both under static aerial and shaken submerged 

conditions
53

. By examining the full genome sequence of A. fumigatus, an additional 

hydrophobin is found, AFUA_2G14661, displaying eight cysteines and a signal sequence
9
. A 

recent article, however, states that both species contain more putative hydrophobins resulting 

in A. fumigatus having nine hydrophobins and A. nidulans having ten hydrophobins (see table 

1)
54

.  

 

Figure 6: Hydrophobins from Aspergillus have primarily been studied in the model organism A. nidulans and the 

opportunistic pathogen A. fumigatus. Six putative hydrophobins have been identified in A. nidulans, while A. fumigatus 

contains seven. Signal sequences have been determined using SignalP 4.063 and are underlined. Cysteine residues are 

highlighted in green.   

Despite the presence of several putative hydrophobins in both A. nidulans and A. fumigatus 

only two have been studied in each species. The first hydrophobin to have been discovered in 

Aspergilli was the RodA hydrophobin in A. nidulans, followed shortly after by RodA in A. 

fumigatus due to sequence homology
36,55,64

. Deletion of the rodA gene in A. nidulans revealed 

A. fumigatus

A. nidulans
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wettable, darker colonies, than wild type strains, due to an abnormal accumulation of liquid 

on the conidiophores. In liquid the mutant conidia stuck together resulting in the formation of 

cylindrical spore masses
36

. Similarly, the deletion of the rodA gene in A. fumigatus leads to 

darker colonies. These colonies were easy wettable and the conidia stayed aggregated in 

water
64

. Conidia from the two rodA deletion strains did not easily disperse into the air, which 

may be attributed to the lack of rodlets (parallel rods, see next section on biological functions) 

on the mutant conidia
36,64

. Interestingly, the two rodA genes were able to complement each 

other, as the transformation of the A. fumigatus rodA gene into an A. nidulans rodA deletion 

strain resulted in the formation of a rodlet layer
55

. The phenotypes observed for the rodA 

deletion strains have likewise been seen in other fungal species. The conidia of the easily-

wetted (eas) mutant of N. crassa lacks rodlets on their surface, have a smooth appearance and 

are not readily dispersed into the air 
65

. The conidia are likewise easily wetted compared to a 

control strain
65

, a phenotype also observed for M. grisea colonies lacking the Mpg1 

hydrophobin
66

.  

An additional hydrophobin, DewA, has been studied in A. nidulans. This hydrophobin was, 

like RodA, found located on the (mature) conidia surface (figure 7). Nevertheless, no 

dramatic differences in morphology were observed between a dewA deletion strain and wild 

type strain and the DewA hydrophobin did not seem necessary for rodlet formation. A subtle 

phenotype of the dewA deletion strain was its increased wetting ability by mild detergent 

solutions (0.2 % SDS, 50 mM EDTA) leading to naming it the detergent wettable phenotype 

(dewA)
61

. Both the loss of rodA and dewA resulted in less hydrophobic spores. This effect was 

increased in a double mutant lacking both rodA and dewA
60,61

.  

The final hydrophobin studied in Aspergilli is the conidial hydrophobin RodB from A. 

fumigatus
58

. Colonies from a rodB deletion strain and a wild type strain were morphologically 

alike and did not wet by drops of water or mild detergent. Furthermore, the RodB 

hydrophobin did not seem essential for rodlet formation as rodlets were seen on the rodB 

deletion strain, but is probably involved in the building of the conidia cell wall. Despite, 

DewA and RodB having identical molecular masses, the rodB gene was unable to 

complement the dewA mutation. As in A. nidulans, a double mutant of rodA and rodB in A. 

fumigatus displayed a similar phenotype to the rodA deletion strain, having a darker colony 

colour, which easily wetted by water. This mutant did similarly not have any rodlet layer
58

.   
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Figure 7: The conidial hydrophobins, RodA and DewA, render A. nidulans colonies highly hydrophobic. Placement of a 

water drop on the surface of a colony shows the hydrophobicity of the surface.    

As stated previously both A. fumigatus and A. nidulans contain numerous hydrophobins, but 

only two conidial hydrophobins have been studied in each species. Studies of six 

hydrophobins in C. fulvum revealed differential expression and biological roles for each 

hydrophobin
43,44

. Therefore investigations into the biological roles of unstudied Aspergillus 

hydrophobins would be of special interest to understand their involvement in among others 

fungal growth and development, hydrophobicity, spore dispersal and escaping aqueous 

environments. In this thesis all six hydrophobins from A. nidulans have been examined by 

creating deletion strains of the hydrophobins (see chapter 4), but several other hydrophobins 

exist in other Aspergillus strains which have never been studied (see table 1).  

 

Biological functions  

Hydrophobins fulfil a large variety of functions in fungal growth and development. They are 

involved in coating aerial structures including conidia, hyphae and fruiting bodies rendering 

fungi highly hydrophobic
40

. They coat air channels in fruiting bodies allowing gas exchange 

and prevent collapse and water filling of the channels in humid environments
67

. Furthermore, 

they mediate the attachment of hyphae to hydrophobic surfaces such as plants and insects, 

facilitate spore dispersal in air and allow fungi to escape aqueous environments
40

. In this 

thesis constructed A. nidulans hydrophobin deletion strains have been examined for their 

ability to fulfil different biological functions (see chapter 4), where the main proposed 

functions of hydrophobins are described below. As Aspergillus species have many putative 

hydrophobins (chapter 3), these may fulfil many different biological functions. These could 
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include already described functions (see below), but may very well also constitute other 

functions not yet determined.  

 

Rodlets 

Rodlets were first observed by Sassen et al. and Hess et al. on Penicillium conidia using high 

resolution microscopy
68–70

. A few years later, rodlets were found on many Aspergillus 

species
71

 and have today been seen on numerous Aspergilli
36,55,72–74

. Rodlets have also been 

observed on hyphae and spores of Zygomycetes and Basiodiomycets
72,75,76

. Rodlets can vary 

both in diameter, length and overall architecture
68,71

, but are typically about 10 nm in diameter 

(figure 8)
40,47,76,77

. Rodlets have been detected on dormant conidia, but the rodlet layer is 

disrupted during germination exposing an amorphous material
78,79

. In vitro rodlets can be 

observed by drying down purified class I hydrophobin on solid surfaces
80–85

, but have never 

been observed for class II hydrophobins
39,42

. Instead class II hydrophobins seem to display 

nonamyloidal and needle-like aggregates
52,86,87

.  

The hydrophobins of the rodlet layer have only been isolated in few fungal species, where N. 

crassa and M. grisea seem to have a single hydrophobin in their rodlet layer
88,89

. In contrast, 

two hydrophobins have been found in the conidial rodlet layer of A. fumigatus (RodA and 

RodB) and A. nidulans (RodA and DewA). Despite the presence of two hydrophobins, only 

RodA seems to be required for rodlet formation in vivo, as rodB and dewA deletion strains 

display rodlets, while rodA deletion strains do not (figure 8)
36,58,61,64

. Nevertheless, 

recombinant DewA seems to assemble into rodlets at interfaces
90

. Similarly, two 

hydrophobins (Hyd1 and Hyd2) have been detected in the rodlet layer of Beauveria bassiana. 

Again, distinct roles seem apparent for the two hydrophobins, where Hyd1 appears to be the 

major component of the rodlets, while Hyd2 may play a role in organizing the rodlets
91

. Due 

to the presence of several hydrophobins in fungal strains, other hydrophobins may contribute 

to rodlets on other fungal structures than conidia. In a rodA deletion strain, rodlets were 

observed on the stalks and vesicles of A. nidulans conidiophores. The appearance of these 

rodlets was, however, different to the conidia rodlets
36

. In this thesis effort towards examining 

A. nidulans hydrophobin deletion strains for rodlets were conducted to elucidate if different 

hydrophobins are essential for rodlet formation on different fungal structures (see chapter 4).  
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Figure 8: The hydrophobin rodlet layer has been observed on several different fungi. Both (A) A. fumigatus and (B) A. 

nidulans display rodlets on their conidia surface. (C) An A. fumigatus rodA deletion strain has no rodlets showing the 

involvement of RodA in rodlet formation. (D) Interestingly, the RodA hydrophobins can complement each other, as the 

transformation of the A. fumigatus rodA gene into an A. nidulans rodA deletion strain resulted in the formation of a rodlet 

layer. Figure taken from Parta et al. 199455. 

 

Formation of amphipathic membranes 

An important characteristic of hydrophobins is their ability to self-assemble into an 

amphipathic membrane at hydrophilic-hydrophobic interfaces found e.g. between water and 

air, water and oil or water and a hydrophobic surface like Teflon
46,80,81,92

. The membranes, 

found to be approximately 10 nm thick, can change the nature of a surface and turn a 

hydrophilic surface hydrophobic and vice versa
81,83,93,94

. Class I hydrophobins form highly 

stable aggregates, which are insoluble in water, organic solvents and 2 % SDS and can only 

be dissociated by formic acid or trifluoroactic acid (TFA)
33,35,38,80,95

. In contrast, aggregates 
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formed by class II hydrophobins readily dissociate in water, and are soluble in aqueous 

ethanol and 2 % SDS
40,96,97

. Some class II membranes even dissociate when cooling or 

pressure is applied as seen for CU (O. ulmi) membranes
97

. Amphipathic membranes have 

today been observed for several hydrophobins
67,80,84,96–98

 and have been proposed to enable 

fungi in escaping aqueous environments as described below. 

 

Breaching of water-air interfaces 

Many filamentous fungi grow in moist substrates, e.g. soil and wood, and have to breach the 

water-air interface to grow into the air and form reproductive structures like spores or fruiting 

bodies. A proposed model for fungi to breach the water-air interface is based on the SC3 

hydrophobin from S. commune and involves secretion of hydrophobin monomers from the 

tips of the submerged hyphae, which diffuse into the surrounding medium (figure 9). Upon 

reaching the water-air interface, the hydrophobins self-assemble into an amphipathic 

membrane resulting in a large drop in surface tension. This enables the hyphae to breach the 

interface and expand into the air. As the hyphae grow into the air, secreted hydrophobin self-

assembles on the hyphae wall, exposing the hydrophobic side of the membrane to the 

surrounding air and the hydrophilic side towards the cell surface
99

. Upon reaching the air, the 

fungi can produce fruiting bodies and spores. These structures are likewise highly 

hydrophobic due to the presence of hydrophobins on their walls
36,84

.  

Hydrophobins SC1, SC3 and SC4 from S. commune have been found secreted into the 

surrounding medium by submerged hyphae
33,35,95

. Likewise, other fungi also have the ability 

to secrete class I hydrophobins into the surrounding medium
83,100

, indicating that lowering of 

the water surface tension may be a common phenomena enabling aerial growth
42

. No rodlets 

have been observed on submerged hyphae from N. crassa, submerged hyphae from S. 

commune nor submerged conidia from A. nidulans, further supporting that the produced 

hydrophobins probably diffuse away into the surrounding medium
36,80,95

. Nevertheless, 

hydrophobins cannot always be detected in the surrounding medium indicating that all fungal 

species do not secrete hydrophobins
101,102

. Whether Aspergillus species secrete hydrophobins 

into the surrounding media and uses a similar mechanism as S. commune to escape aqueous 

environments remains elusive. This has been examined in the thesis using constructed A. 

nidulans hydrophobin deletion strains (see chapter 4).  
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Figure 9: Proposed model for the involvement of hydrophobins in allowing fungi to breach from a moist substrate into the 

air. Secretion of hydrophobins into the surrounding medium lowers the water surface tension allowing hyphae to breach into 

the air, followed by the produced hydrophobins self-assembling on the hyphae surfaces and thereby forming a rodlet layer. 

Figure from Wösten et al. 199999. 

 

Potential industrial applications of hydrophobins 

Due to the many different properties of hydrophobins, hydrophobins have become 

increasingly interesting for both medical and technical applications. Hydrophobins seem safe 

for technical applications mainly due to the daily consumption of several hydrophobins by 

humans on eatable mushrooms like the common button mushroom (Agaricus 

bisporus)
40,84,103

. Therefore, there is interest in producing both strains lacking specific 

hydrophobins, but also strains over-expressing hydrophobins allowing increased production 

yields
104

. The technical applications for hydrophobins have not been the focus of this thesis, 

but an overview of different potential applications are described below to show the diversity 

of using hydrophobins in industry (see table 2).  

Despite several potential applications for hydrophobins, only few hydrophobins have been 

produced in good yields (gram per litre levels)
104,105

. At CMB, the hydrophobins RodA and 

RodB from A. fumigatus have successfully been produced at 200-300 mg/l by expressing the 
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hydrophobins in Pichia pastoris
94

. In addition, the chemical company BASF have 

successfully cloned A. nidulans hydrophobins into E. coli and can produce hydrophobins in 

industrial scale
106

. If hydrophobins can be produced in significant low-cost amounts, it is 

certainly possible that the application of hydrophobins will gradually expand.  

 

Table 2: Potential industrial applications for hydrophobins 

Application Result of using hydrophobins References 

Medical applications 

Prosthetic implants Enhanced growth of fibroblasts and stem cells on surfaces 107–109
 

Catheters Prevention of bacterial growth 110
 

Water soluble drugs Increased bioavailability and uptake 111
 

Biosensors and electrodes Stable attachments of electroactive molecules to electrodes, 

immobilization of enzymes and prevention of denaturation of 

proteins 

110,112,113,114
 

Food and cosmetic industry 

Stabilise foam Long lasting foams necessary in products like mousse, soft 

cheese and ice cream, where hydrophobins have been shown to 

stabilise foam for several months 

115
 

Stabilise emulsions Addition to hair products results in prolonged resistance to hair 

washing 

116
 

Breweries Causes economic loss as hydrophobins cause gushing of beer 

(the spontaneous over-foaming of beer upon opening) 

45,117,118,118,119
 

Other applications 

Ships Prevention of bacterial growth 110
 

Recycling Stimulation of the degradation of biodegradable plastic by 

recruiting a polyesterase 

62
 

Textile industry Change the hydrophobicity of textiles 120
 

 

Fungal-bacterial interactions 

Bacteria and fungi are abundantly found in many different environments and commonly co-

exist. Despite the frequent co-habitation of bacteria and fungi, whether in an environmental or 

clinical setting, little is known about the molecular mechanisms between the species
121

. 

Bacteria and fungi can co-exist as planktonic cells, in biofilms or even by intra-colonization 

of the bacterium in e.g. the fungal hyphae (figure 10). In the mixed community the bacteria 

and fungi can interact in a large number of ways. This can be by the production and exchange 

of deleterious compounds (antibiosis), metabolites or DNA, production of signalling 
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molecules, modification of the surrounding environment by physiochemical changes, protein 

secretion or through chemotaxis (directed movement of the bacteria towards the fungus). As a 

result of the interaction, an effect may be observed in either species, which may consist of an 

effect in physiology, development or pathogenicity
121,122

.    

 

Figure 10: Fungi and bacteria can interact in many ways. Both their physical association and the interspecies communication 

method play a role in the outcome for each involved organism. An alteration in the fungal-bacterial interaction may further 

affect the surrounding environment. Figure from Frey-Klett et al., 2011122. 

Several recent reviews have aimed in providing an overview of known fungal-bacterial 

interactions including Frey-Klett et al., Peleg et al., Tarkka et al. and Wargo and Hogan
121–124

.  

In a clinical perspective the main fungal species encountered are Candida and Aspergillus 

species. Candida species can infect many sites of the human body, while Aspergillus species 

are mainly lung pathogens found in the respiratory tract of patients with underlying 

pulmonary diseases or mechanically ventilated patients
121

. Both species commonly colonize 

the lungs of cystic fibrosis (CF) patients, whereas the dominant bacteria found is 

Pseudomonas aeruginosa
125

. Other bacteria found to exist in the CF lung include 

Staphylococcus aureus, Haemophilus influenza and Burkholderia cepacia
125,126

.   

Isolates of both P. aeruginosa and A. fumigatus from CF patients reveal that these organisms 

often coexist in the lungs of CF patients
125

. Furthermore, CF patients colonized with 

Aspergillus and Candida albicans or both Aspergillus, Pseudomonas and C. albicans have 

decreased lung functions
127

. Why a decrease in lung function is observed remains to be 

established, but may be caused by interactions between the organisms. A considerable amount 

of research has been conducted on Pseudomonas-Candida interactions, while the interactions 

between Aspergillus species and Pseudomonas are less explored. Part of this thesis deals with 
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the possible interaction between Aspergillus species and Pseudomonas aeruginosa. This 

interaction has been examined with special focus on secondary metabolite production (see 

chapter 5 and 6) and secondary metabolites and detection methods are described below.    

 

Secondary metabolites 

Secondary metabolites are small molecules produced by several different microorganisms 

including both bacteria and fungi
2
. They are often produced during the late growth phase of 

the producing organism, are frequently not essential for the organisms’ own growth and 

reproduction, but may be beneficial to produce during the microorganism’s different 

developmental stages. The formation of secondary metabolites is highly dependent upon 

environmental conditions and may serve a large array of functions in nature
2,128–130

. They are 

often not constitutively expressed
131

, but are only expressed when advantageous to the 

organism itself
128

. In contrast to primary metabolites, secondary metabolite genes are typically 

clustered in the microbial genome
132,133

. Many secondary metabolite gene clusters contain a 

transcription factor, which regulates the expression of the genes within the cluster, but may 

also regulate genes outside the cluster
128,134,135

. Apart from the cluster-associated transcription 

factors, secondary metabolite production is also regulated by more global transcription factors 

allowing the regulation of genes in response to different environmental factors such as 

temperature, light, pH and nutrient availability
131,134,135

.  

Many secondary metabolites are important in modern medicine as these are used in industry 

due to their antibiotic and pharmaceutical properties
136

. Other secondary metabolites have 

been found to be involved in disease in animals and plants
135,136

. The focus of this thesis is 

Aspergillus species and Pseudomonas, where both groups of organisms can produce many 

different secondary metabolites.  

 

Secondary metabolites from Aspergillus species 

Aspergillus species produce a large array of secondary metabolites
135

. Examples include 

beneficial compounds like the cholesterol-lowering drug lovastatin, but also compounds with 

adverse effects like the carcinogenic compound aflatoxin and several other mycotoxins 

including fumonisins
19,20,30,137

. Several articles give excellent overviews of the secondary 

metabolites produced by Aspergillus species
131,137–141

, where a few selected secondary 

metabolites are shown below (figure 11).  
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The secondary metabolites often have unknown functions in the fungus itself, but may be 

used to survive and compete with other organisms in the fungus’ own natural habitat
128,134,135

.  

As previously mentioned, the secondary metabolite genes are typically clustered in the fungal 

genome
132

, and Aspergilli have been found to contain between 30 – 40 clusters per species
142

. 

Many of the biosynthetic pathways are to a large extent similar
139

, but only few secondary 

metabolite gene clusters are shared between species
7,8,142

. This results in that only few 

metabolites can be found across Aspergillus species
139

 as can be seen by comparing 

metabolites from A. niger and A. fumigatus
137,138

. However, different species within a section 

often produce common metabolites as seen in Aspergillus section Nigri (the black Aspergilli) 

or Aspergillus section Fumigati
137,143

. Additionally, phylogenetically different fungi can, in 

few cases, have a limited number of secondary metabolites in common
144,145

.  

 

 

Figure 11: Aspergillus species produce a significant number of different secondary metabolites. A few selected metabolites 

exemplify the chemical diversity found in Aspergillus. 

 

Secondary metabolites from Pseudomonas  

Pseudomonas species are opportunistic pathogens found in a large variety of environments 

such as water, soil, plant surfaces and animals
133

. Especially P. aeruginosa can cause a 

number of infections in humans, but most commonly infect immunocompromised 

individuals
133

. A patient group often encountering P. aeruginosa infections are cystic fibrosis 

patients, where over 80 % are chronically infected
125

.  

Pseudomonas species can similarly to the Aspergillus species produce many different 

secondary metabolites, where a recent review by Gross and Loper
133

 provides an excellent 

overview. The secondary metabolites are important for among others nutrient acquisition, 

virulence and competition with other organisms
133

. Of special interest in this thesis are the 

phenazines due to their antifungal properties and possible role in interactions between 

Pseudomonas and Aspergillus
133,146

. Only bacteria have been found to be a natural source of 

phenazines, where more than 100 different phenazine structural derivatives have been 

identified in nature. Many bacteria produce numerous phenazine derivatives
147

. In this thesis 
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the focus has been on P. aeruginosa (see chapter 5), which can produce at least four different 

phenazines including pyocyanin, phenazine-1-carboxamide, 1-hydroxyphenazine and 

phenazine-1-carboxylic acid (figure 12)
133,146

.  

 

Figure 12: P. aeruginosa can produce several phenazines including pyocyanin, phenazine-1-carboxamide, 1-

hydroxyphenazine and phenazine-1-carboxylic acid.   

 

Chemical characterization of secondary metabolites 

The chemical analysis of secondary metabolites is identical regardless of the species being a 

bacterium or fungus. As the focus of this thesis is primarily on fungi and the main focus area 

of CMB is fungi, the chemical characterization will be described in a fungal perspective, but 

identical methods are applicable to bacterial extracts. 

A secondary metabolite profile of a given fungal species is based upon fungal extracts and 

consists of the extractable and detectable different compounds a fungus can produce on a 

specific medium
144

. The profiles of secondary metabolites are frequently highly species 

specific and are by mycologists used in species recognition
144,145,148

. Many fungal extracts 

contain compounds which have previously been characterized
149

. By dereplication, the 

combination of chromatographic and spectroscopic methods with database searching, a fast 

tentative identification of already known compounds in the extract can be achieved
148,150

. 

Traditionally, dereplication methodologies were based on thin layer chromatography 

(TLC)
151

. Developed by Filtenborg et al.
152,153

, the fungal TLC technique involved placement 

of a small solvent-wetted mycelium plug on a TLC plate for a few seconds allowing efficient 

identification and detection of secondary metabolites. Later, this technique was followed by 

high-performance liquid chromatography (LC/HPLC), where dereplication was based on 

retention times and UV-Vis spectra
154–156

. At CMB today, the identification of individual 

secondary metabolite production, from a given species, is usually done by ultra-high-

performance liquid chromatography (UHPLC) and often combined with mass spectrometry 
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(MS)
145,150

. Other modern techniques available include various combinations of LC with 

MS/MS, HRMS and NMR
148,157

.  

When examining a mass spectrum, the main objective is to assign ions to the chromatographic 

peaks observed (figure 13). The MS detection can be run in either positive or negative mode 

resulting in the formation of different ions depending on the composition of the fungal 

extract. Common adducts include, [M+H]
+
, [M+NH4]

+
, [M+Na]

+
, [M-H]

-
 and [M-HCOO]

-
 

148,150
. Other ions can also be present depending on the compound, the ion source parameters 

and solvent used.
149

  

 

 

Figure 13: LC-MS analysis of a raw extract from A. fumigatus AF293 grown on Wickerhams Antibiotic Test Medium 

reveals several peaks in the chromatogram. Three ions are present in the MS spectrum of the target ion (RT = 6.1) including 

[M+H]+, [M+Na]+ and [2M+Na]+. By searching the database Antibase for the accurate mass and combing the UV-vis 

spectrum and retention time of the target compound with taxonomy of the fungus, the target compound can tentatively be 

identified as trypacidin. 
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In instruments with low resolving power only the nominal mass can be acquired. The nominal 

mass is calculated using the mass of the most abundant isotope of each element rounded to the 

nearest integer value (e.g. the nominal mass for C18H16O7 is (18x12) + (16x1) + (7x16) = 344 

Da). An important benefit of newer mass spectrometers (e.g. TOF instruments) is their high 

resolving power enabling the acquisition of the accurate mass of a target peak
150,158

, where the 

accurate mass is defined as a measurement of ion mass within a 5 ppm uncertainty
159

. In most 

cases positive mode will be sufficient to determine the accurate mass of the target compound, 

and negative mode is used to confirm results from positive mode
148

.  

After determination of the accurate mass of the target peak, database searching will provide a 

number of different candidates. At CMB, we use the database Antibase (maintained by H. 

Laatsh), currently containing approximately 38,000 natural compounds from microorganisms, 

fungi and algae
150

. As an example a raw extract from A. fumigatus AF293 is used displaying 

several peaks in the mass chromatogram (figure 13). Extraction of the MS spectrum for the 

peak with the retention time (RT) of 6.1 min reveals the presence of three adducts; [M+H]
+
, 

[M+Na]
+
 and [2M+Na]

+
. If the nominal mass of 344 is used to search Antibase, 111 possible 

candidates are found. In contrast if the accurate mass is used, the number of candidates is 

reduced to 25 using 5 ppm mass accuracy. By using the UV-Vis spectrum from the target 

peak, retention time and taxonomy, several candidates can normally be eliminated, resulting 

in few suitable candidates
148,150

. In the above described case only two Aspergillus secondary 

metabolites are found among the candidates including trypacidin from A. fumigatus. By using 

the UV-Vis spectra, the target peak can tentatively be identified as trypacidin, while the use of 

NMR would be necessary for a definitive identification.  

In this thesis the above described procedure has been used to examine differences in 

secondary metabolite production in Aspergillus-Pseudomonas interactions (chapter 5).  

 

Interactions between Aspergillus and Pseudomonas 

Isolates of both P. aeruginosa and A. fumigatus from CF patients reveal that these organisms 

often coexist in the lungs of CF patients
125

. Whether they exist in symbiosis in the CF lung, 

have a neutral relationship or combat each other using different chemical molecules has not 

yet been determined.  Nevertheless, a significant decrease in lung function has been observed 

in CF patients colonized by both A. fumigatus and P. aeruginosa or A. fumigatus, P. 

aeruginosa and C. albicans compared to patients only colonized by a single organism
127,160,161
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and therefore studies in interactions between these organisms are of special interest. In this 

thesis the focus has been on Aspergillus-P. aeruginosa (chapter 5 and 6). Below current 

knowledge of Aspergillus-P. aeruginosa interactions is described, but examples of Candida-

P. aeruginosa interactions are also included. As little knowledge is available regarding 

Aspergillus-P. aeruginosa interactions, it is not known if these two organisms interact at all. 

This has been examined in chapter 5 by looking at secondary metabolite production. 

An early description of the interaction between Aspergillus species and P. aeruginosa by 

Mangan acknowledged an inhibitory effect of P. aeruginosa on A. fumigatus and A. terreus in 

broth culture
162

. Similarly, Blyth and Forey observed an inhibitory effect on P. aeruginosa 

cells on the hyphal growth of A. fumigatus, where the presence of the bacterium affected the 

ultrastructures of A. fumigatus hyphae
163,164

. Nevertheless, not all P. aeruginosa strains seem 

to inhibit A. fumigatus nor does P. aeruginosa completely inhibit A. fumigatus. As an example 

Kerr demonstrated, that A. fumigatus was partially inhibited by six clinical P. aeruginosa 

strains, while two other P. aeruginosa clinical strains showed no inhibitory effect
165

. Mowat 

et al. found that nine different P. aeruginosa strains, including six clinical isolates, 

significantly inhibited the germination of A. fumigatus conidia, but again did not completely 

abolish germination
166

. In e.g. the lungs of CF patients, A. fumigatus can exist as a biofilm. 

When a mature A. fumigatus biofilm was treated with P. aeruginosa, a minimal inhibitory 

effect was observed on the biofilm. Visualization of the biofilm revealed that single P. 

aeruginosa cells were distributed on the hyphae throughout the A. fumigatus biofilm (figure 

14)
166

.  

Figure 14: P. aeruginosa cells (arrows) adhere to the A. fumigatus biofilm. Picture from Mowat et al. 2010
166

. 
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Similarly, Salmonella enterica Typhimurium attaches to A. niger. Initial attachment was 

observed on the tip of the hyphae and resulted in a dense biofilm of S. enterica on the A. niger 

hyphae within few hours
167

. Interestingly, the bacteria E. coli, Pantoea agglomerans and 

Pseudomonas chlororaphis could not attach to A. niger hyphae. This was due to the lack of 

cellulose production by the strains, which was found to be necessary for initial attachment to 

A. niger hyphae and to chitin (a structural component of fungal cell walls)
167

. In contrast, 

Streptomyces hygroscopicus readily attached to A. nidulans hyphae
168

. P. aeruginosa can 

attach to Candida albicans filaments, but not to the yeast-form of C. albicans. As a result the 

filaments were killed, while the yeast-form was not
169,170

. Several other Candida species were 

likewise significantly inhibited by the presence of P. aeruginosa
165

, as were Torulopsis 

glabrata, Saccharomyces cerevisiae and several Cryptococcus species
165,171

.  

To better understand the inhibitory effect of P. aeruginosa on A. fumigatus, studies into 

possible antifungal compounds have been conducted. Of special focus have been phenazines 

as these are thought to be involved in lung damage in P. aeruginosa infected individuals
172,173

. 

Kerr found that P. aeruginosa produced two phenazines, pyocyanin and 1-hydroxyphenazine, 

which were responsible for the inhibition of A. fumigatus and C. albicans
174

. MICs (Minimal 

Inhibitory Concentration) for A. fumigatus were measured to be > 100 µg/ml for pyocyanin 

and 50 µg/ml for 1-hydroxyphenazine, while MICs for C. albicans were > 100 µg/ml for 

pyocyanin and 25µg/ml for 1-hydroxyphenazine
174

. This finding was supported by Blyth, who 

showed that the germination of A. fumigatus conidia was inhibited by pyocyanin
163

, while 

Mangan demonstrated that 1-hydroxyphenazine could inhibit germination of spores from A. 

fumigatus, A. terreus, A. niger and A. flavus
162

. In P. aeruginosa-C. albicans co-cultures the 

levels of pyocyanin were found to be increased after 48 hours compared to P. aeruginosa 

single-species cultures
175

. In addition, the accumulation of a red pigment was observed in C. 

albicans cells, when co-cultured with P. aeruginosa resulting in the killing of C. albicans. 

The formation of the red pigment seemed to require the presence of a phenazine and both 5-

methyl-phenazinium-1-carboxylate (5MPCA) and phenazine methosulphate (PMS) induced 

the red pigmentation
175,176

. Similarly, the production of a red pigment (proposed to be 3-

hydroxyphenazine-1-carboxylic acid) was seen in co-cultures of Aspergillus sclerotiorum and 

Pseudomonas chlororaphis. It seemed that both phenazine-1-carboxylic acid and phenazine-

1-carboxamide could lead to the formation of the red pigment
177

. Nevertheless, the pigment 

had different properties than the pigment observed in C. albicans-P. aeruginosa cocultures
175

. 
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Other studies showing the involvement of phenazines in fungal-bacterial interactions include 

interactions between different Pseudomonas species and Gaeumannomyces graminis, 

Fusarium oxysporum, Pythium splendens and several Cryptococcus  species
171,178,179

.  

In addition to phenazines, P. aeruginosa can produce acetylated homoserine lactones 

including 3-oxo-C12-HSL and C4-HSL, which act as signalling molecules in the quorum 

sensing systems
180

. Interestingly, two P. aeruginosa quorum sensing knockout-strains 

displayed reduced inhibitory effect on the germination of A. fumigatus conidia compared to 

the wild type strain
166

. In C. albicans purified 3-oxo-C12-HSL could inhibit filamentation, 

while C4-HSL did not have any effect
170

. Similarly, farnesol, dodecanol and C12-HSL could 

inhibit filamentation of C. albicans
170

, while addition of decanol, decanoic acid and dodecanol 

to preformed mature A. fumigatus biofilm resulted in a reduction of biomass
166

. Farnesol has 

been identified as a quorum sensing signal in C. albicans,
181

 and inhibited the swarming of P. 

aeruginosa
182

. Furthermore, farnesol could inhibit the growth and development of A. nidulans 

and triggered apoptosis. Apoptosis was also observed in A. fumigatus by addition of 

farnesol
183

. To add to the complexity of the mixed interactions in the CF lung, A. fumigatus 

can produce gliotoxin, which has been shown to inhibit C. albicans and Cryptococcus 

neoformans
184

.  

In this thesis the possible interaction between different Aspergillus species and P. aeruginosa 

has been examined by comparing secondary metabolite profiles of the differences species in 

mono and mixed cultures (chapter 5). Furthermore, the role of hydrophobins in bacterial-

fungal interactions was preliminary assessed. 

 

Hydrophobins and pathogenesis of Aspergillus fumigatus  

The involvement of hydrophobins in bacterial-fungal infections has not previously been 

studied and whether hydrophobins play a role remains elusive. The involvement of 

hydrophobins in the interaction between A. nidulans and P. aeruginosa has slightly been 

touched upon in this thesis (chapter 5). However, several other studies have focused on 

hydrophobins and their potential role in pathogenesis caused by Aspergillus species showing 

that hydrophobins may play pivotal roles in pathogenesis. 

The opportunistic fungus, A. fumigatus, is responsible for the vast majority of airborne fungal-

infections in humans and research has primarily focused on this organism. In the lungs of 

healthy individuals, inhaled conidia are eliminated by innate immune mechanisms, but in 
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immunocompromised individuals, the ability to clear inhaled conidia is significantly 

impaired
16,185

. Due to the identification of several hydrophobins in A. fumigatus and 

especially the localization of RodA and RodB to the conidia cell surface, a possible role for 

these hydrophobins in pathogenesis has been the subject of investigation.  

Aimanianda et al.
102

 recently showed that the rodlet layer of the A. fumigatus conidial cell 

wall renders the fungus inert to innate and adaptive immunity allowing the conidia to “hide” 

from the immune system and await suitable germination conditions
102

. Nevertheless, a rodA 

deletion strain had similar mortality rates in mice compared to a wild type strain
64,186

. The 

lack of the RodA hydrophobin or rodlet layer rendered the conidia more susceptible to killing 

by macrophages and activated both human dendritic cells and murine alveolar macrophages in 

vitro
58,102

, but not Natural Killer (NK) cells
187

. Lack of the RodB hydrophobin only had a 

minor effect
58

.  

Prolonged growth of A. fumigatus in the lungs of immunocompromised individuals can result 

in the formation of dense intertwined mycelia balls termed biofilms, which can be defined as 

surface attached microbial populations surrounded by an extracellular matrix
188,189

. Few 

reports on A. fumigatus biofilm formation exist showing, among others, the reduced 

susceptibility of the biofilms to antifungal drugs compared to single cells
190–193

. Only a single 

study deals with hydrophobins in biofilms showing that four genes encoding A. fumigatus 

hydrophobins are up-regulated. rodD was up-regulated in 24 h biofilm, while rodB, rodC and 

rodE were up-regulated in 48 h biofilm
194

. In another study examination of static, aerial 

grown hyphae (resembling biofilm growth) only showed expression of the rodB  and rodE  

genes
53

. The biological role of several A. fumigatus hydrophobins still needs to be solved, but 

they may play a role in pathogenesis (as seen for RodA), biofilm formation or fungal-bacterial 

interactions, but more research is needed within this area.   

 

All in all the mechanisms in fungal-bacterial interactions are diverse and whether 

hydrophobins play a role remains unanswered. Research into fungal-bacterial interactions has 

just started and as stated by Wargo and Hogan, only the “initial steps have been made in the 

analysis of fungal–bacterial interactions and their role in infection, but there remains a myriad 

of unanswered questions that will require the collaboration of mycologists, microbiologists, 

cell biologists and clinicians to answer in full”
123

.  
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The present study  

The focus of this thesis is Aspergillus species and their hydrophobins. Currently many 

assumptions are made regarding function and properties of hydrophobins across 

phylogenetically distinct fungal species, but whether these assumptions are valid in 

Aspergillus species remains to be examined. First of all it is necessary to gain an overview of 

putative hydrophobins in Aspergillus species. This can be achieved using the available 

genomes of several Aspergilli and bioinformatic tools such as alignments, phylogenetic 

analysis and hydropathy patterns (see chapter 3). Next, studies into biological roles of 

unstudied Aspergillus hydrophobins would be of special interest. This can be achieved by 

creating different hydrophobin mutants in the model organism A. nidulans and by examining 

the hydrophobin mutants macroscopically and microscopically, the involvement of 

hydrophobins in the fungal life cycle (including growth and development) can be studied. 

Furthermore, questions regarding the role of hydrophobins in hydrophobicity, spore dispersal 

and escaping aqueous environments can be examined using different assays (see chapter 4). 

Whether hydrophobins are involved in Aspergillus-P. aeruginosa infections has never been 

studied. By creating an assay allowing examination of interactions between different 

Aspergilli and P. aeruginosa on solid medium this can be studied. Furthermore, this assay 

will, by using UHPLC-DAD and UHPLC-MS, provide insight into secondary metabolites 

produced by the two organisms alone and in co-culture. By using different mutated P. 

aeruginosa strains commonly found in CF patients possible differences in the A. fumigatus-P. 

aeruginosa interaction pattern through the course of CF infections can be looked upon (see 

chapter 5). Whether these organisms can form biofilms together and to what extend 

hydrophobins are involved may further be studied using a cantilever lab-on-a-chip system 

enabling measurements of the interactions (see chapter 6).  
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2 Overview of experimental work 

This figure is intended to provide an overview of the main experiments performed during the 

course of this thesis. The obtained results and experimental design will be presented and 

discussed in the denoted chapters.  

Y
e
a
r

1

B
io

in
fo

rm
a
ti
c
s
 s

tu
d

y
 o

f 
h

y
d

ro
p
h

o
b
in

s
 f
ro

m
 f
u

ll-

g
e

n
o

m
e
 s

e
q

u
e
n
c
e
d
 A

s
p

e
rg

ill
u

s
 s

p
e

c
ie

s
(c

h
a

p
te

r 
3

)

In
te

ra
c
ti
o

n
s
 b

e
tw

e
e
n

 A
s
p

e
rg

ill
u

s
s
p

e
c
ie

s
 a

n
d

 P
s
e

u
d
o

m
o

n
a
s
 a

e
ru

g
in

o
s
a

(c
h

a
p

te
r 
5

)

C
o

n
s
tr

u
c
ti
o

n
 a

n
d

 c
h

a
ra

c
te

ri
z
a

ti
o

n
 o

f 
A

s
p

e
rg

ill
u

s
 n

id
u

la
n
s

h
y
d

ro
p

h
o
b

in
 

m
u

ta
n

ts
(c

h
a

p
te

r 
4

)

Y
e
a
r

2
Y

e
a
r

3

C
o

n
s
tr

u
c
ti
o

n
 o

f c
a

n
ti
le

v
e

r 
la

b
-o

n
-

a
-c

h
ip

 s
y
s
te

m
(c

h
a

p
te

r 
6

)



Chapter 2                                                                              PhD Thesis Britt Guillaume Jensen 
Aspergillus hydrophobins  - Identification, classification and characterization 

44 

 

 

 

 

 



Chapter 3                                                                              PhD Thesis Britt Guillaume Jensen 
Aspergillus  hydrophobins – Identification, classification and characterization 

45 

 

3 Identification and classification of Aspergillus hydrophobins 

This chapter presents results from an article published in BMC Research Notes, 2010 3:344. For 

details on methods see article 1. 

 

Introduction 

Hydrophobins are a family of small hydrophobic proteins found uniquely in filamentous 

fungi
1
. Originally hydrophobins were characterized as proteins of approximately 100 AA with 

little amino acid sequence homology apart from eight conserved cysteines in a characteristic 

pattern (C-CC-C-C-CC-C)
2,3

. The hydrophobins contained two cysteine pairs
2,3

 and the eight 

cysteines were found to form four disulfide bonds in the pattern Cys1-Cys6, Cys2-Cys5, 

Cys3-Cys4, Cys7-Cys8
4
 (see figure 3 in chapter 1).  

Based on their distinct hydropathy patterns (figure 1) and physical properties, hydrophobins 

were traditionally divided into two classes
3
.  

 

 

Figure 1: Hydropathy patterns of known class I hydrophobins SC3 and EAS and class II hydrophobins HFBI and HFBII. 

The amino acids are shown along the x-axis, where the cysteine pairs are indicated by two adjacent vertical lines. The 

hydrophobic amino acids are shown above the x-axis, while hydrophilic amino acids are displayed below. Only the part of 

the sequence from the first to the eight cysteine was used to create the hydropathy plot.  
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Class I hydrophobins have been identified in Ascomycetes and Basiodiomycetes, while class 

II hydrophobins have solely been identified in Ascomycetes
1
. Typically, a single fungal 

species expresses either class I or class II hydrophobins, however previous studies have 

shown that some species have the ability to express both classes of hydrophobins
5,6

.  In class I 

hydrophobins the cysteine doublets are followed by hydrophilic amino acids, while 

hydrophobic amino acids are observed after the cysteine doublets in class II hydrophobins
2
. 

This can be visualized using hydropathy plots (figure 1). Furthermore, considerable variation 

is seen in the cysteine spacing of class I hydrophobins, while less variation is seen for class II 

hydrophobins
7
.  

In the last 10 years many Aspergillus species have been full genome sequenced including A. 

fumigatus, A. niger, A. flavus, A. oryzae, A. nidulans, A. terreus and A. clavatus. In this thesis 

the available sequences were used to examine the Aspergilli for new hydrophobins providing 

for the first time a complete list of putative Aspergillus hydrophobins. The identified 

hydrophobins were furthermore putatively classified as class I, class II or intermediate 

hydrophobins by examining the cysteine spacing and hydropathy patterns.  

 

Results 

Identification of Aspergillus hydrophobins 

Nine full genome sequenced Aspergillus species were used to search for new hydrophobins 

including A. fumigatus AF293 and A1163, A. niger CBS 513.88 and ATCC 1015, A. flavus 

NRRL 3357, A. oryzae RIB40, A. nidulans FGSC A4, A. terreus NIH 2624 and A. clavatus  

NRRL 1. A total of 50 potential hydrophobins were identified (table 1) based on the criteria of 

two cysteine pairs, a minimum of eight cysteines, a size of app. 100 - 200 AA and an intact 

cysteine pattern. Proteins having up to 12 cysteines were included in the study, if additional 

cysteines were located outside the pattern (C-CC-C-C-CC-C) and thus did not alter the 

cysteine pattern.  

On species level, twenty of the identified hydrophobins had not previously been mentioned in 

other published studies, while the number was thirty-one on strain level (table 1). The number 

of identified hydrophobins within the species varied from two to eight between the nine 

species. By using the SignalP server
17

, which predicts the presence and location of signal 

peptide cleavage sites in amino acid sequences, all identified hydrophobins were found to 

contain theoretical signal sequences and therefore have the possibility of being secreted. The 

identified Aspergillus hydrophobins contained approximately 100 – 200 amino acids and were 
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8 – 30 kDa in size. Furthermore, they had eight to ten cysteines, where excess cysteines 

(above eight) were located before or after the conserved cysteine spacing pattern. By 

examining a multiple alignment (see figure S3 in article 1) of the putative hydrophobins very 

low similarity was observed between the hydrophobins.  

Table 1:  Identified Aspergillus hydrophobins.  

Species Gene 
Size  

(Da) 

n 

(AA) 

n 

(cys) 
Eight cysteine pattern1 Theoretical 

class 
Common name2 

A. oryzae  

RIB40 
  

AO090012000143 14304 145 8 CN(8)CCN(38)CN(10)CN(5)CCN(21)C I RolAa 

AO090020000588 15231 151 8 CN(7)CCN(39)CN(17)CN(5)CCN(17)C I New 

A. niger  

CBS 513.88 
  

An03g02360b 12486 122 8 CN(6)CCN(32)CN(25)CN(5)CCN(4)C I 
 

An03g02400b 13063 131 8 CN(6)CCN(31)CN(23)CN(5)CCN(6)C Intermediate 
 

An04g08500b 14397 146 8 CN(7)CCN(39)CN(20)CN(5)CCN(17)C I 
 

An15g03800b 13225 130 8 CN(5)CCN(32)CN(6)CN(5)CCN(13)C Intermediate 
 

An01g10940b 10693 100 8 CN(14)CCN(17)CN(11)CN(7)CCN(8)C Intermediate 
 

An07g03340b 16207 162 8 CN(7)CCN(39)CN(21)CN(5)CCN(17)C I 
 

An09g05530b 20465 202 9 CN(8)CCN(33)CN(11)CN(5)CCN(16)C Intermediate 
 

An08g09880b 9169 91 9 CN(7)CCN(16)CN(6)CN(5)CCN(10)C Intermediate   

A. niger  
ATCC 1015 

  

JGI128530 10803 105 7 Fragment (similar to An07g03340) Intermediate (New) 

JGI35683 10693 100 8 CN(14)CCN(17)CN(11)CN(7)CCN(8)C Intermediate (New) 

JGI45683 13063 131 8 CN(6)CCN(31)CN(23)CN(5)CCN(6)C Intermediate (New) 

JGI45685 13716 132 8 CN(6)CCN(32)CN(25)CN(5)CCN(14)C I (New) 

JGI53462 13224 130 8 CN(5)CCN(32)CN(6)CN(5)CCN(13)C Intermediate (New) 

JGI194815 14397 146 8 CN(7)CCN(39)CN(20)CN(5)CCN(17)C I (New) 

JGI43184 20381 201 9 CN(8)CCN(33)CN(11)CN(5)CCN(16)C Intermediate (New) 

E. nidulans  
FGSC A4 

  

AN7539.2c 10798 109 8 CN(5)CCN(32)CN(6)CN(5)CCN(13)C Intermediate 
 

AN8803.2c 15625 157 8 CN(7)CCN(39)CN(18)CN(5)CCN(17)C I RodAd 

AN6401.2c 16131 162 8 CN(6)CCN(38)CN(22)CN(5)CCN(35)C Intermediate 
 

AN8006.2c 13183 135 8 CN(6)CCN(31)CN(23)CN(5)CCN(6)C I DewAe 

AN1837.2c 13397 135 8 CN(7)CCN(39)CN(18)CN(5)CCN(17)C I 
 

AN0940.2c 10594 101 8 CN(13)CCN(17)CN(12)CN(7)CCN(8)C Intermediate   

A. fumigatus  

AF293 
  

AFUA_8G07060 15996 155 8 CN(7)CCN(39)CN(21)CN(5)CCN(17)C I RodCf 

AFUA_5G09580 16153 159 8 CN(7)CCN(39)CN(21)CN(5)CCN(17)C I RodAf/g 

AFUA_2G14661 12928 125 8 CN(5)CCN(32)CN(6)CN(5)CCN(13)C Intermediate New 

AFUA_1G17250 14299 140 8 CN(7)CCN(36)CN(18)CN(5)CCN(18)C I RodBf/h 

AFUA_5G03280 19825 190 9 CN(7)CCN(33)CN(11)CN(5)CCN(14)C I RodFf 

A. fumigatus  

A1163 
  

AFUB_016640 14300 140 8 CN(7)CCN(36)CN(18)CN(5)CCN(18)C I (RodB New) 

AFUB_057130 16153 159 8 CN(7)CCN(39)CN(21)CN(5)CCN(17)C I (RodA New) 

AFUB_080740 15996 155 8 CN(7)CCN(39)CN(21)CN(5)CCN(17)C I (RodC New) 

AFUB_051810 19825 190 9 CN(7)CCN(33)CN(11)CN(5)CCN(14)C Intermediate (RodF New) 

A. terreus  
NIH 2624 

  

ATEG_10285 13978 129 8 CN(5)CCN(28)CN(14)CN(8)CCN(13)C Intermediate New 

ATEG_08089 18936 177 8 CN(8)CCN(33)CN(11)CN(5)CCN(14)C Intermediate New 

ATEG_07808 11677 115 8 CN(5)CCN(32)CN(6)CN(5)CCN(13)C Intermediate New 

ATEG_06492 17374 175 8 CN(7)CCN(40)CN(16)CN(5)CCN(17)C I New 



Chapter 3                                                                              PhD Thesis Britt Guillaume Jensen 
Aspergillus  hydrophobins – Identification, classification and characterization 

48 

 

ATEG_04730 11797 121 8 CN(10)CCN(11)CN(16)CN(8)CCN(10)C II New 

A. flavus  
NRRL 3357 

  

AFLA_094600 8377 83 8 CN(7)CCN(16)CN(6)CN(5)CCN(9)C Intermediate New 

AFLA_131460 10867 106 8 CN(5)CCN(32)CN(6)CN(5)CCN(13)C Intermediate New 

AFLA_060780 27807 251 8 CN(6)CCN(30)CN(23)CN(5)CCN(4)C I New 

AFLA_014260 14304 145 8 CN(8)CCN(38)CN(10)CN(5)CCN(21)C I New 

AFLA_063080 9362 87 9 CN(5)CCN(17)CN(7)CN(7)CCN(12)C Intermediate New 

AFLA_098380 23415 217 10 CN(7)CCN(39)CN(17)CN(5)CCN(44)C I New 

AFLA_064900 9147 91 10 CN(7)CCN(15)CN(6)CN(5)CCN(8)C Intermediate New 

A. clavatus  

NRRL 1 

  

ACLA_001890 10214 100 8 CN(7)CCN(16)CN(6)CN(5)CCN(26)C Intermediate New 

ACLA_048810 18458 182 8 CN(7)CCN(33)CN(11)CN(5)CCN(15)C Intermediate New 

ACLA_010960 14671 145 8 CN(7)CCN(39)CN(21)CN(5)CCN(17)C I New 

ACLA_072820 16127 158 8 CN(7)CCN(39)CN(21)CN(5)CCN(17)C I New 

ACLA_018290 12820 126 8 CN(5)CCN(32)CN(6)CN(5)CCN(13)C Intermediate New 

ACLA_007980 14558 144 8 CN(7)CCN(36)CN(18)CN(5)CCN(17)C Intermediate New 

1In the eight cysteine pattern, “N”, signifies any other amino acid than cysteine. 
2In the common name column, “New”, signifies that the hydrophobins has not previously been mentioned in other published 

studies.  
a described by Takahashi et al.8,b mentioned by Pel et al.9, c mentioned by de Groot et al.10, d described by Stringer et al.11, e 

described by Stringer et al.12, f described by Beauvais et al.13, g RodA described by Parta et al. and Thau et al.14,15, h RodB 

described by Paris et al.16 

 

Classification of Aspergillus hydrophobins 

The Pfam database (pfam.sanger.ac.uk) contains a large collection of protein families 

characterized by unique domains in each familiy. By analyzing the identified Aspergillus 

hydrophobins for Pfam matches, forty-five of the identified proteins were found to contain 

domains classifying them as hydrophobins by Pfam. The remaining five hydrophobins 

(An01g10940, JGI35683, AN0940.2, AFLA_063080, ATEG_10285) could not be classified 

as hydrophobins using Pfam and do therefore not contain known domains classifying them as 

hydrophobins and may as a consequence not be hydrophobins. As these five proteins, 

however, fulfil known hydrophobin criteria (see table 1), they could constitute a novel group 

of hydrophobins.  

To further classify the hydrophobins, hydropathy patterns were created for all identified 

putative hydrophobins using ProtScale
19

 on the ExPASy server. Hydrophobins were classified 

as class I hydrophobins if the cysteine doublets were followed by hydrophilic amino acids and 

as class II hydrophobins if hydrophobic amino acids were observed after the cysteine 

doublets
2
. Twenty-three of the identified hydrophobins displayed a characteristic class I 

hydropathy plot (not shown) and displayed a class I cysteine pattern
7
 and where therefore 

classified as class I hydrophobins (table 1). Twenty six of the putative hydrophobins could not 

be classified into the original two classes and were found to be intermediate forms due to 
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inconsistency between the type of cysteine spacing pattern and hydropathy pattern. Fifteen of 

the intermediate class hydrophobins displayed hydrophobicity patterns dissimilar to known 

class I and class II hydrophobins (see table 1 and additional file 2 in article 1). Only a single 

hydrophobin was identified as a class II hydrophobin, displayed a characteristic class II 

cysteine spacing pattern
7
 and had a class II hydropathy pattern (table 1).  

To examine the putative hydrophobins, a phylogenetic tree was constructed (figure 2) and it 

seemed that hydrophobins clustered according to their cysteine spacing pattern.  

 

Figure 2: Phylogenetic tree of identified hydrophobins in the Aspergillus species. The phylogenetic tree was constructed 

based on a multiple alignment of identified hydrophobins using Phylogeny.fr18. Branches with support values less than 50 % 

were collapsed. “N” signifies any other amino acid than cysteine. 
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A common feature in 44 of the 50 hydrophobins was a conserved spacing of five amino acids 

between the fifth and sixth cysteines, while the remaining six hydrophobins contained either 

seven or eight amino acids (table 1). This spacing of five cysteines had also been observed in 

other known class I hydrophobins (eg. SC3, EAS and MPG1)
7
 and may be a common feature 

in class I hydrophobins. 

Four of the hydrophobins (An01g10940, JGI35683, AN0940.2, AFLA_063080) could be 

differentiated from the rest of the hydrophobins in displaying a distinctive cysteine pattern of 

CN(5-13)CCN(17)CN(7-12)CN(7)CCN(8-12)C (where “N” signifies any other amino acid 

than cysteine) and may constitute a new group of hydrophobins. These did, however, not have 

similar hydropathy patterns (figure 3) and may thus not have similar solubility characteristics 

and could fulfil diverse functions in the different fungi. 

 

Figure 3: Hydropathy patterns of hydrophobins An01g10940, JGI35683, AFLA_063080 and AN0940. The amino acids are 

shown along the x-axis, where the cysteine pairs are indicated by two adjacent vertical lines. The hydrophobic amino acids 

are shown above the x-axis, while hydrophilic amino acids are displayed below. Only the part of the sequence from the first 

to the eight cysteine was used to create the hydropathy plot.  

 

Identification of a class II hydrophobin in Aspergillus terreus 

By examining the identified putative hydrophobins, a single hydrophobin from A. terreus, 

ATEG_04730, was found to display a characteristic class II spacing pattern 

(CN(10)CCN(11)CN(16)CN(8)CCN(10)C) and furthermore had a class II hydropathy pattern, 

when compared to known class II hydrophobins from Trichoderma reesei  (figure 4).   
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Interestingly, A. terreus seemed to have genes for both class I and class II hydrophobins as the 

hydrophobin ATEG_06492 was identified as a class I hydrophobin. Comparison of 

ATEG_04730 to class II hydrophobins HFBI and HFBII showed 37 %  and 35 % sequence 

identity, while comparison to class I hydrophobins  RodA, SC3 and EAS showed 21 %, 16 % 

and 20 % sequence identity. In contrast ATEG_06492 showed 20 % and 29 % sequence 

identity to class II hydrophobins HFBI and HFBII, but 51 %, 21 % and 24 % to class I 

hydrophobins RodA, SC3 and EAS. 

 

Figure 4: Comparison of hydropathy patterns of identified putative A. terreus hydrophobins ATEG_06492 and 

ATEG_04730 with hydropathy patterns of known hydrophobins SC3 from S. commune, EAS from N. crassa, RodA from A. 

fumigatus and HFBI and HFBII from T. reesei. The amino acids of the hydrophobins are shown along the x-axis, where 

cysteines are indicated by vertical lines. Hydrophobic amino acids are shown above the x-axis, while hydrophilic amino acids 

are shown below. Only the part of the sequence from the first to the eighth cysteine was used to create the hydropathy 

pattern. 
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Furthermore, a phylogenetic analysis (figure 5) showed that ATEG_04730 clustered with 

HFBI and HFBII, while ATEG_06492 clustered with RodA, EAS and SC3, strongly 

indicating that ATEG_04730 can indeed be classified as a class II hydrophobin, while 

ATEG_06492 is classified as a class I hydrophobin.   

 

Figure 5: Phylogenetic analysis of known hydrophobins SC3 (S. commune), EAS (N. crassa), RodA (A. fumigatus), HFBI 

and HFBII (T. reesei) and the putative hydrophobins ATEG_06492 and ATEG_04730 identified in A. terreus. The 

phylogenetic tree was constructed based on a multiple alignment of identified hydrophobins using Phylogeny.fr18. Branches 

with support values less than 50 % were collapsed.  

 

Discussion 

In this study fifty hydrophobins were identified in nine genome sequences from seven 

Aspergilli. Each species was found to display between two and eight hydrophobins, which 

was in agreement with Sunde et al.
20

 who predicted that most fungal species contain between 

two and seven hydrophobins. The criteria used in this study for identifying the putative 

hydrophobins included size, a minimum of eight cysteines, two cysteine pairs and an intact 

characteristic spacing pattern. These criteria were based on observations by Wessels 
2
 and the 

structure of known hydrophobins
4,21–23

. Other studies
13,24

 include additional potential 

Aspergillus hydrophobins, but these do not fulfil our criteria and where therefore not included 

in this study. If these proposed proteins are hydrophobins, the definition of hydrophobins 

should be expanded. This can however only be confirmed after physical isolation and 

characterization of the potential hydrophobins.  

The cysteine spacing pattern and hydropathy plots of the identified hydrophobins were used 

to make a preliminary classification of the hydrophobins. Twenty-three of the identified 

hydrophobins could theoretically be classified as class I hydrophobins. However, the majority 

of the hydrophobins (twenty-six) were found to be intermediate forms and could not be 

classified as class I or class II hydrophobins, showing that many hydrophobins do not confer 

to the original classification system created by Wessels
3
. In agreement with our observations 

Littlejohn  et al.
24

 found several Aspergillus hydrophobins, which could not be classified as 



Chapter 3                                                                              PhD Thesis Britt Guillaume Jensen 
Aspergillus  hydrophobins – Identification, classification and characterization 

53 

 

class I or class II hydrophobins. Similarly, a novel set of Trichoderma hydrophobins have 

been identified which diverge and form a new subclass distinct from the original two classes 

25
. This indicates that many fungal species express intermediate form hydrophobins, which 

may thus also exhibit solubility characteristics between the two known classes. As these 

intermediate forms blur the original classification, it could be speculated, whether an 

extension of the classical two class system would be in place as more fungal genomes become 

available. Nevertheless, as the majority of the identified hydrophobins have not physically 

been isolated and characterized, a differentiation into type of class is only provisional. 

In this study a single class II hydrophobin was identified in the examined Aspergillus species 

namely ATEG_04730 from A. terreus. This was recently supported by Littlejohn et al.
24

 and 

no other class II hydrophobin has been identified in Aspergillus spp. so far. In addition to the 

identified class II hydrophobin, A. terreus displayed four other hydrophobins including a 

potential class I hydrophobin. Many previously examined fungal species only express either 

class I or class II hydrophobins. Nevertheless, it seems that some species may potentially 

express both class I and class II hydrophobins
5,6,25

.  In this study Aspergillus species were 

found to be able to express different classes of hydrophobins, where single species may 

express both class I hydrophobins, intermediate forms and for A. terreus also class II 

hydrophobins. The repertoire of different hydrophobins found in Aspergillus species may be 

expressed at different developmental stages of the fungal life cycle and may be required for 

fulfilling different biological functions in the fungus.   

Concluding remarks 

In this study nine genome sequences from seven Aspergilli revealed fifty hydrophobins, 

where each species displayed between two and eight hydrophobins. Twenty-three of the 

identified hydrophobins could be classified as class I hydrophobins based on their conserved 

cysteine spacing pattern and hydropathy pattern, but the majority seemed to be intermediate 

forms.  A single hydrophobin, ATEG_04730, from Aspergillus terreus displayed a clear class 

II cysteine spacing and had a class II hydropathy pattern. As Aspergillus terreus also has the 

potential to express a class I hydrophobin, this is the first reported case of an Aspergillus 

species with the potential to express both class I and class II hydrophobins. The varying 

repertoire of hydrophobins observed in the Aspergillus species may be expressed at different 

developmental stages of the fungal life cycle. The hydrophobins may thus fulfil different 

biological functions and may even be able to compensate for each other.  
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4 Characterization of Aspergillus nidulans hydrophobins and their 

potential biological functions 
 

This chapter presents a current study involving construction and characterizing of Aspergillus nidulans 

hydrophobins. For details on materials and methods see appendix 1. 

 

Introduction 

Hydrophobins have been proposed to be involved in a large variety of functions in fungal 

growth and development
1
 and may be expressed at different stages of development

2
. Some 

hydrophobins can lower the water surface tension by assembling into stable amphipathic 

membranes at water-air interfaces and thereby allow hyphae to breach through the interface
3
. 

This is especially useful for filamentous fungi, which commonly colonize moist 

environments, where they sometimes have to breach the water-air interface to grow and 

release spores into the air. Exposed to air, hydrophobins make the fungal surfaces 

hydrophobic allowing spores to be dispersed in the air and capable of binding to hydrophobic 

surfaces
1
.  

Based on the full genome sequence of Aspergillus nidulans FGSC A4, six hydrophobins have 

been predicted in A. nidulans; namely AN0940, AN1837, AN6401, AN7539, AN8006 

(DewA) and AN8803 (RodA)
4,5

. Of the six hydrophobins only two, RodA and DewA, have 

previously been studied
6–8

. Recently Littlejohn et al.
9
 proposed the existence of four 

additional hydrophobins in A. nidulans. Two of the proposed hydrophobins, AN4845 and 

AN6807, are very large in size, contain numerous cysteines and do therefore not confer to the 

classical definition of hydrophobins
1,10

. The other two putative hydrophobins, AN5290 and 

AN7327, have nine and ten cysteines respectively, but have an intact cysteine pattern and 

fulfil all other hydrophobin criteria, thus these may be hydrophobins. Nevertheless, this study 

was initiated before the publication of the article by Littlejohn et al.
9
  and therefore focuses on 

the six hydrophobins (AN0940, AN1837, AN6401, AN7539, DewA and RodA) originally 

identified which have eight cysteines and fulfil all original hydrophobin criteria.   

The aim of this study was to gain more insight into the different roles and biological functions 

of hydrophobins in A. nidulans, by creating single deletion as well as over-expression strains 

of the different A. nidulans hydrophobins and testing them in several assays. As DewA and 

RodA have previously been characterized, these strains were included to verify previous 
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results and for comparison to the other created hydrophobin strains. This study will contribute 

to understanding the roles and biological functions of hydrophobins in the filamentous model 

fungus, A. nidulans. 

 

Results  

Defining the putative hydrophobins of A. nidulans 

In the A. nidulans genome six genes encoding putative hydrophobins have been identified; 

AN0940, AN1837, AN6401, AN7539, AN8006 (dewA) and AN8803 (rodA)
4,5

. They vary in 

size (10 - 17 kDa), but all contain eight cysteines in the characteristic pattern for 

hydrophobins and have a signal sequence (figure 1).  

 

Figure 1: Alignment of A. nidulans hydrophobins. A. nidulans has six hydrophobins containing eight cysteines (highlighted 

in green) in the characteristic pattern for hydrophobins (C-CC-C-C-CC-C). The hydrophobins vary in size from ~ 10 – 17 

kDa and contain ~ 100 – 150 amino acids. All six hydrophobins have signal sequences (underlined). Apart from the eight 

cysteines low sequence similarity is observed. 

Five of the hydrophobins contain a stretch of five amino acids between the fifth and sixth 

cysteine, while AN0940 has seven amino acids between the cysteines. This is often observed 

in class I hydrophobins, while class II hydrophobins contain a stretch of approximately nine 

amino acids
11

.  

Based on the spacing between the cysteines and their hydropathy patterns, three hydrophobins 

(RodA, DewA and AN1837) can be classified as putative class I hydrophobins (figure 2). 

They display similar hydropathy patterns to known class I hydrophobins (SC3 and EAS) and 

previous work by Stringer et al.
6,7

 has confirmed RodA and DewA as class I hydrophobins. 

The remaining three hydrophobins, AN0940, AN6401 and AN7539 are presumably 
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intermediate forms of the two classes as they do not display a characteristic class I or class II 

hydropathy pattern.  

 

 

Figure 2: Hydropathy patterns of A. nidulans hydrophobins including hydropathy patterns of class I hydrophobins SC3 from 

S. commune, EAS from N. crassa and class II hydrophobins HFBI and HFBII from T. reesei for comparison. The amino 

acids of the hydrophobins are displayed along the x-axis, where cysteines are indicated by vertical lines. Hydrophobic amino 

acids are shown above the x-axis, while hydrophilic amino acids are shown below. Only the part of the sequence from the 

first to the eighth cysteine was used to create the hydropathy pattern. 
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Apart from the eight cysteine motif, low to moderate sequence similarity can be observed 

between the hydrophobins displaying from ~ 10 to 50 % identity (table 1). Highest sequence 

similarity is observed between RodA and AN1837, while RodA and AN0940 have the lowest 

sequence similarity. However, the majority display sequence similarities between ~ 10 to 25 

% identity. 

 

Table 1: Identity between A. nidulans hydrophobins 

% identity RodA DewA AN0940 AN1837 AN6401 AN7539 

RodA  20.9 % 9.2 % 53.5 % 24.0 % 19.0 % 

DewA 20.9 %  14.9 % 18.7 % 20.0 % 20.9 % 

AN0940 9.2 % 14.6 %  10.4 % 13.4 % 14.5 % 

AN1837 53.5 % 18.7 % 10.4 %  24.0 % 18.7 % 

AN6401 24.0 % 20.0 % 13.4 % 14.0 %  19.5 % 

AN7539 19.0 % 10.9 % 14.5 % 18.8 % 19.5 %  

 

Using the protein sequences of the hydrophobins, a BLAST search was conducted on the 

UniProt Protein Knowledgebase (www.uniprot.org) to examine the percentage of identical 

amino acids between the A. nidulans hydrophobins and other hydrophobins from full genome 

sequenced Aspergillus species (table 2).  

 

Table 2: Comparison of A. nidulans hydrophobins to hydrophobins from other full genome sequenced Aspergilli 

A. nidulans 

hydrophobin 

Hydrophobins from other Aspergilli with highest percentage of 

identical amino acids to the A. nidulans hydrophobins
1 

RodA 75 % AFUA_5G09580 

A. fumigatus 

69 % ACLA_010960 

A. clavatus 

66 % An07g03340 

A. niger 

DewA 44 % AFLA_060780 

A. flavus 

41 % An03g02400 

A. niger 

41 % An03g02360 

A. niger 

AN0940 38 % An01g10940 

A. niger 

  

AN1837 60 % AFUA_5G09580 

A. fumigatus 

57 % ACLA_010960 

A. clavatus 

55 % An07g03340  

A. niger 

AN6401 33 % ACLA_018290 

A. clavatus 

33 % An07g03340 

A. niger 

31 % AFUA_1G17250 

A. fumigatus 

AN7539 74 % ACLA_072820 

A. clavatus 

71 % AFUA_2G14661 

A. fumigatus 

56 %  ATEG_07808  

A. terreus 

1The identified A. nidulans hydrophobins were compared to other full genome sequenced Aspergillus hydrophobins by 

conducting a BLAST search on the UniProt Protein Knowledgebase (www.uniprot.org). The top three matches are shown. 

Only a single match was found for AN0940. 
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If hydrophobins have high sequence similarities, these hydrophobins may have similar 

biological functions. Generally, RodA and AN1837 showed relatively high identity to 

hydrophobins annotated as RodA from other Aspergillus species having e.g. 75 % and 60 % 

identity to RodA from A. fumigatus (AFUA_5G09580). DewA displayed approximately 40 % 

identity to several hydrophobins, AN0940 and AN6401 hydrophobins had below 40 % 

identity to other predicted hydrophobins, while the AN7539 hydrophobin had rather high 

identity to both an A. fumigatus and an A. clavatus hydrophobin.  

 

Morphological features of hydrophobin deletion strains 

To investigate the function of A. nidulans hydrophobins, individual knockout mutants of 

hydrophobins RodA, DewA, AN0940, AN1837 and AN6401 were constructed as well as a 

double-deletion strain of rodA∆dewA∆. The individual knockout mutant of hydrophobin 

AN7539 is still under construction and will not be included in the further results and 

discussion part of this chapter.  A veA1 strain was isolated for use as a reference strain.  

The reference and hydrophobin deletion strains were grown on both minimal media (MM
12

) 

and rich media; WATM (Wickerhams Antibiotic Test Medium
13

), YES (Yeast Extract 

Sucrose agar
14

) and CYA (Czapek Yeast extract Agar
14

) and examined for phenotypical 

differences both macroscopically and microscopically. No differences were observed between 

the strains grown on YES and CYA (not shown), while alternating phenotypes could be 

observed between the strains grown on MM and WATM  (figure 3). 

The rodA∆ strain displayed a darker colony colour, changing from dark green in the centre to 

dark brown in the periphery of the colony, compared to the green colour of the reference 

strain (figure 3). Sporadically white clumps of aerial mycelium were occasionally observed on 

the colonies, mostly situated near the centre of the colony. The conidia had a wet and sticky 

appearance, when observed microscopically and were found to be dispersed in clumps of 

chains in water. When mature colonies were held and tapped over a new empty medium plate, 

no or few colonies were observed on the new plate, indicating that the spores had impaired 

ability to be released into the air.  

The dewA∆ strain displayed similar green coloured conidia as the reference strain (figure 3). 

The conidia were dry, when observed microscopically, dispersed as single chains in water and 

could readily be dispersed into the air. In contrast, the double mutant, rodA∆dewA∆, 
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displayed conidia with dark brown colour. Conidia were similarly to the rodA∆ strain 

dispersed clumped in chains in water and only few spores were released into the air. It 

seemed, however that the addition of the dewA deletion to the rodA∆ mutant enhanced the 

phenotype observed in the rodA∆ strain as the spore clumping was more pronounced with 

larger clumps.  

The AN0940, AN1837 and AN6401 mutant strains (AN0940∆, AN1837∆ and AN6401∆) all 

had similar green conidia as the reference strain (figure 3). The conidia were dry and 

dispersed in single chains or as single conidia in water. When observed microscopically 

dewA∆, AN0940∆, AN1837∆ and AN6401∆ had normal conidiophore heads, which was in 

contrast to rodA∆ and rodA∆dewA∆ where the heads seemed more dense and clumped. All 

seven strains did, however, have brown conidiophore stalks and were able to produce hülle 

cells and ascomata. Furthermore, no differences in radial colony growth could be seen 

between strains (data not shown).   

 

 

Figure 3: Morphology of hydrophobin deletion strains. A. nidulans hydrophobin deletion strains were grown on (A) Minimal 

media and (B) Wickerhams Antibiotic Test Medium in biological triplicate. The rodA∆ and rodA∆dewA∆ strains displayed a 

darker colony colour compared to the other strains. (C) Conidial heads of rodA∆ and rodA∆dewA∆ seemed more dense and 

clumped than the other strains and (D) spores dispersed in clumps of chains in water instead of single spores or chains. A 

minimum of 30 images were examined and a single representative image is shown.   

Reference rodA∆ dewA∆ rodA∆dew∆ AN0940∆ AN1837∆ AN6401∆

A

B

C

D
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Stringer et al.
7
 had previously observed a subtle phenotype in a dewA∆ strain as this strain 

wetted rapidly by detergent
7
. To examine whether a similar phenotype could be seen in the 

other hydrophobin deletion strains, a drop of detergent (0.2 % SDS, 50 mM EDTA) was 

placed on four days old colonies. The dewA∆ strain readily wetted by detergent and was 

wetted within 30 seconds. An even faster wetting was observed for the rodA∆dewA∆ strain, 

which wetted within 10 seconds, while the rodA∆ strain wetted within 1 minute. The 

remaining strains including the reference, AN0940∆, AN1837∆ and AN6401∆ wetted within 

7-10 minutes, showing that only lack of RodA and DewA give rise to this phenotype. 

 

Rodlets 

Hydrophobins RodA and DewA are found on the spore surface and rodA is essential for 

rodlet formation
6,7

. To further characterize the hydrophobin deletion strains and to examine 

whether the hydrophobins AN0940, AN1837 and AN6401 were involved in rodlet formation, 

conidia from the reference strain was initially examined by Scanning Electron Microscopy 

(SEM). Despite several attempts, the use of different SEM techniques and help from experts 

at the Center for Electron Nanoscopy at DTU visualization of the rodlets on the reference 

strain as well as on the wild type strain FGSC A4 were unsuccessful (figure 4).  

 

Figure 4: Scanning Electron Microscopy of the A. nidulans reference strain. No rodlets could be observed on the surface of 

the strain. 

Next the A. fumigatus AF293 strain was included as a positive control as this specific species 

has previously been shown to display rodlets
15,16

, but no rodlets could be found. Major 
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problems encountered during SEM included insufficient focus on the sample and collapse of 

spores, which may be caused by inadequate sample preparation. Additional sample 

preparation (eg. as described by Paris et al.
16

) or the replica plating method previously used 

by Parta et al.
15

 may have proven to solve these issues. Nevertheless, due to both physical and 

time limitations and little prior experience with SEM on biological samples, SEM was 

aborted.   

 

Morphological features of hydrophobin over expression strains 

To further investigate the function of A. nidulans hydrophobins, strains over-expressing all six 

hydrophobins (RodA, DewA, AN0940, AN1837, AN6401 and AN7539) individually were 

constructed. The aim was to examine the phenotypic effect of over-expressing hydrophobins 

on the strains by examining the constructed strains both microscopically and macroscopically. 

However, over-expression of a single hydrophobin gene in A. nidulans resulted in strains 

displaying similar green conidia in all strains when grown on MM and WATM (not shown). 

By examining more than 30 samples, the conidial heads were found to resemble the reference 

strain. Furthermore all strains had approximately equal spore chain lengths, displayed dark 

ascomata and shed water instantly, due to their high degree of hydrophobicity.  

 

Relative gene expression of hydrophobins in deletion strains 

To elucidate the effect, on transcriptional level, of deleting hydrophobins on other 

hydrophobins, qRT-PCR was performed to determine the relative gene expression of all 

predicted hydrophobins in the rodA∆, dewA∆ and rodA∆dewA∆ strains using the reference 

strain as a control. Determination of the relative gene expression of all predicted 

hydrophobins in the AN0940∆, AN1837∆, AN6401∆ and AN7539∆ strains is currently 

ongoing and is not included in this chapter. As expected, the deleted hydrophobins were not 

expressed in the respective strains (figure 5). In the rodAΔ strain, all other hydrophobins were 

down-regulated compared to the reference (P<0.025). Fold changes ranged from ~ 0.4 - 0.7, 

with dewA and AN0940 displaying fold-change of 0.5 and 0.6 respectively. In the dewA∆ 

strain, no change in gene expression was observed for the RodA hydrophobin and a small 

decrease in fold change to 0.9 was observed for AN0940 (P<0.1). The remaining 

hydrophobins, AN1837, AN6401 and AN7539 were down-regulated and displayed similar 
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fold-changes in the dewA∆ strain (P<0.025) compared to the rodAΔ strain. In both the rodA∆ 

and dewA∆ strains, AN1837 displayed the lowest fold-change of ~ 0.7, AN6401 had a fold-

change of 0.5 and AN7539 a fold-change of 0.4. Interestingly, when both RodA and DewA 

were deleted, no significant change in gene expression was observed for AN0940, AN1837 

and AN6401 in the rodAΔdewA∆ strain, when the standard deviations were taken into 

account. In contrast the AN7539 hydrophobin had increased expression (P<0.01) in the 

rodAΔdewA∆ strain showing a fold change of 1.6. 

 

 

Figure 5:  Relative gene expression of hydrophobin encoding genes in the rodA∆, dewA∆ and rodA∆dewA∆ strains using the 

reference as a control. The data shown are means ± standard errors from three independent experiments.  

 

Deletion of both rodA and dewA hydrophobin genes has an effect on 

colony hydrophobicity 

Different fungal species display varying degrees of surface hydrophobicity ranging from 

highly hydrophilic to very hydrophobic
17,18

. Aspergillus species are hydrophobic, but rodA 

deletion strains have previously demonstrated a reduced surface hydrophobicity
7,8

, showing 

the involvement of hydrophobins in surface hydrophobicity. To examine the contribution of 

other A. nidulans hydrophobins to surface hydrophobicity, hydrophobicity of all A. nidulans 

deletion strains (except AN7539∆) was assessed using water contact angle measurements by 

applying water drops on top of mature colonies and measuring the angle between the drop and 

colony surface. If the water contact angle is below 90° the surface is considered hydrophilic, 

while surfaces with water contact angles over 90° are considered hydrophobic
17

.   
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All strains were initially found to display very high hydrophobicity having water contact 

angles over 140 degrees despite the lack of a hydrophobin (figure 6A). The reference strain 

had an initial water contact angle of 146° ± 4°. No statistical significant change of surface 

hydrophobicity of the rodA∆, dewA∆, AN0940∆, AN1837∆ and AN6401 strains compared to 

our reference was measured as these strains displayed water contact angles from 142° ± 8° to 

154° ± 3°. Apart from the rodA∆dewA∆, all strains had constant water contact angles 

throughout the first 60 seconds displaying below 5 degrees change even after five minutes 

(data not shown). Interestingly, water droplets placed on the rodA∆dewA∆ colony soaked into 

the underlying agar within 3 – 5 minutes (figure 6B). The degree of surface hydrophobicity 

was found to decrease in average 18 degrees within the first minute and further decreased 

over time until no drop was visible.  

 

 

Figure 6: Hydrophobicity of A. nidulans deletion strains. Hydrophobicity of strains was measured using water contact angle 

measurements. (A) All strains (except rodA∆dewA∆) displayed high hydrophobicity with constant water contact angles in the 

first minute. The data shown are means ± standard errors from three experiments. (B) Hydrophobicity of the rodA∆dewA∆ 

strain decreased over time due to the deposited water soaking into the mycelium within 3-5 min.  

 

The ability of A. nidulans to breach a water-air interface is not 

compromised by deletion of single hydrophobin genes 

Submerged hyphae from Schizophyllum commune secrete hydrophobins into the surrounding 

medium, proposing a role for hydrophobins in lowering the water surface tension, thus 

allowing fungi to escape aqueous environments and grow into the air
3,19

. To examine if the 

deletion of single hydrophobins compromises the ability of A. nidulans in escaping aqueous 

environments and examine if a similar mechanism may be used by A. nidulans, all 

hydrophobin deletion strains were inoculated on solid media and subsequently submerged in 

water. Initial experiments using wild type strains of A. fumigatus, A. oryzae and A. niger 

verified that Aspergillus species are able to breach from an aqueous environment into the air. 
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Using the hydrophobin deletion strains, our results indicate that lack of a single hydrophobin 

or two (rodA∆dewA∆) does not affect the ability of A. nidulans to breach the water air 

interface. After 4-5 days of growth at 20 °C below water level, all strains had breached 

through the water forming a colony of vegetative mycelium and conidiophores on top of the 

water (figure 7). The colony was connected to the solid submerged media by easily visible 

mycelia allowing the floating colony to acquire nutrients.  

 

Figure 7: All Aspergillus hydrophobin deletion species were able to breach through water into the air forming a mature 

colony atop the water after 4-5 days of growth at 20 °C. All experiments were conducted in triplicate. The reference strain is 

shown as an example.  

 

Discussion 

Hydrophobins have been proposed to fulfil many different biological functions in fungi 

including hydrophobicity, facilitation of spore dispersal and allowing the fungus to escape 

aqueous environments
1
 and may therefore be expressed at different stages of fungal 

development
2
. Aspergillus species display a varying number of hydrophobins

4,9
 and six 

putative hydrophobins have been identified in A. nidulans (AN0940, AN1837, AN6401, 

AN7539, AN8006 and AN8803)
4,5

. Recently, Littlejohn et al.
9
 proposed the existence of an 

additional four hydrophobins in A. nidulans. These four hydrophobins do, however, not 

confer to the accepted standards for hydrophobins originally presented by Wessels
1,10

 and 

may therefore not be able to maintain a globular overall fold similar to other hydrophobins
20–

23
. In this study the focus was on the six hydrophobins (AN0940, AN1837, AN6401, 

AN7539, RodA and DewA) fulfilling all criteria to classify them as hydrophobins including 

size, eight cysteines, two cysteine pairs and an intact characteristic cysteine pattern. As with 

other hydrophobins
1
, the A. nidulans hydrophobins display low to moderate sequence 

similarity towards each other and varying sequence similarity to hydrophobins from other full 

genome sequenced Aspergilli. Three hydrophobins (RodA, DewA and AN1837) were 
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putatively classified as class I hydrophobins based on their cysteine pattern and hydropathy 

plots, while AN0940, AN6401 and AN7539 probably are intermediate forms. Many other 

Aspergillus species likewise display different classes of hydrophobins
4,9

, but the classes of 

hydrophobins can only been confirmed after isolation and characterization of the 

hydrophobins.  

To examine the function of A. nidulans hydrophobins, deletion strains of the A. nidulans 

hydrophobins were constructed. Of the six A. nidulans hydrophobins, one hydrophobin 

(AN7539) was not included in the experimental part of the present study and will not be 

discussed as a knockout mutant of the strain is still under construction.      

Previous studies have shown that deletion of single Aspergillus hydrophobins resulted in 

altered phenotypes compared to control strains
6,7,24

, and therefore the constructed deletion 

strains were examined both macroscopically and microscopically. However, only the rodA∆ 

and rodA∆dewA∆ strains had different phenotypes compared to the reference strain, where the 

rodA∆dewA∆ strain displayed a more severe phenotype than the rodA∆ strain. The darkened, 

wet and sticky appearance of the conidia in growing colonies was in agreement with previous 

results by Stringer et al.
6
. This phenotype had also been observed in a rodA knockout mutant 

of A. fumigatus
25

 and an eas mutant from Neurospora crassa
26

, showing that this phenotype 

often is associated with the lack of the conidia rodlet layer. The remaining strains (dewA∆, 

AN0940∆, AN1837∆, AN6401∆ and reference) displayed dry spores, were not easily wetted 

and resisted suspension in water. This indicates that these hydrophobins, as previously shown 

for DewA
7
, may not be essential for rodlet formation, but could still be located on the conidia 

cell wall. To examine if the hydrophobins AN0940, AN1837 and AN6401 are involved in 

rodlet formation, a visualization of the conidium surface was attempted using SEM. 

Unfortunately this was not successful and therefore the involvement of AN0940, AN1837 and 

AN6401 in rodlet formation still remains elusive.   

Another phenotype linked to the loss of conidial hydrophobins in A. nidulans is the detergent 

wettable phenotype in dewA∆ strains
7
 and therefore the other hydrophobin deletion strains 

were examined for this phenotype. The dewA∆, rodA∆dewA∆ and rodA∆ strains displayed 

rapid uptake of drops of detergent (0.2 % SDS, 50 mM EDTA) in the colonies from instantly 

to 1 min. The AN0940∆, AN1837∆ and AN6401∆ strains did not display a detergent wettable 

phenotype, indicating that these hydrophobins may not have dominant roles on conidia if 



Chapter 4                                                                             PhD Thesis Britt Guillaume Jensen 
Aspergillus  hydrophobins – Identification, classification and characterization 

69 

 

present at all. These hydrophobins could only be present in the mycelium cell wall or may be 

complemented by other hydrophobins. This was examined using qRT-PCR. 

Beauvais et al.
27

 had previously examined the expression of A. fumigatus hydrophobins under 

different conditions finding that rodA and rodC were expressed during vegetative growth, 

rodB and rodE in mycelium grown under static aerial conditions, while rodD and rodF were 

expressed in both mycelium grown under static aerial conditions and shaken submerged 

conditions. Similarly, the hydrophobins from Cladosporium fulvum have been found to be 

differentially expressed under different culturing conditions
28–30

. These previous expression 

studies reveal overall regulation following different stages of development. To examine if 

hydrophobins are coupled in expression or are able to complement each other, expression 

levels of the six A. nidulans hydrophobins were examined in the rodA and dewA deletion 

strains by qRT-PCR. In the rodA∆ strain, deletion of rodA resulted in all other hydrophobins 

having a reduced gene expression including the other known conidial hydrophobin DewA. In 

contrast the expression level of rodA was not changed in the dewA∆ strain. This interestingly 

shows that changes in rodA affect dewA expression, but not vice versa. This may be due to 

RodA being the major outer wall hydrophobin on the conidia, while DewA has been proposed 

to be a part of the inner layer
7
. It seems that the presence of dewA is not a prerequisite for the 

expression of rodA, which is confirmed by the observation of rodlets in dewA∆ strains
7
, but 

the decreased expression of rodA and thereby lack of rodlet layer appears to affect the 

expression of all other hydrophobins.  

The deletion of dewA, did not result in any significant change in the expression levels of 

AN0940. However, AN1837, AN6401 and AN7539 had reduced expression similar to the 

rodA∆ strain. It seems that these three hydrophobins display comparable reduced expression 

levels irrespectively of which conidial hydrophobin (rodA or dewA) has been deleted. In the 

rodA∆dewA∆ strain, the hydrophobins AN0940, AN1837 and AN6401 only had a minimal 

change in expression and were only slightly down-regulated showing that the deletion of the 

two hydrophobins does not reduce the expression of the other hydrophobins to the same 

extent compared to the single deletion strains. These hydrophobins may become more 

important as more hydrophobins are missing. Interestingly, the deletion of both rodA and 

dewA, resulted in an increased expression of AN7539, which was in contrast to the reduced 

expression observed in the single deletion strains. This hydrophobin may thus fulfil some of 

the functions of the hydrophobins RodA and DewA, when both hydrophobins have been 
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deleted. Future expression studies on the AN7539∆ strain will reveal if RodA and DewA are 

affected by the deletion of the AN7539 hydrophobin, but as RodA is the major conidial 

hydrophobin this is not likely. 

The colony surface hydrophobicity of the deletion strains was measured using water contact 

angle measurements, where all strains displayed high surface hydrophobicity. Different fungal 

species display varying degrees of surface hydrophobicity
17,18

, but A. nidulans generally has 

high hydrophobicity
8
 . In agreement with our results, Dynesen et al.

8
 did not observe any 

difference in surface hydrophobicity between the dewA∆ and reference strain, but did in 

contrast to our results see a decrease in surface hydrophobicity in the rodA∆ strain. Our 

rodA∆dewA∆ strain allowed passage of water to the underlying agar, a phenotype previously 

described in an A. fumigatus rodA∆ strain
25

. This may be due to the lower hydrophobicity of 

the rodA∆dewA∆ strain, previously confirmed by Stringer et al.
7
. The minor difference in 

surface hydrophobicity of AN0940∆, AN1837∆ and AN6401∆ from the reference strain 

indicated that these hydrophobins are not essential for colony hydrophobicity, and that RodA 

plays a more pronounced role in making the colony hydrophobic. Water contact angle 

measurements were done on a sporulating colony containing both conidia and mycelium, 

which may explain why no major differences could be observed between the strains. Further 

experiments on pure conidia or mycelium, could provide insight into the hydrophobicity of 

single fungal structures. This could be achieved using the “microsphere adhesion assay” 

previously described by Beauvais  et al.
27

. In this assay the binding of fluorescent polystyrene 

latex beads to fungal structures indicate the hydrophobicity of the fungus.    

Hydrophobins have been suggested to actively help fungi to escape aqueous environments by 

lowering the water surface tension
3
. Previously, Wessels et al. have shown that hydrophobins 

from S. commune are secreted into the surrounding medium by submerged hyphae, thereby 

lowering the water surface tension and allowing the fungus to breach into the air
19,31,32

. If a 

similar strategy is used in Aspergilli then at least a single hydrophobin should be secreted into 

the liquid medium. To test this hypothesis, we submerged immature colonies of our mutant 

strains in water. After 4 -5 days of growth at 20 °C all strains had breached through the water 

and had formed mature colonies on the water. This implies that the lack of a single A. 

nidulans hydrophobin or both the RodA and DewA hydrophobins does not impair the ability 

to escape an aqueous environment. This may be a result of the hydrophobins complementing 

each other allowing differential secretion into the surrounding medium or an indication that a 
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different strategy is used by Aspergillus compared to S. commune in allowing the fungus to 

breach into the air. 

 

Concluding remarks 

Hydrophobins have been proposed to be involved in many different functions of fungal 

growth and development. They are involved in hydrophobicity, facilitate spore dispersal and 

allow fungi to escape aqueous environments
1
. The aim of this study was to examine putative 

hydrophobins from A. nidulans by creating single deletion and over-expression strains of six 

hydrophobins and testing them in several assays. Previous results by Stringer et al.
6,7

 were 

confirmed for the RodA and DewA hydrophobins. As no phenotype was apparent for the 

AN0940, AN1837 and AN6401 deletion strains, roles of these hydrophobins remains to be 

determined. It seems that hydrophobins in A. nidulans have different roles in the fungus, 

where some are necessary for the fungus to survive in nature, while the roles of others are still 

elusive. Further studies may reveal, yet undiscovered, biological functions for hydrophobins.  
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5 Examination of potential Aspergillus-Pseudomonas interactions 

This chapter deals with interactions between Aspergillus species and Pseudomonas aeruginosa.  

The majority of results are included in article 2. Methods can be seen in article 2 and appendix 2. 

 

Introduction 

A part of this PhD study has focused on the potential interaction between different 

Aspergillus species and the bacterium Pseudomonas aeruginosa, which both commonly 

colonize the lungs of cystic fibrosis (CF) patients
1,2

.  Cystic fibrosis is a chronic inherited 

genetic disorder characterized by recurrent infections of the lower respiratory tract due to an 

impaired mucociliary clearance and thickened bronchial mucus providing a favourable 

growth environment for bacteria and fungi. Over time the recurrent infections and 

inflammation lead to a severely impaired lung function
3
.  

Pseudomonas aeruginosa is the most dominant bacterium found in CF lungs colonizing 

approximately 80 % of CF patients
1,2

. As CF patients reach early childhood, most CF 

patients eventually become chronically infected by P. aeruginosa strains
4
. P. aeruginosa 

changes genetically during the course of chronic CF lung infections resulting in loss-of-

function mutations and changes in phenotypes
5,6

. Common mutations include loss of 

motility
7
 and inactivation of the anti-sigma factor MucA resulting in a mucoid phenotype

8
. 

Furthermore, the quorum sensing regulator LasR is commonly affected
5,9

 resulting in a 

decrease in expression of many virulence factors
10–13

. Frequent mutations in the alternative 

sigma factor, RpoN, similarly affect many virulence factors including synthesis of pili, 

flagella, pyocyanin and rhamnolipids
14–17

.  

Aspergillus spp. can cause disease in immunocompromised hosts and individuals with 

underlying pulmonary diseases, where Aspergillus fumigatus is responsible for 

approximately 90% of human infections with Aspergillus species
18

. In CF patients, A. 

fumigatus is the most common isolated filamentous fungus occurring in between 6 – 58 % of 

CF patients
1,2,19–23

 and is the most persistent organism to colonize CF patients next to P. 

aeruginosa
1
. Many CF patients harbour several A. fumigatus genotypes in their lungs

24–26
, 

with some strains being chronically present, while others are found more transiently
26

. 

Bakare et al. found that 64% of A. fumigatus positive patients also had P. aeruginosa 

infections
2
, and patients with A. fumigatus more frequently had P. aeruginosa

20,27
. Other 

Aspergillus species found in cystic fibrosis patients are A. flavus, A. niger, A. nidulans, A. 
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versicolor and A. terreus
19,20,28,29

. Most are possibly only found transiently, but A. terreus 

seems to be able to chronically colonize the airways of CF patients
28

.  

Both Aspergillus species and Pseudomonas aeruginosa are frequently isolated from CF 

patients
2
, but few studies have focused on a possible interaction between the species in 

mixed populations
30–34

. During the writing of this chapter Moree et al.
35

, however, published 

a study dealing with A. fumigatus - P. aeruginosa interactions. In this chapter the potential 

interaction between Pseudomonas aeruginosa and different Aspergillus species was 

examined. If the two organisms interact, this may lead to changes in behaviour of one of the 

organisms, changes in secondary metabolite profiles, increased inflammatory response and 

worsening of underlying pulmonary disease. As a result of genetic adaption to the CF 

environment mutational changes in P. aeruginosa may alter the interactions between A. 

fumigatus and P. aeruginosa during the course of a CF infection. This has been examined 

using different P. aeruginosa mutants. Finally the involvement of hydrophobins in the 

interaction has briefly been touched upon.  

 

Results 

Development of an assay to investigate Aspergillus-Pseudomonas 

interactions  

In order to examine Aspergillus-Pseudomonas interactions it was pivotal to find a medium 

allowing balanced growth between the two organisms and develop an assay allowing 

visualization of the interaction. The fungal nutritional rich media Wickerhams Antibiotic 

Test Medium (WATM)
36

 provided appropriate and balanced growth of both organisms and 

was chosen as standard medium. Other media tested included Luria broth (LB)
37

 and Yeast 

Extract Sucrose agar (YES)
38

, but neither provided balanced growth between the two 

organisms.  

Next an appropriate model for streaking the two organisms was examined. The aim was to 

find a model system enabling the examination of the two organisms close together, but also 

containing areas with each organism alone further from the other organism for comparison. 

Several different models for streaking out the two organisms were tested (figure 1). The first 

model (A) was found to suppress the fungal growth too much compared to the bacterium. In 

this model the fungus was completely surrounded by the bacterium, whereby fungal areas 

further from the bacterium were unavailable. The second model (B) was found to under-
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suppress the fungus, as it over time covered the whole plate except the bacterium streak. 

Hereby the direction of the fungus could not be controlled and no bacterium area without 

adjacent fungus was available. The third model (C) consisted of a single fungal streak on the 

left side of the plate and four bacterial streaks perpendicular to the fungal streak. Initially the 

bacterium was streaked at varying distances, but was subsequently modified to be streaked at 

equal distances. This model provided both zones in the bacterium and the fungus adjacent to 

the other organism, but also further from the other organism. 

  

Figure 1: Several different models for streaking out the Aspergillus species and P. aeruginosa was tried out using 9 cm 

media plates. Models are shown using A. flavus. Model A: A. flavus inoculated in the middle, P. aeruginosa streaked around 

the fungus covering the rest of the plate. Model B: A. flavus streaked in the middle of the plate, P. aeruginosa streaked from 

each side perpendicular to the fungus.  Model C: A. flavus streaked on the left side of the plate. P. aeruginosa streaked four 

times perpendicular to the fungus at varying distance from the fungus. (black arrow: A. flavus, white arrow: P. aeruginosa) 

The developed assay thus consisted of WATM plates, where the Aspergillus species was 

streaked on the left side of the plate, while P. aeruginosa was streaked on the right allowing 

the organisms to initially colonize separately (figure 2).  

 

Figure 2: The standard plating method was used throughout this study. Aspergillus was streaked on the left side of the 9 cm 

plate, while P. aeruginosa was streaked four times perpendicular to the fungal streak on the right side. The initial distance 

between the fungal and bacterial streaks was 2 cm.  

A B C

Aspergillus

P. aeruginosa

WATM 

media
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Aspergillus species are suppressed by P. aeruginosa 

Several Aspergillus species may infect CF patients
19,20,28,29

. Previous studies in Aspergillus-

Pseudomonas interactions have primarily focused on A. fumigatus
30–32

, but in this study A. 

niger, A. oryzae and A. flavus were also included.  

By using the developed plating assay P. aeruginosa PAO1
39

 was found to suppress all tested 

Aspergilli including; A. fumigatus, A. niger, A. oryzae and A. flavus (figure 3). For A. oryzae 

and A. flavus, P. aeruginosa produced a greenish compound in the contact zone to the 

Aspergilli. This greenish compound is presumably pyocyanin, known to have a green/blue 

colour and an increase in pyocyanin production by P. aeruginosa was confirmed by LC-MS 

in the contact zone of A. oryzae and A. flavus. No coloration was observed for P. aeruginosa 

in the contact zone of A. fumigatus or A. niger, nor was the production of pyocyanin 

increased. P. aeruginosa seemed growth restricted in the contact zone with A. niger. This 

may be a result of citric acid produced by A. niger, previously shown to inhibit P. 

aeruginosa
40

. No inhibition was observed when 1 M HCl was applied to bacterium, thus the 

observed inhibitory effect is specific to the produced acid by A. niger and not a pH effect. 

This shows differential interaction patterns, despite all tested Aspergillus being suppressed 

and was later examined in more detail (see below).  

 

Figure 3: P. aeruginosa suppressed growth of A. oryzae, A. flavus, A. fumigatus and A. niger on WATM plates. The 

pictures were taken after five days of growth at 37 °C.  

 

Both clinical and environmental A. fumigatus strains are suppressed by P. 

aeruginosa PAO1 

As A. fumigatus is the major Aspergillus species isolated from CF patients
18

, it was 

interesting to examine if the suppression of A. fumigatus by P. aeruginosa was a general 

phenomena for A. fumigatus strains. Therefore ten different A. fumigatus strains were 

selected, including six clinical and four environmental strains, and tested against P. 

A. fumigatus A. nigerA. flavusA. oryzae
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aeruginosa PAO1 (table 1). This could also provide insight to differences in the interaction 

between P. aeruginosa and A. fumigatus strains with different origin.  

 

Table 1: Interaction between A. fumigatus strains and P. aeruginosa PAO1 and the production of secondary metabolites by 

A. fumigatus strains. 

1Gliotoxin is mainly produced on low carbohydrate containing media41 and therefore LB medium was used. 

ND: < 20 ng/cm2 

All A. fumigatus strains were inhibited by P. aeruginosa (figure 4), showing that inhibition 

of A. fumigatus by P. aeruginosa is a common phenomenon independent of the fungal strain. 

This is in agreement with previous studies showing that A. fumigatus strains (with few 

exceptions) are partly or completely suppressed by P. aeruginosa
30–32

. Five strains (AF293, 

ATCC 201531, TUBF-32, AFIR 974 and TUBF-440) had a dusty appearance (2-3 mm spore 

layer almost floating on top of the culture), while the remaining strains were less dusty. The 

strains AF41, A37941, CBS 144.89 and NRRL1979 unexpectedly triggered the production 

of a green compound by P. aeruginosa in the contact zone (figure 4), while AF250 triggered 

the production of a yellow compound. The remaining strains did not trigger any visual 

response in P. aeruginosa as previously observed for the AF293 strain. It seemed that the 

less dusty strains triggered the production of the green compound in P. aeruginosa, while the 

very dusty strains did not. This variation in the interaction may explain why some A. 

fumigatus  strains chronically infect CF patients while other A. fumigatus strains are found 

more transiently
26

. 

 WATM medium LB medium1 

A. fumigatus 

strain 

Type of strain Color of P. 

aeruginosa 

in contact 

zone 

Dusty 

(*) 

F
u

m
ig

a
c
la

v
in

s 

P
se

u
ro

ti
n

s 

T
ry

p
to

q
u

iv
a

li
n

s 

F
u

m
iq

u
in

a
zo

li
n

s 

T
ry

p
a
c
id

in
s 

F
u

m
a
g

il
li

n
s 

H
el

v
o
li

c
 a

ci
d

 

P
y

ri
p

y
r
o

p
e
n

e
s 

F
u

m
it

re
m

o
rg

in
s 

Gliotoxin 

production 

(ng/cm2) 

AF293 Clinical - + + + + + + + + + - 40 

AF41 Clinical Green - + - + + + + + + + ND 

A37941 Clinical Green - - - - + - + + - - ND 

CBS 144.89 Clinical Green - + + + + - + + + + 180 

ATCC 201531 Clinical - + + + + + + + + + + 190 

AF250 Clinical Yellow - + + + + + + + + + 40 

NRRL1979 Environmental Green - + - + + + + + + + ND 

TUBF-32 Environmental - + + + + + - + + + - 50 

AFIR974 Environmental - + + - + + + + + + + ND 

TUBF-440 Environmental - +/- + + + + + + - + + 650 
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To further examine the background for this altering interaction pattern, the ten strains were 

analysed by HPLC to elucidate if the colour reaction from P. aeruginosa was correlated to 

the production of one or several secondary metabolites by A. fumigatus. As expected, based 

on previously published results by Frisvad et al.
41

, the A. fumigatus strains were found to 

produce different classes of secondary metabolites (table 1). Of special interest was 

gliotoxin, previously found in the lungs of CF patients and able to damage human respiratory 

epithelium
42,43

. Nevertheless, no correlation could be found between secondary metabolites 

from A. fumigatus and the green colour observed in P. aeruginosa, so other factors not 

involving secondary metabolites or other undetectable secondary metabolites may be 

involved. Even so all A. fumigatus strains were suppressed by P. aeruginosa.  

Figure 4: Ten different A. fumigatus strains were suppressed by P. aeruginosa PAO1. Six strains were clinical isolates 

(AF293, AF41, A37941, CBS 144.89, ATCC 201531 and AF250), while four strains were environmental strains (NRRL 

1979, TUBF-32, AFIR974 and TUBF-440). 

 

Common mutations in P. aeruginosa changes the interaction between A. 

fumigatus and P. aeruginosa  

Next several different P. aeruginosa mutants were included in the study. These strains 

contained mutations frequently found in genetically CF adapted P. aeruginosa strains
5,6

 

(table 2) and could potentially provide additional insight into the A. fumigatus-P. aeruginosa 

interaction. This study is, to my knowledge, the first to include several different P. 

aeruginosa mutant strains to elucidate the role of different genes in mixed cultures.  

 

AF293 AF41 A 37941 CBS 144.89 ATCC 201531

AF250 NRRL 1979 TUBF-32 AFIR974 TUBF-440
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Table 2: P. aeruginosa mutant strains used 

P. aeruginosa  strains 

P. aeruginosa fliM Motility mutant Mutant lacks the polar flagellum
44

 

P. aeruginosa pilA Motility mutant Mutant lacks type IV pili
44

 

P. aeruginosa rhlA Rhamnolipid mutant 
Rhamnolipids are involved in surface motility, immune 

modulation and virulence
45,46

 

P. aeruginosa pvdA Pyoverdin mutant 
Pyoverdins are siderophores used to acquire Fe

3+
 ions from 

the environment
47

 

P. aeruginosa lasR 
Quorum sensing 

mutant 

Mutations in LasR results in a decrease in expression of 

many virulence factors including pyocyanin
10–13

 

P. aeruginosa rpoN Regulatory mutant 

Mutations in the alternative sigma factor, RpoN, affect 

many virulence factors including synthesis of pili, flagella, 

pyocyanin and rhamnolipids
14–17

.  

P. aeruginosa mucA Mucoid mutant 
Inactivation of the anti-sigma factor MucA results in a 

mucoid phenotype due to increased production of alginate
8
 

 

First the regulatory strains were examined. Both the lasR and mucA mutant strains were 

initially found to suppress growth of A. fumigatus AF293 (figure 5). The mucoid mucA strain 

was slightly overgrown by A. fumigatus in the interaction zone after five days incubation, 

increasing a little over time, while the lasR mutant was able to grow in between the P. 

aeruginosa streaks.  

 

Figure 5: Eight different P. aeruginosa mutants were tested against A. fumigatus AF293. Six mutants suppressed A. 

fumigatus, while the rpoN, mucA and rpoN/mucA mutants were unsuccessful. All pictures were taken in a LAF bench (after 

five days incubation at 37 °C) due to safety reasons, wherefore the colours of A. fumigatus AF293 vary due to insufficient 

photo setup.  

Next a mutant defective in the alternative sigma factor RpoN was included. This strain 

initially suppressed growth of A. fumigatus AF293, but began to be overgrown by the fungus 

after 4-6 days of growth until completely overgrown. It seemed that A. fumigatus preferred 

growing on top of the rpoN mutant rather than in between the streaks as seen in other 
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mutants tested (figure 5). Similarly all other A. fumigatus strains (both clinical and 

environmental strains) were not suppressed by the rpoN mutant and grew over the mutant. 

As both the rpoN and mucA mutants were unable to suppress A. fumigatus AF293, a double 

mutant (rpoN/mucA) was introduced next. Commonly CF isolated P. aeruginosa strains 

contain multiple mutations including the combination of mucA, lasR and rpoN mutations
6,48

. 

As expected this mutant was completely overgrown by A. fumigatus after seven days of 

incubation resulting in the mucoid P. aeruginosa forming the base of a lawn of A. fumigatus 

(figure 6). This combination of mutations in P. aeruginosa seemed to provide the most ideal 

environment for A. fumigatus growth. 

 

Figure 6: A. fumigatus AF293 was able to grow over the P. aeruginosa rpoN/mucA mutant. Initially the bacterium was able 

to partly suppress the fungus (A), but after seven days of incubation at 37 °C A. fumigatus AF293 completely overgrew the 

mutant resulting in the mucoid P. aeruginosa forming the base of a lawn of A. fumigatus (B). 

The alternative sigma factor RpoN controls production of multiple virulence factors
14–17

 and 

therefore individual contribution of different factors to the growth inhibition of A. fumigatus 

was examined to provide insight into which factors may be involved in the observed 

suppression. Both lack of motility, rhamnolipid and pyoverdin production did not seem to 

change the interaction as these mutants were able to suppress A. fumigatus AF293 (figure 5). 

Long-term incubation (13 days) resulted in A. fumigatus growing in between the P. 

aeruginosa pilA and rhlA mutant streaks, while no change was observed on the fliM mutant 

plates over time. It seems that all P. aeruginosa mutants initially suppress A. fumigatus, but 

differences in the ability of P. aeruginosa strains were observed over time (table 3). Whether 

a similar picture could be observed in other Aspergillus species was examined next. 

 

 

A B



Chapter 5                                                                             PhD Thesis Britt Guillaume Jensen 
Aspergillus  hydrophobins – Identification, classification and characterization 

83 

 

Table 3: Suppression of P. aeruginosa strains 

P. aeruginosa  strains 
Suppression of 

A. fumigatus 

Growth of A. fumigatus  between  

P. aeruginosa  streaks 

P. aeruginosa  PAO1 Control strain + - 

P. aeruginosa fliM Motility mutant + - 

P. aeruginosa pilA Motility mutant + + 

P. aeruginosa rhlA Rhamnolipid mutant + + 

P. aeruginosa pvdA Pyoverdin mutant + - 

P. aeruginosa lasR Quorum sensing mutant + + 

P. aeruginosa rpoN Regulatory mutant - + 

P. aeruginosa mucA Mucoid mutant - - 

 

 

All P. aeruginosa mutants can suppress A. oryzae, A. flavus and A. niger 

To further examine the effect of frequently occurring regulatory mutations on the P. 

aeruginosa–Aspergillus interaction, A. niger, A. oryzae and A. flavus was included.  

As previously mentioned a mutant defective in the alternative sigma factor RpoN could not 

suppress the growth of A. fumigatus, but was overgrown by the fungus. Unexpectedly, 

neither A. niger, A. oryzae nor A. flavus could overgrow the rpoN mutant (figure 7).  

The lasR mutant strain was able to suppress growth of A. fumigatus and similarly suppressed 

growth of A. oryzae, A. niger and A. flavus (figure 7). In the contact zone of the P. 

aeruginosa lasR mutant and A. oryzae/A. flavus a large accumulation of pyocyanin was 

observed. This had similarly been observed in the contact zone of P. aeruginosa PAO1 and 

A. flavus/A. oryzae, as described above, however the lasR mutant seemed to produce larger 

amounts pyocyanin. In general both A. flavus and A. oryzae triggered the production of 

pyocyanin in all P. aeruginosa strains except the rpoN strain.  

Finally, we tested the mucA mutant (figure 7) and the remaining mutants (fliM, pilA, pvdA 

and rhlA). All mutants could initially suppress growth of A. oryzae, A. niger and A. flavus as 

previously observed in A. fumigatus AF293, but could in contrast to A. fumigatus also 

suppress after prolonged incubation.  
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Figure 7: All P. aeruginosa mutants could suppress A. oryzae, A. flavus and A. niger. All P. aeruginosa mutants, except 

rpoN, produced pyocyanin in the contact zone of A. oryzae and A. flavus. Especially the lasR mutant produced visually 

large amounts of this compound. P. aeruginosa was likewise slightly inhibited by A. niger, probably due to the production 

of citric acid. Plates had been incubated at 37 °C for five days. 

 

A. flavus alone

A. flavus + PAO1 A. flavus + fliM A. flavus + pilA A. flavus + rhlA

A. flavus + pvdA A. flavus + lasR A. flavus + rpoN A. flavus + mucA

A. oryzae alone

A. oryzae + PAO1 A. oryzae + fliM A. oryzae + pilA A. oryzae + rhlA

A. oryzae + pvdA A. oryzae + lasR A. oryzae + rpoN A. oryzae + mucA

A. niger alone

A. niger + PAO1 A. niger + fliM A. niger + pilA A. niger + rhlA

A. niger + pvdA A. niger + lasR A. niger + rpoN A. niger + mucA
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Chemical investigation of the interaction between P. aeruginosa and 

Aspergillus species 

Another approach used to examine the interaction between the Aspergillus species and P. 

aeruginosa included HPLC analysis of predefined zones on the plates (figure 8). This could 

potentially explain the differentiable interaction pattern observed between A. fumigatus and 

the other Aspergillus strains.  

 

Figure 8: To examine the interaction between the Aspergillus species and P. aeruginosa four zones were defined on each 

plate, two in the fungus and two in the bacterium. 

Each plate was divided into four zones (figure 8). Two in the fungus (zone 1 and 2) and two 

in the bacterium (zone 3 and 4). By comparing levels of extractable and detectable secondary 

metabolites from the fungus and bacterium in each zone an indication of potential chemical 

response could be investigated for the four Aspergillus species (A. fumigatus, A. niger, A. 

oryzae and A. flavus). 

P. aeruginosa increased the production of phenazine-1-carboxamide and phenazine-1-

carboxylic acid in the contact zone (zone 3, figure 9) of A. oryzae and A. flavus compared to 

zone 4. Only phenazine-1-carboxylic acid was increased in response to A. niger, while A. 

fumigatus AF293 did not seem trigger the production of phenazines by P. aeruginosa (figure 

9). Similarly no other clinical or environmental A. fumigatus strain triggered the production 

of phenazine-1-carboxamide or phenazine-1-carboxylic acid. P. aeruginosa PAO1 is known 

to produce at least four different phenazines; pyocyanin, 1-hydroxyphenazine, phenazine-1-

carboxylic acid and phenazine-1-carboxamide
49

 and phenazines have previously been 

demonstrated to have antifungal activity
50–53

. Pyocyanin could be detected in zone 3 on A. 

flavus/A.oryzae with P. aeruginosa plates (correlating with the production of the green 

compound), but was undetected in zone 3 on P. aeruginosa alone plates. 1- 

1 2 3 4
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hydroxyphenazine was not detected.  

These findings show that P. aeruginosa responds to the presence of some Aspergilli by 

increasing the production of phenazine compounds. Nevertheless, it does not appear that the 

growth inhibitory effect of P. aeruginosa requires an increased production of phenazines, as 

growth of A. fumigatus was inhibited in a similar way as other Aspergilli. Interestingly, no 

differences in secondary metabolite profiles were seen between the two zones in the fungi 

(with or without P. aeruginosa) indicating that the Aspergillus species do not alter their 

secondary metabolism to the presence of the bacterium by increasing or reducing expression 

of secondary metabolites.  

 

Figure 9: Production of two phenazines (phenazine-1-carboxamide and phenazine-1-carboxylic acid) by P. aeruginosa was 

increased in the presence of A. oryzae and A. flavus, while phenazine-1-carboxylic acid was increased in the presence of A. 

niger. No increase was measured in response to A. fumigatus. Phenazines were measured in zone 3 and 4 by HPLC after 

five days of incubation and results from two independent biological replica experiments are shown. Control: P. aeruginosa 

only. 

Next the interaction between the Aspergillus species and the different P. aeruginosa mutants 

was similarly examined using HPLC. Initially the production of secondary metabolites by 

the different P. aeruginosa mutants was compared to the PAO1 strain (table 4).    

Table 4: Comparison of the secondary metabolite production by the P. aeruginosa PAO1 strain and the P. aeruginosa 

mutants. Strains grown on WATM plates at 37 °C without Aspergillus present. 

Difference in secondary metabolite profile between mutant and PAO1 

P. aeruginosa fliM Motility mutant No difference in secondary metabolite profile (see paper 2) 

P. aeruginosa pilA Motility mutant No difference in secondary metabolite profile (see paper 2) 

P. aeruginosa rhlA Rhamnolipid mutant No rhamnolipid detected in mutant 

P. aeruginosa pvdA Pyoverdin mutant No difference in secondary metabolite profile (see paper 2) 

P. aeruginosa lasR 
Quorum sensing 

mutant 

Phenazine-1-carboxamide and phenazine-1-carboxylic 

acid reduced in mutant 

P. aeruginosa rpoN Regulatory mutant 
Reduced expression of several phenazines and quinolones 

in mutant 

P. aeruginosa mucA Mucoid mutant No major difference in secondary metabolite profile 
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Of special interest were the three regulatory mutants; mucA, lasR and rpoN (figure 10). No 

major difference in secondary metabolite profile could be observed between the PAO1 strain 

and the mucA strain showing that the overgrowth of the mutant by A. fumigatus was not due 

to reduced expression of any detectable secondary metabolites, but may be due to the 

increased production of alginate (not detectable by the methods used) and possible reduced 

expression of virulence factors
6
.  

 

Figure 10: Comparison of secondary metabolite production of PAO1, mucA, lasR and rpoN mutant measured by HPLC-

MS. Base peak chromatogram of extracts from P. aeruginosa PAO1, mucA, lasR and the rpoN mutant. Peaks are; 1: 

pyocyanin, 2: phenazine-1-carboxamide, 3: phenazine-1-carboxylic acid, 4: 2-n-Heptyl-4-oxy-quinoline/2-n-Heptyl-(1H)-

quinolin-4-one, 5: 2-Heptyl-3-hydroxy-4(3H)-quinolinone, 6: unidentified quinolones with same elemental composition. All 

mutants had grown on WATM media for five days.  

Both the lasR  and rpoN mutant are known to have reduced expression of several virulence 

factors
6
. In the lasR mutant phenazine-1-carboxamide and phenazine-1-carboxylic acid were 

reduced, while the rpoN mutant had a reduced expression of several secondary metabolites 

including the phenazines as well as quinolones. Surprisingly (in contrast to A. fumigatus) 

several phenazines and quinolones were increased in the rpoN mutant in response to the 

three other Aspergilli (figure 11). These included among others phenazine-1-carboxamide, 

phenazine-1-carboxylic acid and 2-Heptyl-3-hydroxy-4(3H)-quinolinone. As no increase in 

phenazine production was detected against A. fumigatus, these data suggest that P. 

aeruginosa responds differentially toward different Aspergilli, and that the increased 
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phenazine production observed for co-culture with A. niger, A. oryzae or A. flavus is 

independent of RpoN.  

 

Figure 11: (A) Comparison of the secondary metabolite profile of the P. aeruginosa rpoN mutant alone and together with 

A. oryzae in zone 3 revealed an increase in phenazines (1: phenazine-1-carboxamide, 2: 1-hydroxyphenazine and 3: 

phenazine-1-carboxylic acid) and several quinolones (4: 2-n-Heptyl-4-oxy-quinoline/2-n-Heptyl-(1H)-quinolin-4-one, 5: 2-

Heptyl-3-hydroxy-4(3H)-quinolinone) by P. aeruginosa in response to A. oryzae. No phenazines could be detected in 

response to A. fumigatus, while quinolones were detected in lower amounts. All experiments were done in duplicate. (B) 

Comparison of the secondary metabolite profile of the P. aeruginosa lasR mutant alone and together with A. flavus in zone 

3 revealed an increase in all four phenazines (1: pyocyanin, 2: phenazine-1-carboxamide, 3: 1-hydroxyphenazine and 4: 

phenazine-1-carboxylic acid) by P. aeruginosa. Phenazines could similar be detected in response to A. fumigatus, but at 

lower levels. Quinolones (5: 2-n-Heptyl-4-oxy-quinoline/2-n-Heptyl-(1H)-quinolin-4-one and 6: 2-Heptyl-3-hydroxy-

4(3H)-quinolinone) were detected in all three cases. All experiments were done in duplicate and measured by HPLC-MS. 

In the lasR mutant strain chemical analysis revealed an increase in production of all four 

phenazines, including pyocyanin, 1-hydroxyphenazine, phenazine-1-carboxamide and 

phenazine-1-carboxylic acid (figure 11) by P. aeruginosa lasR towards A. oryzae and A. 

flavus. For A. niger an increase in phenazine-1-carboxylic acid was observed (not shown), 

while a minimal increase in phenazine-1-carboxylic acid was observed in response to A. 

fumigatus. No differences in quinolone production were observed. Again a differentiable 

interaction pattern was observed between P. aeruginosa and the different Aspergillus strains.  

 

The involvement of hydrophobins in A.nidulans-P.aeruginosa interactions 

The main focus of this thesis is hydrophobins and previous studies have shown a potential 

involvement in hydrophobins in disease
54–57

. After observing the potential of the developed 

plating assay and having constructed several A. nidulans hydrophobins deletion strains 

(chapter 4), it was intriguing to examine if hydrophobins could be involved in or altered the 

interaction pattern between A. nidulans and P. aeruginosa. In addition to the hydrophobin 

A B
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deletion strains, an A. nidulans wild type strain (FGSC A4) was included as a control strain.  

P. aeruginosa was found to suppress all tested Aspergillus strains.  P. aeruginosa produced 

pyocyanin in the contact zone of all tested Aspergilli and the strain was interestingly more 

mucoid in this zone (figure 12). The mucoidy was especially apparent upon plug-extraction 

as the hole borer was covered by sticky bacteria in this zone.  

 

Figure 12: All A. nidulans strains were suppressed by P. aeruginosa PAO1 on WATM agar plates. Pictures were taken 

after five days of incubation at 37 °C. The Aspergilli turned red in the contact zone to P. aeruginosa, while the bacterium 

became mucoid and produced pyocyanin in the contact zone to the fungus. All experiments were done in duplicate.   

Further from the fungus, no coloration of P. aeruginosa was observed and the strain was 

non-mucoid (minimal bacteria sticking to the hole borer). In the Aspergillus colony the 

colour changed to red in the contact zone with P. aeruginosa. This red area consisted of pure 

mycelium and had a padded appearance. In contrast the rest of the fungus had a normal 

appearance. A. nidulans was the only Aspergillus species to have been visually affected by 

the presence of P. aeruginosa compared to the previously four tested Aspergillus species (A. 

fumigatus, A. niger, A. flavus and A. oryzae). 

Next HPLC analysis on the four previously defined zones was used to examine the 

interaction between P. aeruginosa PAO1 and the Aspergillus species. HPLC analysis, 

however, showed no change in detectable fungal secondary metabolites in the red zone 

compared to the rest of the (green) fungus, showing that secondary metabolite production in 

the fungus was not affected in the red zone, but only the appearance of the fungus.  

FGSC A4 Reference rodA∆ dewA∆

rodA∆dewA∆ AN0940∆ AN1837∆ AN6401∆
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Figure 13: Comparison of secondary metabolite profiles of control plates and interaction plates. Base peak chromatograms 

from control plates are blue, while chromatograms from interaction plates are red. For zone 1 and zone 2 plates with 

Aspergillus alone were used as control plates, while plates with Pseudomonas alone were used as control plates for zone 3 

and 4. Chromatograms of the reference strain is shown as similar results were obtained for all strains. (A) zone 1, (B) zone 

2, (C) zone 3 and (D) zone 4. Peak 1: pyocyanin. Peak 2: phenazine-1-carboxamide. Peak 3: 1-hydroxyphenazine. Peak 4: 

phenazine-1-carboxylic acid. Peak 5: austinol. Peak 6: dehydroaustinol. Peak 7: 2-heptyl-3-hydroxy-4(3H)-quinolone. Peak 

8: sterigmatocystin. Peak 9: emericellamide A. Peak 10: unidentified quinolones. ( ): unidentified A. nidulans metabolite. (

): unidentified P. aeruginosa metabolite. P. aeruginosa secondary metabolites could be detected in all four zones, while A. 

nidulans secondary metabolites could only be detected in zone 1 and zone 2. 

Next the predefined zones were compared using mixed culture plates and mono cultured 

plates. In zone 1 and 2 (figure 13A and 13B) all A. nidulans strains (rodA∆, dewA∆, 

AN0940∆, AN1837∆, AN6401∆ and reference) were found to produce similar repertoires of 

secondary metabolites. No differences in secondary metabolite profile could be seen between 

the Aspergillus strains with or without P. aeruginosa, indicating that similar chemical 

interaction patterns are observed between the hydrophobin deletion strains and Pseudomonas 

(figure 13A and 13B). In zone 1, however, sterigmatocystin was slightly increased on the 

mixed culture plates, while several Pseudomonas metabolites diffused into zone 2 on the 

mixed culture plate.  
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In zone 3 phenazines and quinolones were increased in production towards all A. nidulans 

hydrophobin mutants (figure 13C), while no difference could be seen in zone 4 between 

bacterial plates with or without Aspergillus (figure 13D). This had previously been observed 

for other Aspergillus strains. As no differences could be found between the hydrophobin 

deletion strains and control strains, it does not seem that hydrophobins alter the interaction 

pattern between the bacterium and fungus and may thus not play any significant role in the 

interaction. 

 

Discussion 

The aim of this part of the thesis was to examine the potential interaction between 

Aspergillus species and P. aeruginosa. The interaction between P. aeruginosa and several 

Aspergillus species was tested and showed that growth of all tested Aspergilli (A. fumigatus, 

A. niger, A. oryzae, A. flavus and A. nidulans) was suppressed by P. aeruginosa. Previous 

studies have tested the interaction of P. aeruginosa and Aspergilli showing both inhibitory 

and non inhibitory effects
30–32,35

, which may be due to different culture conditions and the 

type of assay used (media plates or liquid culture). P. aeruginosa has likewise been shown to 

inhibit other fungal species including Candida species
31,50,58–60

. Despite the inhibitory affect 

observed on all tested Aspergillus species in this study, the two organisms grew as close as 

possible to each other. In agreement with our observations, Blyth
33

 likewise found a close 

spatial relationship between A. fumigatus and P. aeruginosa, but the presence of P. 

aeruginosa affected ultrastructures of A. fumigatus hyphae
33

. In mature A. fumigatus biofilm, 

P. aeruginosa cells have been found distributed throughout the filamentous network with a 

minimal effect on A. fumigatus biomass
61

. It seems that P. aeruginosa and A. fumigatus can 

have a close spatial relationship, when coming in contact, but preferably occupy their own 

area. Similarly, it seems that other Aspergilli can grow close to P. aeruginosa, but preferably 

occupy their own area.  

Genetic adaption and evolution of P. aeruginosa is common during the course of chronic CF 

lung infections and several genes have been found to be inactivated by mutations in clinical 

P. aeruginosa isolates
5,6,8

. Common mutations include the lasR, rpoN and mucA genes which 

all encode proteins with regulatory functions
6
. To further examine the interaction between 

Aspergillus species and P. aeruginosa, several P. aeruginosa knock-out mutants were 
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included.  

A. fumigatus AF293 was initially suppressed by the mucA strain, but could after prolonged 

co-culturing partially grow over the mucoid P. aeruginosa strain, while A. flavus, A. oryzae 

and A. niger were suppressed. The mucA strain is known to have reduced virulence
6
, 

including a reduced pulmonary clearance in animal models and increased alginate 

production
62

. These factors may enable A. fumigatus to partially grow over the bacterium. 

Nevertheless, the fungus is still suppressed indicating that genetic changes in the P. 

aeruginosa strains are not severe enough to completely abolish the inhibitory effect of the P. 

aeruginosa strain.  

rpoN, an alternative sigma factor, is required for initial promoter recognition and 

consequently for transcription of a subset of genes by P. aeruginosa RNA polymerase
14,15

. 

Several virulence factors are affected in a rpoN mutant including the synthesis of pili, 

flagella, pyocyanin and rhamnolipids
14–17

. rpoN mutants are also less virulent
63

 and form 

poorer biofilms
16,60

 compared to wildtype strains. Interestingly, A. fumigatus AF293 

completely grew over a P. aeruginosa rpoN mutant, while A. flavus, A. oryzae and A. niger 

were suppressed. Therefore we examined the differential interaction between the rpoN 

mutant and the different Aspergilli by chemical analysis. Our data showed that the rpoN 

mutant in mono-culture was defective in production of several quinolones and phenazines 

compared to PAO1. This reduced secondary metabolite production may remove the 

inhibition of A. fumigatus and allow it to grow over the P. aeruginosa rpoN mutant. 

Interestingly, the production of several phenazines and quinolones was increased in the rpoN 

mutant in response to A. flavus, A. oryzae and A. niger, but not A. fumigatus. This finding 

suggests that the increased phenazine production observed for co-culture with A. niger, A. 

oryzae or A. flavus may be independent of RpoN and that regulation of phenazine production 

most likely is multifactorial.  

In contrast to the mucA and rpoN deletion strains, a lasR mutant suppressed growth of all 

tested Aspergilli including A. fumigatus. This supports findings by Mowat et al.
61

, who 

previously demonstrated that two quorum sensing knockout strains (PAO1:∆LasR and 

PAO1:∆LasI) inhibited A. fumigatus biofilm formation. When comparing interactions 

between the lasR mutant and the Aspergilli, we observed that phenazines were increased in 

response to the presence of A. oryzae, A. flavus and A. niger, while no response was seen to 

the presence of A. fumigatus. In the contact zone of the lasR mutant and A. oryzae/A. flavus a 



Chapter 5                                                                             PhD Thesis Britt Guillaume Jensen 
Aspergillus  hydrophobins – Identification, classification and characterization 

93 

 

large accumulation of pyocyanin was observed. This accumulation was higher in the lasR 

mutant compared to PAO1. Cugini et al.
64

 similarly observed a large enhancement of 

pyocyanin by a lasR mutant, when inoculated onto a C. albicans lawn indicating that some 

fungal species may trigger the production of pyocyanin. 

Finally individual contribution of motility, rhamnolipid and pyoverdin to the suppression of 

the Aspergilli was examined, but did not individually seem to play a role as all Aspergilli 

were suppressed by these P. aeruginosa mutants.  

To further examine the interaction, secondary metabolite production was examined in both 

the bacterium and fungal species. An increase in phenazine production (including phenazine-

1-carboxamide and phenazine-1-carboxylic acid) by P. aeruginosa was observed in the 

contact zone of some Aspergillus species. These metabolites readily diffused and could be 

found throughout the plates. This was similarly observed by Moree et al.
35

. Both phenazine-

1-carboxylic acid and phenazine-1-carboxamide are known antifungal compounds
51

, and the 

increase of the phenazines may thus be a response from P. aeruginosa to the presence of the 

Aspergilli. The increase did, however, not prevent the Aspergilli from growing as close to 

the Pseudomonas as possible, indicating that the phenazines may both be a signal to the 

Aspergilli of the existence of the Pseudomonas and an attempt to inhibit the fungi. Despite 

the Aspergilli being suppressed by P. aeruginosa, no changes in Aspergillus secondary 

metabolite profile could surprisingly be detected in any of the Aspergilli. In contrast Moree 

et al.
35

 found several A. fumigatus metabolites suppressed by P. aeruginosa PA14. This may 

be due to the use of different P. aeruginosa strains, type of medium or instrument sensitivity.  

Several studies indicate that phenazines seem to play a role in antagonistic interactions 

among different fungal species
50,65–67

. Gibson et al.
53

 described the accumulation of a red 

pigment in Candida albicans cells and subsequently killing of the cells, when co-cultured 

with P. aeruginosa. The formation of red pigment required 5-methyl-phenazinium-1-

carboxylate (5MPCA) produced by P. aeruginosa. Morales et al.
68

 demonstrated that 

phenazine methosulphate likewise killed C. albicans and induced accumulation of red 

pigment. No red pigments were observed in this study, nor were the fungi killed indicating 

that different mechanisms apply in varying bacterial-fungal interactions.  

Recently, Moree et al.
35

 showed that A. fumigatus can convert phenazine-1-carboxylic acid 

and pyocyanin into other phenazines, when co-cultured with P. aeruginosa. Interestingly, in 
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our study A. fumigatus strains did not trigger any increase of phenazines by P. aeruginosa, 

nor were any differences in A. fumigatus secondary metabolites observed, resulting in no 

detectable secondary metabolic effect on either organism. Even though it did not seem that 

the two organisms affected each other visually or chemically, it has previously been shown 

that there is a significant decrease in lung function in CF patients colonized with both 

organisms compared to patients colonized with only A. fumigatus or P. aeruginosa, 

respectively
27,69

. Similarly, it has been observed that CF patients colonized with both C. 

albicans and Aspergillus or Pseudomonas, C. albicans and Aspergillus have decreased lung 

functions and body mass index
70

. This may “just” be a consequence of the heavily affected 

lungs of CF patients, but could potentially also be due to interactions between the colonizing 

organisms. In contrast the reduced lung function may provide favourable conditions for co-

colonization. Further studies are required in this area to elucidate the role of interactions in 

human health.   

As a smaller experiment the involvement of hydrophobins in the interaction between A. 

nidulans and P. aeruginosa was examined. Hydrophobins may play a role in human 

pathogenicity
54

, but their role in fungal-bacterial interactions has to my knowledge not 

previously been examined. A. nidulans was (as previously seen for other Aspergilli) 

suppressed by P. aeruginosa. The hydrophobin deletion strains did not alter this inhibition, 

indicating that hydrophobins are not involved in the interaction between A. nidulans and P. 

aeruginosa. No differences in secondary metabolite production were observed between the 

hydrophobin deletion strains and control strains and all strains triggered the production of 

phenazines in P. aeruginosa. However, hydrophobins vary between Aspergillus species (see 

chapter 4 and introduction) and other hydrophobins in e.g. A. fumigatus may display a 

different pattern. This remains to be examined. 

 

Concluding remarks 

The interaction between P. aeruginosa and different Aspergillus species proved diverse and 

P. aeruginosa was found to interact differently towards A. fumigatus than A. niger, A. oryzae 

and A. flavus. These species, also counting A. nidulans, triggered the production of anti-

fungal phenazines, while A. fumigatus did not. Furthermore, frequently observed regulatory 

mutations in P. aeruginosa during long-term CF infections changed the bacterial-fungal 



Chapter 5                                                                             PhD Thesis Britt Guillaume Jensen 
Aspergillus  hydrophobins – Identification, classification and characterization 

95 

 

interactions as measured in defined culture conditions. Both mucA and rpoN mutants were 

unable to suppress A. fumigatus, but could suppress the other examined Aspergillus species 

showing the diversity in Aspergillus-Pseudomonas interactions. Further studies are required 

to investigate if such genetically adapted P. aeruginosa strains are less competitive towards 

A. fumigatus in the CF airways (e.g. using mouse models), and if there are clinical effects 

associated with particular mutations in P. aeruginosa. Of special interest would be the use of 

phenazine deficient mutants to further elucidate the role of phenazines in the interaction. 

Finally, significant more research is needed within this area before all questions have been 

answered. I feel that only the surface has been lifted upon the enormous mechanism 

constituting Aspergillus-Pseudomonas interactions.  
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6 Construction of a microfluidic cantilever lab-on-a-chip system 

for studying interactions between Aspergillus and 

Pseudomonas aeruginosa 

This chapter presents efforts towards constructing a microfluidic cantilever lab-on-a-chip system. 

 

Introduction 

In recent years micro-cantilevers have shown great potential for biosensing applications. They 

can be used in food quality control, environmental control, in vitro diagnostics and in the 

genomic and proteomic field. Cantilevers are especially useful due to their small size and 

quick response. Furthermore, cantilevers display high sensitivity and can be integrated into 

“lab-on-a-chip” devices
1–3

. A complete cantilever chip consists of a chip body for handling 

and a number of separate cantilevers (figure 1).  

Figure 1: A complete cantilever chip consisting of a chip body for handling the cantilever and ten separate cantilevers. The 

cantilevers can be functionalized by a layer sensitive to a specific compound. In this case a gold surface has been applied. 

One surface of the cantilever can be functionalized with a layer sensitive to a specific 

compound, thereby allowing the detection of specific chemical or biological compounds as 

well as biochemical interactions
1,4

. Furthermore, micro-cantilevers do not require labelling of 

the compounds. This saves both time and effort, but also limits variability and uncertainty in 

the results due to differentiable binding of the label to the compound
5,6

.    

Cantilever sensors can be operated in two main modes, either static mode or dynamic mode. 

In static mode the degree of bending of the cantilever is measured. When molecules bind to 

the functionalised cantilever surface, they generate surface stress, which results in the 

cantilever bending. In dynamic mode the resonance frequency of the cantilever is monitored. 
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As molecules bind to the surface of the cantilever, the overall mass increases, resulting in the 

resonance frequency decreasing. In both modes the deflection of the cantilevers can be 

monitored by using an external optical readout system, where a laser beam is focused onto the 

cantilever and the reflection monitored by a position sensitive diode
4,6,7

.  

Several groups have used cantilevers as detectors in both static and dynamic modes showing 

the ability to detect DNA
8–11

, RNA
12

 and proteins
11,13–15

. Furthermore, cantilevers have been 

used to detect Staphylococcus enterotoxin B
16

, Bovine capillary endothelial cells
17

, virus
18

, 

bacteria
19–21

 and fungi
22,23

. Most bio-chemical reactions are performed in static mode
6
 and 

was also the method of choice in this study.  

Aspergillus species are widely used in the fermentation and food industry, but are also known 

to be involved in pathogenesis. They can produce a large number of extrolites including 

secondary metabolites and hydrophobins
24–29

. Pseudomonas aeruginosa is the most common 

isolated pathogen in cystic fibrosis (CF) patients. However, Aspergillus fumigatus and other 

Aspergilli are also commonly found in the respiratory tract secretions from CF patients
30,31

.  

In this study an attempt to create a microfluidic cantilever lab-on-a-chip system to study 

possible interactions between Aspergillus and P. aeruginosa was conducted. Due to safety 

reasons, Aspergillus oryzae was used as a model organism for A. fumigatus. By covering the 

cantilever surface with Aspergillus conidia, an examination of whether P. aeruginosa can 

adhere to and affect germination of Aspergillus conidia or biofilm formation would be 

possible. Furthermore, covering the cantilever surface with P. aeruginosa would provide 

insight into whether Aspergillus can adhere to and germinate on P. aeruginosa cells. In 

addition, by using previously constructed Aspergillus nidulans hydrophobin mutants (see 

chapter 4), a possible role of hydrophobins in the interaction with P. aeruginosa could be 

examined. To my knowledge no one has yet examined interactions between two organisms in 

a microfluidic cantilever lab-on-a-chip system.   

 

Materials and methods 

Design of lab-on-a-chip system 

Three main parts were fabricated to complete the microfluidic system; a bottom plate, a 

sealing and a top plate (figure 2). All items were designed using Synrad WinMark Pro and cut 

out using a 48-5s Duo-Lase carbon dioxide laser marking system, Synrad Inc.  
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The bottom plate was cut out from a 5 mm thick poly (methyl methacrylate) plate (PMMA) 

and had the dimensions 39 x 39 x 5 mm. It contained a channel (2.8 x 3.6 x 0.9 mm) for 

placing the chip and another channel for flow of media with the dimensions (5.9 x 0.76 x 0.77 

mm). Inlet and outlet holes were marked at each end of the flow channel and holes (4.7 mm in 

diameter) were cut in each corner of the plate for later assembly. The bottom plate was 

annealed for 30 min at 85 °C to reduce stress caused by the laser cutting. Inlet and outlet holes 

(4 mm deep) were drilled using a 3.2 mm drill and thread was cut in the holes.   

The top plate was cut from a 1.5 mm thick PMMA plate and had the dimensions 39 x 39 x 1.5 

mm. A square (9.6 x 9.0 x 1.5 mm) was cut in the middle of the plate and holes (4.7 mm in 

diameter) were likewise cut in each corner of the plate. The top plate was annealed for 30 min 

at 85 °C to reduce stress caused by the laser cutting.  

The sealing was cut from 1 mm thick polydimethylsiloxane (PDMS) and had the dimensions 

11.9 x 11.9 x 1 mm. A hole (6.9 x 0.6/1.1 mm) was cut in the sealing to prevent clocking the 

flow channel with PDMS after setup assembly.     

 

 

Figure 2: Dimensions of the bottom plate, top plate and sealing. 

 

Cantilever fabrication 

The complete cantilever chip, consisting of a chip body for handling and ten separate 

cantilevers, was constructed in the photo-sensitive polymer SU8 by UV lithography as 

described by Nordstrom et al.
6
 Each cantilever was 100 µm wide, 500 µm long and 5.5 µm 

39 mm 39 mm 39 mm 39 mm

Ø 4.7 Ø 4.7 mm

9.6 mm

9 mm

2.8 mm

3.6 mm0.76 mm 

5.9 mm 

11.9 mm

11.9 mm
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2.8 mm
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thick. To achieve sufficient reflection for optical readout and sensitize the cantilever surface 

to molecule binding, a gold layer was applied to the top surface of the cantilevers.   

 

Bending of cantilevers 

Distilled water, 0.9 % sodium chloride and CYA broth
32

 were used to examine the bending of 

cantilevers in different media. Pictures were taken of each cantilever using a Carl Zeiss “Axio 

Scope.A1” Vario reflected-light microscope fitted with an “Infinity X” digital camera and the 

degree of bending was calculated before and after 20 hours incubation in media. 

 

Germination of Aspergillus oryzae 

Timeframes for conventional fungal growing phases were determined by inoculating A. 

oryzae spores in liquid CYA broth and incubating under shaking conditions at room 

temperature. Each hour samples were taken and examined under microscope. 

  

Compatibility of microfluidic lab-on-a-chip components and Aspergillus 

The components going to be in contact with Aspergillus during experiments were tested for 

compatibility. A. oryzae RIB40 was used as a model for the opportunistic human pathogen A. 

fumigatus. Each component (bottom plate, sealing, glass slide and chip) was placed on a 

Czapek Yeast Autolysate agar (CYA) media plate
32

 inoculated with A. oryzae. The plates 

were incubated at 25 °C for 8 days. 

To further examine the ability of Aspergillus spores to adhere to the cantilevers a spore 

suspension of A. oryzae was prepared from a 14 day old CYA media plate. The chips were 

dipped in the A. oryzae spore suspension, briefly left to air dry and examined under 

microscope. To examine the ability of A. oryzae spores to adhere to and germinate on the 

cantilevers under flow, a Watson Marlow multi-channel pump, with a flowrate of 30 µl/min, 

was connected to the microfluidic setup. CYA broth was used as media. The setup was 

inoculated with A. oryzae spores and left for 1 hour before the flow was started. After 17 and 

21 hours the cantilevers were examined. 
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Results and discussion 

Construction of the lab-on-a-chip system 

The complete lab-on-a-chip system consisted of five parts; a PMMA bottom plate, a PDMS 

sealing, a glass cover, a PMMA top plate and a SU-8 cantilever chip. The system was 

assembled on a purpose built holder as shown on figure 3A.  

 

Figure 3: The assembled lab-on-a-chip system. (A) The system was assembled on a purpose built holder. (B) Tubes fitted to 

the bottom of the PMMA bottom plate allowed filling of the system with media. The lab-on-a-chip system consisted of (C) a 

PMMA bottom plate, (D) a PMMA top plate, (E) a PDMS sealing, a glass cover (not shown) and (F) a SU-8 cantilever chip. 

 

To prevent leaking, size 0.8 O-rings were inserted into the inlet and outlet holes in the bottom 

plate and two screw connectors fitted with tubes were fixed to the holes allowing filling of the 

microfluidic system with media (figure 3B). Next the bottom plate was fitted on the holder 

and the chip was placed in the channel. The sealing was then placed over the chip and channel 

to prevent leakage, followed by a glass cover and finally the top plate. The assembled lab-on-

a-chip system was held in place by four screws. Prior to the setup shown in figure 3 several 

efforts were made to construct a leak free microfluidic system, but unfortunately this was not 

accomplished. The final system setup did however prove to have limited leakage and could be 

used for preliminary experiments.  

A

B

E F

C D
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Bending of cantilevers 

Initial bending of cantilevers may pose a problem, when using very sensitive polymer-based 

cantilevers to examine biochemical interactions. Functionalization of individual cantilevers 

will further change their bending, and aligning several different functionalized cantilevers 

may pose a problem due to differences in bending. Bending of up to several micrometers may 

occur and are often beyond the detection limit for sensitive optical detection systems
33

. To 

minimize initial bending, the effect of different media on cantilever bending was investigated 

by incubating the SU-8 cantilevers in distilled water, CYA broth and 0.9 % NaCl. After 

incubation in all three media, the degree of cantilever bending was reduced (figure 4). 

Incubation in CYA broth resulted in the lowest reduction in bending, while both distilled 

water and 0.9% NaCl showed a higher reduction in bending. Based on the results, it was 

decided to pre-incubate all cantilevers in distilled water prior to use in further experiments to 

limit initial bending of the cantilevers.    

 

Figure 4: Degree of cantilever bending before and after 20 h incubation in media. Measurements were conducted on 10 

separate cantilever tips and an average of the degree of bend was calculated. 

 

Compatibility of microfluidic lab-on-a-chip components and Aspergillus  

Several parts of the microfluidic system had the possibility of coming in contact with the 

Aspergillus during experimental setups. Therefore the compatibility of the Aspergillus with 

the components of the microfluidic system was examined. As can be seen on figure 5 none of 

the parts showed any inhibitory effect on A. oryzae demonstrating the ability of the system to 

be used in further experiments. A. oryzae grew as close to both PMMA and the glass cover as 

possible, while PDMS and the SU-8 cantilever chips were nearly completely overgrown. 
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Figure 5: Examination of inhibitory effect of microfluidic lab-on-a-chip components on Aspergillus oryzae RIB40. (A) 

PMMA bottom plate, (B) PDMS sealing, (C) glass cover and (D) SU-8 chips. The different parts are indicated by arrows. 

 

Immobilization of Aspergillus on cantilevers 

The immobilization of A. oryzae spores on the cantilevers was an essential part in the 

experiments. Penicillium roqueforti spores had successfully been immobilized on cantilevers 

(Mona H. Pedersen, unpublished results), so the cantilevers were initially dipped in an A. 

oryzae spore suspension to examine binding capabilities. The cantilevers had a functionalized 

top gold surface to achieve sufficient reflection for optical readout and sensitize the cantilever 

surface to molecule binding, while the bottom side consisted of SU-8.  

 
Figure 6: (A) Immobilization of A. oryzae spores on cantilevers. (B) Spores bound both to the top (dark brown spores) and 

bottom of the cantilever (light brown spores). Bar: 100 µm 

 

Aspergillus oryzae spores bound both to the top (dark brown spores) and the bottom of the 

cantilevers (light brown spores) (figure 6). However, this unspecific binding may cause an 

increase in total mass on the cantilever leading to a larger degree in bending. Nugaeva et al.
22

 

had previously used anti-Aspergillus niger polyclonal antibodies to immobilize A. niger 

spores on cantilevers, while Blagoi et al.
34

 had functionalized SU-8 surfaces with IgG 

proteins. Therefore, by functionalizing the top of the cantilever with anti-A. oryzae polyclonal 

A B C D

A B
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antibodies, a higher degree of specific binding could be achieved, reducing the effect of 

unspecific binding on the total mass. Nugaeva et al.
23

 had previously demonstrated the ability 

to differentiate between dormant spores and active A. niger spores on cantilevers by observing 

a shift in resonance frequency as the spores started to germinate. Our setup did not allow 

simultaneous measurements of bending and visualization of the spores on the cantilevers. 

Therefore to determine timeframes for all fungal growing phases, the germination of A. 

oryzae spores was followed over time (figure 7). 

 

Figure 7: Germination of A. oryzae spores in CYA broth. All fungal growing phases could be observed including swelling 

(1-4 h), emergence of germ tubes (3-8 h), elongation and branching of hyphae (8-20 h) and formation of mycelium (20 h).  
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Initially, the spores started to swell (1-4 hours) followed by the emergence of germ tubes (3-8 

hours). Then an elongation of the hyphae followed, resulting in initial branching after app. 15 

hours of incubation. After 20 hours, extensive branching was observed and a dense mycelium 

had been formed.   

Next the immobilization of A. oryzae spores was examined under flow conditions. Dormant 

A. oryzae spores were able to adhere to the cantilevers under flow conditions without further 

functionalizing the cantilever surface apart from the gold layer. After respectively 17 and 21 

hours the spores had germinated and mycelium had formed (figure 8) showing the ability to 

detect A. oryzae growth on cantilevers under flow conditions. Unfortunately, germination 

caused the spores to detach resulting in drift of germinating spores and mycelium in the 

system, and thereby a homogenous picture could not be achieved. This may be overcome by 

using a lower initial spore concentration and by functionalizing the surface with anti-A. 

oryzae polyclonal antibody, as previously described. Nugaeva et al.
22

 have shown the ability 

to detect all the conventional fungal growing phases by comparing the resonance frequency 

shift with a conventional fungal growth curve. This shows the potential of examining the 

effect of bacteria (Pseudomonas aeruginosa) on different stages of fungal germination or 

biofilm formation. Several groups have successfully detected bacteria using cantilevers
19–21

, 

but to my knowledge no efforts have been made to examine mixed biofilms using cantilevers. 

 

Figure 8: Adhesion of A. oryzae spores on cantilevers under flow conditions. Pictures taken with 200X magnification after 1 

hour, 17 hours and 21 hours.  

1 h 17 h 21 h
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Concluding remarks 

Cantilevers are being used in many different fields and have been used to detect both fungi 

and bacteria
16,19,21–23

. The aim of this study was to construct a microfluidic cantilever lab-on-

a-chip system to study the effect of bacteria (P. aeruginosa) on the germination of Aspergillus 

conidia and examine possible mixed biofilms. Furthermore, using previously constructed 

hydrophobin deletion strains, the role of hydrophobins in mixed biofilms could be studied. 

Nugaeva et al.
22

 had previously detected all conventional fungal growing phases on a 

cantilever tip. Yet, those experiments were conducted under either dry or humid conditions. In 

this study, we attempted to conduct similar measurements under flow conditions. Several 

efforts were made to construct a microfluidic cantilever lab-on-a-chip system enabling these 

studies, but due to extensive leakage problems and lack of sufficient measuring equipment, 

this was not achieved. However, our results do show a potential for studying interactions 

between fungi and bacteria using cantilevers, as the ability to immobilize A. oryzae spores on 

cantilevers under static conditions and partly under flow conditions has been demonstrated.  

 

References for chapter 6 

 1.  Alvarez M, Lechuga LM (2010) Microcantilever-based platforms as biosensing tools. Analyst 

135: 827-836. 

 2.  Thaysen J, Marie R, Boisen A (2001) Cantilever-based bio-chemical sensor integrated in a 

microliquid handling system. MEMS 2001,14th IEEE International Conference on Micro 

Electro Mechanical Systems 401-404. 

 3.  Alvarez M, Carrascosa LG, Zinoviev K, Plaza JA, Lechuga LM (2009) Biosensors Based on 

Cantilevers. Methods Mol Biol 504: 51-71. 

 4.  Lang HP, Gerber C (2008) Microcantilever sensors. Top Curr Chem 285: 1-27. 

 5.  Xu S, Mutharasan R (2009) Cantilever biosensors in drug discovery. Expert Opin Drug 

Discovery 4: 1237-1251. 

 6.  Nordstrom M, Keller S, Lillemose M, Johansson A, Dohn S, Haefliger D, Blagoi G, Havsteen-

Jakobsen M, Boisen A (2008) SU-8 cantilevers for bio/chemical sensing; Fabrication, 

characterisation and development of novel read-out methods. Sensors 8: 1595-1612. 

 7.  Meyer G, Amer NM (1988) Novel Optical Approach to Atomic Force Microscopy. Appl Phys 

Lett 53: 1045-1047. 

 8.  Gunter RL, Zhine R, Delinger WG, Manygoats K, Kooser A, Porter TL (2004) Investigation of 

DNA sensing using piezoresistive microcantilever probes. Ieee Sens J 4: 430-433. 



Chapter 6                                                                              PhD Thesis Britt Guillaume Jensen 
Aspergillus  hydrophobins – Identification, classification and characterization 

111 

 

 

 

 

 9.  Alvarez M, Carrascosa LG, Moreno M, Calle A, Zaballos A, Lechuga LM, Martinez A, Tamayo 

J (2004) Nanomechanics of the formation of DNA self-assembled monolayers and hybridization 

on microcantilevers. Langmuir 20: 9663-9668. 

 10.  McKendry R, Zhang JY, Arntz Y, Strunz T, Hegner M, Lang HP, Baller MK, Certa U, Meyer E, 

Guntherodt HJ, Gerber C (2002) Multiple label-free biodetection and quantitative DNA-binding 

assays on a nanomechanical cantilever array. Proc Nat Acad Sci USA 99: 9783-9788. 

 11.  Fritz J, Baller MK, Lang HP, Rothuizen H, Vettiger P, Meyer E, Guntherodt HJ, Gerber C, 

Gimzewski JK (2000) Translating biomolecular recognition into nanomechanics. Science 288: 

316-318. 

 12.  Zhang J, Lang HP, Huber F, Bietsch A, Grange W, Certa U, McKendry R, Guntgerodt HJ, 

Hegner M, Gerber C (2006) Rapid and label-free nanomechanical detection of biomarker 

transcripts in human RNA. Nat Nanotechnol 1: 214-220. 

 13.  Lee JH, Kim TS, Yoon KH (2004) Effect of mass and stress on resonant frequency shift of 

functionalized Pb(Zr0.52Ti0.48)O-3 thin film microcantilever for the detection of C-reactive 

protein. Appl Phys Lett 84: 3187-3189. 

 14.  Moulin AM, O'Shea SJ, Badley RA, Doyle P, Welland ME (1999) Measuring surface-induced 

conformational changes in proteins. Langmuir 15: 8776-8779. 

 15.  Savran CA, Knudsen SM, Ellington AD, Manalis SR (2004) Micromechanical detection of 

proteins using aptamer-based receptor molecules. Anal Chem 76: 3194-3198. 

 16.  Campbell GA, Medina MB, Mutharasan R (2007) Detection of Staphylococcus enterotoxin B at 

picogram levels using piezoelectric-excited millimeter-sized cantilever sensors. Sens Actuators, 

B 126: 354-360. 

 17.  Saif MTA, Sager CR, Coyer S (2003) Functionalized biomicroelectromechanical systems 

sensors for force response study at local adhesion sites of single living cells on substrates. Ann 

Biomed Eng 31: 950-961. 

 18.  Gunter RL, Delinger WG, Manygoats K, Kooser A, Porter TL (2003) Viral detection using an 

embedded piezoresistive microcantilever sensor. Sens Actuators, A 107: 219-224. 

 19.  Gfeller KY, Nugaeva N, Hegner M (2005) Micromechanical oscillators as rapid biosensor for 

the detection of active growth of Escherichia coli. Biosens Bioelectron 21: 528-533. 

 20.  Campbell GA, Delesdernier D, Mutharasan R (2007) Detection of airborne Bacillus anthracis 

spores by an integrated system of an air sampler and a cantilever immunosensor. Sens Actuators, 

B 127: 376-382. 

 21.  Weeks BL, Camarero J, Noy A, Miller AE, Stanker L, De Yoreo JJ (2003) A microcantilever-

based pathogen detector. Scanning 25: 297-299. 

 22.  Nugaeva N, Gfeller KY, Backmann N, Duggelin M, Lang HP, Guntherodt HJ, Hegner M (2007) 

An antibody-sensitized microfabricated cantilever for the growth detection of Aspergillus niger 

spores. Microsc Microanal 13: 13-17. 



Chapter 6                                                                              PhD Thesis Britt Guillaume Jensen 
Aspergillus  hydrophobins – Identification, classification and characterization 

112 

 

 

 

 

 23.  Nugaeva N, Gfeller KY, Backmann N, Lang HP, Duggelin M, Hegner M (2005) 

Micromechanical cantilever array sensors for selective fungal immobilization and fast growth 

detection. Biosens Bioelectron 21: 849-856. 

 24.  Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto KI, Arima T, Akita O, 

Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning 

DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, 

Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, 

Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama Ji, 

Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, 

Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide 

Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, 

Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438: 1157-

1161. 

 25.  Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, 

Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coulsen R, Davies R, Dyer 

PS, Farman M, Fedorova N, Fedorova N, Feldblyum TV, Fischer R, Fosker N, Fraser A, Garcia 

JL, Garcia MJ, Goble A, Goldman GH, Gomi K, Griffith-Jones S, Gwilliam R, Haas B, Haas H, 

Harris D, Horiuchi H, Huang J, Humphray S, Jimenez J, Keller N, Khouri H, Kitamoto K, 

Kobayashi T, Konzack S, Kulkarni R, Kumagai T, Lafon A, Latge JP, Li W, Lord A, Lu C, 

Majoros WH, May GS, Miller BL, Mohamoud Y, Molina M, Monod M, Mouyna I, Mulligan S, 

Murphy L, O'Neil S, Paulsen I, Penalva MA, Pertea M, Price C, Pritchard BL, Quail MA, 

Rabbinowitsch E, Rawlins N, Rajandream MA, Reichard U, Renauld H, Robson GD, Rodriguez 

de CS, Rodriguez-Pena JM, Ronning CM, Rutter S, Salzberg SL, Sanchez M, Sanchez-Ferrero 

JC, Saunders D, Seeger K, Squares R, Squares S, Takeuchi M, Tekaia F, Turner G, Vazquez de 

Aldana CR, Weidman J, White O, Woodward J, Yu JH, Fraser C, Galagan JE, Asai K, Machida 

M, Hall N, Barrell B, Denning DW (2005) Genomic sequence of the pathogenic and allergenic 

filamentous fungus Aspergillus fumigatus. Nature 438: 1151-1156. 

 26.  Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, türkmen M, 

Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, 

Harris S, Braus GH, Draht O, Busch S, D'Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, 

Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, 

Peñalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman 

WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, 

Osmani SA, Birren BW (2005) Sequencing of Aspergillus nidulans and comparative analysis 

with A. fumigatus and A. oryzae. Nature 438: 1105-1115. 

 27.  Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, 

Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, 

Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van 

Dijck PW, van DA, Dijkhuizen L, Driessen AJ, d'Enfert C, Geysens S, Goosen C, Groot GS, de 

Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel 

CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, 

Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver 

SG, Olsthoorn M, Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM, Schmoll M, 

Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wosten HA, Zeng 

AP, van Ooyen AJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile 

cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25: 221-231. 

 28.  Andersen MR, Nielsen J (2009) Current status of systems biology in Aspergilli. Fungal Genet 

Biol 46: S180-S190. 



Chapter 6                                                                              PhD Thesis Britt Guillaume Jensen 
Aspergillus  hydrophobins – Identification, classification and characterization 

113 

 

 

 

 

 29.  Rank C, Larsen TO, Frisvad JC, Machida M, Gomi K (2010) Functional Systems Biology of 

Aspergillus. In: Machida M, Gomi K, editors. Aspergillus: Molecular Biology and Genomics. 

Norfolk, UK: Caister Academic Press. pp. 173-198. 

 30.  Bakare N, Rickerts V, Bargon J, Just-Nubling G (2003) Prevalence of Aspergillus fumigatus and 

other fungal species in the sputum of adult patients with cystic fibrosis. Mycoses 46: 19-23. 

 31.  Nagano Y, Millar BC, Johnson E, Goldsmith CE, Elborn JS, Rendall J, Moore JE (2007) Fungal 

infections in patients with cystic fibrosis. Rev Med Microbiol 18: 11-16. 

 32.  Frisvad JC, Samson RA (2004) Penicillium subgenus Penicillium - A guide to identification of 

food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 49: 1-173. 

 33.  Dohn S, Greve A, Svendsen WE, Boisen A (2010) The influence of refractive index change and 

initial bending of cantilevers on the optical lever readout method. Rev Sci Instrum 81: 065104. 

 34.  Blagoi G, Keller S, Johansson A, Boisen A, Dufva M (2008) Functionalization of SU-8 

photoresist surfaces with IgG proteins. Appl Surf Sci 255: 2896-2902. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6                                                                              PhD Thesis Britt Guillaume Jensen 
Aspergillus  hydrophobins – Identification, classification and characterization 

114 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 7                                                                              PhD Thesis Britt Guillaume Jensen 
Aspergillus  hydrophobins – Identification, classification and characterization 

115 

 

7 Overall discussion and conclusion 

The focus of this thesis was to create an overview of Aspergillus hydrophobins and achieve a 

deeper understanding of the roles of hydrophobins in Aspergillus species. Very little is known 

about Aspergillus hydrophobins, and the few studies that exist on Aspergillus hydrophobins 

focus on a limited number of hydrophobins. Part of this thesis dealt with Aspergillus-P. 

aeruginosa interactions. Similarly little is known about the potential interactions between 

Aspergilli and P. aeruginosa and the possible involvement of hydrophobins.   

The results obtained in this project have been presented in the previous four chapters. In this 

chapter the obtained results and conclusions drawn from this PhD study will be discussed.  

 

Aspergillus species display a varying number of hydrophobins 

In the last 10 years several full genome sequences from Aspergilli have been published
1–5

 

providing us with a unique opportunity to putatively identify hydrophobins in the sequenced 

Aspergilli. Using a bioinformatics approach, nine full genome sequences from seven 

Aspergilli were analysed for hydrophobins providing, for the first time, a complete overview 

of putative hydrophobins in the full genome sequenced Aspergilli (chapter 3). For a protein 

to be defined as a hydrophobin in this study, the protein had to fulfil the criteria of having a 

minimum of eight cysteines, two cysteine pairs and an intact characteristic cysteine pattern. 

Furthermore, the protein had to be an appropriate size compared to previously characterized 

proteins. These criteria were based on guidelines set by Wessels
6
 and the structure of 

hydrophobins HFBI, HFBII and EAS
7–10

. We assume that hydrophobins need to meet these 

criteria to maintain a globular overall fold similar to the known hydrophobin structures. This 

particular structure may be necessary for the hydrophobins in order to fulfil several proposed 

biological functions. By selecting hydrophobins based on our criteria, 50 putative 

hydrophobins were found in the Aspergilli. Of the identified hydrophobins, 20 (on species 

level) had not been mentioned in other published studies. Each Aspergillus species contained 

between two and eight putative hydrophobins, which was in agreement with Sunde et al.
11 

who predicted that most fungal species contain between two and seven hydrophobins.  

In this study (chapter 3), a Perl program was used which enabled the listing of all proteins in 

the Aspergillus sequences displaying, for each protein, their size, number of cysteines, 

number of cysteine pairs and cysteine distribution if similar to previous found hydrophobins. 
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Only proteins not fulfilling our criteria were omitted. Yang et al.
12

 had previously used a 

combination of primary sequence analysis (of sequences annotated as hydrophobins) and 

BLAST searches in the NCBI database to create several motifs used to identify new 

hydrophobins. However, by using this method only hydrophobins containing the generated 

motifs would be identified, thereby possible missing hydrophobins not containing these 

motifs. We identified several hydrophobins, which did not resemble other identified 

hydrophobins (e.g. no other hydrophobins are listed in BLAST searches). These hydrophobins 

would possibly not be picked up using BLAST searches and would therefore not be included 

in the generated motifs resulting in the motifs becoming biased. 

Recently, Littlejohn et al.
13

 used concurrent BLAST searches (of known Aspergillus 

hydrophobins and the hydrophobins identified in our paper) on several protein sequence 

databases to expand the list of Aspergillus hydrophobins identified in our paper (paper 1). 

Each species was found to contain an additional two - five putative hydrophobins resulting in 

the identification of an additional 27 hydrophobins. However, if the extra hydrophobins 

(identified by Littlejohn et al.) are examined, many do not fulfil our criteria. Several of the 

hydrophobins have too few or numerous cysteines, are very large in size, have numerous 

cysteine pairs or do not contain an intact cysteine pattern resulting in only 10 hydrophobins 

remaining (ACLA_066600, AFLA_064900, AFLA_101340, AFUA_7G00970, AN5290, 

AN7327, AO090020000095, AO0907010000512, ATEG_05178 and ATEG_07140). These 

hydrophobins do, however, fulfil our criteria, but were missed in our approach. This may be, 

as pointed out by Littlejohn et al.
13

, due to the use of full genome sequences from only a 

single protein sequence database, as we only used sequences obtained from the Central 

Aspergillus Data Repository (CADRE). It may have been beneficial to use several databases 

such as the Uniprot protein knowledge database or the NCBI (National Centre for 

Biotechnology Information) database, thereby possibly finding more hydrophobins due to 

differences in sequence annotation between the databases. Despite Littlejohn et al.
13

 using 

several protein sequence databases, they have nevertheless missed two hydrophobins 

identified by us in A. flavus. They used concurrent BLAST searches, but this approach may 

not identify hydrophobins differentiating significantly in sequence from other known 

hydrophobins. It seems that generation of a definitive list of hydrophobins is not easily 

accomplished, but may require a combination of several approaches. By using the designed 

Perl program on protein sequences from different databases, combined with BLAST and 
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motifs searches a complete list of Aspergillus hydrophobins may be possible. This list would 

gradually expand as more genomes become available.  

 

Many Aspergillus hydrophobins cannot be classified   

Traditionally, Wessels
14

 divided hydrophobins into two classes (class I and class II) based on 

their distinct hydropathy pattern and physical properties. As the majority of Aspergillus 

hydrophobins have not been physically isolated and characterized, a differentiation into class 

was performed using the cysteine spacing pattern and hydropathy patterns (chapter 3). 

Approximately half of the identified hydrophobins were classified as class I hydrophobins, 

while the other half could not be classified based on cysteine spacing pattern and hydropathy 

patterns and were found to be intermediate forms.  

Interestingly, a single hydrophobin (ATEG_04730) from A. terreus was classified as a class II 

hydrophobin (chapter 3). Comparison of ATEG_04730 to known class II hydrophobins 

(HFBI and HFBII) showed a higher sequence identity than to known class I hydrophobins 

(RodA, SC3 and EAS). Furthermore, ATEG_04730 clustered with class II hydrophobins in a 

phylogenetic analysis. In agreement with our results, Littlejohn et al.
13

 only found a single 

class II hydrophobin in the examined Aspergilli, namely ATEG_04730. By using a similar 

approach to differentiate Aspergillus hydrophobins into classes, they confirmed our findings 

that several hydrophobins cannot be classified as class I or class II hydrophobins. As 

previously stated, many of the Aspergillus hydrophobins have not been physically isolated 

and it could be speculated that the unclassifiable hydrophobins may exhibit physical 

properties between the two distinct classes. Our studies show, that the identification of several 

intermediate forms blurs the original classification system, so an extension of the classical 

system may be appropriate as more hydrophobins are isolated and characterized.  

 

Characterization of Aspergillus nidulans hydrophobins 

Aspergillus nidulans has six hydrophobins containing eight cysteines in the characteristic 

pattern
15

 (chapter 3). Only two hydrophobins, RodA and DewA, have previously been 

characterized
16,17

, resulting in little knowledge about the roles of different hydrophobins in 

Aspergilli. We created hydrophobin deletion strains (rodA∆, dewA∆, AN0940∆, AN1837∆, 
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AN6401∆, rodA∆dewA∆,) in A. nidulans to examine the role of different hydrophobins 

(chapter 4). The AN7539∆ strain is still under construction and was not included.  

First, we examined the visual phenotypes of the deletion strains, but as only the strains 

containing a rodA deletion displayed a phenotype, no indication of the location of the other 

hydrophobins could be obtained. The rodA∆ and rodA∆dewA∆ strains displayed conidia with 

a wet and sticky phenotype, which could not easily be dispersed into the air. This phenotype 

had previously been described in an A. nidulans rodA∆ strain
17

, an A. fumigatus rodA deletion 

strain
18

 and an Neurospora crassa eas mutant
19

 and is associated with the lack of the rodlet 

layer. Therefore, the hydrophobins AN0940, AN1837 and AN6401 do not seem essential for 

rodlet formation, but may still be located on the conidium cell wall similar to DewA
16

. To 

further examine if AN0940, AN1837 and AN6401 are involved in rodlet formation, the 

surfaces of the reference strain and the FGSC A4 wild type strain were initially examined by 

Scanning Electron Microscopy (SEM). These strains should display visible rodlets on the 

conidium surface, but as not rodlets could be seen, SEM was aborted. The involvement of 

AN0940, AN1837 and AN6401 in rodlet formation still remains elusive. 

A phenotype described for A. nidulans dewA∆ strains is the ability to be wetted by 

detergent
16

. We observed a similar phenotype for our dewA∆ strain (chapter 4). Both the 

rodA deletion strains (rodA∆ and rodA∆dewA∆) were also rapidly wetted by detergent, while 

the other hydrophobin deletion strains (AN0940∆, AN1837∆ and AN6401∆) did not display 

an easily wetted phenotype. This indicates that if the hydrophobins AN0940, AN1837 and 

AN6401 are present on the conidium cell wall, they may not have dominant roles or may be 

able to compensate for each other. These hydrophobins may only be present in the mycelium 

cell wall or may be secreted. 

The hydrophobins RodA and DewA in A. nidulans have been shown to be involved in 

hydrophobicity of the strain
16,20

. We measured the water contact angles of our constructed 

hydrophobin deletion strains to determine the colony surface hydrophobicity of the strains 

(chapter 4). In contrast to Dynesen et al.
20

, we did not observe any reduction of 

hydrophobicity in the rodA∆ and dewA∆ strains by water contact angle measurements. 

Interestingly, we observed that water deposited on the surface of the rodA∆dewA∆ strain 

passed the spores, and was absorbed into the underlying mycelium and agar within few 

minutes. This had previously been observed in an A. fumigatus rodA∆ strain
18

. The lack of 
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other hydrophobins did not change the surface colony hydrophobicity of the strain 

significantly. This indicates that the hydrophobins AN0940, AN1837 and AN6401 are not 

required for overall colony surface hydrophobicity, but may have other functions in the 

fungus. Water contact angle measurements on pure mycelium or conidia, will provide insight 

into the hydrophobicity of single fungal structures.  

The involvement of hydrophobins in a fungus’ ability to escape an aqueous environment has 

been proposed by Wösten et al.
21

 By secreting hydrophobins from submerged hyphae into the 

surrounding aqueous environment, a lowering of the water surface tension is achieved 

allowing the fungus to breach into the air.  This has been demonstrated for hydrophobins from 

S. commune
22–25

, but whether a similar mechanism is used in Aspergilli remains to be 

determined. An initial assessment of different wild type Aspergillus species to escape an 

aqueous environment was conducted by submerging immature colonies under water and 

showed that both A. fumigatus, A. niger and A. oryzae could breach to the air. Next the 

different hydrophobin mutant strains were submerged to examine the roles of A. nidulans 

hydrophobins in allowing the fungus to escape the aqueous environment (chapter 4). 

Interestingly, neither the lack of a single hydrophobin nor both hydrophobins RodA and 

DewA impaired the fungus’ ability to escape the water, as all strains produced mature 

colonies atop the water after 4-5 days of growth. This implies that single Aspergillus 

hydrophobins are not required for breaching into the air. Therefore Aspergillus hydrophobins 

may complement each other or individual mechanisms may be used by different fungal 

species.    

Studies on hydrophobins from Cladosporium fulvum have previously shown that 

hydrophobins have different roles in the fungus and are expressed on different structures
26,27

. 

Similarly, Beauvais et al.
28

 have shown that A. fumigatus hydrophobins are expressed under 

different conditions. To examine if hydrophobins are able to complement each other or are 

coupled in expression, expression levels of the six hydrophobins were examined in the rodA 

and dewA deletion strains by qRT-PCR (chapter 4). Firstly, the deletion of rodA in the rodA∆ 

strain resulted in all other hydrophobins (including dewA) having a reduced gene showing that 

the lack of rodlet layer appears to effect the expression of all other hydrophobins. In the 

dewA∆ strain the AN1837, AN6401 and AN7539 hydrophobins had reduced expression 

similar to the rodA∆ strain, showing that these three hydrophobins show comparable reduced 



Chapter 7                                                                              PhD Thesis Britt Guillaume Jensen 
Aspergillus  hydrophobins – Identification, classification and characterization 

120 

 

expression levels irrespectively of which conidial hydrophobin (rodA or dewA) has been 

deleted. In contrast the expression level of rodA was not changed in the dewA∆ strain. This 

may be due to RodA being the major outer wall hydrophobin on the conidia, while DewA has 

been proposed to be a part of the inner layer
16

. It seems that the presence of dewA is not a 

prerequisite for the expression of rodA, which is confirmed by the observation of rodlets in 

dewA∆ strains
16

, but in contrast the lack of rodA affects dewA expression. 

In the rodA∆dewA∆ strain the deletion of both rodA and dewA resulted in the hydrophobins 

AN0940, AN1837 and AN6401 only having a minimal change in expression and slight down-

regulation indicating that the deletion of the two hydrophobins does not reduce the expression 

of these hydrophobins to the same extent compared to the single deletion strains. These 

hydrophobins may become increasingly important as more hydrophobins are missing. 

Interestingly, the deletion of both rodA and dewA, resulted in an increased expression of 

AN7539, which was in contrast to the reduced expression observed in the single deletion 

strains. This hydrophobin may thus fulfil some of the functions of the hydrophobins RodA 

and DewA, when both hydrophobins have been deleted. 

 

We were unsuccessful in determining the roles of hydrophobins AN0940, AN1837 and 

AN6401 in A. nidulans, but nevertheless found that these hydrophobins were not required for 

a number of different biological functions in the fungus including colony surface 

hydrophobicity and escaping aqueous environments. It would be interesting to further 

examine the hydrophobins from our A. nidulans strains and determine the location and roles 

of hydrophobins AN0940, AN1837 and AN6401.   

 

 Pseudomonas aeruginosa suppresses growth of Aspergillus species 

P. aeruginosa and Aspergillus species both infect the lungs of cystic fibrosis (CF) 

patients
29,30

, where A. fumigatus is the most common isolated filamentous fungi. However, 

other Aspergilli can also infect CF patients
31,32

. Despite, the common isolation of both 

organisms few studies have focused on a possible interaction between the two.  

Using a purpose developed assay enabling balanced growth between Aspergilli and P. 

aeruginosa, we examined the interactions between P. aeruginosa and several Aspergillus 

species (chapter 5). Previous studies have dealt with interactions between P. aeruginosa and 
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Aspergilli, but have focused primarily on the major pathogen A. fumigatus
33–35

. Our study is 

the first to include several Aspergillus species allowing the examination of variations in 

interactions between the different Aspergilli and P. aeruginosa. We found that P. aeruginosa 

suppressed growth of all tested Aspergilli. This suppression was accompanied by an increase 

in production of antifungal compounds called phenazines by P. aeruginosa in the contact 

zone to the fungus. Interestingly, only A. flavus, A. niger and A. oryzae triggered the 

production of the phenazines, while no response could be detected in the presence of A. 

fumigatus showing that P. aeruginosa responds differentially towards different fungal species. 

Phenazines have been found to contribute to increased lung tissue damage and necrosis
36,37

, 

and therefore the presence of the Aspergilli may contribute to disease progression. 

Furthermore, A. fumigatus can produce several classes of secondary metabolites (gliotoxins, 

fumagillins and helvolic acid) known to damage lung tissues and impair the ciliary beat 

frequency
38

. Therefore all tested Aspergilli may negatively affect disease development in CF 

patients either due to own production of secondary metabolites or triggering secondary 

metabolite production in P. aeruginosa. Several studies show that there is a significantly 

decrease in lung function in CF patients colonized with both organisms compared to patients 

colonized with only A. fumigatus or P. aeruginosa, respectively
39–41

. Why the impairment of 

lung function is increased in patients colonized by several organisms has not been elucidated, 

but could involve increased production of secondary metabolites from the colonizing 

organisms in response to each other or enhanced production of mucus. 

The involvement of hydrophobins in human disease has only limited been studied. The 

hydrophobin RodA from A. fumigatus has been shown to make fungal spores immunological 

inert, thereby “hiding” the spores from the immune system.
42

 We examined the possible role 

of hydrophobins in fungal-bacterial interactions namely the interactions between A. nidulans 

hydrophobin mutant strains and P. aeruginosa (chapter 5) using the plate assay developed in 

this project. We observed that all hydrophobin deletion strains produced similar repertoires of 

secondary metabolites. In the interaction with P. aeruginosa, all hydrophobin deletion strains 

were suppressed by the bacterium. P. aeruginosa increased its phenazine production as 

previously seen for other Aspergilli in response to the presence of the hydrophobin deletion 

strains. No major differences could be seen in the secondary metabolite response of P. 

aeruginosa to the different hydrophobin deletion strains and control strains indicating that 

hydrophobins do not seem change the macroscopic or chemical interaction between A. 
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nidulans and P. aeruginosa. If there is change in the interaction pattern microscopically 

remains to be determined, but would involve SEM. Furthermore, hydrophobins vary between 

species (chapter 3) and other hydrophobins in e.g. A. fumigatus may display a different 

pattern. 

P. aeruginosa and A. fumigatus have been shown to have a close spatial relationship with the 

distribution of P. aeruginosa cells on the fungal hyphae
43,44

. We similarly observed that P. 

aeruginosa and A. fumigatus had a close spatial relationship with P. aeruginosa, as the 

organisms grew as close to each other as possible (chapter 5). To further examine the 

interactions between Aspergilli and P. aeruginosa, we attempted to develop a cantilever-lab-

on-chip system (chapter 6) allowing measurements of physical interaction and possible 

biofilm formation between the two species. By using the hydrophobin deletion strains, an 

examination of the role of hydrophobins in the physical interactions would likewise be 

possible. Nugaeva et al.
45,46

 had previously used cantilevers to follow the germination of A. 

niger conidia demonstrating the potential of cantilevers. Unfortunately, despite several efforts 

to construct a leak free closed-chamber cantilever lab-on-a-chip system, this was not 

accomplished. We did, however, successfully immobilize A. oryzae conidia on the cantilevers 

and perform preliminary germination experiments showing the potential in using cantilevers 

in studying mixed populations.  

 

Common mutations in P. aeruginosa changes the interaction with A. 

fumigatus 

During the course of a chronic CF infection, P. aeruginosa changes genetically due to loss-of-

function mutations and changes in phenotype
47,48

. Common mutations include loss of motility 

and inactivation of several genes including lasR (quorum sensing regulator), rpoN (alternative 

sigma factor) and mucA (resulting in mucoid phenotype) genes
47,49–52

. 

We used several P. aeruginosa mutants to examine the effect of common mutations on the P. 

aeruginosa-Aspergillus interaction (chapter 5). Interestingly, we observed that the rpoN and 

mucA mutations rendered P. aeruginosa susceptible to A. fumigatus allowing the fungus to 

grow over the bacterial strains. Lack of both genes resulted in the bacterium being completely 

overgrown by A. fumigatus, where the mucoid P. aeruginosa formed the base of a lawn of A. 

fumigatus. Using our A. nidulans control and hydrophobin deletion strains, we observed that 
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P. aeruginosa turned mucoid in the contact zone with A. nidulans, but remained non-mucoid 

further away from the fungus (chapter 5). The mucoid phenotype of P. aeruginosa results in 

a reduced pulmonary clearance in animal models
53

, thus it can be speculated that the presence 

of A. nidulans could result in lower clearance of P. aeruginosa or a beneficial environment for 

A. fumigatus colonisation. Other mutations including lack of motility, rhamnolipids and 

pyoverdins did not change the interaction between A. fumigatus and P. aeruginosa and could 

suppress A. fumigatus (chapter 5). Interestingly, examination of the interactions between the 

rpoN deletion strain and other Aspergilli (A. niger, A. oryzae and A. flavus) revealed that the 

fungi were suppressed by the bacterium and the production of several phenazines were 

increased by P. aeruginosa to the presence of the three fungi. In contrast, no increase in 

phenazine production was observed in response to A. fumigatus demonstrating that different 

mechanisms are used towards different fungal species and that genetic adaption of P. 

aeruginosa to the CF lung during chronic CF infections may result in a changed interaction 

pattern with A. fumigatus.  

The lasR mutant has reduced expression of many virulence factors including the phenazine, 

pyocyanin
54

. We found, that a lasR mutant could suppress growth of all tested Aspergilli 

(chapter 5). Interestingly, a large accumulation of pyocyanin was seen in the contact zone 

between the lasR mutant and A. oryzae and A. flavus, respectively. Similarly, Cugini et al.
54

 

observed an increase in pyocyanin production in a lasR mutant, when inoculated onto C. 

albicans, while Diggle et al.
55

 observed that a lasR mutant regained the ability to produce 

pyocyanin at late time points. This demonstrates that lasR mutant strains lacking certain 

virulence factors may regain the ability to produce these virulence factors using alternative 

pathways under conditions favouring their production as in competitive environments with 

other organisms. The interactions between different species, including fungal-bacterial species 

is highly complicated and diverse, resulting in the need of much more research within this 

area to answer all the questions.  

 

Conclusion 

This project consisted of two parts. The aim of the first and major part was to achieve a 

deeper understanding of the roles of hydrophobins in Aspergillus species. A bioinformatics 

approach was used and showed that varying numbers of hydrophobins are found within the 
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Aspergillus species. Furthermore, many of the identified hydrophobins could not be classified 

into the original two hydrophobin classes, but displayed intermediate forms.  

By developing hydrophobin deletion strains in A. nidulans, the different hydrophobins were 

characterised and their roles were elucidated. If the known conidial hydrophobins (rodA and 

dewA) were deleted, the AN1837, AN6401 and AN7539 hydrophobins similarly displayed 

reduced expression. The deletion of rodA resulted in reduced expression of dewA, but not vice 

versa. Interestingly, the hydrophobin AN7539 was up-regulated in the rodA∆dewA∆ strain. 

Only rodA and dewA displayed visual phenotypes indicating that, if the AN0940, AN1837 

and AN6401 hydrophobins are present on the conidia cell wall, they do not play dominant 

roles. These may only be present in the mycelium cell wall or are secreted. Furthermore, it 

was found that lack of hydrophobins AN0940, AN1837 and AN6401 did not affect several 

biological functions including surface hydrophobicity, spore dispersal or the ability of the 

different strains to breach a water-air interface. The roles of hydrophobins AN0940, AN1837 

and AN6401 still remains to be determined. 

The aim of the second part of this project was to provide insight into Aspergillus-P. 

aeruginosa interactions. P. aeruginosa was able to suppress all tested Aspergilli. This 

suppression may be mediated by the increased production of phenazines by P. aeruginosa in 

response to the presence of some Aspergilli. Several hydrophobin deletion strains were 

suppressed in a similar manner by P. aeruginosa and the suppression could not be 

discriminated using the different strains, showing that hydrophobins most likely do not play a 

major role in A. nidulans–P. aeruginosa interactions. Furthermore, different P. aeruginosa 

mutants were used to elucidate the mechanisms involved in the suppression of the fungus 

showing that factors involved in RpoN pathway may be involved. Interestingly, a rpoN 

mutant could not suppress growth of A. fumigatus, but successfully inhibited other Aspergilli. 

The genetic adaption of P. aeruginosa to the CF lung during chronic CF infections seems to 

result in bacteria becoming more susceptible towards competition from A. fumigatus, showing 

differential interaction patterns during a CF infection. Additional research is needed to 

explore these mechanisms.  
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Appendix 1 

Materials and methods for chapter 4 

 

Alignment of hydrophobins and generation of hydropathy patterns 

Sequences of the A. nidulans hydrophobins (AN0940, AN1837, AN6401, AN7539, AN8006 and 

AN8803) were obtained from the UniProt Protein Knowledgebase (www.uniprot.org). A multiple 

sequence alignment of the hydrophobins was conducted using MAFFT in the program Jalview
1
. 

Sequence similarity searches of the A. nidulans hydrophobins were conducted using the BLAST 

function on the UniProt Protein Knowledgebase. Hydropathy patterns were determined using 

ProtScale on the ExPASy Proteomics Server
2
 by using the Kyte and Doolittle scale

3
 and a nine 

amino acid window. The hydropathy patterns were aligned around the cysteine pairs by placing 

gaps in the sequences where the hydrophilic and hydrophobic regions alternated. Only sequence 

from the first to the eighth cysteine was used to create the hydropathy patterns.  

 

Strains  

The A. nidulans strain IBT29539 (argB2, pyrG89, veA1, nkuA∆) was used as host for all deletion-

strain constructions and strain IBT28738 (argB2, pyrG89, veA1, nkuA-trS::AFpyrG) was used for 

the construction of overexpression (OEx) strains. Deletion strains were crossed with IBT25456 

(biA1, veA1) to restore genetic markers and the nkuA deficiency. NID750 (veA1) was used as 

reference strain for assays using the deletion strains, while NID191 (argB2, pyrG89, veA1, 

nkuA∆::AFpyrG, IS1::PgpdA::TtrpC::argB) served as reference strain for the OEx strain constructs. 

All A. nidulans strains are listed in table 1. Escherichia coli strain DH5α was used for plasmid 

propagation.   

 

Media 

Minimal media (MM), supplements and 5-FOA were as described in Nielsen et al.
4
. For analysis of 

secondary metabolite production in A. nidulans, the following four media were used: MM, Czapek 

Yeast extract Agar (CYA)
5
, Yeast Extract Sucrose agar (YES)

5
 and Wickerhams Antibiotic Test 

Medium (WATM)
6
. Spore suspension (SS) consisted of 0.5 % Tween 80 and 0.5 % agar. All 

chemicals were from Sigma-Aldrich (St. Louis, Mo, USA) except for agar from Sorbigel (Hendaye, 

France). 

 



Appendix                                                                                         PhD Thesis Britt Guillaume Jensen 
Aspergillus  hydrophobins – Identification, classification and characterization 

A2 

 

PCR  

All PCR reactions were carried out with the PfuX7 (Nørholm, 2010) using 1x HF buffer 

(Finnzymes, Finland) and 0.2 mM dNTPs (Sigma) applying the following standard conditions: 98 

°C for 2 min, 35x (98 °C for 10 s, 60 °C for 30 s, 72 °C 2 min); 5 min at 72 °C. Standard Fusion-

PCR was carried out at 98 °C for 1 min, 5x (98 °C for 10 s, 55 °C for 2 min, 72 °C 1:30 min); 30x 

(98 °C for 10 s, 60 °C for 30 s, 72 °C 2:30 min) ending with 5 min at 72 °C. Spore-PCR analysis 

was as standard: 98 °C for 15 min, 35x (98 °C for 10 s, (64-55) °C for 30 s, 72 °C 3 min); 5 min at 

72 °C adding less than 1000 conidia per reaction tube. All oligonucleotides (Sigma-Aldrich) used in 

this study and primer pairs are listed in table 2, and for std PCR 0.8 µM was used, whereas 0.4 µM 

was used for fusion-PCR and Spore-PCR. 

 

Construction of A. nidulans hydrophobin deletion strains 

Individual gene deletions and genetic transformation of A. nidulans protoplasts were carried out as 

bi-partite previously described by Nielsen et al.
4,7

. Up- and downstream target sequences were 

amplified from A. nidulans IBT29539 gDNA. The plasmid pDEL2
4
 was used for amplifying the 

AFpyrG marker These fragments were used for genetic transformation of A. nidulans IBT29539 

protoplasts. All A. nidulans transformants were subsequently streak purified on 5-FOA media to 

eliminate the pyrG marker and verified by Spore-PCR. Completed strains were finally crossed
8
 with 

IBT25456 to restore genetic markers and verified by Spore-PCR analysis. 

 

Construction of A. nidulans hydrophobin over-expression strains 

The A. nidulans hydrophobin over-expression strains were constructed using USER cloning for 

insertion in IS1
9
. Created PCR fragments (see table 2 for primer pairs) were USER cloned into a 

pU1111 based vector and subsequently transformed into competent E. coli DH5α cells. Purified 

DNA was digested with NotI and transformed into A. nidulans IBT28738 protoplasts.  

 

Morphology 

All A. nidulans hydrophobin deletion strains were cultivated on MM and WATM for five days at 37 

°C. Plates were made in triplicate and examined macroscopically and under stereomicroscope. 

Sellotape preparations
10

 were made of each plate and examined microscopically. A minimum of 10 
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images were compared for each plate, resulting in a comparison of a minimum of 30 images for 

each strain.  

To examine spore surfaces for rodlets, the reference strain was examined using Scanning Electron 

Microscopy (SEM), which was performed using a FEI Nova 600 NanoSEM (FEI, Hillsboro, 

Oregon) operated at 3 kV. To minimize charging problems a thin layer of gold (~5 Å) was sputter 

deposited on the sample with an Anatech Hummer sputter coater (Anatech, Union City, California).  

 

qRT-PCR 

Total RNA from rodAΔ, dewAΔ, rodAΔdewAΔ and the reference strain (grown for four days at 37 

°C on MM) was isolated with Qiagen Plant RNAeasy kit. The samples were disrupted by a 

TissueLyser LT (Qiagen) using 45 Hz for 1 min. 10 µg of RNA was DNAse I (Qiagen) treated after 

manufacturer’s protocol, with addition of 10U of RNAguard RNAse inhibitor (Amersham). 1 µg of 

DNAse I treated RNA samples were used in cDNA synthesis by the Phusion RT-PCR Kit 

(Finnzymes) according to manufacturer’s protocol. The subsequent qRT-PCR was performed in a 

Chromo 4TM Detector/PTC-200 (MJ Research) using the SYBR® Green JumpStart Taq ReadyMix 

(Sigma). Two genes (actA (AN6542) encoding actin and hhtA (AN0733) encoding histone protein 

H3) were chosen as internal standards for normalization of expression levels. Only one of them, 

hhtA, was used for the fold change calculations. Primer combinations for the qPCR and sequences 

are listed in table 3. All PCR primer pairs were evaluated by running PCR on gDNA prior to qPCR. 

Moreover, two types of control samples were initially included for the qPCR; the DNAse treated 

RNA sample used for the reverse transcriptase reaction, and a template-free reaction to test for 

primer-dimer influence on the overall fluorescence. The final individual cDNA samples were added 

to the reactions as 5 times diluted samples. Samples were run in triplicates. The program was 94 °C 

for 2 min and cycling conditions 40 times; 94 °C for 10 s, 60 °C for 15 s, 72 °C for 30 s. A melting 

curve from 65 °C to 95 °C with reads every 0.2 min was ending the program to evaluate the purity 

of the reaction products. The fluorescence threshold values, C(t), was determined through the 

OpticonMonitor 3.1 software (MJ Research). The relative expression levels was approximated by 2
-

ΔΔC(t)
 as ΔΔC(t) = ΔC(t)normalized-ΔC(t)calibrator. The ΔC(t)normalized=ΔC(t)target gene-

ΔC(t)internal_std and the calibrator C(t) values were the corresponding values from the reference 

strain. 
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Water Contact Angle Measurements 

Spores were harvested in SS from five days old colonies grown on MM plates and 100 µl were 

plated out in a Petri dish containing app. 20 ml of solid MM. The plates were incubated at 37 °C for 

four days until a homogeneous compact layer of spores had developed. A square (1 cm x 3 cm) was 

cut out and placed on a microscope slide. Water contact angles were measured at set time intervals 

after placing 10 µl drops of water on the colony surface and using a Drop shape analysis system 

DSA 10 Mk2 (Krüss, Hamburg, Germany). All experiments were done in triplicate. For each drop 

and time point 10 measurements were made.   

 

Ability to breach a water-air interface 

Strains were inoculated on MM and grown for two days at 20 °C until an immature colony lacking 

spores was visible. 30 ml of MQ-water was added to each plate submerging the preformed colonies 

and incubated at 20 °C. The plates were studied each day for seven days. All experiments were 

done in triplicate. 

 

Tables for materials and methods 

Table 1: Strains used in this study 

Strain Genotype Source 

FGSC A4 (IBT4887) Wild-type CMB fungal collection 

nkuAΔ (IBT29539) argB2, pyrG89, veA1, nkuAΔ Nielsen  et al. 2008 

nkuA-trS (IBT28738) argB2, pyrG89, veA1, nkuA-trS::AFpyrG Nielsen et al. 2008 

G051 (IBT25456) 

 
biA1, veA1 CMB fungal collection 

rodAΔ (auxotrophic, NID179) 
argB2, pyrG89, veA1, nkuAΔ, rodAΔ 

 
This study 

dewAΔ (auxotrophic, NID238) 
argB2, pyrG89, veA1, nkuAΔ, dewAΔ 

 
This study 

rodAΔdewAΔ (auxotrophic, NID 

295) 

argB2, pyrG89, veA1, nkuAΔ, rodAΔ, dewAΔ 

 
This study 
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AN0940Δ (auxotrophic, NID781) argB2, pyrG89, veA1, nkuA∆, AN0940∆ 

 
This study 

AN1837Δ (auxotrophic, NID780) argB2, pyrG89, veA1, nkuA∆, AN1837∆ This study 

AN6401Δ (auxotrophic, NID764) argB2, pyrG89, veA1, nkuA∆, AN6401∆ This study 

Reference strain for knockouts 

(NID750) 
veA1 This study 

rodAΔ (AN8803Δ, NID600) veA1, rodAΔ This study 

dewAΔ (AN8006Δ, NID601) veA1, dewAΔ This study 

rodAΔdewAΔ (NID602) veA1, dewAΔ, rodAΔ This study 

AN0940Δ (NID666) veA1, AN0940Δ This study 

AN1837Δ (NID667) veA1, AN1837Δ This study 

AN6401Δ (NID668) veA1, AN6401Δ This study 

Reference strain for over-

expression strains (NID191) 

argB2, pyrG89, veA1, nkuA∆::AFpyrG, IS1::PgpdA-

TtrpC::argB 
CMB fungal collection 

rodA OEx (NID770) 
argB2, pyrG89, veA1, nkuA-trS::AFpyrG, IS1::PgpdA-

AN8803-TtrpC::argB 

 

This study 

dewA  OEx (NID684) 
argB2, pyrG89, veA1, nkuA-trS::AFpyrG, IS1::PgpdA-

AN8006-TtrpC::argB 

 

This study 

AN7539 OEx (NID771) 
argB2, pyrG89, veA1, nkuA-trS::AFpyrG, IS1::PgpdA-

AN7539-TtrpC::argB 

 

This study 

AN6401 OEx (NID895) 
argB2, pyrG89, veA1, nkuA-trS::AFpyrG, IS1::PgpdA-

AN6401-TtrpC::argB 

 

This study 

AN1837 OEx (NID896) 
argB2, pyrG89, veA1, nkuA-trS::AFpyrG, IS1::PgpdA-

AN1837-TtrpC::argB 

 

This study 

AN0940 OEx. (NID893) 
argB2, pyrG89, veA1, nkuA-trS::AFpyrG, IS1::PgpdA-

AN0940-TtrpC::argB 

 

This study 
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Table 2: Oligonucleotides for strain construction 

Purpose Name Oligonucleotide sequence 

Construction of rodA∆ ANrodA-chk-Up-F GGGACAGGAGTTGAGAGG 

 ANrodA-del-Up-F CGCTGGGAGCTGAAGCTG 

 ANrodA-del-Up-Ra gatccccgggaattgccatgGAGAATGAGGGACTGGACTGTC 

 ANrodA-del-Dw-Fa aattccagctgaccaccatgGCTTATCTCCGAATACTGG 

 ANrodA-del-Dw-R CTCTGGACCTTGTTCTTGG 

 ANrodA-chk-Dw-R CTGTATGAAAGCCCCGATG 

Construction of dewA∆  ANdewA-chk-Up-F ACTCAATCCGTGCCTACA 

 ANdewA-del-Up-F GCGATGCTAGTGGTTGTT 

 ANdewA-del-Up-Ra gatccccgggaattgccatgGAGATGCTTGTGATGGAAGG 

 ANdewA-del-Dw-Fa aattccagctgaccaccatgCTTGGAGAGAACAGACGG 

 ANdewA-del-Dw-R CGTTTCTGTCTTCCGTGG 

 ANdewA-chk-Dw-R GTCCTGAAGTCCTGAACC 

Construction of AN0940∆ AN0940-chk-Up-F CCACAGAAGAGCTCTGTGC 

 AN0940-del-Up-F GGAGTACTACTACTGGGAATCGG 

 AN0940-del-Up-Ra gatccccgggaattgccatgGAGTGGCTTGGCAGGATAGAG 

 AN0940-del-Dw-Fa aattccagctgaccaccatgGGCGGTTCCGAGGATCAG 

 AN0940-del-Dw-R GGGCAGGCAGAGATTGGTG 

 AN0940-chk-Dw-R CAATATACGCCGAGCCAACCC 

Construction of AN1837∆ AN1837-chk-Up-F CAGCAGTGACCACAGGATTC 

 AN1837-del-Up-F GTTATCAGGTGGCGCAATCTAC 

 AN1837-del-Up-Ra gatccccgggaattgccatgGAGGTAGGTGAGAGAGGACG 

 AN1837-del-Dw-Fa aattccagctgaccaccatgGCGGTTGATGTTGTAACTTCAG 

 AN1837-del-Dw-R CGTTGAGAGACGTAATCGGC 

 AN1837-chk-Dw-R CCTTGGAGACGGTCGAGATAG 

Construction of AN6401∆ AN6401-chk-Up-F GAACTAACCTTCTGGATCCGTC 

 AN6401-del-Up-F GGATCATATTGCGCGGTCGG 

 AN6401-del-Up-Ra gatccccgggaattgccatgGGTGTCTGGTAAGATGCTGCG 

 AN6401-del-Dw-Fa aattccagctgaccaccatgGAGAGTCTCGGTCTCCTGGAC 

 AN6401-del-Dw-R CCGGTTGTGACATGGATAGGTG 

 AN6401-chk-Dw-R CTGCAACGCCAGATTATAACG 

Construction of AFpyrG pDEL-Up-F-Ad catggcaattcccggggatcTGGATAACCGTATTACCGCC 

 AFpyrG-int-F3 TGATACAGGTCTCGGTCCC 

 AFpyrG-int-R GGAAGAGAGGTTCACACC 

 pDEL-Dw-R-Ad catggtggtcagctggaattTGCCAAGCTTAACGCGTACC 

Construction of AN8803-OEx FW_AN8803 AGAGCGAUAAGACTTTCATAGACAGTCCAGTC 

 RV_AN8803 TCTGCGAUAGGCAGTAATGAAGCAATCAAG 

Construction of AN8006-OEx FW_AN8006 AGAGCGAUGCAATTCAGCAATTCAGCAATCCA 

 RV_AN8006 TCTGCGAUCAAATCCGAACAACACCAATTATT 

Construction of AN0940-OEx FW_AN0940 AGAGCGAUATGCATCTTTCCACCTCCGCT 

 RV_AN0940 TCTGCGAUCTACTTGTCAACGCCATCACCAAC 

Construction of AN1837-OEx FW_AN1837 AGAGCGAUGCAGACTAAACGTCACGTCCCA 
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 RV_AN1837 TCTGCGAUGGATTATTAATGTATTTATTCGAACGAATTT 

Construction of AN6401-OEx FW_AN6401 AGAGCGAUATGCAATTCACAATCGCTTCCC 

 RV_AN6401 TCTGCGAUTTAGAGAACCTGGACAGGA 

Construction of AN7539-OEx FW_AN7539 AGAGCGAUATGAAGGTCGCCACTGCC 

 RV_AN7539 TCTGCGAUTTAGTGGCCGTGCTCCAG 

Check primers for IS1 in OEx 

strains 

AN-IS1-Up-chk-F GGGAAAGACATCTGATCAGCG 

 AN-IS1-Dw-chk-R GAGCCTGGTCAAAGTGGG 

 AN-IS1-Up-gapchk-F2 GGACAACGGGAAGAGGCTCAG 

 AN-IS1-Dw-gapchk-R2 GGAGAGGGAGAGAAGAAGAAGGG 

 

Table 3: Oligonucleotides for qRT-PCR 

Name Oligonucleotide sequence 
AN8803-qRT-F CACGTACGCCGGTGACAC 

AN8803-qRT-RV GAGTTCTGGCAGCAGGCAATG 

AN8006-qRT-F CTCTCCTCGCCTTCACTGC 

AN8006-qRT-RV CCGAGCAGACCGCTCAAC 

AN0940-RT-F CTTCGTGAAGACATGTCCCAAGG 

AN0940-RT-R CGCCATCACCAACCTCAGTC 

AN1837-RT-F GGTGCTTTCAGCGGTTGCTC 

AN1837-RT-R GAGCCAAGGGCAATGCAGG 

AN6401-qRT-F GTACTCTGGCTGCTCTTCGC 

AN6401-qRT-RV GAGGCCGTTCTGTATACCATCAG 

AN7539-qRT-F GCTGTGGTAGCCTTACTACTCCT 

AN7539-qRT-RV CGCAGCCAAGACCGAGAG 

hhtA-qRT-F GTGCTCTCCAGGAGTCCG 

hhtA-qRT-RV GAGGCGACGAGCAAGCTG 

actA-qRT-F GACGTCCGTAAGGATCTGTACG 

actA-qRT-RV GCGGTGGACGATCGAAGG 
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Appendix 2 

Materials and methods for chapter 5 

 

Interactions between A. nidulans  hydrophobins deletion strains and P. aeruginosa 

PAO1 

The interaction between the hydrophobin deletion strains and Pseudomonas aeruginosa PAO1
11

 

was assessed using a plating assay described in paper 2. Wickerhams antibiotic test medium 

(WATM) was used as media as it supported growth of both Aspergillus and Pseudomonas 

aeruginosa. Aspergillus spores were harvested in a suspension consisting of 0.5 % Tween80 and 0.5 

% agar and diluted to 1x10
6
 spores/ml. The suspension was streaked out horizontally on to the left 

side of sterile WATM plates and incubated over night at 37 °C. After 24 hours incubation a P. 

aeruginosa overnight culture was diluted to 1x10
8
 CFU/ml and streaked out four times 

perpendicular to the fungal streak. Control plates containing P. aeruginosa or Aspergillus alone 

were included. Plates were hereafter incubated at 37 °C for five days. 

The plate was divided into four zones. Two zones in the fungus and two zones in the bacterium. 

Zone 1 was defined in the Aspergillus as far away from the Pseudomonas as possible. Zone 2 in the 

Aspergillus as close to Pseudomonas as possible. Zone 3 in the Pseudomonas as close to the 

Aspergillus as possible and zone 4 in the Pseudomonas as far from the Aspergillus as possible. 

Extracts were prepared by cutting four plugs of 6 mm from each zone. The plugs were transferred to 

2 ml vials, 1 ml of methanol: dichloromethane:ethyl acetate (1:2:3 v/v/v) with 0.5 % formic acid 

was added and the vials placed in an ultrasonication bath for 60 min. The extract was transferred to 

new vials and evaporated to dryness. The residues were dissolved in 500 µl methanol and 

ultrasonicated for 10 min. Extracts were finally filtered through a PTFE 0.45 µm syringe filter into 

a new vial and used for analysis.  

Extracts were analysed by UHPLC-qTOFMS on a Dionex RSLC Ultimate 3000 (Dionex, 

Sunnyvale, CA) equipped with diode-array detector and a Kinetex C18 column (100 x 2.1 mm, 2.6 

µm; Phenomenex, Torrence CA). Separation was performed using a linear water-acetonitril 

(CH3CH) gradient starting from 10 % CH3CH to 100 % over 7 min at a flow rate of 0.4 ml/min. 

Both water and CH3CH were buffered with 20 mM formid acid. The UHPLC was coupled to a 

maXis G3 quadrupole time of flight mass spectrometer (Bruker Daltonics, Bremen, Germany) 

equipped with an electrospray (ESI) ion source. The instrument was operated in ESI
+
 at a resolution 

of 40 000 FMWH and scanning m/z 100-1000. Data analysis for identification of microbial 

secondary metabolites is described in 
12–14

. The instrument generally produces multi-charged ions 
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above molecular masses of 700-800 Da. For unbiased data analysis the data files were analyzed in 

random, molecular features detected, peaks aligned and compared using the Bruker Profile Analysis 

2.0 software (Bruker Daltonics, Bremen, Germany). All experiments were done in biological 

duplicates. 
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Additional material 

 

 

Additional file 1. Phylogenetic tree of identified hydrophobins in Aspergilli  

The phylogenetic tree was constructed based on a multiple alignment of identified hydrophobins using 

Phylogeny.fr (Dereeper et al., 2008). Branches with support values less than 50 % were collapsed. N 

signifies any other amino acid than cysteine. 
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Additional file 2. Theoretical class of identified hydrophobins based on cysteine spacing and 

hydropathy plot.  

The hydropathy plots were created using ProtScale (Gasteiger et al. 2005). 

 

 

Species Gene Eight cysteine pattern Class based on 

cysteine 

pattern 

Class based on 

hydropathy 

plot 

Theoretical 

class 

A. oryzae RIB40 AO090012000143 CN{8}CCN{38}CN{10}CN{5}CCN{21}C I I I 

 AO090020000588 CN{7}CCN{39}CN{17}CN{5}CCN{17}C I I I 

A. niger CBS 513.88 An03g02360 CN{6}CCN{32}CN{25}CN{5}CCN{4}C I I I 

 An03g02400 CN{6}CCN{31}CN{23}CN{5}CCN{6}C I Intermediate Intermediate 

 An04g08500 CN{7}CCN{39}CN{20}CN{5}CCN{17}C I I I 

 An15g03800 CN{5}CCN{32}CN{6}CN{5}CCN{13}C I II Intermediate 

 An01g10940 CN{14}CCN{17}CN{11}CN{7}CCN{8}C - Intermediate Intermediate 

 An07g03340 CN{7}CCN{39}CN{21}CN{5}CCN{17}C I I I 

 An09g05530 CN{8}CCN{33}CN{11}CN{5}CCN{16}C I Intermediate Intermediate 

 An08g09880 CN{7}CCN{16}CN{6}CN{5}CCN{10}C I Intermediate Intermediate 

A. niger ATCC 1015 JGI128530 Fragment (similar to An07g03340) I Intermediate Intermediate 

 JGI35683 CN{14}CCN{17}CN{11}CN{7}CCN{8}C - Intermediate Intermediate 

 JGI45683 CN{6}CCN{31}CN{23}CN{5}CCN{6}C I Intermediate Intermediate 

 JGI45685 CN{6}CCN{32}CN{25}CN{5}CCN{14}C I I I 

 JGI53462 CN{5}CCN{32}CN{6}CN{5}CCN{13}C I II Intermediate 

 JGI194815 CN{7}CCN{39}CN{20}CN{5}CCN{17}C I I I 

 JGI43184 CN{8}CCN{33}CN{11}CN{5}CCN{16}C I Intermediate Intermediate 

E. nidulans FGSC A4 AN7539.2 CN{5}CCN{32}CN{6}CN{5}CCN{13}C I II Intermediate 

 AN8803.2 CN{7}CCN{39}CN{18}CN{5}CCN{17}C I I I 

 AN6401.2 CN{6}CCN{38}CN{22}CN{5}CCN{35}C I Intermediate Intermediate 

 AN8006.2 CN{6}CCN{31}CN{23}CN{5}CCN{6}C I I I 

 AN1837.2 CN{7}CCN{39}CN{18}CN{5}CCN{17}C I I I 

 AN0940.2 CN{13}CCN{17}CN{12}CN{7}CCN{8}C - II Intermediate 

A. fumigatus AF293 AFUA_8G07060 CN{7}CCN{39}CN{21}CN{5}CCN{17}C I I I 

 AFUA_5G09580 CN{7}CCN{39}CN{21}CN{5}CCN{17}C I I I 

 AFUA_2G14661 CN{5}CCN{32}CN{6}CN{5}CCN{13}C I II Intermediate 

 AFUA_1G17250 CN{7}CCN{36}CN{18}CN{5}CCN{18}C I I I 

 AFUA_5G03280 CN{7}CCN{33}CN{11}CN{5}CCN{14}C I I I 

A. fumigatus A1163 AFUB_016640 CN{7}CCN{36}CN{18}CN{5}CCN{18}C I I I 

 AFUB_057130 CN{7}CCN{39}CN{21}CN{5}CCN{17}C I I I 

 AFUB_080740 CN{7}CCN{39}CN{21}CN{5}CCN{17}C I I I 

 AFUB_051810 CN{7}CCN{33}CN{11}CN{5}CCN{14}C I II Intermediate 

A. terreus NIH 2624 ATEG_10285 CN{5}CCN{28}CN{14}CN{8}CCN{13}C - I Intermediate 

 ATEG_08089 CN{8}CCN{33}CN{11}CN{5}CCN{14}C I Intermediate Intermediate 

 ATEG_07808 CN{5}CCN{32}CN{6}CN{5}CCN{13}C I Intermediate Intermediate 

 ATEG_06492 CN{7}CCN{40}CN{16}CN{5}CCN{17}C I I I 

 ATEG_04730 CN{10}CCN{11}CN{16}CN{8}CCN{10}C II II II 

A. flavus NRRL 3357 AFLA_094600 CN{7}CCN{16}CN{6}CN{5}CCN{9}C I II Intermediate 

 AFLA_131460 CN{5}CCN{32}CN{6}CN{5}CCN{13}C I Intermediate Intermediate 

 AFLA_060780 CN{6}CCN{30}CN{23}CN{5}CCN{4}C I I I 

 AFLA_014260 CN{8}CCN{38}CN{10}CN{5}CCN{21}C I I I 

 AFLA_063080 CN{5}CCN{17}CN{7}CN{7}CCN{12}C - Intermediate Intermediate 

 AFLA_098380 CN{7}CCN{39}CN{17}CN{5}CCN{44}C I I I 

 AFLA_064900 CN{7}CCN{15}CN{6}CN{5}CCN{8}C I II Intermediate 

A. clavatus NRRL 1 ACLA_001890 CN{7}CCN{16}CN{6}CN{5}CCN{26}C I Intermediate Intermediate 

 ACLA_048810 CN{7}CCN{33}CN{11}CN{5}CCN{15}C I II Intermediate 

 ACLA_010960 CN{7}CCN{39}CN{21}CN{5}CCN{17}C I I I 

 ACLA_072820 CN{7}CCN{39}CN{21}CN{5}CCN{17}C I I I 

 ACLA_018290 CN{5}CCN{32}CN{6}CN{5}CCN{13}C I Intermediate Intermediate 

 ACLA_007980 CN{7}CCN{36}CN{18}CN{5}CCN{17}C I II Intermediate 



Paper 1                                                                                  PhD Thesis Britt Guillaume Jensen 
Aspergillus  hydrophobins – Identification, classification and characterization 

P11 

 

 



Paper 1                                                                                  PhD Thesis Britt Guillaume Jensen 
Aspergillus  hydrophobins – Identification, classification and characterization 

P12 

 

 



Paper 1                                                                                  PhD Thesis Britt Guillaume Jensen 
Aspergillus  hydrophobins – Identification, classification and characterization 

P13 

 

 

Additional file 3. Multiple alignment of putative hydrophobins in Aspergilli 

Comparison of hydrophobins identified in full genome sequenced Aspergilli. Amino acid residues are 

colored by conservation (>80 %). Figure created using Jalview (Waterhouse et al. 2009) 
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Abstract 

Aspergillus species and Pseudomonas aeruginosa are both frequently isolated from cystic 

fibrosis (CF) patients, however little is known about the possible interactions of these 

organisms. Here we developed an assay allowing examination of interactions between 

different Aspergilli and P. aeruginosa on solid medium using chemical analysis of 

secondary metabolites. We show that P. aeruginosa PAO1 suppressed growth of all tested 

Aspergilli. The suppression of growth by P. aeruginosa was correlated with an increased 

production of phenazines by P. aeruginosa in the presence of Aspergilli. However, no 

increased production of phenazines was seen in response to A. fumigatus, indicating 

variation in sensitivity to phenazines or that other bacterial exoproducts may also contribute 

to the growth suppression. Interestingly, the Aspergilli did not alter their secondary 

metabolite profile in response to the presence of P. aeruginosa. Mutations that inactivate the 

function of regulatory proteins MucA and RpoN are frequently observed among P. 

aeruginosa isolates from chronic CF patients. We show that both a mucA mutant 

(overproduction of exopolysaccharide alginate) and an rpoN mutant (reduced production of 

several virulence factors) of P. aeruginosa were unable to suppress growth of A. fumigatus, 

but could suppress other Aspergilli. Moreover, an increase in phenazines and quinolones by 

P. aeruginosa rpoN was observed in response to A. niger, A. oryzae and A. flavus, but not A. 

fumigatus. This indicates that the dynamics of the bacterial-fungal interaction may change in 

the later stages of CF infections, where the genetically adapted P. aeruginosa strains are 

more susceptible towards competition from A. fumigatus.  

 

Introduction  

Cystic fibrosis (CF) is a chronic inherited genetic disorder characterized by recurrent 

infections of the lower respiratory tract due to an impaired mucociliary clearance [1]. CF is 

caused by a mutation in the gene encoding the cystic fibrosis transmembrane regulator 

(CFTR) leading to a dysfunction of a chloride ion channel [2]. In the respiratory tract the 

mutations in the CFTR gene results in the thickening of bronchial mucus providing a growth 

environment for bacteria and fungi. Over time the recurrent infections and inflammation lead 

to a severely impaired lung function [1].  

Pseudomonas aeruginosa is the most dominant bacterium found in CF lungs and colonizes 
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approximately 80 % of CF patients [3,4]. In general CF patients harbour between 1x10
7
 – 

1x10
9
 CFU P. aeruginosa/g sputum [3], and as CF patients reach early childhood, most CF 

patients eventually become chronically infected by P. aeruginosa strains [2]. P. aeruginosa 

changes genetically during the course of chronic CF lung infections resulting in loss-of-

function mutations and change in phenotypes [5,6]. These phenotypes can among others 

include loss of motility [7] and loss of pyoverdine production [8]. Mutations that inactivate 

the anti-sigma factor MucA result in overproduction of the exopolysaccharide alginate and 

conversion to the frequently observed mucoid phenotype [9]. Loss-of function mutations are 

also frequently found in lasR, which encodes a transcriptional regulator of quorum sensing 

[5,10]. Quorum sensing signaling molecules (3-oxo-C12-HSL and C4-HSL) produced by the 

bacteria have been detected in the sputum of CF patients [11]. Inactivation of LasR results in 

a decrease in expression of many virulence factors including pyocyanin [12–15]. Common 

mutations in the alternative sigma factor, RpoN, similarly affect many virulence factors 

including synthesis of pili, flagella, pyocyanin and rhamnolipids [16–19]. P. aeruginosa can 

additionally produce a large array of extracellular secondary metabolites including 

phenazines and quinolones [12,20,21]. 2-heptyl-3-hydroxy-4-quinolone (PQS) functions as a 

signaling molecule and has also been found in vivo in lungs of CF patients infected by P. 

aeruginosa [22]. P. aeruginosa PAO1 can produce at least four different phenazines; 

pyocyanin, 1-hydroxyphenazine, phenazine-1-carboxylic acid and phenazine-1-carboxamide 

[23]. Both phenazines and PQS have been demonstrated to have antifungal activity [21,24–

26]. 

Aspergillus spp. are ubiquitously found in nature, and fungal spores are inhaled by most 

individuals every day. Healthy individuals can easily clear the fungi from their airways, but 

Aspergillus species can cause disease in immunocompromised hosts and individuals with 

underlying pulmonary diseases, where Aspergillus fumigatus is responsible for 

approximately 90% of human infections [27]. In patients with impaired lung functions, 

Aspergillus can cause allergic bronchopulmonary aspergillosis (ABPA), which is a 

hypersensitive response to the fungi. A. fumigatus, frequently found in house dust [28], is the 

most common isolated filamentous fungus in CF patients, however the prevalence varies 

between sites and centres. In Denmark A. fumigatus was found in 37% (2007) and 33% 

(2009) of CF patients [29], in France 57% [30], in Germany 6% [3], 46% [4] and 58% [31] 

and in USA 25% [32] and 36% [33] of CF patients. Many CF patients harbour several A. 
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fumigatus genotypes in their lungs [34–36], with some strains being chronically present, 

while others are found more transiently [36]. Colonization by A. fumigatus is uncommon in 

young CF patients and is normally a secondary infection following bacterial infections [37]. 

The prevalence of A. fumigatus infections increases with age [31], and A. fumigatus is the 

most persistent organism to colonize CF patients next to P. aeruginosa [3]. Bakare et al. 

found that 64% of A. fumigatus positive patients also had P. aeruginosa infections [4], and 

patients with A. fumigatus more frequently had P. aeruginosa [30,38]. A. fumigatus can 

produce several different secondary metabolites including fumiquinazolines, fumigaclavines, 

fumagillin, helvolic acid, pseurotins and gliotoxin [39]. The latter is the most important 

virulence factor and has been found in human lung tissue [40]. It has been shown to 

significantly lower the ciliary beat frequency and damage human respiratory epithelium in 

vitro [41]. Other Aspergillus species found in cystic fibrosis patients are Aspergillus flavus, 

Aspergillus niger, Aspergillus nidulans, Aspergillus versicolor and Aspergillus terreus 

[29,30,37,42]. Most are possibly only found transiently, but A. terreus seems to be able to 

chronically colonize the airways of CF patients [37].  

Leclair and Hogan [43] have recently provided an excellent overview of current knowledge 

on mixed bacterial-fungal infections in CF patients, but despite frequent isolations of both 

Aspergillus and P. aeruginosa from CF patients [4], few studies have focused on a possible 

interaction between the species in mixed populations [43–47]. An interaction between 

Aspergillus and P. aeruginosa in CF patients may lead to changes in behaviour of one of the 

organisms, changes in secondary metabolite profiles, increased inflammatory response and 

worsening of underlying pulmonary disease. As a result of genetic adaption to the CF 

environment mutational changes in P. aeruginosa may alter the interactions between A. 

fumigatus and P. aeruginosa during the course of a CF infection. The aim of this study was 

to examine the interactions between P. aeruginosa and different Aspergilli, especially A. 

fumigatus, using morphological studies and chemical analysis for secondary metabolites.  

 

Results 

Development of an assay to investigate Aspergillus and Pseudomonas interactions. 

In order to find an appropriate medium that supports balanced growth of both Aspergillus 

and Pseudomonas, three different media; Luria broth (LB) [48], Yeast Extract Sucrose agar 
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(YES) [49] and Wickerhams Antibiotic Test Medium (WATM) [50], were tested. LB is a 

bacterial nutritionally rich medium, which supported the growth of Pseudomonas well, while 

the growth of Aspergillus was restricted due to very slow growth compared to Pseudomonas. 

YES and WATM are fungal nutritionally rich media. YES supported growth of both 

Aspergillus and Pseudomonas, however, WATM showed the most equal growth of 

Aspergillus and Pseudomonas (data not shown) and was chosen as standard medium.  

To investigate possible interactions between Aspergillus and Pseudomonas aeruginosa a 

standard plating assay was developed (figure 1 and Materials & Methods). Aspergillus was 

streaked on the left side of the WATM plate, while P. aeruginosa was streaked on the right 

allowing the organisms to initially colonize separately. After five days incubation the plates 

were examined and divided into four zones; two zones in the Aspergillus and two zones in P. 

aeruginosa, allowing comparison and examination of the interactions and secondary 

metabolite production.     

 

Levels of phenazines are increased by P. aeruginosa in response to some Aspergilli, but 

not A. fumigatus 

P. aeruginosa and different Aspergillus species commonly infect cystic fibrosis patients 

[4,30,37]. In order to investigate the interaction between P. aeruginosa and Aspergilli, we 

used the standard plating method (figure 1 and Materials & Methods) and HPLC methods 

(UV/Vis and MS detection) to examine the production of secondary metabolites. Our results 

show that P. aeruginosa PAO1 suppressed the growth of all tested Aspergilli including; A. 

fumigatus, A. niger, A. oryzae and A. flavus (figure 2A). For A. oryzae and A. flavus, P. 

aeruginosa produced a greenish compound (presumably pyocyanin) in the contact zone to 

the Aspergilli. An increase in pyocyanin production was measured by HPLC in P. 

aeruginosa in the contact zone of A. oryzae and A. flavus (data not shown). No coloration 

was observed for P. aeruginosa in the contact zone of A. fumigatus or A. niger, nor was the 

production of pyocyanin increased. P. aeruginosa seemed growth restricted in the contact 

zone with A. niger. This may be a result of citric acid produced by A. niger, previously 

shown to inhibit P. aeruginosa [51]. HPLC analysis revealed that P. aeruginosa increased 

production of two additional phenazines in the contact zone (zone 3, figure 2B) of A. oryzae 

and A. flavus compared to zone 4, a single phenazine in response to A. niger, while A. 

fumigatus did not seem to affect P. aeruginosa (figure 2B). All analyses were done as 
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biological duplicates. The P. aeruginosa production of phenazine-1-carboxamide in zone 3 

was increased three and six times in response to A. oryzae (P<0.1) compared to levels of 

phenazine-1-carboxamide found in P. aeruginosa alone (control). The phenazine-1-

carboxylic acid production was only slightly increased. P. aeruginosa phenazine-1-

carboxylic acid production in zone 3 was increased six and seven times in response to A. 

niger (P<0.05) and four and five times in response to A. flavus (P<0.05). Phenazine-1-

carboxamide production was only slightly increased in response to A. flavus (P<0.1), but not 

to A. niger. Neither phenazine-1-carboxamide nor phenazine-1-carboxylic acid production 

was increased in response to A. fumigatus. For A. niger, A. oryzae and A. flavus several other 

unidentified compounds with similar UV-chromophores to the phenazines were observed in 

zone 3. These findings show that P. aeruginosa responds to the presence of some Aspergilli 

by increasing the production of phenazine compounds. Interestingly, it does not appear that 

the growth inhibitory effect of P. aeruginosa requires an increased production of phenazines, 

as growth of A. fumigatus was inhibited in a similar way as other Aspergilli. However, two 

commercially available phenazines; 1-hydroxyphenazine (MIC = 100 µg/ml) and pyocyanin 

(MIC > 150 µg/ml) could inhibit A. fumigatus. Surprisingly, no changes in the chemical 

profile of secondary metabolite levels were observed for any of the four Aspergilli, 

indicating that the Aspergilli produce the same metabolites and levels irrespectively of the 

presence of P. aeruginosa (data not shown).  

Colonization of the airways of cystic fibrosis patients by Aspergillus usually follows 

bacterial infections [37], however few cases are seen were Aspergillus infections occur 

before Pseudomonas infections [52]. Furthermore, the occurrence of Aspergillus seems to be 

a risk factor for developing chronic P. aeruginosa infections [53]. Differences in the 

interaction between P. aeruginosa and Aspergillus may therefore be observed depending on 

which organism colonizes first. However, no major differences was observed 

macroscopically or in chemical profile between plates having differential inoculation times 

(Pseudomonas first, Pseudomonas and Aspergillus simultaneously or Aspergillus first) (data 

not shown).   

To further examine the growth suppressing effect of P. aeruginosa on the Aspergilli, five 

day old WATM plates containing A. fumigatus or A. flavus and P. aeruginosa were moved to 

60 °C for 1 hour and subsequently moved back to 37 °C (supplementary figure S1). This 

heat-treatment kills P. aeruginosa, but not the Aspergillus and should further inactivate 
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potential enzymatic activity. A. fumigatus completely overgrew heat-killed P. aeruginosa 

showing that the presence of living P. aeruginosa is necessary for suppression of A. 

fumigatus. This was further confirmed by HPLC with both UV/Vis and MS detection, which 

did not show any changes in secondary metabolite profile after switching the temperature 

from 37 °C to 60 °C (supplementary figure S2). Similar observations were observed for A. 

flavus (supplementary figure S1). The green compound produced by P. aeruginosa in 

response to the presence of A. flavus could no longer be seen, however A. flavus could only 

grow over heat-killed P. aeruginosa to a slight extent.  

 

A P. aeruginosa rpoN mutant cannot suppress growth of A. fumigatus 

The development of chronic CF lung infections is associated with genetic adaptation and 

evolution of the infecting P. aeruginosa strains [5,6], and several genes have repeatedly been 

found to be inactivated by mutation in P. aeruginosa isolates sampled from different CF 

patients and clinical settings [5,6]. Examples of such genes include the lasR, rpoN and mucA 

genes which all encode proteins with regulatory functions. To examine the effect of these 

frequently occurring regulatory mutations on the P. aeruginosa–Aspergillus interaction, we 

analyzed the interaction between P. aeruginosa knock-out mutants and A. fumigatus AF293 

using both morphological and chemical analysis.  

We found that both the lasR mutant strain and mucA mutant strain suppressed growth of A. 

fumigatus (figure 3). However, the mucA strain was slightly overgrown by A. fumigatus in 

the interaction zone after five days incubation, increasing slightly over time. The mucA 

mutant had a similar metabolite profile compared to PAO1, while phenazine-1-carboxamide 

and phenazine-1-carboxylic acid was reduced in the lasR mutant (supplementary figure S3). 

Interestingly, a mutant defective in the alternative sigma factor RpoN suppressed growth of 

A. fumigatus after three days incubation (supplementary figure S4), but already after 4-6 

days of growth the rpoN mutant started to be overgrown by A. fumigatus resulting in the 

rpoN mutant being nearly completely overgrown after nine days. It seemed that A. fumigatus 

preferred growing on top of the rpoN mutant rather than in between the streaks as seen in 

other mutants tested (figure 3). Examination of the secondary metabolite profile of the rpoN 

mutant showed that the rpoN mutant did not produce several quinolones and phenazines 

including pyocyanin (supplementary figure S3). A double mutant (rpoN/mucA) was 

introduced next, and this mutant was completely overgrown by A. fumigatus after seven days 
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of incubation resulting in the mucoid P. aeruginosa forming the base of a lawn of A. 

fumigatus (data not shown).   

In addition to pyocyanin, the alternative sigma factor RpoN controls production of multiple 

virulence factors including pili, flagella, and rhamnolipids [16–19]. We next examined the 

individual contribution of these factors to the growth inhibition of A. fumigatus. Similarly to 

PAO1, motility mutants lacking either type IV pili (pilA mutant) or the polar flagellum (fliM 

mutant) were able to suppress or partly suppress A. fumigatus after five days incubation 

indicating that lack of motility does not seem to change the interaction between P. 

aeruginosa and A. fumigatus (figure 3). Long-term incubation (13 days) resulted in A. 

fumigatus growing in between the P. aeruginosa pilA mutant streaks and turning a darker 

colour. No change was observed on the fliM mutant plates over time (supplementary figure 

S4). Secondary metabolite profiles of the pilA mutant and fliM mutant resembled PAO1 

showing that the mutations had no affect on secondary metabolite profiles (supplementary 

figure S5). 

Rhamnolipids are involved in surface motility, immune modulation and virulence [54]. rhlA 

is involved in rhamnolipid synthesis [55], however, the rhlA mutant strain still suppressed A. 

fumigatus after five days of incubation (figure 3). During long-term incubation A. fumigatus 

grew in between the rhlA mutant strain streaks, but did not grow over it (supplementary 

figure S4). As expected, chemical analysis showed that the rhlA mutant did not produce 

rhamnolipid (data not shown). 

To acquire Fe
3+

 ions from the environment, P. aeruginosa utilizes siderophores, called 

pyoverdines, encoded by the gene pvdA [56]. We used a P. aeruginosa pvdA mutant to 

examine if growth inhibition of A. fumigatus was related to competition for iron. However, 

the P. aeruginosa pvdA mutant similar to PAO1 suppressed growth of A. fumigatus. No 

differences in secondary metabolite profile were observed for the pvdA mutant compared to 

PAO1 (supplementary figure S5). It would be expected to see pyoverdin lacking in the 

secondary metabolite profile of the pvdA mutant, but pyoverdin was not detected in PAO1, 

which may be due to the choice of medium. Production of pyoverdin by P. aeruginosa may 

require use of an iron-free medium, which is often the case for siderophores.  
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A P. aeruginosa rpoN mutant suppresses growth of other Aspergilli and increases 

production of phenazines 

To further examine the effect of frequently occurring regulatory mutations on the P. 

aeruginosa–Aspergillus interaction, we included the Aspergilli; A. niger, A. oryzae and A. 

flavus and examined the interaction between them and a number of P. aeruginosa knock-out 

mutants using both morphological and chemical analysis. All analyses were done in 

duplicate.  

Our data so far demonstrated that a mutant defective in the alternative sigma factor RpoN 

could not suppress the growth of A. fumigatus, but was overgrown by the fungus. 

Unexpectedly, neither A. niger, A. oryzae nor A. flavus could overgrow the rpoN mutant 

(figure 4A). Furthermore, chemical analysis revealed that several phenazines and quinolones 

were increased in response to the three Aspergilli (figure 4C, data not shown). These 

included among others phenazine-1-carboxamide, phenazine-1-carboxylic acid, 2-n-Heptyl-

4-oxy-quinoline/2-n-Heptyl-(1H)-quinolin-4-one and 2-Heptyl-3-hydroxy-4(3H)-

quinolinone. As no increase in phenazine production was detected against A. fumigatus 

(figure 4C), these data suggest that P. aeruginosa responds differentially toward different 

Aspergilli, and that the increased phenazine production observed for co-culture with A. 

niger, A. oryzae or A. flavus is independent of RpoN.  

The lasR mutant strain was able to suppress growth of A. fumigatus and similarly suppressed 

growth of A. oryzae, A. niger and A. flavus (figure 4A). In the contact zone of the P. 

aeruginosa lasR mutant and A. oryzae/A. flavus a large accumulation of a greenish 

compound was observed. This had similarly been observed in the contact zone of P. 

aeruginosa PAO1 and A. flavus/A. oryzae, as described above, however the lasR mutant 

seemed to produce larger amounts of the compound, found to be pyocyanin. Chemical 

analysis revealed an increase in production of all four phenazines, including pyocyanin, 1-

hydroxyphenazine, phenazine-1-carboxamide and phenazine-1-carboxylic acid (figure 4B 

and 4D) by P. aeruginosa lasR towards A. oryzae and A. flavus. For A. niger an increase in 

phenazine-1-carboxylic acid was observed (data not shown), while a minimal increase in 

phenazine-1-carboxylic acid was observed in response to A. fumigatus. No differences in 

quinolone production were observed.  

Finally, we tested the mucA mutant (figure 4A) and the remaining mutants (fliM, pilA, pvdA 

and rhlA). All mutants could suppress growth of A. oryzae, A. niger and A. flavus 
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(supplementary figure S6) as previously observed in A. fumigatus AF293. 

 

Clinical and environmental A. fumigatus strains interact similarly with P. aeruginosa 

As A. fumigatus is the most common Aspergillus species infecting cystic fibrosis patients 

[27], further understanding of the interaction between different strains of A. fumigatus and P. 

aeruginosa is needed. Isolates of A. fumigatus can produce many different secondary 

metabolites and a variation in secondary metabolite profiles between strains has been 

observed [39]. To elucidate differences in the interaction between P. aeruginosa and A. 

fumigatus species, six clinical and four environmental A. fumigatus strains were tested 

against P. aeruginosa PAO1 and secondary metabolite profiles were examined using 

UHPLC methods.  

All A. fumigatus strains were inhibited by P. aeruginosa (figure 5A), nevertheless A. 

fumigatus conidium heads and conidiophores appeared normal. All A. fumigatus strains had 

normal round spores, except TUBF-32, which displayed elliptical spores slightly bigger than 

the rest.   

Strains AF41, A37941, CBS 144.89 and NRRL1979 triggered the production of a green 

compound by P. aeruginosa in the contact zone (figure 5A). AF250 triggered the production 

of a yellow compound, while the remaining strains did not trigger any visual response in P. 

aeruginosa. Five strains (AF293, ATCC 201531, TUBF-32, AFIR 974 and TUBF-440) were 

very dusty (2-3 mm spores almost floating on top of the culture), while the remaining strains 

were less. It seemed that the less dusty strains triggered the production of the green 

compound in P. aeruginosa, while the very dusty strains did not (figure 5A and table 1). 

Examination of A. fumigatus AF293 and P. aeruginosa PAO1 by Scanning Electron 

Microscopy (SEM) (figure 5B) revealed that the organisms grew towards each other, but 

only had a very small interaction zone, where both organisms were present. The density of A. 

fumigatus conidia heads decreased towards P. aeruginosa, while P. aeruginosa had a rather 

sharp edge towards A. fumigatus as the fungus became denser. In the interaction zone the 

few A. fumigatus conidia heads appeared normal (data not shown). All A. fumigatus strains 

were examined for differences in secondary metabolite profiles and as expected a variation 

in secondary metabolite profile was observed between strains (see table 1). Several 

metabolite classes were detected, where fumiquinazolins, fumagillins and sterols were 

detected in all strains. Furthermore, fumigaclavins (90%), pseurotins (60%), trypacidins 



Paper 2                                                                                  PhD Thesis Britt Guillaume Jensen 
Aspergillus  hydrophobins – Identification, classification and characterization 

P27 

 

(70%), helvolic acid (90%), pyripyropenes (90%), fumitremorgins (70%) and tryptoquivalins 

(90%) were detected. Gliotoxin has previously been found in the lungs of CF patients [40] 

and four clinical strains and two environmental strains were found to produce gliotoxin 

(table 1). The environmental strain TUBF-440 displayed the highest amount of gliotoxin of 

0.65 µg/cm
2
, while the remaining strains produced levels varying from 0.04 – 0.19 µg/cm

2
. 

Differences in secondary metabolite profile did not correlate with the source of the strain 

(clinical vs. environmental), interaction zone colour (green vs. no colour) nor spore 

appearance (dusty). This was further confirmed by principal component analysis of the 

UHPLC-TOFMS data, where no clear groupings were observed.  

As described above, P. aeruginosa PAO1 increased production of two phenazines in the 

contact zone of A. oryzae and A. flavus, a single phenazine in response to A. niger, while A. 

fumigatus did not trigger an increase in phenazine production. Similarly, no difference in the 

production of phenazines by P. aeruginosa was observed in the contact zone with any of the 

A. fumigatus strains (data not shown), indicating that A. fumigatus strains do not trigger the 

production of phenazines by P. aeruginosa. Furthermore, no A. fumigatus strain affected 

production of 2-heptyl-3-hydroxy-4(3H)-quinolone in P. aeruginosa PAO1 (data not 

shown). We also observed that A. fumigatus AF293 grew over the P. aeruginosa mutant 

strain rpoN. Similarly, all strains of A. fumigatus tested here were able to grow over the rpoN 

mutant (data not shown). 

 

Discussion  

We have developed an assay allowing the examination of Aspergilli-Pseudomonas 

interactions. This assay is based upon solid medium, which of course differs from the 

environment found in the lungs. Liquid culture may have been a more accurate assay, but 

again this differs from the environment in the lungs, which do not contain large amounts of 

liquid. Our assay supports growth of both organisms and allows examinations of the 

interactions in different zones resulting in a unique opportunity to study the effect of the two 

organisms on each other.   

We tested the interaction between P. aeruginosa and several Aspergillus species 

demonstrating that growth of all tested Aspergilli (A. fumigatus, A. niger, A. oryzae and A. 

flavus) were suppressed by P. aeruginosa. Previous studies have tested the interaction of P. 
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aeruginosa and Aspergilli showing varying results. Kerr demonstrated a partially or non-

inhibitory effect of A. fumigatus by P. aeruginosa strains [45], Mangan demonstrated an 

inhibitory effect of P. aeruginosa on A. fumigatus and A. terreus in broth culture [46], while 

Blyth and Forey showed an inhibitory effect of A. fumigatus by P. aeruginosa on medium 

plates [44]. P. aeruginosa has likewise been shown to inhibit other fungal species, including 

Cryptococcus species [26], Trichopyton species [57], Saccharomyces cerevisiae [45] and 

several Candida species [45,58]. Hogan et al. [59] demonstrated that P. aeruginosa formed a 

dense biofilm on Candida albicans filaments and subsequently killed the fungus. In this 

study, a close spatial relationship between A. fumigatus AF293 and P. aeruginosa PAO1 was 

found, while SEM revealed that the organisms only had a very small interaction zone, where 

both organisms were present. In agreement with our observations, Blyth [47] likewise found 

a close spatial relationship between A. fumigatus and P. aeruginosa showing that most 

bacteria were adherent to fungal hyphae. However, the presence of P. aeruginosa affected 

ultrastructures of A. fumigatus hyphae [47]. Mowat et al. showed that P. aeruginosa cells 

were distributed throughout the filamentous network in mature A. fumigatus biofilms and 

that a minimal effect was seen on mature A. fumigatus biomass, when exposed to live P. 

aeruginosa cells [60]. Therefore it seems that P. aeruginosa and A. fumigatus can have a 

close spatial relationship, when coming in contact, but preferably occupy their own area. 

Similarly, it seems that other Aspergilli, although probably only found transiently [37], 

preferably occupy their own area.  

We observed an increase in phenazine production by P. aeruginosa in the contact zone of 

several Aspergillus species. Both phenazine-1-carboxylic acid and phenazine-1-carboxamide 

were increased by P. aeruginosa in response to A. flavus and A. oryzae, while only 

phenazine-1-carboxylic acid was increased in response to A. niger. This increase in 

production was consistent regardless of which organism (Aspergillus or Pseudomonas) had 

been allowed to colonize first. Both phenazine-1-carboxylic acid and phenazine-1-

carboxamide are known antifungal compounds [21], and the increase of the phenazines is a 

response from P. aeruginosa to the presence of the Aspergilli. The increase did, however, 

not prevent the Aspergilli from growing as close to the Pseudomonas as possible, indicating 

that the phenazines may both be a signal to the Aspergilli of the existence of the 

Pseudomonas and an attempt to inhibit the fungi. Despite the Aspergilli being suppressed by 

P. aeruginosa, no changes in Aspergillus secondary metabolite profile could be detected in 
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any of the Aspergilli. Phenazine-1-carboxylic acid is a precursor to the three other 

phenazines (phenazine-1-carboxamide, 1-hydroxyphenazine and pyocyanin) [23] and Kerr et 

al. demonstrated that pyocyanin and 1-hydroxyphenazine can inhibit A. fumigatus [24]. 

Similarly, we observed that pure pyocyanin and 1-hydroxyphenazine could inhibit A. 

fumigatus. Interestingly, A. fumigatus strains did not trigger any increase of phenazines by P. 

aeruginosa, nor were any differences in A. fumigatus secondary metabolites observed, 

resulting in no detectable secondary metabolic effect on either organism. Even though it does 

not seem that the two organisms affect each other, it has been shown that there is a 

significant decrease in lung function in CF patients colonized with both organisms compared 

to patients colonized with only A. fumigatus or P. aeruginosa, respectively [38,61]. 

Similarly, it has been observed that CF patients colonized with both C. albicans and 

Aspergillus or Pseudomonas, C. albicans and Aspergillus have decreased lung functions and 

body mass index [62]. Increased lung damage has also been observed by the presence of 

oropharyngeal bacteria (e.g. streptococci and staphylococci) in the CF lung, which resulted 

in increased P. aeruginosa virulence due to an up regulation of several virulence genes [63]. 

Several studies indicate that phenazines seem to play a role in antagonistic interactions 

among fungi. Phenazine-1-carboxylate secreted by Pseudomonas fluorescens suppresses 

Gaeumannomyces graminis [64], while phenazine-1-carboxamide produced by Pseudomonas 

chlorophis and P. aeruginosa can suppress Fusarium oxysporum and Pythium splendens 

[65,66]. Similarly, Rella et al. [26] demonstrated that P. aeruginosa inhibited growth of 

Cryptococcus species by producing pyocyanin and PQS (2-heptyl-3,4-dihydroxyquinolone). 

Gibson et al. [25] described the accumulation of a red pigment in Candida albicans cells and 

subsequently killing of the cells, when cocultured with P. aeruginosa. The formation of red 

pigment required 5-methyl-phenazinium-1-carboxylate (5MPCA) produced by P. 

aeruginosa. Morales et al. [67] demonstrated that phenazine methosulphate likewise killed 

C. albicans and induced accumulation of red pigment.  

Both clinical and environmental strains of A. fumigatus have been shown to produce 

gliotoxin. Kupfahl et al. demonstrated that 98 % of tested clinical strains produced gliotoxin, 

while 96 % of tested environmental strains produced gliotoxin [68]. Gliotoxin at 

concentrations above 0.2 µg/ml have been shown to significantly lower the ciliary beat 

frequency. [41]. Furthermore, gliotoxin production has been shown to be enhanced during in 

vitro biofilm formation [69], and can damage human respiratory epithelium [41]. We tested 
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ten A. fumigatus strains and found gliotoxin in six out of ten strains. These strains may 

therefore be able to reduce the ciliary beat frequency and cause epithelium damage. Both 

fumagillin and helvolic acid have likewise been shown to impair the ciliary beat frequency, 

but higher concentrations are required compared to gliotoxin [41]. Fumagillins were 

produced by all tested A. fumigatus strains, while helvolic acid was produced by nine strains. 

Therefore the presence of A. fumigatus may likewise contribute to an enhanced pulmonary 

infection due to a further reduced ciliary beat frequency. Further reduction of the ciliary beat 

frequency will likewise delay the clearance of the inhaled conidia, possibly allowing an 

enhanced time frame for the Aspergillus and other organisms to colonize the CF lung. 

Fumagillins and fumiquinazolins are common secondary metabolites produced by A. 

fumigatus [39] and was found to be produced by all tested A. fumigatus strains. Whether 

these metabolites can be responsible for the lacking production of phenazines by P. 

aeruginosa towards A. fumigatus strains remains elusive, but is not likely, as these secondary 

metabolites do not diffuse very well. Other factors are probably involved.  

Genetic adaption and evolution of P. aeruginosa is common during the course of chronic CF 

lung infections and several genes have been found to be inactivated by mutations in clinical 

P. aeruginosa isolates [5,6,9]. Common mutations include the lasR, rpoN and mucA genes 

which all encode proteins with regulatory functions. We analyzed the interaction between P. 

aeruginosa knock-out mutants and Aspergillus species and found differential inhibition 

patterns between the strains. A. fumigatus AF293 was able to partially grow over a mucoid 

P. aeruginosa strain, while A. flavus, A. oryzae and A. niger were suppressed. mucA mutants 

display a reduced pulmonary clearance in animal models and have increased alginate 

production [70]. Interestingly, A. fumigatus AF293 completely grew over a P. aeruginosa 

rpoN mutant, while A. flavus, A. oryzae and A. niger were suppressed. rpoN, an alternative 

sigma factor, is required for initial promoter recognition and consequently for transcription 

of a subset of genes by P. aeruginosa RNA polymerase [16,17]. Several virulence factors are 

affected in a rpoN mutant including the synthesis of pili, flagella, pyocyanin and 

rhamnolipids [16–19]. rpoN mutants are also less virulent [71] and form poorer biofilms 

[18,59] compared to wildtype strains. Individual contribution of motility, rhamnolipid and 

pyoverdin to the suppression of Aspergillus was examined, but did not seem to play a role as 

all Aspergilli were suppressed by these P. aeruginosa mutants. A. fumigatus could however 

grow in between the pilA, rpoN and rhlA strains over time. Both the pilA and fliM strains 
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have mutations in single motility genes, while the rpoN strain is affected in general motility. 

Consequently motility and mucoidy are factors necessary to suppress A. fumigatus 

sufficiently, demonstrated by the complete overgrowth of the double mutant (rpoN/mucA) by 

A. fumigatus.  Therefore we examined the differential interaction between the rpoN mutant 

and the different Aspergilli by chemical analysis. Our data show that the rpoN mutant in 

mono-culture is defective in production of several quinolones and phenazines including 

pyocyanin compared to wild-type P. aeruginosa. We speculate that this reduced secondary 

metabolite production removes the inhibition of A. fumigatus and allows it to grow over the 

P. aeruginosa rpoN mutant. Interestingly, we found that production of several phenazines 

and quinolones were increased in the rpoN mutant in response to A. flavus, A. oryzae and A. 

niger, but not A. fumigatus. This finding suggests that the increased phenazine production 

observed for co-culture with A. niger, A. oryzae or A. flavus is independent of RpoN and that 

regulation of phenazine production most likely is multifactorial.  

In contrast to the mucA and rpoN deletion strains, a lasR mutant suppressed growth of all 

tested Aspergilli including A. fumigatus. This supports findings by Mowat et al. [60], who 

previously demonstrated that two quorum sensing knockout strains (PAO1:∆LasR and 

PAO1:∆LasI) inhibited A. fumigatus biofilm formation. When comparing interactions 

between the lasR mutant and the Aspergilli, we observed that phenazines (including 

pyocyanin, 1-hydroxyphenazine, phenazine-1-carboxamide and phenazine-1-carboxylic 

acid) were increased in response to the presence of A. oryzae, A. flavus and A. niger, while 

no response was seen to the presence of A. fumigatus. In the contact zone of the lasR mutant 

and A. oryzae/A. flavus a large accumulation of a greenish compound was observed. This 

accumulation was higher in the lasR mutant compared to PAO1 and is likely pyocyanin. 

Cugini et al.[72] similarly observed a large enhancement of pyocyanin by a lasR mutant, 

when inoculated onto a C. albicans lawn. Finally, a double mutant of mucA/rpoN was 

completely overgrown by A. fumigatus AF293.  

In conclusion P. aeruginosa interacted differently towards A. fumigatus than other Aspergilli 

including A. niger, A. oryzae and A. flavus. Furthermore, our results indicate that regulatory 

mutations frequently observed in P. aeruginosa during long-term CF infections change 

bacterial-fungal interactions as measured in defined culture conditions in the laboratory. 

Further studies are required to investigate if such genetically adapted P. aeruginosa strains 

are less competitive towards A. fumigatus in the CF airways, and if there are clinical effects 
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associated with particular mutations in P. aeruginosa.  

 

Materials and methods 

Strains and media 

The Aspergillus strains were from the Center for Microbial Biotechnology (CMB), IBT 

culture collection and all Aspergillus used in this study are listed in table 2. Pseudomonas 

aeruginosa PAO1 [73] was used as the model organism in this study. P. aeruginosa strains 

with knock-out mutations in lasR, rpoN and mucA were constructed by allelic displacement 

in the PAO1 wild-type (S. Damkiær and L. Jelsbak, unpublished). Strains with knock-out 

mutations in pilA [74], fliM [74], pvdA [75], rhlA [76] have previously been described. 

Wickerhams antibiotic test medium (WATM) [50] was used as standard media. Luria broth 

medium (LB) [48]) was used to examine gliotoxin production by Aspergillus fumigatus 

isolates. Yeast Extract Sucrose agar (YES) [49] was initially used to examine growth of 

Aspergillus and  Pseudomonas.  

 

Standard plating method 

Wickerhams antibiotic test medium (WATM) [50] was chosen as solid media as both 

Aspergillus  and Pseudomonas aeruginosa grew well on this media. Aspergillus spores were 

harvested in a suspension consisting of 0.5 % Tween80 and 0.5 % agar and diluted to 1x10
6
 

spores/ml. The suspension was streaked on to sterile WATM plates as indicated on figure 1A 

and incubated over night at 37 °C. After 24 hours incubation a P. aeruginosa overnight 

culture was diluted to 1x10
8
 CFU/ml and streaked out four times perpendicular to the fungal 

streak. Control plates containing P. aeruginosa or Aspergillus alone were included. Plates 

were hereafter incubated at 37 °C for five days. 

 

Definition of zones on standard plate 

Four zones were defined on each plate, see figure 1B. Zone 1 was defined in the Aspergillus 

as far away from the Pseudomonas as possible. Zone 2 in the Aspergillus as close to 

Pseudomonas as possible. Zone 3 in the Pseudomonas as close to the Aspergillus as possible 

and zone 4 in the Pseudomonas as far from the Aspergillus as possible. 
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Standard method for chemical analysis of strains 

Extracts were prepared by cutting four plugs of 6 mm from each zone using a cork drill. The 

plugs were transferred to 2 ml vials, 1 ml of methanol: dichloromethane:ethyl acetate (1:2:3 

v/v/v) with 0.5 % formic acid was added and the vials placed in an ultrasonication bath for 

60 min. The extract was transferred to new vials and evaporated to dryness. The residues 

were dissolved in 500 µl methanol and ultrasonicated for 10 min. Extracts were finally 

filtered through a PTFE 0.45 µm syringe filter into a new vial and used for analysis. 

 

Analysis of A. oryzae, A. niger, A. flavus and A. fumigatus AF293.  

Extracts were analysed by two methods: I) High performance liquid chromatography-diode 

array detection (HPLC-DAD) using an Agilent 1100 system equipped with 3 µm, 10 cm, 

2mm ID Luna C18 column using a 15→100 % water-acetonitrile gradient as described in 

detail in Nielsen et al. [77]; and II) Ultra High performance liquid chromatography-diode 

array detection (UHPLC-DAD) on a Kinetex C18 column (150 x 2.1 mm, 2.6 µm; 

Phenomenex, Torrence, CA) using a linear water-acetonitril gradient starting from 15 % 

CH3CH to 100 % over 7 min at a flow rate of 0.8 ml/min. Both water and CH3CH were 

buffered with 50 ppm trifluoroacetic acid. HPLC-DAD-TOFMS confirmation was 

performed on an Agilent 1100 system using a Luna C18 column and coupled to a Micromass 

LCT oaTOF equipped with an electrospray source, also describe in details in Nielsen et al. 

[77].  

 

Analysis of clinical and environmental isolates of A. fumigatus 

Extracts were analyzed by UHPLC-DAD described above and UHPLC-qTOFMS on a 

Dionex RSLC Ultimate 3000 (Dionex, Sunnyvale, CA) equipped with diode-array detector 

and a Kinetex C18 column (100 x 2.1 mm, 2.6 µm; Phenomenex, Torrence CA). Separation 

was performed using a linear water-acetonitril (CH3CH) gradient starting from 10 % CH3CH 

to 100 % over 7 min at a flow rate of 0.4 ml/min. Both water and CH3CH were buffered with 

20 mM formid acid. The UHPLC was coupled to a maXis G3 quadrupole time of flight mass 

spectrometer (Bruker Daltonics, Bremen, Germany) equipped with an electrospray (ESI) ion 

source. The instrument was operated in ESI
+
 at a resolution of 40 000 FMWH and scanning 

m/z 100-1000. Data analysis for identification of microbial secondary metabolites is 

described in [39,77,78]. The instrument generally produces multi-charged ions above 
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molecular masses of 700-800 Da. For unbiased data analysis the data files were analyzed in 

random, molecular features detected, peaks aligned and compared using the Bruker Profile 

Analysis 2.0 software (Bruker Daltonics, Bremen, Germany). 

 

Examination of Pseudomonas mutants  

The “standard plating method” was used to examine the interaction between different P. 

aeruginosa mutants and Aspergillus. P. aeruginosa metabolites were extracted using “the 

standard method for chemical analysis” described above and analyzed by UHPLC-DAD and 

UHPLC-qTOFMS also described above.  

 

Differences in infection order 

To examine differences in secondary metabolite profiles, three sets of WATM plates were 

made. The first set was inoculated as described in “the standard plating method” with 

Aspergillus on day 1 and Pseudomonas on day 2. The second set was inoculated with both 

Aspergillus and Pseudomonas on day 1, while the third set was inoculated with 

Pseudomonas on day 1 and Aspergillus on day 2. Plates were subsequently incubated at 37 

°C for five days and extracted using the “standard method for chemical analysis of strains” 

previously described. Analysis was performed by UHPLC-DAD using a Dionex RSLC 

Ultimate 3000 (Dionex, Sunnyvale, CA) equipped with diode-array detection as previously 

described. 

 

Production of gliotoxin by A. fumigatus strains 

Gliotoxin is produced at highest concentrations on media with low C/N ratio [39]. Therefore 

A. fumigatus strains were 3-point inoculated onto LB plates and incubated at 37 °C for nine 

days. Extracts were prepared by cutting three plugs of 6 mm from a single colony using a 

cork drill as previously described by Smedsgaard [78]. To compensate for extraction losses a 

series of agar plugs were transferred to 2 ml vials, and spiked with 10 µl gliotoxin from a 

dilution row of pure gliotoxin (Fluka) in acetonitril and left for 1 h to allow the gliotoxin to 

diffuse into the agar. Samples were then extracted as above. 1 ml of methanol: 

dichloromethane:ethyl acetate (1:2:3 v/v/v) with 0.5 % formic acid was added and the vials 

were placed in an ultrasonication bath for 60 min. The extract was transferred to new vials 

and evaporated to dryness. The residues were dissolved in 500 µl methanol and 
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ultrasonicated for 10 min. Extracts were finally filtered through a PFTE 0.45 µm syringe 

filter into a new vial and used for analysis. The gliotoxin content was quantitated by 

UHPLC-DAD as described above using 1/x weighted linear regression of the peak areas 

compared to the spiked plugs. 

 

Pictures and Scanning Electron Microscopy 

All pictures were taken using a standard 18 megapixel digital camera. Scanning Electron 

Microscopy (SEM) was performed using a FEI Nova 600 NanoSEM (FEI, Hillsboro, 

Oregon) operated at 3 kV. To minimize charging problems a thin layer of gold (~5 Å) was 

sputter deposited on the sample with an Anatech Hummer sputter coater (Anatech, Union 

City, California).  
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Tables 

Table 1. Comparison of clinical and environmental A. fumigatus strains 

 

Table 2. Fungal strains used in this study. 

Strains Description Source or reference 

Aspergillus oryzae RIB40 Full-genome sequenced, from cereal CMB, IBT culture collection 

Aspergillus niger NRRL3 Full-genome sequenced, USA CMB, IBT culture collection 

Aspergillus flavus NRRL3357 Full-genome sequenced, from maize CMB, IBT culture collection 

Aspergillus nidulans FGSC A4 Full-genome sequenced, Glasgow strain CMB, IBT culture collection 

Aspergillus terreus NIH2624 Full-genome sequenced, from patient, USA CMB, IBT culture collection 

Aspergillus fumigatus AF293 Isolated from Aspergilloma, UK CMB, IBT culture collection 

Aspergillus fumigatus AF41 Isolated from pericardial tissue, USA CMB, IBT culture collection 

Aspergillus fumigatus TUBF-32 Isolated from grapes, Hungary CMB, IBT culture collection 

Aspergillus fumigatus AFIR974 Isolated from air, Ireland CMB, IBT culture collection 

Aspergillus fumigatus TUBF-440 Isolated from soil, Portugal CMB, IBT culture collection 

Aspergillus fumigatus A37941 Isolated from patient, Denmark CMB, IBT culture collection 

Aspergillus fumigatus CBS 144.89 Isolated from patient with aspergillosis, France CMB, IBT culture collection 

Aspergillus fumigatus ATCC 201531 Isolated from pleural fluid, USA CMB, IBT culture collection 

Aspergillus fumigatus AF250 Isolated from Salford Hope Hospital, UK CMB, IBT culture collection 

Aspergillus fumigatus NRRL1979 Isolated from soil/compost, USA CMB, IBT culture collection 
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AF293 Clinical - + + + + + + + + + + - 0.04 

AF41 Clinical Green - + - + + + + + + + + - 

A37941 Clinical Green - - - - + - + + + - - - 

CBS 144.89 Clinical Green - + + + + - + + + + + 0.18 

ATCC 201531 Clinical - + + + + + + + + + + + 0.19 

AF250 Clinical Yellow - + + + + + + + + + + 0.04 

NRRL1979 Environmental Green - + - + + + + + + + + - 

TUBF-32 Environmental - + + + + + - + + + + - 0.05 

AFIR974 Environmental - + + - + + + + + + + + - 

TUBF-440 Environmental - +/- + + + + + + - + + + 0.65 
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Figures 

   

 

Figure 1. Standard plating method and zones. (A) The standard plating method was used 

throughout this study. Aspergillus was streaked on the left side of the plate, while P. 

aeruginosa was streaked four times perpendicular to the fungal streak on the right side. (B) 

The plate was divided into four zones, two zones in the Aspergillus and two zones in 

Pseudomonas allowing comparison of the interactions and secondary metabolite production 

different places on the plate.     
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Figure 2. Phenazine production and suppression of Aspergillus growth by P. aeruginosa.  

(A) P. aeruginosa suppressed growth of all tested Aspergilli on WATM agar plates. Pictures 

were taken after five days of incubation at 37 °C. (B) Production of two phenazines 

(phenazine-1-carboxamid and phenazine-1-carboxylic acid) by P. aeruginosa was increased 

in the presence of A. oryzae and A. flavus, while phenazine-1-carboxylic acid was increased in 

the presence of A. niger. No increase was measured in response to A. fumigatus. Phenazines 

were measured in zone 3 and 4 by HPLC after five days of incubation and results from two 

independent biological replica experiments are shown. Control: P. aeruginosa only. 
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Figure 3. Interactions between A. fumigatus AF293 and different P. aeruginosa mutants. 

Eight P. aeruginosa mutants were tested against A. fumigatus AF293 using the standard 

plating method. Six mutants suppressed A. fumigatus, while the rpoN, mucA and rpoN/mucA 

mutants were unsuccessful. All pictures were taken in a LAF bench (after five days incubation 

at 37 °C) due to safety reasons, wherefore the colours of A. fumigatus AF293 varies due to 

insufficient photo setup.  
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Figure 4. Interactions between P. aeruginosa mucA, lasR and rpoN and Aspergilli. The 

three  P. aeruginosa  mutants, mucA, lasR and rpoN were tested against A. flavus, A. oryzae 
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and A. niger. (A) All P. aeruginosa mutants could suppress the three Aspergilli. The lasR 

mutant triggered the production of a green compound, likely pyocyanin, by P. aeruginosa in 

response to A. flavus and A. oryzae. All plates were incubated at 37 °C for five days. (B) P. 

aeruginosa can produce four phenazines, namely pyocyanin, 1-hydroxyphenazine, phenazine-

1-carboxylic acid and phenazine-1-carboxamide. (C) Comparison of the secondary metabolite 

profile of the P. aeruginosa rpoN mutant alone and together with A. oryzae in zone 3 revealed 

an increase in phenazines (1: phenazine-1-carboxamide, 2: 1-hydroxyphenazine and 3: 

phenazine-1-carboxylic acid) and several quinolones (4: 2-n-Heptyl-4-oxy-quinoline/2-n-

Heptyl-(1H)-quinolin-4-one, 5: 2-Heptyl-3-hydroxy-4(3H)-quinolinone) by P. aeruginosa in 

response to A. oryzae. No phenazines could be detected in response to A. fumigatus, while 

quinolones were detected in lower amounts. All experiments were done in duplicate. (D) 

Comparison of the secondary metabolite profile of the P. aeruginosa lasR mutant alone and 

together with A. flavus in zone 3 revealed an increase in all four phenazines (1: pyocyanin, 2: 

phenazine-1-carboxamide, 3: 1-hydroxyphenazine and 4: phenazine-1-carboxylic acid) by P. 

aeruginosa. Phenazines could similar be detected in response to A. fumigatus, but at lower 

levels. Quinolones (5: 2-n-Heptyl-4-oxy-quinoline/2-n-Heptyl-(1H)-quinolin-4-one and 6: 2-

Heptyl-3-hydroxy-4(3H)-quinolinone) were detected in all three cases. All experiments were 

done in duplicate. 
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Figure 5. Interactions between P. aeruginosa PAO1 and different A. fumigatus isolates. 

(A) All A. fumigatus isolates were inhibited by P. aeruginosa after five days incubation at 

37°C. (B) SEM analysis revealed a narrow close spacial interaction between A. fumigatus 

AF293 and P. aeruginosa PAO1 (a: P. aeruginosa (light area), b: A. fumigatus).  
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Supplementary figures  

 

Figure S1. Effect of 60 °C on the interaction between Aspergillus and P. aeruginosa. (A) 

A. fumigatus was suppressed by P. aeruginosa after five days at 37 °C. (B) After 1 h 

incubation at 60 °C, followed by incubation at 37 °C, A. fumigatus completely grew over P. 

aeruginosa. (C) Similarly Aspergillus flavus was suppressed by P. aeruginosa after five days 

at 37 °C. (D) After 1 h incubation at 60 °C, followed by incubation at 37 °C, A. flavus was 

able to grow over P. aeruginosa. 
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Figure S2. Comparison of secondary metabolite profiles. Differences in secondary 

metabolite profile between plates incubated at only 37 °C and plates incubated at 37 °C with 

one hour at 60 °C were examined by chemical analysis. No differences in secondary 

metabolite profiles were observed between the plates. Peak 1: phenazine-1-carboxamide. Peak 

2: fumigaclavine C. Peak 3: phenazine-1-carboxamide. Peak 4: trypacidin. Peak 5: 2-n-heptyl-

(1H)-quinolon-4-one/2-n-heptyl-4-oxy-quinolon. Peak 6: 2-heptyl-3-hydroxy-quinolone. ( ): 

Unidentified A. fumigatus secondary metabolite. ( ): Unidentified P. aeruginosa secondary 

metabolite.  
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Figure S3. Comparison of secondary metabolite production of PAO1, mucA, lasR and 

rpoN mutant. Base peak chromatogram of extracts from P. aeruginosa PAO1, mucA, lasR 

and the rpoN mutant. Peaks are; 1: pyocyanin, 2: phenazine-1-carboxamide, 3: phenazine-1-

carboxylic acid, 4: 2-n-Heptyl-4-oxy-quinoline/2-n-Heptyl-(1H)-quinolin-4-one, 5: 2-Heptyl-

3-hydroxy-4(3H)-quinolinone, 6: unidentified quinolones with same elemental composition. 

No major differences could be observed between PAO1 and the mucA mutant. The 

phenazines, phenazines-1-carboxamide and phenazine-1-carboxylic acid were reduced in the 

lasR mutant, while no phenazines or quinolones could be detected in the rpoN mutant. All 

mutants had grown on WATM media for five days and secondary metabolites were extracted 

using the standard method for chemical analysis of strains (see materials and methods). 
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Figure S4. Suppression of A. fumigatus by P. aeruginosa over time. The suppression of A. 

fumigatus by P. aeruginosa was followed over 13 days. Several P. aeruginosa mutants still 

suppressed growth of A. fumigatus AF293 after 13 days at 37 °C. However the rpoN mutant 

began to be overgrown by P. aeruginosa after only six days incubation.  
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Figure S5. Comparison of secondary metabolite production. Base peak chromatogram of 

extracts from P. aeruginosa PAO1, fliM, pilA and the pvdA mutant. No major differences 

could be observed between the extracts. Peaks are; 1: pyocyanin, 2: phenazine-1-

carboxamide, 3: phenazine-1-carboxylic acid, 4: 2-n-Heptyl-4-oxy-quinoline/2-n-Heptyl-

(1H)-quinolin-4-one, 5: 2-Heptyl-3-hydroxy-4(3H)-quinolinone, 6: unidentified quinolones 

with same elemental composition. All mutants had grown on WATM media for five days and 

secondary metabolites were extracted using the standard method for chemical analysis of 

strains (see materials and methods). 
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Figure S6. Interactions between Aspergillus species and Pseudomonas aeruginosa 

mutants. All P. aeruginosa mutants could suppress A. oryzae, A. flavus and A. niger. All P. 

aeruginosa mutants, except rpoN, produced a green compound (possibly pyocyanin) in the 

contact zone of A. oryzae and A. flavus. Especially the lasR mutant produced visually large 

amounts of this compound. P. aeruginosa was likewise slightly inhibited by A. niger, 

probably due to the production of citric acid. Plates had been incubated at 37 °C for five days. 
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