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Abstract

Nanotechnology and uid mechanics are two scienti�c areas where recent
progress has disclosed a variety of new posibilities. The advances in both
�elds stablished the grounds for interdisciplinary approaches and recent �nd-
ings promise novel applications that are leading to a technological revolution.
Novel nanofabrication techniques have opened up possibilities for the devel-
opment of small-scale integrated devices, such as lab-on-a-chip for biochem-
ical synthesis and analysis, the integration is achieved by miniaturization of
the functional elements e.g., of the channels transporting the uid and of
the sensors performing the analysis, and as the size of these devices reaches
the sub-micron range we enter the �eld of nanouidics. Nanouidics is de-
�ned as the study of ows in and around nanosized objects. Modeling of
transport in nanouidic systems di�ers from microuidic systems because
changes in transport caused by the walls become more dominant and the
uid consists of fewer molecules. Carbon nanotubes are tubular graphite
molecules which can be imagined to function as nanoscale pipes or conduits.
Another important material for nanouidics applications is silica. Nowadays,
silica nanochannels are produced in nanometer scale using di�erent nanofab-
rication techniques. Silica nanochannels are being implemented in several
nanotechnology applications such as nanosensor devices, nano separators,
nano�lters and a plethora of devices for nanobiological and biochemical ap-
plications. Experiments at the nanoscale are expensive and time consuming
moreover the time scale associated to several nanoscale phenomena requires a
very high time resolution of the devices performing nanoscale measurements.
Computational nanouidics is the enabling technology for fundamental stud-
ies, development, and design of such devices. Computational nanouidics
complements experimental studies by providing detailed spatial and tem-
poral information of the nanosystem. In this thesis, we conduct molecular
dynamics simulations to study basic nanoscale devices. We focus our studies
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on the understanding of transport mechanism to drive uids and solids at
the nanoscale. Speci�cally, we present the results of three di�erent research
projects. Throughout the �rst part of this thesis, we include a comprenhen-
sive introduction to computational nanouidics and to molecular simulations,
and describe the molecular dynamics methodology. In the second part of this
thesis, we present the results of three di�erent research projects. Fristly, we
present a computational study of thermophoresis as a suitable mechanism
to drive water droplets con�ned in di�erent types of carbon nanotubes. We
observe a motion of the water droplet in opposite direction to the imposed
thermal gradient also we measure higher velocities as higher thermal gradi-
ents are imposed. Secondly, we present an atomistic analysis of a molecular
linear motor fabricated of coaxial carbon nanotubes and powered by ther-
mal gradients. The MD simulation results indicate that the motion of the
capsule (inner carbon nanotube) can be controlled by thermophoretic forces
induced by thermal gradients. The simulations �nd large terminal veloci-
ties of 100 to 400 nm ns�1 for imposed thermal gradients in the range of 1
to 3 K nm�1. Moreover, the results indicate that the thermophoretic force
is velocity dependent and its magnitude decreases for increasing velocity.
Finally, we present an extensive computational study of nanoscale systems
including silica substrates and channels, water and air. This study includes
the calibration of a force �eld to describe the silica-water-air interactions.
Moreover, In this study we perform very long simulations of nanoscale sys-
tems containing silica, water and air. We investigate the solubility of air at
di�erent pressures in silica-water systems. From our simulations we infer a
layer with high air density close to silica surface. Furthermore, we conduct
simulations to analyze the earlier stage of the capillary �lling process of silica
nanochannels, we focus this study on the roll of air in this system. We �nd
that air at high pressures can a�ect the capillarity in silica channels below
10 nm height.
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Resum�e

Nanoteknologi og uid mekanik er to videnskabelige omr�ader, hvor de seneste
fremskridt har afsl�ret en r�kke nye teknologiske og videnskablige mulighed-
erne. Fremskridtene i begge felter giver mulighed for tv�rfaglige metoder og
de seneste resultater lover mulighed for nye anvendelser, der kan f�re til en
teknologisk revolution. Nye nanofabrikationsteknikker har �abnet muligheder
for udvikling af sm�a integrerede enheder, s�a som lab-on-a-chip for biokemisk
syntese og analyse. Integration opn�as ved miniaturisering af funktionelle
elementer f.eks. af kanalerne som tranporterer v�skerne og af sensorerne,
der udf�rer analysen. N�ar st�rrelsen af disse anordninger n�ar sub-micron
omr�ade, taler vi om nanouidics. Nanouidics de�neres som studiet af
str�mninger i og omkring nanoobjekter. Modellering af transport i nanou-
idic systemer adskiller sig fra mikrouid systemer, fordi �ndringer inden
for transport p�a grund af v�ggene bliver mere dominerende og v�dsken
best�ar af f�rre molekyler. Kulstof-nanor�r er r�rformede gra�t molekyler,
som kan t�nkes at fungere som nanoskala r�r eller ledninger. Et andet
vigtigt materiale til nanouidics anvendelser er silica. I dag fremstilles silica
nanokanaler i nanometer skalaen ved at anvende forskellige nanofabrikation
teknikker. Silica nanonanokanaler bliver benyttet i ere nanoteknologiske
anvendelse s�asom nanosensorer, nano separatorer, nano�lters og et antal an-
vendelser indenfor nanobiologi og biokemi. Eksperimenter p�a nanoskalaen
er dyre og tidskr�vende og i�vrigt kr�ver de transiente f�nomener, som
forbundet med ere nanoskala f�nomener en meget h�j tidslig opl�sning
af m�aleinstrumenterne. Numeriske beregninger indenfor nanouidics er en
lovende teknologi for grundl�ggende studier, udvikling, og design af s�adant
udstyr. Numeriske beregninger supplerer eksperimentelle unders�gelser og
giver en detaljeret rumlige og tidslig oplysninger om nanosystemet. Denne
afhandling omhandler molekyl�r dynamiske beregning af grundl�ggende
nanoskala systemer. Arbejdet fokuserer p�a unders�gelser af transportmekanis-
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mer for v�dsker og faste sto�er p�a nanoskala.
F�rste del af afhandling giver en introduktion til molekyl�r dynamiske

beregninger. Anden del pr�senterers resultater fra tre forskellige forskn-
ingsprojekter. F�rste projekt omhandler et numerisk studie af termoforese,
som en egnet mekanisme til at drive vanddr�aber gennem forskellige typer af
kulstof nanor�r. Resultaterne demonstrerer at vanddr�aber kan drives ved at
p�atrykke et termisk gradient langs nanor�rerts akse og at hastigheden vokser
med voksende termisk gradient. Det n�ste projekt omhandler en atomar
analyse af en molekyl�r line�r motor fremstillet af ko-aksielle kulstofnanor�r,
som drives ved en termisk gradient. Molekyl�r dynamiske beregninger viser,
at bev�gelse af kapslen (det indre kulstof nanor�r) kan kontrolleres af ther-
mophoretic kr�fter fremkaldt af termiske gradienter. Simuleringerne �nde
store terminale hastigheder p�a 100 til 400 nm/ns for p�alagt termisk gra-
dienter i intervallet af 1 til 3 K/nm. Desuden viser resultaterne, at den
termoforetiske kraft er hastighedsafh�ngige og dens st�rrelse reduceres ved
�get hastighed. I sidste del af afhandlingen pr�senteres en omfattende un-
ders�gelse af nanoskala systemer best�aende af vand og luft ved silica over-
ader, Denne unders�gelse omfatter kalibrering af de molekyl�r dynamiske
kraftfelter til beskrivelse af silica-vand-luft interaktioner. Desuden foretages
meget lang beregninger af nanoskala systemer, der indeholder silica, vand
og luft. Lufts opl�seligheden i vand unders�ges ved forskellige tryk i silica-
vandsystemer. Beregningerne indikerer eksistens af et lag med h�j luft kon-
centration t�t p�a silica overaden. Endelige foretages beregninger af den
tidlige fase af kapillar fyldning af silica nanokanaler. Fokus ved disse bereg-
ninger er lufts indydelse p�a fyldningsprocessen, og unders�gelsen viser at
luft ved h�jt tryk kan p�avirke kapillaritet i silica kanaler.
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Chapter 1

Introduction

Miniaturization, an ongoing process in many technological �elds, is leading
to systems on the nanoscale. As early as 1959, Richard Feynman recognized
the possibilities and challenges by controlling the motion of matter at the
nanoscale in his seminal talk \There is Plenty of Room at the Bottom" [70].
Nanotechnology can be de�ned as the techniques and methods of control-
ling matter on an atomic and molecular scale. Nanotechnology deals with
structures with at least one dimensions below 100 nm and a second dimen-
sion below 1 �m, and involves developing materials or devices within that
scale [46, 18, 142]. Nanodevices are devices with at least one essential func-
tional component that is a nanostructure. Nanotechnology utilizes the units
provided by nature, which can be assembled and also manipulated based on
atomic interactions [197]. Atoms and molecules are therefore the basic build-
ing blocks of nanotechnology. Nevertheless, there is a fundamental di�erence
from the classical de�nition of a building material used in a conventional tech-
nical environment, which also consists of atoms and molecules in bulk mate-
rials. The smallest unit in macroscale terms includes an enormous number of
similar atoms and molecules, in contrast to the small assembles of particles
addressed in nanotechnology. Therefore, the properties of nanostructures
are more closely related to the states of individual molecules, molecules on
surfaces or interfaces than to the properties of the bulk material. A solid
substrate exposed to the environment is almost invariably covered by a layer
of uid material thus in nanotechnology interfaces between solid, liquid and
gas are ubiquitous and of key importance on the behavior of nanodevices.
Nanouidics has been de�ned as a liquid system in which one has movement
and control over uids in or around nanostructures. Conventional descrip-
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tion of hydrodynamics of macroscale ows usually are based on the no-slip
boundary condition assumption however in microuidics (ows in channels
with widths of around 100 nm to hundred �m) the no-slip approach has to
be modi�ed. Therefore microows are typically in the slip ow regime and
Navier-Stokes equations with appropriate slip boundary conditions govern
these ows. Nevertheless, on the nanoscale, the liquids, gas and substrates
exhibit properties not observed in macro and micro uidics systems thus con-
tinuous approaches are often invalid. The di�erent behavior of nanouidics
systems is due to factors such as the range of molecular interactions, the
thermal uctuations are important and the length scale characterizing hy-
drodynamic slip becomes comparable with the system size. Technologically,
nanouidics has become interesting as the basis for further miniaturization
of microuidic devices down to the nanoscale however nanouidics is still
an area of intensive research, and many fundamental aspects are subject of
active debate [205, 182, 89, 122, 173]. Nevertheless, the possibility of ex-
tending the lab-on-a-chip concept to the nanoscale, the potential utilization
of carbon nanostructures as a uid conduits, drug storage and biochemical
devices, nano�lters and nanosensors are paradigmatic examples of the impor-
tance of nanouidics up to date and of its great potential [46, 92, 180, 222, 90].
Nanochannels and nanoscale tubular uid conduits are the most fundamental
structures in nano lab-on-a-chip devices. In order to design and manufacture
future nanoscale lab-on-a-chip devices a full understanding of the ow inside
nanochannels and nanouidic conduits must be addressed including practi-
cal mechanisms to drive and control ows at the nanoscale. Today, silicon
dioxide (silica) and graphite nanostructures have a key place among the most
promising materials in nanotechnology applications [197, 46, 92, 180, 222, 90].
Therefore silica nanochannels and carbon nanotubes must to play a ma-
jor role in future development of nanouidic devices. During the last 50
years, computer simulation has become a tool of scienti�c investigation that
complements the traditional methodology of theory and experiments in the
discovery of new scienti�c and technological knowledge. In fact, computer
simulations can be used as an exploratory tool if careful processes of valida-
tion are implemented. One of the principal contributions made by computer
simulation has been the study of condensed matter, speci�cally liquids and
phase changes [9]. This has been achieved by integrating the motion of a
number of representative particles in the material, this technique is known
as Molecular Dynamics (MD); usually, the motion of the particles is as-
sumed to be classical and governed by Newton’s laws although both nuclei
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and electrons of the atoms are subject to the laws of quantum mechanics
since nuclei are 2000 to 200000 times heavier than electrons then classical
mechanics will provide a much better description for the motion of the nuclei
than for the electronic motion. As a detailed description of the electrons
is not strictly necessary to describe a molecular system then it is possible
based on the Born-Oppenheimer approximation [106] to implement a model
which the nuclei positions are determinated by changes on the potential en-
ergy. Therefore the potential energy is described using force �elds which
include empiric aproximations of the electronic e�ects [131, 125, 22]. More-
over, quantum e�ects can be incorporated by including force �eld parameters
and partial charges obtained from quantum chemical calculations using �rst
principles computations (no classical MD) known as ab-initio molecular dy-
namics techniques which are too compute-intensive to be useful to simulate
large systems over interesting time periods. The early work on MD simula-
tions was con�ned to evaluating the properties of hard spheres or using very
simple potential functions however with the continuous increase of the com-
putational power, classical MD simulation techniques are becoming suitable
for the study of complex phenomena and capable to handle with simulations
including tens of thousands of atoms. Therefore MD simulations could be in
the near future a standard tool to address investigations of nanodevices. In
this thesis, classical MD simulations are performed to study systems at the
nanoscale. The research consists of three major studies. The �rst study is an
analysis of the transport of water droplets con�ned inside carbon nanotubes
driven by thermal gradients. The second study is a detailed investigation
of a carbon nanotube based thermophoretic linear motor. The third part
involves the study of the interface between silica, water and air in order to
study phenomena related to capillary ow of water in silica nanochannels.

1.1 Outline of the Thesis
The remaining part of the thesis is structured as follows:

Chapter 2 - Nanouidics: carbon nanotubes and silica nanochannels as a
uid conduits. This chapter describes some basic properties and applications
of the fascinating and challenging novel area of the uid mechanics at the
nanoscale known as nanouidics. This chapter is focus on the properties,
modeling and utilization of structures such as carbon nanotubes and silica
nanochannels in nanoscale uidic systems. Furthermore, di�erent types of
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driving mechanism suitable at the nanoscale to move liquids and solids are
described in this chapter.

Chapter 3 - Molecular Simulations. This chapter presents an extensive
description of the molecular dynamics simulation technique which has been
employed in the present work to conduct computational studies of nano-
uidic devices. Details about the di�erent MD approaches and their limita-
tions, force �elds types and calibration processes are discussed. Moreover,
In the present chapter some details are included concerning the MD package
\FASTTUBE" which has been used in these studies.

Chapter 4 - Thermophoretic Motion of Water Nanodroplets Con�ned
Inside Carbon Nanotubes. In this chapter MD simulations are performed in
order to investigate the thermophoretic transport of water droplets con�ned
inside carbon nanotubes. Thermophoresis is the motion of particles driven
by thermal gradients which is also known as Soret e�ect or thermodi�usion.
This investigation includes a systematic study of the motion of water droplets
for di�erent imposed thermal gradients and for di�erent wetting intensities.
Furthermore, the thermophoretic motion is analysed for carbon nanotubes
of di�erent chiralities.

Chapter 5 - Carbon Nanotubes Based Molecular Motors Driven by Ther-
mophoresis. A molecular linear motor fabricated of coaxial carbon nanotubes
and driven by thermophoretic forces is studied using MD simulations. More-
over a detailed anlysis of the friction and driving forces is conducted.

Chapter 6 - MD Study of the Interface Between Silica, Water and Air. In
this chapter interaction force �elds are parametrized and calibrated in order
to conduct molecular mynamics simulations of nanouidic systems involving
amorphous silica, liquid water and air at high pressures. The calibrated
MD force �eld is used to investigate the role of air on the wetting of the
hydrophilic silica-water interface including the e�ect of the presence of air
on the capillary �lling speed of water in nanochannels.

Chapter 7 - Summary and Future Work.
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Chapter 2

Nanouidics

A uid is a substance that deforms continuously when subjected to a shear
stress, irrespectively of the magnitude of the shear stress may be [26, 121]. Al-
though uids consist of molecules, they appear continuous in most macroscale
uid dynamics applications thus the continuum hypothesis which states that
the properties of a uid are the same if the uid were perfectly continuous
in structure, can be assumed valid for macroscopic ows. The vast majority
of problems in the dynamics of macroscale uids are concerned with solving
the Navier-Stokes equations for incompressible ow assuming the validity of
the no-slip boundary condition, which states that uids in contact with a
solid surface have the same velocity as the surface so the uid is not sliding
over the solid surface. This condition is called the no-slip boundary condi-
tion and represent the most usual way to analyze uids at the macroscale
although this condition is an assumption that cannot be derived from basic
physical principles and could, in theory, be violated. For uids with micro-
scale dimensions where the continuum hypothesis is still valid, the no-slip
condition is not suitable [124], therefore, usually a characteristic slip length
can be de�ned. At the nanoscale a contiuum-slip approach is not possible
since the continuum hypothesis breaks down when the length scale of the
system under consideration approaches molecular scale which is typical in
nanouidic applications. Since a uids are composed of molecules, one has
the option of calculating its static or dynamic properties by computing the
motion of their constituents [154, 23, 73, 9, 125]. For most purposes such
a procedure is very ine�cient, because it provides detailed information at
molecular length scales, which are far beyond the usual area of interest for
continuum approaches in uid mechanics. There are, however, situations
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where the molecular details of a uid ow (e.g., nanouidics) are interesting
if not crucial. For example, uids in nanoscopic geometries may exhibit de-
viations from the continuum equations, and one may wish to calculate such
e�ects from �rst principles. The usual way to address such issues is through
experiments or statistical mechanical calculations, but these methods have
their own limitations [161], and molecular simulations can provide alternative
insights and results. Moreover, the behavior of thin liquid �lms, in particular
�lms spreading on solid surfaces in presence of air, can involve these small
scales and, additionally, can involve details of the solid-liquid interaction
which are hidden in bulk uid mechanics approaches. These cases exemplify
problems in which a nanoscopic calculations can provide new insights as well
as hard-to-obtain quantitative information to complement other techniques.

2.1 Basic nanodevices

2.1.1 Carbon nanotubes as uid conduits
Carbon nanotubes are tubular carbon molecules which can be imagined to
function as nanometer size pipes. In this respect, they could mimic trans-
membrane pores and channels and could be used to manipulate the transport
across the membranes of cells, moreover they could be used to �lter, storage
and control ows in nanometer scale nanouidic devices [133, 159, 74, 112,
210, 136]. Although, its discovery remains a contentious issue. Carbon Nano-
tubes (Figure 2.1 and Figure 2.2) have been subjects of intensive research
since their \discovery" in 1991 by Iijima at NEC laboratories [101]. Carbon
nanotubes represent a form of sp2-bonded carbon, in addition to the well-
known graphite and the fullerene molecules as illustrated in Figure 2.1. Since
SWCNTs can be considered as a rolled up plane of graphite (Figure 2.3), also
called graphene [30, 97, 77], one has to start with the structure of graphene.
Figure 2.4a shows the hexagonal structure of a graphene sheet. A roll-up
vector can be de�ned in this sheet by simply taking two points of the lattice.
Rolling the sheet up and bringing those two points together creates a single-
wall carbon nanotube (SWCNT). The diameter of SWCNTs usually ranges
between 0.4 and 3 nm. The roll-up vector C can be expressed in terms of
multiples n and m of the two Bravais lattice vectors of the graphene sheet
a1 and a2 as shown in the following equation: C = na1 + ma2, where the
integers n and m de�ne the chirality of the nanotube. A 30� angular section
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Figure 2.1: Graphene nanostructures which can be implemented in
nanodevices, �gures from Smalley Group web page at Rice University
(http://cohesion.rice.edu/naturalsciences/smalley).
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Figure 2.2: Multi-wall carbon nanotube observed by Transmission Electron
Microscopy using a 300 kV microscope (TITAN ANALYTICAL) at the Cen-
ter of Electron Nanoscopy at DTU.
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(a) (b)

Figure 2.3: Graphene nanostructures. (a) Graphite molecular structure. (b)
Rolling up process of a graphene sheet.

is su�cient to describe all SWCNTs because of the hexagonal symmetry of
the honeycomb lattice and the chiral symmetry of (n; m) and (m; n) tubes
(Figure 2.4). This 30� section of the hexagonal lattice is spread between
two particular nanotube con�guration, which are symmetric with respect to
the tube axis: the zig-zag nanotubes with m = 0; and the armchair nano-
tubes with n = m. All other tubes with arbitrary values of n and m are
asymmetric and are, therefore, called chiral nanotubes. Figure 2.4a shows
an overview of the di�erent types of CNTs. Depending on their chirality,
nanotubes exhibit di�erent behaviors [56]. Generally, a (n; m) nanotube will
have a band gap unless jn�m j

3 yields an integer value. According to this
rule the armchair (n; n) nanotubes should always be metallic, but zig-zag
(n; 0) and chiral nanotubes can be either metallic or semiconducting [56].
In industrial condition, those three types are produced simultaneously and
can not be easily separated. It is di�cult to determine chirality of carbon
nanotubes produced specially for multi-wall carbon nanotubes. That is the
reason why only metallic and semiconducting carbon nanotubes are usually
distinguished. CNTs have extremely high mechanical strength, which, when
combined with their ability to provide a conduit for uid transport at molec-
ular length scales, makes them attractive candidates for implementation in
future micro- or nanouidic devices [133, 159]. Therefore, understanding
uid behavior in CNTs is important for the proper design and e�cient oper-
ation of such systems. Experimental studies of the water-carbon interface in
nanopipes of CNTs have been performed [79, 134, 159] using Transmission
Electron Microscopy (TEM). Good wettability of the inner carbon walls was
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(a) (b)

Figure 2.4: Chirality of Carbon nanotubes. (a) Orientation of the roll-up
axis for di�erent types of CNTs. (b) Orientation of carbon atoms on the
graphene sheet edge for di�erent types of CNTs.

shown [79, 134, 159] as illustrated in Figure 2.5. Thus, currently, a very ac-
tive topic is the researching of driving mechanism to move and control liquids
inside CNTs [17, 208, 52, 94, 53, 165]. In chapter 4 and 5, thermodi�usion
is studied using molecular dynamics simulations as a suitable mechanism to
move ows and solid capsules inside CNTs [215, 214].

2.1.2 Silica channels with subnanometer dimensions
Nowadays, advances in microfabrication and miniaturized analysis have re-
sulted in increasingly sophisticated uidic systems that are ful�lling the
promise of true micro labs-on-a-chip systems by integrating of di�erent pro-
cessing steps on a single device. Miniaturization, an permanent in advance
process, will �nally lead the lab-on-a-chip concept to structures on the nano-
scale [1]. Incorporation of biological and synthetic nanochannels in uidic
devices holds great promise for new analytical applications because there are
forces and phenomena at are absent or negligible in larger devices. Some of
the earliest work in nanouidics used protein pores in lipid bilayers to char-
acterize a range of molecules, including polymers, nuclei acids, metal ions,
and organic molecules. Protein pores provide excellent reproducibility with
respect to their dimensions and internal chemistry. However, lipid bilayers
on-chip are relatively fragile compared to the silica and polymer substrates
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Figure 2.5: TEM images of water con�ned inside carbon nanotubes [159].
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typical for microuidic applications. As a result, many research teams are
pursuing novel nanofabrication techniques to produce channels in hard and
soft materials with nanoscale size [135, 147]. We are surrounded by silicon ox-
ides from sand to the surface of silicon based electronic devices. Silica exists
in a very large number of di�erent forms. Each type of silica is character-
ized by a structure (cristalline or amourphous) and speci�c physical chemical
surface properties which leads to a noticeable set of applications including
several nanotechnology devices. Silica can be hydrophobic, as occurs when
the surface chemical groups are mainly siloxane, or hydrophilic, when the sur-
faces expose silanol groups. Hydrophobic silica can be rendered hydrophilic
by hydroxylating the siloxane groups into silanol groups. This reaction is
reversible thus hydrophilic silica can be transformed into hydrophobic silica
by dehydroxylation heating the surface above 300 K [108]. Owing to the
wide range of novel applications, amorphous silica has an exceptional place
among the most promising materials in nanotechnology. The utilization of
silica nanochannels in future nanouidic devices depends on the complete
understanding of the liquid and gas ow throughout this kind of conduits.
Many e�ort has been devoted to study the interaction between silica and
water [123, 57, 58, 195, 152, 60, 87, 69] and the ow throughout silica pores
and channels [145, 85, 140, 139, 80, 184, 222], however many fundamental
questions are, up to date, subject of intense and open debate. Silica Nano-
channels with heights below 100 nm are expected to be present in many novel
nanouidics devices. Recently, in a number of di�erent experimental investi-
gations, systematic deviations from classical predictions have been measured
for channels with subnanometer size [145, 147, 184, 182]. In this thesis we
attempt to study the capillary �lling of subnanometer channels of amorphous
silica from a computational simulation approach.

2.2 Driving mechanism for liquids and solids
at the nanoscale

Today, nanoscale carbon pipes [133, 208, 79, 74, 127] and silica nanochannels [84,
145, 182, 184] can be readily fabricated using di�erent techniques [147, 133,
84, 56] and they have useful applications related to the transport, delivery and
storage of uids and gases at the nanoscale. Thus, a complete understanding
and controlling of the mass transport through channels with widths of a few
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nanometers could provide a new set of tools and basic functional elements to
be implemented in future nanodevices. Liquids and solids in nanochannels
may be driven by electrophoresis, electro-osmosis, osmosis, gradients in the
surface tension or Marangoni e�ect, pressure gradients, and thermophoresis.
Electrophoresis [2, 71] is the motion of particles driven by electric forces pro-
duced by the presence of an electric �eld. Electrophoresis has been used
in several nanotechnology applications such as mass nanoconveyors [156],
chemical detectors [114], chemical separation devices [216], and transport of
electrically charged particles throughout carbon nanotubes [190] and nano-
channels [175]. Electro-osmosis [168, 36] is the motion of polar liquids induced
by an electric potential imposed across a porous, capillary tube, channel or
micropipe. Electro-osmosis is a prominent driving mechanism in micro and
nano ow conduits therefore some nanouidic applications have been de-
veloped [45, 136]. Osmosis is the movement of water molecules across a
selectively permeable membrane from an area of low solute concentration to
a zone high solute concentration. When a solute gradient is applied across
an impermeable porous membrane the osmotic ow rate will be equal to that
created by an equivalent pressure gradient, and that it will be independent
of the shape or the size of the solute [50]. Osmosis is important in biological
systems, as many biological membranes are semipermeable. Kalra et al. [112]
have investigated the water ow driven by a osmotic gradient between two
semipermeable carbon nanotubes membranes that separate compartments of
pure water and concentrated aqueous salt-solution. Marangoni e�ect or gra-
dients in the surface tension [169] have been used to transport liquid across
arrays of aligned carbon nanotubes [221]. Molecular dynamics simulations
have been performed to investigate the water ow through carbon nano-
tubes driven by pressure gradient [185, 186]. In chapters 4 and 5 of this
thesis we study the thermophoretic motion of liquids [215] and solids [214]
con�ned inside carbon nanotubes. Thermophoresis or thermal di�usion is
the motion of mass driven by thermophoretic forces induced by thermal gra-
dients [78, 149, 150, 62, 165]. Experimental studies have demonstrated that
thermophoresis is a suitable mechanism to move and control mass at the
nanoscale [17, 183]. Moreover, molecular dynamics studies have shown that
thermal di�usion can indeed become a prominent, accurate and fast mecha-
nism to drive mass throughout carbon nanotubes [160, 215, 214, 165, 166].
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2.3 Computational modeling of nanouidic sys-
tems

Experimental studies of nanouidic systems are di�cult to implement, usu-
ally include expensive instrumentation and very often detailed measurement
are not a�ordable due to the length and time scales involved in nanouidic
phenomena. Computational simulations have been performed to provide
fundamental understandings of nanoscale phenomena showing its potential
usability to the wide range of nanouidic applications [116, 3, 39, 49, 51,
112]. Classical Navier-Stokes solutions modeling macroscopic ows have
been widely used in numerous uid engineering �elds. However, a fun-
damental di�culty with continuum models is that they can not represent
the atomistic ordering of the uid structure near to a solid surface there-
fore we cannot expect the Navier-Stokes equations to accurately describe
ow through very narrow channels or pores. Thus for nanocon�ned uids,
molecular simulations have shown that the Navier-Stokes theory shows a
signi�cant deviation from atomistic approaches and its hypothesis are not
satis�ed [141, 189, 188, 191, 211, 184]. During the past decade molecular
dynamics simulations have emerged as a powerful tool for probing the mi-
croscopic behaviour of liquids at interfaces [117]. With the advance of super-
computing resource, molecular dynamics simulations have became one of the
most promising methods to provide a clear and fundamental understanding
of uidic devices at the molecular level. We have seen that molecular sim-
ulations, which describe tiny pieces of matter over very short time intervals
provide a description of uid ows over a range of length scales from sub-
continuum up to the point of quantitative agreement with the Navier-Stokes
equations [117, 199]. The surprising aspect of this statement is that extremely
small regions of uid show bulk behavior. The key point of the methodology
is that it simultaneously provides information missing from the continuum
approaches. Molecular dynamics simulations are analogous to a very pre-
cise virtual microscopic laboratory where complete resolution is available. In
this thesis, molecular dynamics simulations are performed in order to study
nanouidics systems. A detailed description of the molecular dynamics tech-
nique is presented in chapter 3. The set up of the simulations, details of the
potentials and parameters implemented are presented in the corresponding
chapters (chapter 4, chapter 5 and chapter 6). In general, we attempt to
implement models and techniques to reduce the computational cost due to
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phenomena such as the spreading of water droplets on hydrophilic surfaces,
the annealing of silica slabs, the dissolution of air in water and the water
capillary �lling of silica nanochannels in presence of air involve time scale
which are close the current limit of the available computational resources.
Nevertheless, we have to implement models that describing with su�cient
detail the complexity of the phenomena involved in order to reproduce the
main properties that we attempt to measure. In this thesis, we implement
and develop computational models and conduct large scale molecular dy-
namics simulations of basic nanosystems attempting to contribute to the
understanding of the capillary �lling process of silica nanochannels and to
the exploitation of thermophoresis to drive and control solid and liquids at
the molecular length scale. We perform classical molecular dynamics simula-
tion using the MD package FASTTUBE, which is described in the chapter 3
and a more detailed description of the development of the code can be found
in Walther et al. [198] and Werder et al. [206, 207].
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Chapter 3

Molecular Simulations

In the last four decades computational molecular simulations [6, 7, 5, 9, 73,
23] have made immense progress and nowadays are becoming an essential
tool in many areas of science and technology. It is due to the continuous
increasing in the power of digital computers and, likely to a larger extent,
to the development of new methods and models for simulation of complex
uids and materials. Computer simulations act as a bridge between molecu-
lar length and time scales and the macroscopic world, computer simulations
require a representation of the interactions between molecules, and provide
predictions of bulk properties. The predictions are \exact" in the sense that
they can be made as accurate as we like, just subject to the limitations im-
posed by our computational capabilities. Simultaneously, information about
the hidden detail behind bulk measurements can be obtained. Moreover sim-
ulations act as a link between theory and experiments. Indeed, a theory can
be examined by performing a simulation using a tested model. The model
can be previously validated by comparing with experimental results. Fur-
thermore, simulations can achieve details of the properties of a system under
conditions that are di�cult or impossible to reproduce in the laboratory e.g.,
working at extremes of temperature or pressure. In general, a molecular
simulation consists of a computational representation of a system in which
realistic molecular positions are used to extract structural, thermodynamic
and dynamic information. The term \position" denotes a set of Cartesian
coordinates for all the atoms or molecules that constitute a system. There
are two main families of molecular simulation techniques [73, 9], which are
molecular dynamics [6, 7, 5] and Monte Carlo [4, 73, 9]. Additionally, there
exist a group of hybrid techniques which combine features from both [40, 23].
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In this thesis, only molecular dynamics simulations have been performed thus
in the present chapter, we shall concentrate only on this kind of simulations.
For simulations of uids at the nanoscale the obvious advantage of molec-
ular dynamics over Monte Carlo simulations is that it gives a route to dy-
namical properties of the system, e.g., transport coe�cients, time-dependent
responses to external properties variations, rheological properties and spec-
tra [73, 170]. In molecular dynamics simulations the positions are obtained
by numerically solving of di�erential equations of motion and, hence, the
positions are connected in time and provide information of the dynamics of
individual molecules as in a motion picture [9]. MD simulations compute the
motions of individual molecules. They describe how positions, velocities and
orientations change in time. The fundamental idea is that the behaviour of
a system can be obtained if we have a set of initial positions and forces of
interactions between the particles of the system. The corresponding motion
equations can only be solved numerically due to the classical N -body problem
lacks a general analytical solution thus molecular dynamics is a methodology
whose appearence is directly linked to the origins of the digital computer
age. However, the theoretical basis for molecular dynamics rests on many of
the results produced by the great names of mechanics such as Euler, Hamil-
ton, Lagrange and Newton. In a molecular dynamics simulation, one often
wants to measure the macroscopic properties of a system through micro-
scopic simulations thus the connection between microscopic simulations and
macroscopic properties is made via statistical mechanics which provides the
needed mathematical expressions that relate macroscopic properties to the
distribution and motion of the atoms and molecules of the N -body system.

3.1 The molecular dynamics method
Molecular dynamics consists basically of the simultaneous motion of a num-
ber of atomic nuclei and electrons forming a molecular entity. Strictly speak-
ing, a complete description of such a system requires solving the full time-
dependent Schrodinger equation including both electronic and nuclear de-
grees of freedom. This, however, is a formidable computational task which
is in fact unfeasible, at present, for systems consisting of more than three
atoms and more than one electronic state [23]. Therefore, the concept of the
molecular dynamics method rests on a very important simpli�cation in quan-
tum mechanics, the Born-Oppenheimer approximation [23, 125, 106] which
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is a simpli�cation of the behaviour of a system of nuclei and electrons. The
nuclei mass is much larger than the mass of the electrons and its velocity
is correspondingly small. Thus, the nucleus interacts with the electrons as
if they were a charge cloud, while the electrons feel as if the nuclei were
static. Thus, the electrons are moved \instantly" to any position of the
nuclei. The molecular dynamics approach rests on the Born-Oppenheimer
approximation [23]. There exist di�erent types of molecular dynamics sim-
ulations which could be divided in two main families �rst-principles or ab
initio molecular dynamics [37, 106] and classical molecular dynamics. In ab
initio molecular dynamics method the electronic behavior can be obtained
from �rst principles by using a quantum mechanical methodology [37], such
as Density Functional Theory (DTF) [23, 81]. Although �rst-principles cal-
culations provide important information that is not available from classical
molecular dynamics methods [81], such as density of electronic states and
chemical reactions, due to the cost of treating the electronic degrees of free-
dom, the computational cost of this simulations is much higher than classical
molecular dynamics [23, 125]. Consequently, ab initio molecular dynamics
simulations are limited to smaller systems and shorter periods of time [23].
The basis of this work is the technique of classic molecular dynamics com-
puter simulation. The classic molecular dynamics technique [6, 7, 9, 73]
consists of the numerical solution of the classical equations of motion, which
for a simple atomic system with N elements may be written,

�!
fi = mi

�! ai (3.1)

�!
fi = �

@
@�! ri

�(ri ; rj ) (3.2)

where
�!
fi denotes the force acting on the i-th atom due to the interactions

with the other atoms, mi is the mass of the atom, �! ai is the acceleration
produced in the atom by the force

�!
fi and � is the potential energy which

describes the interaction between the atoms. Therefore, we need to be able
to compute the forces

�!
fi , acting between the atoms which can be derived

from a potential energy function �(ri ), using the derived force we can obtain
the accelerations and �nally, integrating the accelerations, we are able to
calculate the new velocities and positions of the atoms. In our simulations
we use the molecular dynamics package FASTTUBE which discretize the
equations of motion using the leap-frog time integration scheme [93].
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3.1.1 Potential functions
The calculation of the force acting on every particle is the most time consum-
ing part of a molecular dynamics simulation [73, 161]. These forces should
be derivated from a potential energy function.

�(rN ) = �bonded + �non�bonded (3.3)

The part of this potential function �non�bonded representing non-bonding in-
teractions between atoms is usually split into one-body, two-body and three-
body terms:

�non�bonded =
NX

i

�(ri ) +
NX

i

NX

j> 1

�(ri ; rj ) + ::: (3.4)

It should be noted that ri is the separation between adjacent pairs of atoms.
The �(r) term represents an externally applied potential or the walls of a
container, it is usually dropped by imposing periodic boundary conditions in
the simulation of a system [9, 23]. Therefore, it is usual to focus on the pair
potential �(ri ; rj ) = �(rij ) and neglect (as the nature of system allows this
kind of simpli�cation) three body (and higher order) interactions [9, 125].
The interactions, at the simplest level, occur between pair of atoms and
are responsible for providing the two principal features of an inter-atomic
force. The �rst is a resistance to compression, hence the interaction repels
at close distance, and the second is to bind the atoms together [125, 131].
Potential functions exhibiting these characteristics can adopt a variety of
forms and, when chosen carefully, actually provide useful models for real
substances [9, 125]. There are di�erent ways to obtain these potential func-
tions or force �elds. These quantities can be derived from calculations based
on �rst principles (ab initio calculations or density functional theory) by cal-
ibrating the potential parameters to the values obtained from solving the
electronic structure therefore obtaining new parameters for the classical po-
tentials [87, 81]. Another possibility is to �t the potential parameters to val-
ues obtained from experimental measurements [206, 49]. In fact, in chapter 6,
we follow this methodology to parametrize a potential model for silica-water-
air as discussed later. In this section some types of potential energy function
are described. A MD simulation requires appropriate functions describing
the potential energy between the atoms and molecules present in the system.
The intermolecular interactions can be separated in two types, bonding and
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non bonding. Non bonding interactions include two types of contributions,
the long range (Coulomb interactions) and the short range forces (Van der
Waals interactions).

Van der Waals interactions

Van der Waals forces can be interpreted as the part of the non bonding
interactions which are not related to the electrostatic energy due to atomic
electric charges. Van der Waals forces consist of electrostatic interactions
between permanent charge distributions and induced charge distributions,
and the ever present forces due to the oscillations of the orbital electrons and
the interaction with the induced dipoles in the neighboring molecules.

Lennard-Jones interaction potential The most simple to implement
and one of the best known potential functions for non-bonding interactions
which was originally proposed for the study of the properties of liquid ar-
gon, is the Lennard-Jones (LJ) potential [110, 9]. A pair of neutral atoms or
molecules are subject to two di�erent forces on the border of a large separa-
tion and small separation, an attractive force acts over long distances (Van
Der Waals force or dispersion force) and a repulsive force acting small dis-
tances (the Pauli repulsion or the Pauli exclusion principle) as illustrated in
Figure 3.1. Therefore, for a pair of atoms a and b located at ri and rj , the
potential energy is:

Uab(rij ) = 4"ab

" �
�ab

rij

� 12

�
�

�ab

rij

� 6
#

; (3.5)

where rij is the distance between the center of the interacting atoms, "ab

governs the strength of the interaction and �ab de�nes a length scale related
to the equilibrium separation of a pair of atoms; the interaction repels at
short range, then attracts. Due to the relatively fast decay of the

�
1

r 6
ij

�
term

it is custom to truncate the Lennard-Jones potential at some �nite cuto�
distance, which usually is �xed at rc = 2:5 �ab. There are not theoretical
arguments for choosing the exponent in the repulsive term to be 12, this is a
computational convenience due to it is not possible to derive theoretically a
functional form of the repulsive interaction. Often the Lennard-Jones poten-
tial gives a reasonable approximation of a realistic intermolecular potential.
However, from exact quantum ab initio calculations has been inferred that
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Figure 3.1: Interaction energy of molecular argon. Computations using
Lennard-Jones potential and experimental resutults. The graphics is from
R. A. Aziz, J. Chem. Phys., vol. 99, 4518 (1993)
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an exponential type repulsive potential is often more appropriate. There is
therefore some justi�cation for choosing the repulsive term as an exponential
function, also known as a Buckingham or Hill type potential.

Coulomb potential model

During the decade of the 1780s, Charles Coulomb carried out a set of remark-
able experiments [47]. Using these experimental results he showed that the
force between electrically charged bodies separated a distance large compared
to their dimensions varies directly as the magnitude of each charge, varies
inversely as the square of the distance between the charges, is directed along
the line between the center of mass of the charged bodies, and is attractive
if the bodies are charged with opposite charges and repulsive if the bodies
are charged with the same type of charge. All partial charges present in a
molecular system interact through a Coulomb potential UC

UC(rij ) =
qaqb

4�"0rij
; (3.6)

where qa and qb represent the partial charges on atoms of type a and b re-
spectively, "0 the vacuum permittivity, rij the inter-atomic distance. Since
Coulomb interactions decay slowly in comparison to van der Waals interac-
tions, Coulomb force computation is the most time consuming part of the
force computing process in molecular dynamics [161]. A variety of methods
have been developed to handle with the problem of the long range interac-
tions in molecular dynamics. The most simple method is the implmentation
of a cut o� distance which means that the forces are computing until a �xed
distance afterward the interaction is neglected. The cut o� method is very
popular in MD simulations however is not suitable in many systems and
phenomena where long range electrostatic forces are important such us ionic
liquids, electroosmotic ow and electrophoresis [10, 111, 115]. Methodologies
such us Ewald summation, cell multipole method and particle mesh approach
have been studied in considerable detail by Frenkel and Smit [73] and Allen
and Tildesley [9]

Born-Huggins-Mayer interaction potential The Buckingham poten-
tial describes the repulsion force that originates from the Pauli exclusion
principle by a more realistic exponential function of distance, in contrast to
the inverse twelfth power used by the Lennard-Jones potential [106, 125].
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Born-Huggins-Mayer potential function is a variation of the Buckingham po-
tential which includes a Coulomb term added to a Buckingham term, this
type of function has been implemented successfully to perform molecular
dynamics simulations of silica [192, 82]

�ab(rij ) =
qaqb

4�"0r2
ij

+ �ab exp
�

� rij

�ab

�
�

Cab

r6
ij

; (3.7)

where qa and qb represent the partial charges on atoms of type a and b respec-
tively, "0 the vacuum permittivity, rij the inter-atomic distance and, �ab, �ab

and Cab represent the Buckingham force �eld parameters. The Buckingham
potential has a problem for short interatomic distances where it turns over.
As rij goes toward zero, the exponential term becomes a constant while the
negative term goes to in�nity. Minimizing the energy of a system that has a
very short distance between two atoms will thus result in an artifact process
(nuclear fusion). Therefore, precautions have to be taken for avoiding this
situation when using Buckingham potential functions.

Bonding interaction potential

For molecules it must consider the intramolecular bonding interactions. The
simplest molecular model includes terms of the following kind:

�intramolecular =
1
2

X

bonds

kr
ij (rij � req)2 +

1
2

X

angles

k�
ijk (�ijk � �eq)2 +

1
2

X

torsion

X

m

k�;m
ijkl (1 + cos(m�ijkl � m )) (3.8)

The geometry is illustrated in Figure 3.2. The bonds involve the separation
rij = kri � rj k between adjacent pairs of atoms in a molecular framework.
In the molecular dynamics studies described in chapters 4 and 5 the carbon
nanotube lattice is modeled using a Morse bond, harmonic cosine of the
bending angle [125], and a two fold torsion potential developed by Walther
et al. [198], details of the potential function and parameters can be found in
chapter 4 of this thesis and Walther et al. [198] and Zambrano et al. [215].
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Figure 3.2: Geometry of a simple molecule [9].

3.1.2 Periodic boundary conditions
Imposing periodic boundary conditions the simulated system is exactly repli-
cated in three dimensions providing a periodic lattice [154]. In general, we are
concerned with molecular systems with a size much larger than the system we
can a�ord to simulate. The implementation of periodic boundary conditions
reduces the computational cost of a simulation because computations involv-
ing intermolecular separations greater than the length of the computational
box are not included [9]. Moreover small sample size means that, unless sur-
face e�ects are the particular interest, periodic boundary conditions need to
be used. Consider 1000 atoms arranged in a 10 � 10 � 10 cube. Numerous
atoms are on the outer cube faces thus these atoms will have a signi�cant
e�ect on the measured properties. Even for a larger system i.e., including
106 atoms, the surface atoms amount to 6% is still not trivial. Surrounding
the cube with replicas of itself takes care of this problem [154]. Whether the
range of the potentials is not too long, it can be adopted the minimum image
convention which consider that each atom interacts with the nearest atom or
image in the periodic system. Nevertheless, attention can be must be paid

25



to the case where the potential range is not short and when it is important
to consider properties of the interfaces or free surfaces. Periodic boundary
conditions are imposed to the systems simulated in our molecular dynamics
studies in chapters 4, 5 and 6. The implementation of periodic boundary
conditions prevent the unwanted inuence of an arti�cial boundary like the
presence of vacuum or a solid wall however attention should be paid to this
situation due to periodic boundary conditions also can add some artifacts
related to the periodicity itself [9]. Only if one wish to analyze a crystal,
periodic boundary conditions are natural because they suppress all motions
in the rest of the cells that are di�erent from the motions in the original
computational box. Indeed, periodic boundary conditions replicate all of
physical conditions imposed in the original cell thus if one wish to simulate a
system which is under the inuence of a no periodic physical property then
special care should be taken e.g., as a localized thermal gradient is imposed
to a periodic system (Zambrano et al. [215]) the same gradient will be repli-
cated in all of replicated cells thus potentially introducing an arti�cial high
temperatures gradient at each cell boundary.

3.1.3 Microcanonical and Canonical ensembles
An ensemble in statistical mechanics is a theoretical tool which is used for
analyzing the evolution of a thermodynamic system. The ensemble consists
of a collection of copies of the system of interest with a set of �xed and
known thermodynamic variables. For example, the microcanonical ensemble
is a thermodynamically isolated system, where the �xed variables are the
number of particles in the system (N), the volume of the system (V), and the
energy of the system (E). Therefore, the microcanonical ensemble consists of
a set of M-systems each characterized by �xed N, V, and E. The subsystem
within the ensemble may be in a di�erent microscopic state (microsystem).
Nevertheless, each microsystem shares the same �xed thermodynamic prop-
erties, for the microcanonical one N, V, and E. A di�erent type of statistic
ensemble is needed in order to analyze thermodynamically non-isolated sys-
tems. The canonical ensemble (NVT) is an idealization of a system which
is allowed to interchange energy with a thermal source at constant tempera-
ture while keeping �xed the number of particles (N), the volume (V) and the
temperature of the system (T) therefore the system in a canonical ensemble
is in thermal equilibrium state with a heat source. In MD simulations, tra-
ditionally, the Energy is conserved when Newton’s equations of motion are
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integrated. If the volume (V) and the number of particles N are constant in
the simulation, then the simulation represents the microcanonical ensemble
(NVE). MD simulations can be performed sampling di�erent ensembles than
the NVE such as the canonical ensemble where a thermostat or heat bath
is coupled to the system in order to obtain a constant temperature (NVT).
The temperature in MD simulations is computing using the principles of sta-
tistical mechanics. For a system including N atoms and subject to molecular
constrains, the temperature can be obtained from the average of the kinetic
energy following the equation:

T =
2Ek

(3N � Nc)kB
(3.9)

where Ek is the time average of the kinetic energy, N is the number of atoms
in the system, Nc is the total number of the internal molecular constrains and
kB is the Boltzmann constant. The most widely used thermostats include
the Andersen [11] and the Nose-Hoover [96] thermostats. An alternative way
to keep the temperature �xed is to couple the system to an external heat
bath [25] which is maintained at the target temperature. Heat is supplied or
removed as appropriate by the thermostat, which acts as a source of thermal
energy. Velocities of particles in the system are modi�ed at each time step,
such that the rate of temperature variation is proportional to the di�erence
in temperature between the thermal energy source and the system.

dT (t)
dt

=
[Tsource � T (t)]

�
; (3.10)

where T(t) is the temperature at time t, Tsource is the temperature at the
heat bath and � is a coupling parameter whose value determines the strength
of the coupling between the system and the thermal source. The resulting
scaling of the temperature at each time step elapsed is:

�T = (
�t
�

)[Tsource � T (t)]; (3.11)

where �t is the integrating time step. this method gives an exponential decay
of the temperature of the system towards the target temperature. Therefore,
the scaling factor for the temperatures is:

�2 = 1 +
�t
�

[(
Tsource

T (t)
) � 1]: (3.12)
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If � is large, then the coupling will be weak. A great advantage of this
approach is the possibility to equilibrate molecular systems by conducting a
systematic annealing process starting from random con�gurations. It should
be noticed that the Berendsen heat bath does not reproduce rigorously the
canonical ensemble (NVT).

3.1.4 Applications and achievements
As the power of computer has risen, MD simulations have been performed
to study uidic bio and nanosystems with increasing complexity and size [9,
112, 21, 49] as illustrated in Figure 3.3, Figure 3.4, and Figure 3.5. One
of the important bene�ts of the simulations is that we are able to measure,
simultaneously, both macroscopic and microscopic characteristics of the u-
idic processes. Thus, we can measure, on the one hand, the surface tension,
the viscosity, the thermal di�usivity and the contact angle and, on the other
hand, the relevant molecular quantities such as the molecular displacement
frequencies and binding energies. MD simulations provide opportunities to
vary the properties of the interacting media in ways that are not readily
possible in experiments. By extracting the details of the molecular processes
occurring in the simulations, we also show that the physical interpretation
of the parameters is consistent with the model. We believe that this is a
key step in the validation of any simulation [9]. Improving models and in-
creasing computer power may one day mean that molecular simulations of
wetting will take precedence over experiment. However, in developing our
models it is important that we take all necessary steps to ensure that they
reect the physical world. Many achievements have been accomplished by
using molecular dynamics simulations. Molecular dynamics simulations have
been performed to analyze biological systems including thousands of atoms,
to study nanouidic systems, to infer macroscale properties and to investi-
gate molecular motors. As the capabilities and availability of supercomputers
increase very fast, and the techniques, methods and algorithms are improved
with increasing velocity, the future of molecular dynamics simulations only
is limited for our imagination and abilities to extract useful information from
the usually complex results provided by simulating the physical world which
is complex itself.

In this research, as described in chapter 6 of this thesis, we perform molec-
ular dynamics simulations during more than 1 ns of silica-water-air systems
consisting of more than 800000 atoms using a time step of 2 fs furthermore

28



Figure 3.3: Snapshot from a MD simulation of an aquaporin [21].
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Figure 3.4: Snapshot from a MD simulation of a carbon nanotubes immersed
in Walther [201].
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Figure 3.5: Snapshot from a MD simulation of the contact angle of a water
droplet inside a single wall (32; 0) CNT [206].

we perform molecular dynamics simulations during more than 40 ns of some
shorter silica-water-air systems consisting of between 15000 and 25000 atoms
using the same time step. By performing this set of simulations we attempt
to calibrate a reliable force �eld for nanouidics devices. Subsequently, we
use the calibrated force �eld to study the inuence of the air on the water
capillary ow in silica nanochannels. In addition with this set simulations we
try to show that nowadays molecular dynamics simulations can be used as
a standard tool to study nanouidic phenomena in systems including thou-
sands of atoms.
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Chapter 4

Thermophoretic Motion of
Water Nanodroplets Con�ned
Inside Carbon Nanotubes

Parts of this chapter have been published in: Harvey A. Zambrano, Jens
H. Walther, Petros Koumoutsakos, and Ivo F. Sbalzarini. Thermophoretic
motion of water nanodroplets con�ned inside carbon nanotubes. Nano Lett.,
9(1):66, 2009.

Abstract
We study the thermophoretic motion of water nanodroplets con�ned inside
carbon nanotubes using molecular dynamics simulations. We �nd that the
nanodroplets move in the direction opposite the imposed thermal gradient
with a terminal velocity that is linearly proportional to the gradient. The
translational motion is associated with a solid body rotation of the water
nanodroplet coinciding with the helical symmetry of the carbon nanotube.
The thermal di�usion displays a weak dependence on the wetting of the
water-carbon nanotube interface. We introduce the use of the moment scaling
spectrum (MSS) in order to determine the characteristics of the motion of the
nanoparticles inside the carbon nanotube. The MSS indicates that a�nity
of the nanodroplet with the walls of the carbon nanotubes is important for
the isothermal di�usion and hence for the Soret coe�cient of the system.
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4.1 Introduction
Carbon nanotubes o�er unique possibilities as uid conduits with applica-
tions ranging from molecule separation devices in biocatalysis [112, 137] to
encapsulation media for drug storage and delivery [112, 76]. Liquids and
solids in nanochannels may be driven by electrophoresis, osmosis, gradients
in the surface tension also called the Gibbs-Marangoni e�ect [169], pressure
gradients, and thermophoresis. Hence, electrophoresis has been used for driv-
ing electrically charged particles in nanosystems [79, 190] and gradients in
the surface tension have been exploited [221] to drive ow through carbon
nanotubes (CNTs) immersed into a lipid membrane [53]. Pressure gradients
imposed in nanopipes have been used to generate controlled ows for nano-
scale applications [94] and to enhance electrophoretic motion across carbon
nanotube membranes. The use of thermal gradients to induce mass trans-
port is known as thermophoresis, the Soret e�ect, or thermodi�usion [62, 64].
The �rst observation of thermodi�usion was reported by Ludwig in 1856 [63],
who found di�erences in samples taken from di�erent parts of a solution in
which the temperature was not uniform. A systematic investigation of the
phenomena was subsequently conducted by Soret [42] in 1879-1881 and by
Ibbs [100, 12] in 1921-1939 for thermodi�usion in gases. Ibbs found that
the coe�cient of thermal di�usion is more sensitive than any of the other
transport coe�cients to the nature of the intermolecular forces [100]. Thus,
a complete understanding of the thermal di�usion could provide a power-
ful means of investigation of forces between molecules. Although the theo-
retical explanation of thermodi�usion for molecules in liquids is still under
debate [33, 157], the investigation of its practical usability is motivated by po-
tential applications in nanotechnology. Hence, thermodi�usion was recently
used as the driving mechanism in arti�cially fabricated nanomotors [17] as
illustrated in Figure 4.1, and thermodi�usion is expected to allow microscale
manipulation and control of ow in nanouidic devices. In a recent theoret-
ical study, thermophoresis was shown to induce motion of solid gold nano-
particles con�ned inside carbon nanotubes [166]. In the present investigation,
we study thermophoretic motion of liquid water nanodroplets con�ned inside
carbon nanotubes.
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Figure 4.1: Scanning electron microscope (SEM) images of one nanotube
based motor driven by thermal gradients. The CNT works as a nanoconveyor
therefore as a thermal gradient is imposed to the system by electric heating,
the gold mass is observed to move from its initial position at the center of
the system until one of the ends of the system [17].
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4.2 Numerical methods
We perform molecular dynamics (MD) simulations using the MD package
FASTTUBE [198]. This package has been used extensively to study water
con�ned inside [206, 223, 118, 113, 8] as illustrated in Figure 3.5 and sur-
rounding [200, 203] carbon nanotubes as illustrated in Figure 3.4. The po-
tentials governing the water-carbon interaction have been calibrated against
experiments by considering the contact angle of a water droplet on a graphite
surface [207, 105, 202]. In the present MD simulations we use the rigid SPC/E
water model [24] and describe the valence forces within the carbon nanotubes
using Morse, harmonic angle, and torsion potentials [198], thus

U (rij ; �ijk ; �ijkl ) = Kr (�ij � 1)2

+
1
2

K� (cos �ijk � cos �c)2

+
1
2

K� (1 � cos 2�ijkl ) (4.1)

and
�ij = exp (�  [rij � rc]) (4.2)

where rij denotes the bond length between two carbon atoms and � and �
are the bending and torsional angles. The Morse stretch and angle bending
parameters were �rst obtained by Guo et al. [83], these parameters were
originally derived to describe the geometry and phonon structure of graphite
and fullerene crystals. The torsion term is needed to provide a measure of the
strain due to curvature of the corresponding graphene sheet. This curvature
strain avoids the collapse of the carbon nanotube and imparts sti�ness with
respect to bending deformations. We include a nonbonded carbon-carbon
Lennard-Jones potential to describe the van der Waals interaction between
the carbon atoms in double-walled nanotubes

Uab(rij ) = 4"ab

" �
�ab

rij

� 12

�
�

�ab

rij

� 6
#

(4.3)

where �ab and �ab are the parameters of the potential, here �CC = 0:4396 kJ mol�1

and �CC = 0:3851 nm. Standard 1-2 and 1-3 nearest neighbor exclusion rules
are applied. This additional Lennard-Jones term is excluded for the simu-
lations of single-walled carbon nanotubes unless otherwise speci�ed. The
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Parameters Value
Kr 478.90 kJ mol�1

K� 562.20 kJ mol�1

K� 25.12 kJ mol�1

�CC 0.4396 kJ mol�1

�CC 0.3851 kJ mol�1

�c 120:00�

 21.867 nm�1

rc 0.1418 nm

Table 4.1: Parameters for the carbon interactions: Kr , rc and  are the
parameters of the Morse potential, K� and �c are the angle parameters, K�

is the torsion parameter, and �cc and �cc are the Lennard-Jones parameters
of the carbon-carbon interaction.

parameters of the carbon nanotube potentials are listed in Table 4.1. The
water-carbon interaction is modeled by a single Lennard-Jones term acting
between the carbon and the oxygen of the water, consistent with the SPC/E
water model. For the parameters of the potential, we use a constant �CO

value of 0.3190 nm throughout the simulations but vary the �CO parameter
in order to investigate the e�ect of wetting on the thermophoretic motion of
the water nanodroplet. As a reference value we use �CO = 0:3920 kJ mol�1,
which was found to reproduce the experimental contact angle of 95:3� of
a macroscopic water droplet on a graphite surface [206, 207]. We further-
more use values of 0.2508 and 0.5643 kJ mol�1 corresponding to macroscopic
contact angles of 127:8� and 50:7�, respectively [206, 207]. The nonbonded
interactions, including van der Waals and Coulomb, are truncated at 1.0 nm.
The Coulomb potential is smoothed [198, 126] to ensure conservation of en-
ergy. For a more detailed description of the potential models and parameters
used in this investigation, we refer to Werder et al [207]., Walther et al. [198].
and to chapter 3 of this thesis. The equations of motion are integrated in
time using the leapfrog scheme [93] with a time step of 2 fs. Periodic bound-
ary conditions are imposed in the direction parallel to the tube axis and
free space conditions in the normal directions. We equilibrate the system
for 0:1 ns. During the equilibration we couple the water and the CNT to
two separate Berendsen thermostats [25] with a time constant of 0.1 ps. Af-
ter equilibration we impose a thermal gradient along the axis of the CNT.
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Figure 4.2: Snapshot from a molecular dynamics simulation of a water nano-
droplet con�ned inside a carbon nanotube.

The heated zones are two 2 nm sections at the ends of the computational
box as illustrated in Figure 4.2. We study the e�ects of thermal gradients
(r T) ranging from 0.40 to 3.68 K nm�1. We note that the lower gradients
(r T < 1:0 K nm�1) are attainable experimentally [17] whereas the larger
gradients help us assess trends and to increase the signal-to-noise ratio in
our simulations. We measure the position of the center of mass of the water
nanodroplets (zCOM ) and the corresponding center of mass velocity (vCOM )
during the simulation. Moreover, we measure the radial pro�les of the den-
sity and the axial and tangential velocity of the water nanodroplet. The
pro�les are sampled in the central region of the droplet and exclude the free
surface at the droplet caps. The resolution of the binning is 0:117 nm for the
radial pro�les. The coe�cient of thermal di�usion (Dt ) is estimated from

Dt =
�COM

r T
(4.4)

the Soret coe�cient is de�ned as [62, 64, 33, 151]

St =
Dt

D
(4.5)

where D is the isothermal di�usion coe�cient. We determine D from the
moment scaling spectra (MSS) [68, 66, 164] with a temporal resolution of 2 ps.
Each trajectory is represented as a sequence zCOM (n) of the n = 1; : : : ; M
position of the center of mass over time. The time di�erence between two
points is given by �t = �n � 2 ps. Our analysis is based on computing the
�rst 6 moments of displacement

�� (�n) =
1

M � �n

M ��nX

n=1

jzCOM (n + �n) � zCOM (n)j � (4.6)
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for � = 0; : : : ; 6 and �n = 1; : : : ; M=3. This includes the classical mean
square displacement (MSD) as the special case where � = 2. We assume
each moment � to depend on the time shift �t = �n � 2 ps in a power law [68]

�� (�t) = 2dD� (�t) � (4.7)

where d = 1 is the dimension of the space. The scaling coe�cients � are
thus determined by linear least-squares regression of log(�nu ) vs log(�t). For
� = 2 we obtain the isothermal di�usion coe�cient D = D2 from the y
axis intercept y0 as D = 0.5 � 10y0 . The plot of nu vs � is called the
moment scaling spectrum (MSS) [68]; for all strongly selfsimilar di�usion
processes, the MSS shows a straight line through the origin. The slope SMSS

of this line is determined using linear least-squares regression. SMSS = 0:5
indicates pure normal di�usion, SMSS = 1:0 is characteristic for ballistic
motion. Superdi�usive processes have 0:5 < SMSS < 1:0, and subdi�usion
0:0 < SMSS < 0:5. MSS analysis is robust against noise in the trajectory
and allows more accurate regression due to the almost perfect linearity of
the MSS and the fact that SMSS has a smaller estimator variance than 2.
In addition it enables classi�cation of di�erent motion types with uniform
sensitivity along the trajectory.

4.3 Results
In this investigation we perform molecular dynamics simulations of a water
nanodroplet con�ned inside a carbon nanotube (Figure 4.2) subject to a ther-
mal gradient. We use a zigzag carbon nanotube with a chiral vector of (30; 0)
which corresponds to a radius of 1:17 nm and a pitch angle of helical symme-
try (�zz) of � 60� [165, 20]. The size of the computational domain along the
axis of the carbon nanotube is 42:6 nm which requires 12000 carbon atoms.
The water droplet consists of 514 water molecules and the con�nement results
in a droplet mean radius of approximately 0:95 nm and length 6:00 nm; cf.
Figure 4.2. We impose thermal gradients of 0.00, 0.40, 0.52, 0.79, 1.05, 1.32,
1.58, 1.71, 1.97, 2.10, 2.63, 2.89, 3.16, and 3:68 K nm�1. We observe, for the
nonzero gradients, a thermophoretic motion of the water nanodroplets in the
direction opposite the thermal gradient (Figure 4.3). Moreover, the center
of mass velocity of the water nanodroplet increases as higher gradients are
imposed. The mean terminal velocity of the nanodroplet is approximately
22 m s�1 for a thermal gradient of 1:05 K nm�1, cf. Figure 4.4, and similar in
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Figure 4.3: Position of the center of mass of the nanodroplet zCOM as a
function of the time for three di�erent thermal gradients (red, 1:97 K nm�1;
green, 1:58 K nm�1 and blue, 1:05 K nm�1).
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Figure 4.4: Mean velocity of the center of mass of the nanodroplet (�COM )
as a function of the time for the case with thermal gradient of 1.05 K nm�1.
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Figure 4.5: Time average axial velocity pro�le (vz) of a water nanodroplet
con�ned inside single-walled carbon nanotubes subject to a thermal gradient
of 1:05 K nm�1.

magnitude to the terminal velocity of 25 m s�1 found in the previous study
of thermophoretic motion of gold nanoparticles con�ned inside carbon nano-
tubes [165]. The axial velocity pro�le (�z) of the water nanodroplets displays
a maximum value in the vicinity of the uid-solid interface (Figure 4.5).
Hence the uid motion of the water nanodroplets exhibits recirculation in
a frame of reference �xed to the center of mass of the nanodroplet. The
corresponding tangential velocity pro�le (vt ) shown in Figure 4.6 displays
a solid body rotation similar to the rotation of the solid gold nanoparticle
observed in our previous study [165]. The motion is associated with large
temporal uctuations, cf. Figure 4.4 and Figure 4.7, which are related to
the change in the direction of rotation; cf. Figure 4.7. Moreover, the angle
of rotation appears to be correlated to the two possible paths imposed by
the chirality vector of the carbon nanotubes of � 60� [165]. From the sim-
ulations (Figure 4.7, 4.8) we �nd an angle between the maximum value of
the tangential velocity, measured in the vicinity of the surface of the car-
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Figure 4.6: Time average tangential velocity (�t ) pro�le of a water nano-
droplet con�ned inside single-walled carbon nanotubes subject to a thermal
gradient of 1:05 K nm�1: the red line represents the measured velocity pro�le
and the green line the best �t to a solid body rotation.
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Figure 4.7: Tangential velocity pro�les of a water nanodroplet con�ned inside
single-walled carbon nanotubes subject to a thermal gradient of 1:05 K nm�1

for di�erent time intervals (red line, 0:56{0:70 ns; green line, 0:70{0:92 ns;
blue line, 0:92{1:04 ns; pink line, 1:04{1:20 ns).

bon nanotube, and the axial velocity of the nanodroplet, has a mean value
of approximately 67�. Thus, the rotation of the nanodroplet is determined
by the helical symmetry of the CNT. In order to determine the isothermal
di�usion coe�cient, we carry out long (200 ns) simulations of the water nano-
droplet con�ned inside the carbon nanotube with zero temperature gradient.
Below time scales of about 200 ps, the scaling of the moments of displace-
ment indicates ballistic motion (see Figure 4.9a) with SMSS = 0:97. The
scaling plot then shows a pronounced kink, with a long time scaling that
is characteristic for di�usive motion (see MSS plot in Figure 4.9b). In this
di�usive regime we �nd an isothermal di�usion coe�cient of 8:8 nm2 ns�1

with SMSS = 0:46, indicating pure normal di�usion. This value is in rea-
sonable agreement with values previous obtained for water under nanoscale
con�nement (D = 0:94 � 5:7 nm2 ns�1) [179, 193, 162]. For the simulations
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Figure 4.8: Axial velocity pro�les of a water nanodroplet con�ned inside
single-walled carbon nanotubes subject to a thermal gradient of 1:05 K nm�1

for di�erent time intervals (red line, 0:56{0:70 ns; green line, 0:70{0:92 ns;
blue line, 0:92{1:04 ns; pink line, 1:04{1:20 ns).
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with a nonzero thermal gradient, we observe a linear increase in the cen-
ter of mass velocity as function of the thermal gradient (Figure 4.10) which
con�rms that the motion is thermophoretic. We expect that the motion is
related to high-frequency phonon vibrations of the carbon nanotubes, i.e.,
the kinetic pressure of the carbon nanotubes as demonstrated by Schoen
et al. [166]. We note that the present classical formulation will excite all
phonons simultaneously, whereas a full quantum description will suppress
high-frequency phonons at low temperatures. Thus, the speed of the nano-
droplets may be quantized at low temperatures. The extracted coe�cient
of thermal di�usion is 20:9 nm2( ns K)�1, which corresponds to a Soret co-
e�cient of 2:37 K�1. This value is 3 orders of magnitude larger than the
coe�cients reported by Platten et al. [64] and Saghir et al. [162] for mixtures
of water-methanol and by Reith and Muller-Plathe [158] of binary Lennard-
Jones liquids. In order to evaluate the inuence of the wetting of the water-
carbon interface on the thermophoretic motion of the nanodroplet, we vary
the Lennard-Jones parameter �CO , from the reference value of 0:3920 kJ mol�1

to 0:5643 and 0:2508 kJ mol�1, which correspond to strongly hydrophilic and
strongly hydrophobic interfaces, respectively. The resulting water density
pro�les display the characteristic structure at the interface with enhanced
structure for increasing hydrophobicity (Figure 4.11). We observe a small
but systematic change in the center of mass velocity of the water nano-
droplet, cf. Figure 4.10, and the coe�cients of thermal di�usion vary from
the reference value of 20:9 nm2( ns K)�1 to 18:8 nm2( ns K)�1 for the strongly
hydrophilic interface to 23:1 nm2( ns K)�1 for the strongly hydrophobic in-
terface. This behavior is consistent with the increased surface adhesion and
reduced isothermal di�usion for the hydrophilic interface. Conversely, the
superhydrophobic interface exhibits a reduced adhesion and hence increased
isothermal di�usion as shown in Figure 4.10. To estimate the e�ect of wetting
on the Soret coe�cient, we repeat the long (200 ns) isothermal simulations for
the system setting with di�erent �CO values. From these simulations we mea-
sure an isothermal di�usion coe�cient of 20:8 nm2 ns�1 (SMSS = 0.46) and
7:9 nm2 ns�1 (SMSS = 0.54) for �CO values of 0.2508 and 0:5643 kJ mol�1,
respectively. The corresponding Soret coe�cients are ST = 0:90 K�1 and
ST = 2:92 K�1. Hence, the hydrophilic interface exhibits a higher Soret
coe�cient than the hydrophobic interfaces, mainly caused by large change
in the isothermal di�usion. We �nally consider the thermophoretic motion
of a water nanodroplet con�ned inside single carbon nanotubes of di�er-
ent chirality and inside double-walled carbon nanotubes. The additional
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Figure 4.9: (a) Moments of displacement for the simulations using "CO =
0:3920 kJ mol�1. Solid blue lines show the temporal scaling of the �rst six
moments of displacement. The least-squares �ts are indicated by red dashed
lines. The scaling coe�cients are given by the slopes of the dashed lines.
On time scales below 200 ps, the scaling corresponds to ballistic motion.
Di�usive behavior with D = 8:8 nm2 ns�1 is recovered for longer time scales.
(b) Moment scaling spectrum. The circles mark the scaling coe�cients as
computed from the �ts in (a); the solid blue line indicates the linear least-
squares �t with a slope of SMSS = 0:46. The red dashed lines of slopes 0.5
and 1.0 show the theoretically expected spectra for pure normal di�usion and
ballistic motion, respectively.
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Figure 4.10: Inuence of wetting e�ect on the center of mass mean velocity
of a water nanodroplet con�ded inside a zigzag carbon nanotube. Mean
velocity of the center of mass VCOM as a function of the imposed thermal
gradient for three di�erent �CO values (red line, �CO = 0:5643 kJ mol�1; green
line, �CO = 0:3920 kJ mol�1; and blue line, �CO = 0:2508 kJ mol�1). Red (� ),
green (� ), and blue (+) represent the particular mean velocities of each case
simulated. A black square represents the mean velocity of the center of mass
of a nanodroplet con�ned inside a double-walled carbon nanotube with an
imposed thermal gradient of 2:83 K nm�1.
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Figure 4.11: Inuence of wetting e�ect on the density pro�le of a water nano-
droplet con�ded inside a zigzag carbon nanotube. Radial density pro�le for
the three di�erent �CO values (red line, �CO = 0:2508 kJ mol�1; green line,
�CO = 0:3920 kJ mol�1; blue line, �CO = 0:5643 kJ mol�1).
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Figure 4.12: Inuence of chirality on the center of mass mean velocity of a
water nanodroplet con�ned inside a carbon nanotube. Chirality: Red (+)
(17; 17), green (� ) (20; 14), and blue (� ) (30; 0).

single-walled carbon nanotubes include (17; 17) armchair and (24; 14) chi-
ral carbon nanotubes, both with a diameter similar to the zigzag (30; 0)
carbon nanotubes previously considered. For all the di�erent chiralities we
observe a consistent thermophoretic motion of the water nanodroplets as
shown in Figure 4.12. Moreover, we �nd that the nanodroplet moves with
the highest velocity inside the (17; 17) armchair carbon nanotubes and with
the lowest velocity inside the zigzag (30; 0) carbon nanotubes. These results
are in agreement with recent molecular dynamics and quantum chemistry
studies of self-di�usion of water con�ned inside armchair and zigzag car-
bon nanotubes [128]. For the double walled carbon nanotubes, we impose a
thermal gradient of 2:83 K nm�1 and observe a thermophoretic motion (solid
black square in Figure 4.10) similar to that observed for single-walled car-
bon nanotubes. The terminal center of mass velocity is 53 m s�1 and similar
to the velocity observed for the hydrophilic (�CO = 0:5643 kJ mol�1) single-
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Figure 4.13: Inuence of periodicity on the MD simulations of a system
consisting of a water droplet inside a carbon nanotube.

walled carbon nanotube of 55 nm ns�1. This behavior is consistent with the
enhanced water-carbon interaction due to the presence of the second layer
of carbon atoms. In order to observe any inuence of the imposed periodic
boundary conditions, we have performed simulations of a water droplet con-
�ned inside a zig-zag (30; 0) carbon nanotube removing the periodicity of the
system and imposing di�erent thermal gradients. In Figure 4.13 a very sim-
ilar qualitative behaviour of the center of mass velocity of the water droplet
is observed for the periodic and non-periodic system (In chapter 3 of this
thesis is included a description about artifacts induced by imposing periodic
boundary conditions to a system).

4.4 Conclusions
The present molecular dynamics simulations have demonstrated that water
nanodroplets may be driven through single- and double-walled carbon nano-

50



tubes by imposing a thermal gradient along the axis of the carbon nano-
tube. The driving force is thermophoretic, and the resulting thermal di�usion
involves both a translational and rotational motion of the nanodroplets. The
rotation is imposed by the helical symmetry of the carbon nanotubes. We
�nd a weak inuence of wetting on thermophoresis, but a strong inuence
on the isothermal di�usion and hence the Soret coe�cient. In summary,
thermophoresis may be a viable mechanism for controlling the motion of
water nanodroplets con�ned inside a single- and double-walled carbon nano-
tubes.
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Chapter 5

Carbon Nanotubes Based
Molecular Motors Driven by
Thermophoresis

Parts of this chapter has been published in: H. A. Zambrano, J. H. Walther,
and R. L. Ja�e. Thermally driven molecular linear motors: A molecular
dynamics study. J. Chem. Phys.,131:241104, 2009.

Abstract
We conduct MD simulations of the molecular linear motor recently presented
by Somada et al. [Nano. Lett., 9, 62, (2009)]. The system consists of a coax-
ial carbon nanotube with a long outer carbon nanotube con�ning and guid-
ing the motion of an inner short, capsule-like nanotube. Somada et al. used
Transmission Electron Microscopy (TEM) to visualize the motion of the cap-
sule and argued that the motion is driven by thermal energy. The present MD
simulations indicate that the motion of the capsule may be strongly inu-
enced by thermophoretic forces induced by thermal gradients e.g., imposed by
the TEM. The simulations �nd large terminal velocities of 100{400 nm ns�1

for imposed thermal gradients in the range 1{3 K nm�1. Moreover, the results
indicate that the thermophoretic force is velocity dependent and decreases
for increasing velocity.
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5.1 Introduction
In a recent experimental study, Somada et al. [177]. fabricated a molecular
linear motor system consisting of co-axial carbon nanotubes (CNT) as shown
in Figure 5.1. In the system an inner CNT is found to move throughout the
in vacuo internal space of an outer CNT, working as a molecular linear mo-
tor. The experimental setup consists of a capped capsule-like short carbon
nanotube with a chiral vector of (12; 0) encapsulated in the interior hollow
space of a single wall CNT with a chiral vector of (22; 0). The hollow space is
approximately 8:5 nm long and limited by two �xed capped CNTs with a chi-
ral vector of (12,0). The total length of the outer CNT is more than 100 nm
long. Using Transmission Electron Microscopy (TEM), Somada et al. [177].
�nd that the inner CNT (capsule) changes its position including stop events
at the two ends of the hollow space. During the 170 s long experiment, the
capsule is found to travel back and forth seven times. However the motion
of the capsule is observed indirectly due to the low time resolution of the
TEM of 0.5 s. The picture obtained from the TEM experiment furthermore
indicate that the capsule is undergoing rotation during the translational mo-
tion. Somada et al. [177]. propose that the mechanism driving the capsule
is related to thermal activation energy which is in equilibrium with the van
der Waals (vdW) energy gain due to the interaction between the caps of
the carbon nanotubes. Since the theoretical activation time is shorter than
the activation time measured in the experiments. Somada and coworkers
include an additional e�ect contributing to the total friction force, which is
associated with a deformation caused by thermal uctuation of the graphitic
lattices of the outer CNT. They argue that the thermal energy not only
activates the capsule motion but also obstructs its travel by deforming the
hollow space of the system [177]. In order to employ the concept of a molecu-
lar linear nanomotor with potential applications such as mass nanotransport
systems [156, 180, 76, 67, 172], and archival memory devices [19] a detailed
explanation of the driving mechanism of the capsule should be addressed. In
this study, we propose that the motion of the capsule observed by Somada
et al. [177] may be inuenced or directly driven by thermophoretic forces in-
duced by the thermal gradient imposed by the electron beam irradiated from
the TEM. In experimental and theoretical studies Howe et al. [98], Yokota
et al. [212], Wang et al. [204] and Biskupek et al. [27] found that electron
beam irratiation generates a temperature increase in the irradiated region
due to electron thermal spikes, which are generated as incident electrons
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Figure 5.1: (a-g) A series of TEM images showing linear motion of a CNT
capsule. The exposure time for each image is 500 ms, and the total recording
time was 10 min. The CNT capsule is 0.95 nm in diameter and 3.2 nm in
length. The diameter of the host SWNT is 1.6 nm, and the length of the
hollow space is about 8.5 nm. The CNT capsule is encapsulated in a hollow
space between A and B as illustrated in (h). (i) Capturing intervals at sides
A and B for seven laps [177].
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Figure 5.2: Schematic of the computational setup. Cross-sectional view of
the system, the outer CNT is a (22,0) zigzag CNT and the inner one is a
(12,0) zigzag CNT. A thermal gradient is imposed by heating the end sections
(in gray) of the outer CNT.

pass through and/or collide with the irradiated system. Moreover, induced
e�ects such as defect production, annealing and heating by electron-phonon
coupling have been investigated by Krasheninnikov [120, 119]. Using Molecu-
lar dynamics simulations, Kresheninnikov [119] argues that in carbon nanos-
tructures the kinetic energy of an incident electron beam is converted into
thermal energy resulting in an increase in temperature higher than expected
for bulk systems due to the energy dissipation is a�ected by the small system
size in one or more directions. In this work we perform molecular dynamics
simulations in order to demonstrate that the motion of the inner CNT, in a
system similar to the studied by Somada et al. [177]. is strongly inuenced
by thermophoretic forces. We show quantitatively that a thermal gradient
as small as 1.2 K nm�1 could be the origin of the motion of the capsule [17].
For our simulations we use the MD package FASTTUBE [198], which has
been used extensively to study thermophoretic motion of liquids and solids
con�ned inside single and double wall CNTs [215, 172, 167, 166, 165].

5.2 Methodology and thermodi�usion study
We simulate the system studied by Somada et al. [177]. using a double wall
carbon nanotube system as illustrated in Figure 5.2. The system consists of
an outer 42:6 nm long carbon nanotube with a chiral vector of (22; 0) corre-
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sponding to a diameter of 1:723 nm. The inner capsule is modeled as an open
short 3:195 nm long carbon nanotube with a chiral vector of (12; 0), and di-
ameter 0:94 nm. We describe the valence forces within the CNT using Morse,
harmonic angle and torsion potentials [198]. We include a nonbonded carbon-
carbon Lennard-Jones potential with parameters �CC = 0:4396 kJ mol�1 and
�CC = 0:3851 nm to describe the vdW interaction between the carbon atoms
within the double wall portion of the system. We equilibrate the system at
300 K for 0:1 ns. During the equilibration we couple the system to a Berend-
sen thermostat with a time constant of 0.1 ps. After the equilibration we
impose thermal gradients in the range of 0.00-4.20 K nm�1, which are im-
posed by heating two zones at the ends of the outer CNT as illustrated in
Figure 5.2. We measure the position of the center of mass of the inner CNT
during the simulation. We observe, for gradients of 1.18 K nm�1 or higher,
a directed motion of the capsule in the direction opposite to the imposed
thermal gradient as shown in Figure 5.3a. For a thermal gradient of 1.18
K nm�1 the mean terminal velocity is approximately 170.0 nm ns�1, which
is higher than the velocity measured in our previous studies on thermophore-
sis of water nanodroplets and gold nanoparticles con�ned inside carbon nan-
otubes [215, 165] but similar to the velocity measured in the simulations by
Barreiro et al. [17] (Figure 4.1). Moreover, we �nd a consistent increase in
the therminal velocity for increasing thermal gradients (see Figure 5.3). We
observe from the time history of the COM position and velocity (Figure 5.3)
that before the capsule has started a directed motion, oscilations of the COM
position are evident. We believe that the observed oscilations are related to
the static friction mainly owing to the energy barrier between the two coaxial
nanotubes [17]. We note that as a higher thermal gradient is imposed the
time period in which the COM position is oscilating get reduced.

5.3 Friction and thermophoretic force study
To con�rm that the motion of the capsule is driven by thermophoresis we per-
form additional simulations in order to study the friction and thermophoretic
forces acting on the inner CNT. We carry out a force analysis similar to that
performed by Schoen et al. [165]. In these simulations, we constrain the ve-
locity of center of mass of the inner CNT. We extract from the simulations
the external forces required to drive the inner CNT for di�erent constrained
velocities and di�erent imposed thermal gradients (Figure 5.4). To measure
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Figure 5.3: Center of mass position (COM) (a) and velocity (b) as a function
of time for three di�erent thermal gradients (blue (*), 3.16 K nm�1; green
(� ), 1.58 K nm�1 and red (+), 1.18 K nm�1).
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Figure 5.4: External force acting on the constrained inner CNT (a) external
force as a function of the imposed thermal gradient for di�erent constrained
velocities (blue line and (+), 4 nm ns�1; red line and (� ), 16 nm ns�1. (b)
External force acting as a function of the center of mass (COM) velocity
for di�erent thermal gradients (red (+), 0.0 K nm�1; green (� ), 1.0 K nm�1;
blue (*), 2.0 K nm�1; and fuchsia (squares), 3.0 K nm�1)
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the isothermal friction of the system we imposed an isothermal constraint
(thermal gradient of 0.0 K nm�1) while we vary the constrained COM ve-
locity. At non-zero thermal gradients we measure the combined friction and
thermophoretic forces; a positive force indicates a resistance to the motion,
whereas a negative force is indicative of thermophoresis. In Figure 5.4a we
show the mean external force as a function of the imposed thermal gradient
for two constrained COM velocites, the external forces are subject to large
uctuations represented by the error bars in the corresponding function. In
Figure 5.4b we show the external driving forces as a function of the COM ve-
locity for di�erent thermal gradients (0.0, 1.0, 2.0 and 3.0 K nm�1), extracted
from more than eighty individual simulations. We �nd a systematic increase
of the thermophoretic force as a higher thermal gradient is imposed to the
system (Figure 5.4). Furthermore, we measure an isothermal friction that
is small compared to the measured thermophoretic force as shown in Fig-
ure 5.3. We infer, from the simulations, a reduction of the thermophoretic
force as a higher velocity is imposed to the inner CNT (Figure 5.4). We
conjecture that the driving thermophoretic force is velocity dependent thus
the thermophoretic force decreases when a higher velocity is reached. We
believe that, for di�erent imposed thermal gradients, the corresponding ter-
minal velocity is governed by the velocity dependence of the thermophoretic
force velocity rather than a match between the thermophoretic force (mea-
sured at zero velocity) and the static friction. We observe from Figure 5.4b
that the zero external force is obtained at approximately 100 nm ns�1 for 1
K nm�1, at 250 nm ns�1 for 2 K nm�1 and at 400 nm ns�1 for 3 K nm�1 in
reasonable agreement with the terminal velocities observed in Fig. 5.3b.

5.4 Conclusions
In summary, we propose that a thermal gradient imposed due to the par-
tial irradiation of the system by the electron beam of the microscope used
in the experiments [177], could be the main mechanism responsible of the
motion of the inner CNT. We believe that the thermal activation energy
proposed by Somada et al. [177] as driven mechanism could be part of the
mechanism to extricate the capsule from the energy minima at the ends
of the hollow space. However, we conjecture that since the capsule has
started its motion the mechanism driving the capsule to the opposite hollow
space end is directly inuenced by thermophoretic forces. We believe that
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our hypothesis contribute to the utilization of thermophoresis based linear
nanomotors with several applications in transport and delivery of substances
encapsulated in carbon nanostructures con�ned inside a host carbon nan-
otube [92, 91, 15, 213, 41, 75, 133]. Moreover, with this Note we hope to
encourage more experimental work to study thermophoretic linear nanomo-
tors and its potential applications.
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Chapter 6

Molecular dynamics study of
the interface between silica,
water and air

Parts of this chapter have been included in the following papers: H. A.
Zambrano, J. H. Walther and R. L. Ja�e. Molecular Dynamics Simulations
of the Interface Between Silica and Water at High Air Pressures. J. Mol.
Liquids, submitted.

Abstract
In this study we present a new force �eld suitable for performing molecular
dynamics simulations of amorphous silica and water at di�erent air pres-
sures. We calibrate the interactions of each specie presents in the system
using dedicated criteria such as the contact angle of a water droplet on a
silica surface and the gas solubility in water at di�erent pressures. Using
the calibrated force �eld, we perform MD simulations to study the interface
between a hydrophilic silica subtrate and water surrounded by air at di�er-
ent pressures. We �nd the static water contact angle to be independent of
the air pressure imposed on the system. Our simulations reveal that a layer
with higher concentration of gas exists close to the silica surface. We believe
that the presence of a nano-layer of gas at the water-slica interface could
promote the nucleation and stabilization of surface nanobubbles. Finally, we
perform simulations to investigate the water capillary �lling of nanochannels
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with heights below 10 nm at di�erent air pressures; speci�cally, we analyze
the earliest stages of the �lling process. The simulations show that the pres-
ence of air could a�ect the capillary �lling process by modifying the dynamic
contact angle of the advancing meniscus reducing the capillary �lling speed.

6.1 Introduction
The static and dynamic behavior of uids at a solid substrate has been sub-
ject of intense research during the last decades [217, 146, 61, 99, 48, 163, 105].
Wetting phenomena has been extensively studied [51, 28], but several ques-
tions relating to interfacial dynamics properties remain open, due to theoreti-
cal, experimental or computational limitations. Wetting is essential and ubiq-
uitous in a variety of natural and technological processes [153, 196, 178, 222].
Miniaturization, a trend in several technological �elds, is leading to complex
structures on the nanoscale [1, 29, 222]. Development of a new generation
of nanouidic devices will require a comprehensive understanding of wet-
ting phenomena at the nanoscale. Silicon dioxides-water systems interacting
with air are abundant in nature and play fundamental roles in a diversity
of novel science and engineering activities such as silicon based nanosen-
sor devices, nanoscale lab-on-a-chip systems and DNA microarrays technolo-
gies [86, 88, 1, 54, 174]. Although extensive experimental, theoretical and
computational work has been devoted to study the nature of the interaction
between silica and water [123, 57, 195, 60, 87, 69, 187, 144, 196, 44, 49], many
fundamental questions are, currently, subject of intense debate. Recently, in a
number of di�erent experimental investigations, systematic deviations in the
�lling rate from classical predictions have been measured for channels with
nanoscale dimensions [145, 147, 184, 182, 132, 148]. Thamdrup et al. [184] at-
tribute the measured deviations to the presence of gas nanobubbles. The ex-
istence of nanoscale gas bubbles at solid-liquid interfaces have been proposed
as an explanation for the long range hydrophobic forces measured in surface
force apparatus experiments [104, 13, 146]. Subsequently, nanobubbles have
been observed and inferred in a variety of experimental and theoretical works
on hydrophobic [217, 13, 103, 107, 14, 31, 220, 218, 143, 34, 171, 130] and hy-
drophilic surfaces [217, 38, 130]. Nevertheless, the long life time of interfacial
nanobubbles contradicts the classical theory of nanoscale bubbles stability
because their large Laplace pressure would cause a rapid di�usive out-ux of
gas [65, 129]. However, in recent theoretical and experimental studies some
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potential stabilization mechanisms have been suggested to explain the ob-
servations of long lived nanobubbles [72, 138, 220, 219, 34, 55, 59]. In this
work we parametrize and calibrate interaction potentials in order to conduct
long Molecular Dynamics (MD) simulations of systems including silica, water
and air. Speci�cally, we study the role of air on the wetting of water-silica
interfaces and the e�ect of the presence of air on the capillary �lling speed
of water in silica nanochannels.

6.2 Methodology and force �elds
We conduct long MD simulations of hydrophilic silica-water-air systems us-
ing the MD package FASTTUBE [198]. FASTTUBE has been used exten-
sively to study water inside and surrounding carbon nanotubes, and nanode-
vices [206, 203, 202, 215, 214]. Since the objective of this work is the study of
nanouidic interfacial phenomena we need an e�ective silica-water-air model
suitable to allow MD simulations of large systems in the range of nanoseconds
and reliable enough to reproduce the relevant e�ects related to the wetting
properties of nanoscale systems. We use well tested models [192, 24] for
the individual species present in our systems. Nevetheless, we carry out a
process of parametrization and calibration using dedicated criteria for each
interaction involved in the system [32]. The speci�c criteria used to calibrate
the models are relevant to the properties we seek to reproduce.

6.2.1 Silica interaction potential
Amorphous silica is described by the TTAMm potential model developed by
Guissani et al. [82], which is a modi�cation of the TTAM potential model
developed by Tsuneyuki et at. [192]. The TTAMm model includes a Lennard-
Jones 6-18 potential and a Buckingham potential
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where qa and qb represent the partial charges of the atomic species a and b,
"0 the vacuum permittivity, rij the inter-atomic distance, �ab the distance at
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Parameter Value
� Si � Si 1:277� 103 kJ mol� 1

� Si � Si 4:00� 10� 2 nm
� Os� Os 4:60� 10� 2 kJ mol� 1

� Os� Os 0:220 nm
� Si � Os 1:083 kJ mol� 1

� Si � Os 0:130 nm
� Si � Si 8:417� 1010 kJ mol� 1

� Si � Si 1:522� 102 nm
CSi � Si 2:240� 10� 3 kJ mol� 1nm6

� Os� Os 1:696� 105 kJ mol� 1

� Os� Os 0:283� 102 nm
COs� Os 0:0207 kJ mol� 1nm6

� Si � Os 1:0347� 106 kJ mol� 1

� Si � Os 0:480� 102 nm
CSi � Os 6:825� 10� 3 kJ mol� 1nm6

qSi 2:400e
qOs � 1:200e

Table 6.1: Lennard-Jones, Buckingham parameters and partial charges for
the TTAMm model.

which the inter-particle LJ potential is zero, �ab the depth of the LJ potential
well, �ab, �ab and Cab represent the Buckingham force �eld parameters. A
overview of the potential parameters is listed in Table 6.1, where the sub-
scripts Si and Os represent, respectively, silicon and oxygen atoms in silica.
To describe the electrostatic interactions in the bulk silica system we em-
ploy partial charges obtained from the TTAM model [192], qSi = +2:4e and
qOs = � 1:2e. In order to reproduce amorphous silica systems, we replicate
a crystoballite cell to build a slab. Subsequently, we perform MD simula-
tions imposing periodic boundary conditions in X and Y directions, while
imposing non-periodic boundary conditions in Z-direction in order to create
a free surface. We use an integrating time step of 1 fs and follow a similar
annealing procedure as employed by Cruz-Chu and et al. [49]. Therefore, we
couple the system to a Berendsen [25] heat bath, heating the crystoballite
slab to 3000 K during 10 ps, subsequently, quenching the system from 3000 K
to 300 K by using a cooling rate of 70 K ps�1 until the equilibrium state is
reached. Once silica is equilibrated, we classify the atoms at the surface of
the silica slab according to their connectivity. Therefore a pair of atoms sepa-
rated for a distance shorter than 0:2 nm are considered as covalently bonded.
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Parameter Value
� Ow � Ow 0.6501 kJ mol� 1

� Ow � Ow 0.3166 nm
qOw -0.8476e
qHw 0.4238e

Table 6.2: Lennard-Jones parameters and partial charges for the SPC/E
water model [24].

Silicon atoms with less than four covalent bonds and oxygen atoms with less
than two covalent bonds are considered as dangling atoms. We measure a
concentration of dangling oxygens of 1.5 atoms per nm2 and a concentration
of dangling silicons of 1.05 atoms per nm.

6.2.2 Water interaction potential
Water is described by the rigid extended simple point charge potential SPC/E
model [24]. It consists of a smoothly truncated Coulomb potential [126]
acting between the partial charges on the oxygen (qOw = � 0:8476e) and
hydrogen (qHw = +0:4238e) atoms and a Lennard-Jones 12-6 potential [110]
as shown in Eq. (6.2). The potential parameters for the water model are
listed in Table 6.2.
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6.2.3 Silica-water interaction potential
Since long simulation times (more than 20 ns) are required to study nanou-
idic systems, our objective is to derive interaction potential models to be
both highly e�cient in terms of processing time and su�cient accurate to
reproduce reliably the macroscale properties of the silica-water interface. In
a previous work, Hassanali and Singer [87] developed a model which is an
extension of the van Beest, Kramer, and van Santen (BKS) model for silica
and of the SPC/E model [24] for water. They added three body interaction
terms which are not found in the standard BKS model and obtained the
potential parameters from ab initio quantum chemical studies on small frag-
ments of silica-water systems. In the present study we retain the simple and

65



Figure 6.1: Contact angle of a water nanodroplet on an amorphous silica
slab. Snapshot from a MD simulation of a water nanodroplet mounted on a
silica slab subject to a high air pressure (10 bar).

e�cient two body Born-Huggins-Mayer potential, which consists of Coulomb
potential and Buckingham potential terms
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where qa and qb represent the partial charges of the atomic species a and b
respectively, "0 the vacuum permittivity, rij the inter-atomic distance and,
�ab, �ab and Cab represent the Buckingham force �eld parameters. As a start-
ing point, we use some Buckingham parameter Cab determined by Hassanali
and Singer [87]. Due to the fact that, for amorphous silica, the surfacial
electrostatics is signi�cantly di�erent to the bulk electrostatics, we modify
the partial charges of the rigid silica model to follow a procedure similar to
the employed by Cruz-Chu et al [49]. The partial charges values (we use)
are taken from the soft potential developed by Takada et al. [181], which has
electrostatic interactions weaker than the partial charges used in classical
silica models thus qOs = � 0:65e for the oxygen atoms and qSi = 1:3e for the
silicon atoms. We equilibrate the silica slab as described in subsection 2.1.
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The water is immobilized during the amorphous silica equilibration and cool-
ing process. Subsequently, we equilibrate the water, immobilizing the silica
and coupling the water to a Berendsen heat bath [25] until the energy of
the system has reached a constant value. We perform simulations of a water
droplet of 18000 molecules placed on a silica slab of 37.92 nm � 37.92 nm �
2.5 nm (ca 350000 atoms) as shown in Figure 6.1. For the simulations we use
an integrating time steps of 2 fs. We notice that the size of the silica surface
and the water droplet we study are much longer that the systems previously
simulated by Cruz-Chu et al. [49] and, Hassanali and Singer [87]. The size
of the silica-water system is important in order to take into account of the
e�ect of the heterogeneities present in the amorphous silica surface on the
wetting of the system. To achieve a suitable force �eld for the silica-water
interaction we modify the parameter Cab for the interaction between silicon
and water oxygen by �tting the WCA measured in the simulations to the
experimental value of 19:95� � 3:3� obtained by Thamdrup et al. [184]. The
WCA measurements are carried out following the procedure employed by
Werder et al. [206] but performing a local �t of the circular cross section
similar to Ingebrigtsen and Toxvaerd [102]. We vary systematically the value
of Cab (silicon-water oxygen) with increments of 0.005 kJ mol�1nm�2 from
0 kJ mol�1nm�2 which reproduces a WCA of 97� until 0.03 kJ mol�1nm�2

which reproduces complete wetting. We observe a linear decrease in the
water contact angle as higher values of the Cab (silicon-water oxygen) are
implemented. The linear behaviour can be evidenced in Figure 6.3, where
the green line is a linear �t to the date points. Subsequently, we perform a
linear interpolation of the data points to match the experimental WCA value.
Using the �nal �tted parameter we reproduce a WCA of 19:8� at vacuum as
illustrated in Figure 6.2 which is in good agreement with the experimental
measurements by Thamdrup et al. [184]. The potential parameters obtained
are speci�ed in Table 6.3. We notice that we did not include in our potential
the Van der Waals interaction between silica oxygen and water oxygen due
to we did not distinguish between silanol and siloxane oxygen therefore we
attempt to calibrate our potential via the silicon-water oxygen interaction.
To quantify the strength of the water-silica interaction, we simulate a water
molecule on a silica slab in order to measure the binding energy of a single
molecule of water close to a amorphous silica surface. We measure a mean
binding energy value of 45 kJ mol�1 which is in reasonable agreement with
the results published by Du et al. [58] which vary between 48 kJ mol�1 to
98 kJ mol�1 for a water molecule on H-terminated and pure silica clusters.
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Parameter Value
� Si � Ow 1:013� 105 kJ mol� 1

� Si � Ow 25.00 nm
CSi � Ow 2:360� 10� 2 kJ mol� 1nm6

� Osi � Hw 6:83� 103 kJ mol� 1

� Osi � Hw 32.66 nm
COsi � Hw 0.00 kJ mol� 1nm6

Table 6.3: Buckingham parameters for the silica-water interaction potential.
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Parameters Value
� N � N 0.30264 kJ mol� 1

� N � N 0.332 nm
� O� O 0.43234 kJ mol� 1

� O� O 0.299 nm
� N � O 0.3617 kJ mol� 1

� N � O 0.3155 nm
� N � Si 0.7963 kJ mol� 1

� N � Si 0.325 nm
� N � Osi 0.3075 kJ mol� 1

� N � Osi 0.293 nm
� O� si 0.650 kJ mol� 1

� O� si 0.318 nm
� O� Osi 0.251 kJ mol� 1

� O� Osi 0.290 nm

Table 6.4: Lennard-Jones parameters for air interactions with silica.

6.2.4 Silica-air interaction potential
We describe the air by modelling the molecular nitrogen and molecular oxy-
gen as two Lennard-Jones sites connected with a rigid bond. The interactions
between silica and the sites of the molecular nitrogen and molecular oxygen
are described employing a LJ potential, using Lorentz-Berthelot mixing rules
with values obtained from the Universal Force Field (UFF) [155] and from
Guissani et al. [82]. The parameters are shown in Table 6.4. To examine
the reliability of the potential we perform MD simulations of a silica slab
surrounded by an air atmosphere at di�erent air pressures. We equilibrate
a silica slab as described in subsection 2.1. Subsequently, we perform sim-
ulations of the equilibrated silica slab surrounded by air at 100 and 200 bar
for more than 4 ns. From the simulations we extract the density pro�les of
nitrogen and oxygen. We observe a air interfacial layer with a thickness of ca
1 nm as shown in Figure 6.3. In this zone the air density is higher than the
air density in the bulk zone. Furthermore, we measure the binding energy
of single molecules of N2 and O2 on silica. We obtain a binding energy of
22 kJ mol�1 for the N2 molecule and of 18 kJ mol�1 for the O2 molecule. Sub-
sequently, we perform simulations of a nitrogen molecule described using the
\pea model" developed by Coasne et al. [43] on a silica slab. We measured
a binding energy of 13.5 kJ mol�1 which is in the same order of magnitude of
the values we measure using our molecular nitrogen model.
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Figure 6.3: Density pro�le of air at 300 K and 100 bar: density pro�le of
nitrogen and oxygen in contact with a silica substract. The red line is the
N2 density pro�le and the green line is the O2 density pro�le.
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Parameter Value
� N � Ow 0.4436 kJ mol� 1

� N � Ow 0.3243 nm
� O� Ow 0.5302 kJ mol� 1

� O� Ow 0.3078 nm

Table 6.5: Lennard-Jones parameters for water-air interaction.

6.2.5 Water-air interaction potential
The interaction between water and air is simulated employing a Lennard-
Jones 6-12 potential (6.2), which is initially parametrized using Lorentz-
Berthelot mixing rules. The values for the mixing rules are obtained from
Jiang et al. [109] �N �N = 0.3026 kJ mol�1, �N �N = 0.3320 nm, �O�O =
0.4320 kJ mol�1 and �O�O= 0.2990 nm; and from Berendsen et al. [24] �Ow�Ow

= 0.6502 kJ mol�1 and �Ow�Ow= 0.316 nm. The potential parameters for the
water-air cross interactions are listed in Table 6.5. To obtain a suitable po-
tential for the interaction between water and air we calibrate the LJ potential
parameters �N �Ow and �O�Ow using as a criterion the gas solubility in liquid
water. We perform simulations of a water slab including 2800 molecules im-
mersed in an atmosphere of N2 and O2 at di�erent pressures. We connect
the system to a Berendsen thermostat for 0:4 ns at 300 K, then we disconnect
the thermostat and perform simulations for more than 30 ns until the water
slab is saturated with air. Subsequently, we measure the density of nitro-
gen and oxygen dissolved inside water and compute the solubility of the two
species. We compare the gas solubility values extracted from the simulations
against the experimental values [209, 16] listed in Table 6.6. We calibrate
the Lennard-Jonnes parameters by systematically varying the �N �Ow and
�O�Ow values using as criteria the corresponding gas solubility values ex-
tracted from the simulations. We interpolate the �N �Ow and �O�Ow to match
the experimental values of the solubility [209, 16] as shown in Figure 6.5.
The interpolated parameters are listed in Table 6.7. We perform simulations
using the calibrated potential parameters and measure the gas solubility. We
observe a homogeneous solubility of nitrogen and oxygen throughout the wa-
ter slab as shown in Figure 6.4 The gas solubility values extracted from the
simulations are listed in Table 6.8. The solubility values are in reasonable
agreement with the experimental measurements presented in Table 6.7.
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Figure 6.4: Density of nitrogen and oxygen at 300 K and 200 bar in liquid
water as a function of the distance to the center of mass of the water slab.
(a) Density pro�les of water, nitrogen and oxygen. The blue line is the water
density pro�le, the red line is the N2 density pro�le and the green line is the
O2 density pro�le. (b) Details of the density pro�les of nitrogen and oxygen
dissolved inside liquid water. The red line is the N2 density pro�le and the
green line is the O2 density pro�le.
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Figure 6.5: The oxygen and nitrogen solubilities at 300 K and 200 bar as
function of the Lennard-Jones parameters �N �Ow and �O�Ow . The green
circles (� ) correspond to �O�Ow values and the purple circle (� ) is the ex-
perimental solubility value for oxygen. The red crosses (� ) correspond to
�N �Ow values and the blue cross (� ) is the experimental solubility value for
nitrogen.

Specie Pressure Solubility
N2 100 bar 1.265cm3

gas=gH 2 O

O2 100 bar 2.417cm3
gas=gH 2 O

N2 200 bar 2.257cm3
gas=gH 2 O

O2 200 bar 4.621cm3
gas=gH 2 O

Table 6.6: Experimental values of the solubilities of nitrogen and oxygen in
liquid water. The solubility values included the list have been interpolated
at 300 K.
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Parameter Value
� N � Ow 0.5458 kJ mol� 1

� N � Ow 0.3243 nm
� O� Ow 0.5884 kJ mol� 1

� O� Ow 0.3078 nm

Table 6.7: Calibrated Lennard-Jones parameters for the water-air interac-
tion.

Specie Pressure Solubility
N2 100 bar 0:7 � 0:3 cm3

gas =gH 2 O

O2 100 bar 2:7 � 0:8 cm3
gas =gH 2 O

N2 200 bar 2:1 � 0:6 cm3
gas =gH 2 O

O2 200 bar 3:5 � 1:1 cm3
gas =gH 2 O

Table 6.8: Nitrogen and oxygen solubilities in liquid water measured from
the simulations

6.3 Results and discussion

6.3.1 WCA of water nanodroplets in air at di�erent
pressures

Using the parametrized and calibrated potentials we perform simulations of
a water nanodroplet of 18000 molecules mounted on a silica slab of 37.92 nm
� 37.92 nm � 2.45 nm immersed in air (N2 and O2) at air pressures of 50, 100
and 150. To equilibrate the silica and the water we follow the methodology
as described in Subsection 2.3 while the air is immobilized. As silica-water
equilibration is reached we release the air molecules to interact with the rest
of the species until the energy equilibration of the system is reached. After
the silica equilibration, we use an integrating time step of 2 fs. Subsequently,
we measure the WCA following the methodology described in subsection
2.3. We measure the WCA values as shown in the Table 6.9. From the
measured WCA values we observe that the static WCA of the nanodroplet
is not changing signi�cantly as higher air pressures are imposed.
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Pressure Water contact angle
vacuum 20�

50 bar 20�

100 bar 17�

150 bar 21�

Table 6.9: Water contact angle values measured at di�erent pressures.

6.3.2 High density air layers at the silica-water inter-
face

To study the equilibrium properties of silica-water-air systems, we perform
simulations using the parametrized force �eld. The system consists of a water
slab (2800 molecules) on a silica substrate of 3.7 nm � 3.7 nm times 2.45 nm
surrounded by an atmosphere of air at pressures of 50, 100, 200 and 300 bar.
In order to equilibrate the system we follow the methodology as described
in subsection 2.3 and 3.1. After the water is saturated with air, which takes
more than 30 ns, we compute the density of water, nitrogen and oxygen as a
function of the distance to the silica slab. Moreover, we compute the solubil-
ity of nitrogen and oxygen dissolved inside the water. Density and solubility
pro�les are shown in Figure 6.6 and Figure6.7. From our simulations we infer
a zone or layer of high concentration of gas adjacent to the silica surface which
has a thickness of ca 1 nm which can be inferred from Figures 6.6 and 6.7.
Moreover, we observe that its thickness and density magnitude seem inde-
pendent of the air pressure imposed to the system. Since this interfacial zone
with high gas concentration is present in all of our measurements we believe
that it could be ever present in silica-water-air systems. Indeed, this layer
could be of signi�cant importance in dewetting, nucleation and stability of
surfacial nanobubbles, and capillary �lling of nanochannels. We measure the
binding energy of silica-water at vacuum and in presence of air at very high
pressures as illustrated in Table 6.10. We �nd that the values of the binding
energy do not show a signi�cant variation due to the presence of air in water.
However, the interfacial layer with high concentration of gas may inuence
the dynamics of the interface e.g., through a modi�ed viscosity at the inter-
face of silica and water. Recent experiments of capillary �lling process of
silica nanochannels have shown that the liquid is observed to �ll at a slower
rate than expected [145, 182, 147, 85]. Various proposals have been made to
explain the observed reduction in the capillary �lling rate of nanochannels
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Figure 6.6: Water slab on a silica substrate surrounded by air. Density
pro�les of water and air at 300 K and 200 bar. (a) Density pro�les for the
bulk zone of the system. (b) Solubility of air inside the water slab. The red
line is the N2 density, the green line is the O2 density and the blue one is
the water density. The silica surface is at 2.45 nm, it includes geometrical
heterogeneities.
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Figure 6.7: Water slab on a silica substrate surrounded by air. Density
pro�les of water and air at 300 K and 300 bar. (a) Density pro�les for the
bulk zone of the system. (b) Solubility of air inside the water slab. The red
line is the N2 density, the green line is the O2 density, and the blue one is
the water density. The silica surface is at 2:45 nm, it includes geometrical
heterogeneities.
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Pressure Binding energy
vacuum 209 kJ mol� 1nm� 2

50 bar 226 kJ mol� 1nm� 2

100 bar 212 kJ mol� 1nm� 2

200 bar 222 kJ mol� 1nm� 2

300 bar 212 kJ mol� 1nm� 2

Table 6.10: Silica-water binding energy at di�erent air pressures.

nevertheless the explanation is still under debate [145, 194, 176, 182, 139, 85].
Since the interactions between the molecules present in the interface of the
solid surface play a signi�cant role on nanoscale capillary processes [148, 51],
we believe the presence of a gas layer at the silica-water interface, as inferred
in our simulations, can inuence the dynamic wetting [141] and thus a�ect-
ing the capillary �lling process in a silica nanochannel. Moreover, we notice
that the presence of an air layer in the silica-water interface could inuence
the friction [141] of the system by modifying the viscosity of the interface.
Additionally, we hypothetize that the high density air layer can be also the
origin of nanobubbles as proposed from an experimental work by Zhang et
al. [219, 220]. Although, the long life time of interfacial nanobubbles con-
tradicts the classical theory of bubble stability because their large Laplace
pressure would cause a rapid di�usive out-ux of gas [65, 129]. Nevertheless,
in recent theoretical and experimental studies some mechanisms explaining
their stability have been already proposed [72, 138, 220, 219, 34, 55, 59].

6.3.3 Study of capillary �lling of water in silica nanochan-
nels

Today, the fundamental relationship between the capillarity and the surface
tension is solidly established, the mechanism of the capillary rise is, in fact,
closely related to that of spreading of droplets on a solid substrate. It can
be understood as a spreading in a vertical direction [35]. The surface ten-
sion of a liquid is one of the more perceptible manifestations of the forces
that act between molecules, and the explanation of this phenomena from a
molecular approach go back to the eighteenth century. Currently, capillar-
ity is an classical topic in physical chemistry nevertheless, on the nanoscale,
this topic has an active present as it moves into areas the great interest as
nanouidics. When a wetting liquid is brought into contact with a solid
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Figure 6.8: Snapshot of a simualtion of the capillary �lling process of a
nanochannel. A liquid consisting of 145000 atoms is �lling a hydrophilic
channel driven by capillary force [51].
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surface in a su�ciently narrow channel, a curved liquid-air or liquid-vapor
surface, the meniscus, is developed due to the surface tensions on the in-
terface solid-liquid-gas[35]. The Young-Laplace equation 6.4 describes the
capillary pressure di�erence across a curved interface, linking the contact
angle between the solid-liquid and the liquid-gas interface shape observed at
the contact line of the three phases as illustrated in Figure 6.9.

�P =
2 cos �

R
(6.4)

, where � P is the pressure di�erence across the uid-gas interface,  is
the surface tension, � is the contact angle and R is the meniscus curvature
radius. The rate of penetration of a liquid into the channel structure is
usually determinated using the Washburn equation 6.5, which relates the
rate of capillary penetration of a liquid to the channel radius (as illustrated
in Figure 6.10), the surface tension and viscosity of the liquid and the contact
angle between the liquid and the channel surface.

x =

 s
R cos �

2�

!
p

t (6.5)

, where x is the distance of penetration of liquid at the time t,  is the surface
tension, � is the contact angle and R is the tube radius. The term into the
brackets is the Washburn coe�cient. The contact angle is well determined in
static conditions however for the dynamical state of a contact line as present
in the spreading of droplets or in the advancing meniscus of a capillary �lling
process, it depends in a complicated way on the particular dynamic state of
the system [28, 132, 95].

In capillary �lling of channels with nanoscale dimensions the e�ect of the
deviations from the static contact angle of the meniscus can not be neglected
as noted by Blake at al. [28] and Martic et al [132]. Moreover, in capillary
ow inside nanochannels, capillary can not be separate from the characteristic
sizes of the system therefore heterogeneities in the structure of the interfacial
zone such as gas layers, nanobubbles or dewetting, have to be taken into
account. In recent experimental works of water capillary ow in nanometer
size channels, Tas et al. [182], Persson et al. [147], Haneveld et al. [85] and Oh
et al. [145] �nd quantitative deviations from the theoretical predictions using
the classical Washburn equation. Persson, Oh and Haneveld measured for
silica channels with heights below 100 nm a smaller than expected Washburn
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Figure 6.9: Sketch of the Young-Laplace equation. The di�erence of pressure
as a function of the curvature radius of the interface water-air for a contact
angle of 20 � and a surface tension of 73 mJ=m2.
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Figure 6.10: Sketch of the Washburn equation modi�ed to model the capillary
�lling of a rectangular cross section channel with height of 10 nm and width
� h. The propagated length of the water meniscus is plotted as a function
of time. The water contact angle is 20 �, the surface tension is 73 mJ=m2 and
the viscosity is 0:89 Pa s.
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(1)

(2)

(3)

(4)

Figure 6.11: Sequence of snapshots from a MD simulation of the capillary
�lling process of a water slab in a silica channel at vacuum with height of
10 nm.
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Pressure velocity
vacuum 15 nm ns� 1

10 bar 10 nm ns� 1

20 bar 0 nm ns� 1

75 bar 0 nm ns� 1

150 bar 0 nm ns� 1

Table 6.11: Mean axial velocities of the advancing meniscus of water in a
silica nanochannel of 10 nm height at di�erent air pressures.

coe�cient. The observed deviation of Washburn coe�cient is higher for
decreasing channel heights. Various suggestions have been argued to explain
the observed reduction in the capillary �lling rate of silica channels however
the explanation is still under debate [176, 182, 139, 85]. As we noticed in this
thesis we infer from our simulations of the silica-water-air interface a zone,
placed very close to the silica surface, where the concentration of nitrogen
and oxygen are signi�cantly higher than the concentration of these gases in
the bulk water. We think that this layer could a�ect the velocity of the
advancing meniscus via a modi�ed viscosity. Additionally, we believe that
the high density air layer can be also the origin of nanobubbles as it was
proposed from an experimental work by Zhang et al. [219, 220] therefore
nucleaded nanobubbles could inuence the slip boundary condition at the
interface [205]. Although, to date the evidence for the existence of interfacial
nanobubbles is still contradictory nevertheless some mechanisms explaining
their stability have been already proposed [72, 138, 220, 219, 34, 55, 59]. Our
hypothesis is consistent with the experimental observations of capillary �lling
of nanochannels [147, 85, 184, 145] since the deviations in the Washburn
coe�cient are higher as the heights of the channel are smaller, it means
the impact of the presence of the gas layer on the ow rate increase as the
relation between the channel height and the layer thickness is closer. To
con�rm the presence of air at high pressure a�ects the capillary �lling speed
in channels, we perform simulations of a water slab �lling an amorphous
silica channel of 10 nm height at di�erent high air pressures (0, 10, 20, 75
and 150 bar) as shown in Figure 6.11, from the simulations we extract the
mean axial velocity of the advancing water slab (Figure 6.12. We notice that
the water meniscus is not advancing as air pressures higher than 20 bar are
imposed to the system. Moreover, the mean axial velocity of the water slab
decreases as higher air pressures are imposed as shown in Table 6.11. In fact,
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Figure 6.12: Capillary �lling speed of water in a silica nanochannel of 10 nm
height. (a) Mean axial velocity of the advancing meniscus of water at vacuum
as a function of the time. (b) Mean axial velocity of the advancing meniscus
at 10 bar as a function of the time.
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Pressure Water contact angle
vacuum 45�

10 bar 70�

20 bar 80�

75 bar 90�

150 bar 90�

Table 6.12: Water contact angle of the advancing meniscus at di�erent air
pressures.

we observe a rise in the dynamic contact angle of the advancing meniscus
as higher pressures are imposed as shown in Table 6.12. In our previous
study of the e�ect of air on the static WCA of a water droplet on a silica
substrate at di�erent pressures, no changes in the static WCA are observed
as we vary the air pressure around the droplet. Therefore, we infer that the
air con�ned inside the channel is a�ecting only the dynamic contact angle
of the water meniscus which could conduct to the observed decrease in the
mean axial velocity as it was inferred by Han et al. [84] for capillary �lling
of nanochannels with ethanol, isopropanol and water.

6.4 Conclusions
We have parametrized and calibrated a MD force �eld which is suitable to
simulate nanouidic phenomena in silica-water-air systems. We perform sim-
ulations of water nanodroplets on silica surfaces at di�erent air pressures in
order to study the role of the air on the WCA. Moreover, we conduct MD
simulations of bulk water on a silica slabs to investigate the silica-water inter-
face in presence of air at di�erent pressures. Adjacent to the immersed silica
surface we observe a zone of ca 1 nm of thickness where a higher concentration
of gas is measured. We hypothesize that this gas layer could be part of the
explanation of unusual phenomena related to capillary �lling of nanochannels
observed experimentally. Furthermore, we believe that this layer with high
density of gas could promote the nucleation of nanobubbles and inuencing
its stability on a silica substrate. Subsequently, we perform MD simulations
of the water capillary �lling of a silica nanochannel of 10 nmheight. We be-
lieve that the presence of air in the system could be the origin of two di�erent
e�ects which simultaneously can inuence the capillary �lling rate. The air
dissolved in the liquid produces a high density air layer very close to the silica
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substrate as shown in Figure 6.7. This air layer a�ect the �lling rate via a de-
creased viscosity in the interface between the water and the silica substrate.
In addition, the air in the channel could a�ect the capillary force by a modi-
�cation of the dynamic contact angle of the advancing meniscus as observed
in our simulations (Table 6.10). We attempted to perform MD simulations
to study directly the e�ect of interface nanobubbles on the capillary �lling
rate however due to the required size of the system and the very long simu-
lation time needed to evaluate the stability of nanobubbles, we were not able
to accomplish this target with our computational resources. Nevertheless,
we believe that our results provide useful contributions to the study of the
capillary phenomena at the nanoscale and encourage future computational
studies of this type of systems.

87



Chapter 7

Summary and Future Work

In this thesis molecular dynamics simulations have been performed to study
di�erent types of basic nanodevices. A study of the suitability to use sin-
gle wall carbon nanotubes as liquid conduits is accomplished including an
detailed investigation of the possibility of the exploitation of thermal gra-
dients as driving mechanism to move liquids on the nanoscale. Moreover,
molecular dynamics simulations are used to analyze thermophoretic linear
molecular motors fabricated of coaxial carbon nanotubes. Finally, new force
�elds have been calibrated to model silica, water and air in order to simulate
nanouidic systems. Using the calibrated force �elds, simulations of water
nanodroplets mounted on silica substrates and of water capillary �lling of
silica nanochannels are performed to investigate the inuence of air on the
capillary �lling process in nanoscale channels. As we noticed in the conclu-
sions of the chapter 6, we believe that more powerful computational resources
are needed to study directly the inuence nanobubbles on the capillary �lling
process of nanochannels. We attempt as a future target the development of
a more complex and realistic air model taking into account the quadrupole
e�ect [43] of the electric charges at the nitrogen and oxygen atoms. Never-
theless, it is not clear if the inclusion of that quadrupole e�ect could provide
improved results in the analysis of the capillary �lling process in presence of
air. With this thesis, I wish contribute to the advance of the understanding
of some basic concepts necessary for the development of uidic nanodevices
and to encourage the future exploitation of molecular dynamics simulations
as a standard analytical tool to study nanouidic phenomena related to the
development of nanodevices.
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