Radial transport of poloidal momentum in ASDEX Upgrade in L-mode and H-mode

Schrittwieser, R.; Mehlmann, F.; Naulin, Volker; Juul Rasmussen, Jens; Müller, H.W.; Ionita, C.; Nielsen, Anders Henry; Vianello, N.; Rohde, V.

Publication date: 2012

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Radial transport of poloidal momentum in ASDEX Upgrade in L-mode and H-mode

R. Schrittwieser¹, F. Mehlmann¹, V. Naulin², J.J. Rasmussen², H.W. Müller³,
C. Ionita¹, A.H. Nielsen², N. Vianello⁴, V. Rohde³, ASDEX Upgrade Team³

¹Inst. Ion Phys. & Appl. Physics, EURATOM-ÖAW Association, University Innsbruck, Austria
²Association EURATOM – DTU, Technical University of Denmark, Department of Physics,
DTU Risø Campus, Roskilde, Denmark
³Max-Planck-Institute for Plasma Physics, EURATOM Association, Garching, Germany
⁴Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova, Italy

Turbulent transport and related parameters were investigated in the SOL of ASDEX Upgrade (AUG) in L-mode and H-mode discharges. The probe head [1] carries six probe pins of 1 mm diameter and 2 mm length. One pin is radially protruding by 3 mm. With this array the poloidal and radial electric field components E_θ, r, respectively, and the ion density n could be determined simultaneously. From these data in particular the radial flux of poloidal momentum, $M_r = n v_r n_0 = n E_\theta E_r / B^2_\phi$, was derived ($B_\phi$ is the toroidal magnetic field). The density n and the radial and poloidal velocity components, v_r, θ, respectively, are defined as $X = X_0 + X_1$ (i.e. the stationary and the fluctuating components). Thereby the radial flux of poloidal momentum splits into various contributions [2,3] of which three are of interest to us: (i) Reynolds stress $R_\theta = n_0 v_r n_0$, (ii) convective momentum flux term $v_\theta n_0 = v_\theta n_0 n v_r$, and (iii) triple fluctuating term $n_0 v_r n_0$. Here we discuss the probability density functions (PDF) of these quantities, normalized to their standard deviations, for L-mode shot #23157 during its diverted phase and H-mode shot #23163. In case of H-mode discharges, M_r is calculated separately for ELM-intervals and inter-ELM intervals, i.e., in between type-I ELMs. Whereas in H-mode due to neutral beam injection (NBI) there is an external source for toroidal angular momentum, in the L-mode discharge there is only intrinsic rotation. In both cases we see radial flux of poloidal momentum but with opposite signs.

References