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Abstract

The network design problem in liner shipping is of incregsmportance in a strongly competitive market
where potential cost reductions can influence market shadepeofits significantly. In this paper the
network design and fleet assignment problems are combiriecaimixed integer linear programming
model minimizing the overall cost. To better reflect the Hidalsituation we take into account the cost of
transhipment, a heterogeneous fleet, route dependantittapaand butterfly routes. To the best of our
knowledge it is the first time aaxactsolution method to the problem considers transhipment chise
problem is solved with branch-and-cut using clover andghgzment inequalities. Computational results
are reported for instances with up to 15 ports.

1 Introduction

Liner shipping routes are characterized by the cyclic mupeatedly sailed during the scheduled horizon
and the transhipment of cargo in hub ports. The process afriag the route network of a liner shipping
company is essential for the competitiveness of the comaadyts ability to sustain and possibly improve
the share of the global containerized freight market. Thablem of determining the structure of the
route network we call the liner shipping network design peab(LS-NDP). Designing efficient routes can
reduce the overall cost and the €@mission per container shipped.

To provide a competitive product a liner shipping companyshai a minimal cost be able to satisfy
the request from customers for shipment of containers.rlshgping companies usually have a forecast
period over which the shipping demands are predicted basédtoric data and recent development. The
LS-NDP consists of designing vessel routes so that the dsted requests are satisfied with a minimal cost
for the company.

A vessel will repeatedly sail the assigned route througtieiéntire planning horizon. This means that
the routes are cyclic and the capacity of a link on a route a@pen the number of times the link is sailed
in the planning horizon.

The LS-NDP gained increasing attention about three decagtes/hen the container freight started to
increase significantly. Recently the interest in the aradri@eased due to the large focus on@&mission
generated by the vessels, and the dramatic change in derraatisd by the current financial crisis, which
has resulted in a need to focus on lowering the costs.

The similarity between LS-NDP, network design and routingigems leads us to the assumption that
methods that work well for other scheduling and network glepiroblems will also work well for the LS-
NDP. An example of such a method is the branch-and-cut metinich has been successfully applied to
the vehicle routing problem with time windows (VRPTW) prebl, see Bard et al. [4] and Kallehauge et
al. [12].

*This research is partly supported by the Danish Maritimed~un




In this paper we present a mathematical formulation of tllem which includes transhipment, tran-
shipment cost and allows a mix of simple dndterflyroutes. An exact method using branch-and-cut has
been developed for solving the presented model. The deseélbanch-and-cut method has been run on
a set of test instances and compared to the CPLEX MIP sol@puT knowledge it is the first time an
exact method has been applied to a problem which includestiiament and the results show that small
instances can be solved to optimality. The developed brandhcut method clearly outperforms CPLEX.
The test results presented in the the computational expatsnSection 5, document that the developed
algorithm can be used for planning the routes of a smallgapshg company or a concrete region of the
network of a bigger liner shipping company. The LS-NDP peof$ we solve to optimality are compa-
rable in size to the test instances presented in recerdtliter on shipping network design using heuristic
solution methods (see Agarwal and Ergun [1] and Alvarez [2])

We will start with a literature review in Section 2. In Secti8, the problem is formulated as a graph
theoretical problem and a mathematical model of the LS-NDBrésented. In Section 4 the branch-and-
cut algorithm is described, and separation algorithmdteirtroduced transhipment cuts and connectivity
cuts are presented. In Section 5, the tests and resultssmesded. Finally, we make some concluding
remarks and suggest areas for further research in Section 6.

2 Literaturereview

In this section we summarize the literature which has bee asrectly in our work. For a detailed
literature review of cargo shipping optimization problewesrefer the reader to the survey papers, Ronen
[17], Ronen et al. [18], and Christiansen et al. [6]. The exasl also referred to Christiansen et al. [7] for
an comprehensive introduction to the areas of optimizationaritime transportation.

In 1991 Rana and Vickson [16] presented a state-of-the-agetfor container shipping on the North
Atlantic trade routes. They worked with an outbound-inbaprinciple which, until recently, has been a
standard principle in the liner shipping industry. The autbd-inbound principle means that the ports are
listed in a predefined order and that a vessel goes throudistiheone direction visiting selected ports and
upon return goes through the list in the reverse directidit igaching the first port visited on the list. The
liner shipping companies still have an inbound-outbouny ofaviewing some of their routes. However,
there is no requirement that the routes must be scheduked/yi. For shipping routes along a somewhat
straight coastline such as the US West Coast investigaf@éjithis is a natural setup. For inter continental
routes or routes in enclosed seas such as the Baltic, Meditan and Black Sea the overall structure is
usually not inbound-outbound. As a result, better routeg beafound by relaxing the inbound-outbound
restriction.

Rana and Vickson [16], Christiansen and Nygreen [5], Fage[8], Agarwal and Ergun [1] and Al-
varez [2] allow for several visits to a port. The allowanceseferal visits to a port is, in all the mentioned
papers (with the exception of [1]) achieved by combining@@routes. In a simple route each port is
visited at most once. Agarwal and Ergun [1] solve the prolgnasing a time-space graph where a port
can be visited several times as long as the visit is not ongdhesveekday.

The shipping companies often wish to schedule the frequehaydeparture at a port so that it corre-
sponds to the demand at the port. Fagerholt [8] and Chritiaand Nygreen [5], and Agarwal and Ergun
[1] have a weekly frequency requirement on the routes. Fedef8] and Christiansen and Nygreen [5]
formulate the weekly frequency by restricting the time ofante to be less than a week. This is applicable
to small shipping routes such as regional routes. Howemsrciear that when it comes to intercontinental
shipping the routes are usually longer than a week. Thisrislled in Agarwal and Ergun [1] by covering
the weekly departures with a sufficient number of vessele@tame type.

The use and influence of transhipment on the liner shippihgar& design is described by Notteboom
and Rodrigue [15]. However only a few decades ago the useapn$hipment was much less common.
Therefore older articles such as Rana and Vickson [16] daehitde transhipment in their route planning.
The model solved in [16] was extended in the recent work by&hi et al [19], where the restrictive
visiting order of Rana and Vickson [16] is relaxed as to reprg a more realistic set of routes. Moreover,
the repositioning of empty containers is included by Shing al. [19]. To solve the problem presented in
[19] a genetic algorithm is used, however, transhipmernvisansidered. Christiansen and Nygreen [5] use



column generation to solve the routing problem for ammohipgng in Norway. In the problem solved
in [5] only ammonia is shipped and therefore transhipmenbisconsidered. Fagerholt [8] apply column
generation for solving the liner shipping problem along M@wegian coast. Others, such as Gelareh
and Meng [10] exclusively deal with the fleet deployment onredpfined set of routes. In the recent
paper by Agarwal and Ergun [1], the authors solve largerlprab by using a heuristic based on Benders’
Decomposition and compare it to a similar solution methoittvluses column generation. Recently an
article on liner shipping network design optimization hagb publish by Alvarez [2] using tabu search
and column generation. The model has transhipment cosarasfithe overall cost evaluation. Rana and
Vickson [16], Christiansen and Nygreen [5] and Fagerhgltd@not consider transhipment. Even though
Notteboom and Rodrigue in [15] emphasize the importanceasfshipment in the shipping networks,
Agarwal and Ergun in [1] are the first to include transhipmietibe liner shipping network design problem.
However, they do not include transhipment cost and Alvang2]ifrom 2009 is to our knowledge the first
to consider the cost of transhipment when designing thepsigpnetwork. In models where each port is
represented by one vertex at the points where two cycleamected a transshipment from an early visit
of a vessel to a later visit of the same vessel can occur. Abwitliscussed in Section 3.2.1 this results in
complications in the calculation of transshipment costsodr knowledge the exact cost of transshipment
has not been calculated at the cycle connection pointeeadxlote that Argawal and Ergun [1] do not use a
single vertex for representing a port and that they do ndadectransshipment cost. Clearly increasing the
number of vertices and thereby the number of edges in théngvdlsignificantly increase the complexity
of the problem even though it gives more flexibility in the t®structure.

The model by Agarwal and Ergun [1] and Alvarez [2] are so famtiost comprehensive representations
of the problem faced by liner shipping companies. Alvardzi2lude many relevant parameters in the
objective while Agarwal and Ergun [1] only include cost.

Even though shipping companies often have several veddbls same type it is not always an optimal
solution to force the routes to be sailed by the same vegselyd in real-life routes there are some smaller
ports which, due to low demand, only require a bimonthly depa and some busy ports might require a
biweekly departure.

To the best of our knowledge no results for the LS-NDP, usitagnth-and-cut, have been presented in
the literature. As mentioned in Section 1 good results haantachieved by [4] and [12] when applying
branch-and-cut to the VRPTW. Since the VRPTW is somewhaitagino the LS-NDP with its heteroge-
neous fleet and cyclic routes it is natural to assume thatchrand-cut also will result in good solutions
for the LS-NDP.

3 Problem formulation

Let G be a directed graph and 16N, A, V, M, t,,,...) represent the network with vertex 98t arc set
A, a set of vessel¥, a set of demanddI and a forecast period with length,.... Each vertexo € N
represents a port. Each gicj) € A is a direct connection between two ports for a given vesselV.
Each demandh € M, m = (i, j,d, t) is the amound € Z of typet to be shipped from an origin poirto
a destination porf. Each vertey has a cost of transhipping demaingl depending on the type of demand,
c* and a service time;. Each ara: has a cost;; of carrying demand on a direct connection from port
i to portj. Each ardi, j) also has an associated tirtj¢ reflecting the prefixed time it takes for vessel
to sail a direct connection from pairto port;. Each vessel € V has a capacitg’?. The liner shipping
network design problem is to find a connected route for eashale € V where the customer demands
are satisfied and the overall cost is minimized. Since a Vass@ned a route sails continuously during the
whole planning horizon, the cost to be minimized is a lineguction of the cost of using a selected vessel,
the cost of transporting a demand on the arcs and the costrstipping at ports. It can be argued that the
cost of transporting a demand is negligible however by ohiing a small cost corresponding to time, one
can be assured that unnecessary extra time or travel isea/fod the demand. In the cost of transporting
a demand we only include the time the demand spend on thelegbaot the time the demand uses at a
port during transhipment. The objective is to minimize therall cost so that the required demand can be
shipped from their origin to their destination within theg interval of length,,,...

Figure 1 shows an example of a network containing two buytesfites. In Figure 1 transshipment can



occur at the portgl, B andC'. At portsA andB transhipment can occur between the two routes moreover at
port A transhipment can occur between two visits of route 2 andtptranshipment can occur between
two visits of route 1.

----Route 1
— Route 2

Figure 1: An example of two routes in a liner shipping netwdtkch route can be constructed by following
the arcs in increasing order starting with arc number 1. §igoment can take place at port A, B and C.

3.1 Mathematical Model

There is no standard mathematical formulation of the lifgp@ng problem since each liner shipping
company has specific constraints based on strategic desighs a result of this, several formulations and
models have been presented in the literature.

In this section we first present a comprehensive mathenhaiodel for the liner shipping problem
which includes transhipment, transhipment cost, simpléas butterfly routes and a heterogeneous vessel
fleet.

3.2 TheNetwork Design Problem

In the model presented by Agarwal and Ergun in [1] a time-sgaaph structure is used, where the time
is the day of week and weekly departure by vessels of the sgpeeis enforced on the same weekday.
However in the here presented version of the liner shippinglpm a port is allowed to be visited less than
once a week and different vessel types are permitted tasadame route. Allowing for other than weekly
departure and different vessel types on a route may reslalivier cost.

We have the following variables:

z{?* the amount of demana shipped on ar¢i, j) by vesseb,

ug; abinary variable which is 1 if ar@, j) is the first or the last arc on a route of vesselith two loops,
0 otherwise,

ej; avariable enumerating the order of the arcs on the route,

y;;  abinary variable which is 1 if ar@, j) is in the route of vessel, 0 otherwise,

fmv the amount of demanat from vesseb transhipped at port,

s?  a binary variable which is 1 if is the port which may connect two loops for vesseldenoted
centerpoint,

N

I the amount of demaneh from vesseb enteringi from j and not leaving on the arc froirto &,

T,  theroute travel time of vesse)

hY  abinary variable which is 1 if vesselis sailing and 0 otherwise,



We use the following parameters

C" the capacity of vessel,

t}; the time it takes for vesselto sail arc(i, ;)
tmaz the duration of the forecast period,

t, the time at quay at any port.

The demands are defined as:

™ if i =o(m)
bt = —d™ fi=d(m) meM,ieN
0 otherwise

whereo(m) is the port of origin of demangh andd(m) is the destination port of demamnd.

The four "big-M” coefficientsiM;,Ms, M3 and M, are sufficiently large constants. We operate with
three different costs:” the cost of vessel sailing,c;’; the cost of shipping demand on connectiorti, j),
andc}" the cost of transhipping demandat porti. This leads to the model:

Min: > N > Tl Y Y T+ > et @

meM (i,j)€EA veEV meM jEN veEV
s.t.
(Flow) SN @ = > = ieNmeM )
vEV j:(i,7)EA vEV j:(j,i)EA
(Trans 0) e A= Y ay meM,ieN,veV  (3)
j:(j,i)EA j:(i,5)EA
(Trans 1) fr = > = M- s)) meM,ieN,veV  (4)
Jj,heN,veV
(Trans 2) fhig > afi” — i’ — M2(2 = yjs — yin +uji +un)  meM,ji,he NveV (5
(Trans 3) fhig > afi” — i’ — Ms(4 —uj —uh —y5i —yin)  meM,ji,heNveV  (6)
. t
(Capacity) — 2C%y; > > al” (G,j)e A,veV  (7)
To meM
(Center) > osi=1 veV  (8)
1eEN
(First arc) > ouf=2 veV (9
(ij)eA
(Out arc) si— Y u <0 ieN,veV (10
(ij)EA
(In arc) si— Y ul <0 ieN,veV (11)
(ji)eA
(Cyclic) Sowli— D yh=0 ieN,weV (12
J:(i,5)€EA J:(4,1)EA
(Connect 0) Sowh-si<1 ieN,veV (13)
j:(i,7)EA
(ConnECt 1) ejz - e;}h + M4(y;}h + yjz -2 ujz - u;}h) S -1 7:7.77 h € N7 v E Vv (14)
(Ships) Yl — k" <0 (i,j)e A,veV  (15)
(Time 0) To < tmag veV  (16)
(Time 1) o= Y. bt +t) veV (17)
i,5:(4,5)EA



uij» yi; € {0, 1} (i,j) e A,veV (18)

fiin >0 meM,j,i,he NjveV (29)
e ezt i,jeN,veV (20)
i’ >0 (i,j)eAmeM,v eV (21)
sy €{0,1} ieNveV (22)
r' € {0,1} veV (23)

The objective (1) minimizes the sum of the cost of transpgrthe demand, the cost of transhipping
demand and the cost of using the vessels. Constraints (@)eefi@w conservation that all demande M
is satisfied. Constraints (3) ensure tiifitV is larger than the difference between the incoming demand
and outgoing demanek on a vesseb. Since the objective is to minimize the cost atit /¥ is positive
then " will be equal to the amount transhipped. Constraints (4)a (6) together with the constraints
(9), (10),(11) and (14) for}; ensure thayf;"” at the vertex connecting two loops sailed by the same
vessel also includes the amount left at the port to be pickddter by the same vessel.

The capacity constraints (7) ensure that the amount shippegsseb on arc(i, j) is less than the
capacity of the vessel multiplied by the number of trips which can be completed ia sishedule period
tmaz- NoOte that the value of, is determined in constraint (17) where the right hand sidbéstime of
the route sailed by vessel The constraints (8) ensure that for each route exactly enewis selected
as centerpoint. The constraints (12) ensure that for everygvery vessel, which enters the port, also
leaves the port. Constraints (13) ensure that a vesseés not visit its selected start port more than twice.
Constraints (14) ensure that all parts of a route sailed bgele is connected to the start post of vessel
v. Constraints (15) ensure that there will be a cost for useggelv in the objective. Constraints (16)
ensure that no route is longer than the schedule period.

In the following sections we will discuss how the requiretsespecial to the LS-NDP can be formulated
in a linear model.

3.21 Transhipment cost in the Liner Shipping Network Design

Agarwal and Ergun [1] argued that transhipment is the corénef shipping. We would like to add
that transhipment of goods is frequently occurring in liskipping and the associated cost should not be
ignored when designing the network. Transhipment are akbiw the model presented in [1], however the
expenses of transhipment were not included in the cost ledion before the work by Alvarez in [2]. To
calculate the transhipment cost when satisfying demandsspecific network design one must know the
amount of containers, which is transhipped. We define a bterigf™ which is the amount of containers
in demandm transhipped at port In the objective function (1) the cosf* of transhipping one unit at
porti is included. To find the value of’™ we have the constraints (3). When the routes are simple the
amount transshipped can be calculated by constraint (Bealdowever whebutterflyroutes exists there
can be cargo transhipped at the centerpoint which is notilzaéd by the constraint (3). This cargo is the
containers transhipped between two visits of the same toutee port. Therefore to calculate the exact
amount of containers it is important to be able to distinglbistween the two visits to the centerpoint. This
can be achieved by enumerating the edges on the route anéhmérk first and last edge on the entire
route. The integer variable$; enumerates the edges on the route and the binary variaf)lesarks the
first and last edge on lautterflyroute. The following constraints ensure that the first arstl églge on a
butterflyroute are found:



(First arc) > uy =2 veV  (24)

(ij)eA

(Out arc) si— > ul <0 ieN,ueV  (25)
(ij)eA

(In arc) si— Y <0 ieN,veV  (26)
(ji)eA

(Connectl)  ej; — e, + Mu(yjy, + vy — 2 —uj; —uj,) < —1 i,j,heN,v eV (27)

Wheres} is the port selected as centerpoint for the route. The cains$r(27) ensure that if the route is
abutterflyroute then the last eddg, i) on the route.}; = 1 and the first edgéi, 7) on the routes}, = 1.

To find the demand transhipped from one visit to another wisthe same vessel we introduce the
variable f7" indicating the transhipment inwhen arriving form portj and departing to port. Then on
abutterflyroute the two visits to a centerpoinare the one where}; = uj), = 1 andy}; = y;;, = 1and
the one where;;; = uj; = 0 andyy, = y;; = 1 Clearly if v}, = uj), = 1 andy;}; = yj;, = 1 then the
transhipment at one visit to the paris z7;* — 271", which can be formulated as:

(Trans 3) fiiy > a” — i’ — M3(4 —uf; —wj — vy —yin) meM,ji,he NyueV (28)

If up, = v} = 0andyy, =y}, = 1 then the transhipment at one visit to the poig ;% — 7', which
can be formulated as:

(Trans 2)  fili’ > o —ai) — Ma(2 — yp; — yip +ug; +uy) meMki,le Noue V. (29)

This must be included in the value of tif&* used in the objective. However thf#*" only need to be
adjusted for the centerpoint of the route. The poig a centerpoint ifs} = 1. At the centerpoint the
transhipment amount is the sum of the transhipment on theisits. This can be formulated as:

(Trans 1) = > = M1 sY) meM,ieN,veV  (30)
J,heN,veV

Constraints (28) calculates the amount unloaded from thselat the visit to portfrom the end edge to
the start edge of the route. Constraints (29) calculatesri@unt unloaded from the vessel at the other
visit to porti. Constraints (30) ensure that this is included in the trgomsbnt on route at a centerpoint
The number of constraints in (29) and (28Y2¢| N3||M||V|) which is a significantly large number. The
additional binary and integer variableg ande;; may increase the size of the branch and bound tree.

3.2.2 Thecyclic structure of liner shipping routes

In the liner shipping network design problem a vessel mustdesach port it enters. This is called flow
conservation and is modeled by constraints (12).

Clearly it is important to ensure that a route is connectethabit can be sailed by a single vessel
and avoid having several disconnected subtours, for exatam separate cycles, representing a route.
When modeling the constraint that the route must be condédteoften assumed that the route is simple.
Although the routes are simple in [1], the time-space graggdlby Agarwal and Ergun in [1] allows for
multiple visits to a port as long as the visits do not happethersame day of the week.

In the model presented here we let each route have a port wiagtbe visited twice. This is to model
the real life situation with some port used as hubs for themfiorts. Notteboom notes in [14] that this
form of design is used by Maersk Sealand. In liner shippirdhsoutes are denotdulitterflyroutes.

To modelbutterflyroutes the binary variable’ is introduced indicating which port on the route may
be used as Hub. To have a polynomial number of constraintgiegsthat the routes are connected we
have used the approach proposed by Tucker et al. [13] for erating the vertices on a simple path. In
constraints (14) the arcs on the route are enumerated thstéiae ports using the;; variables to mark the



start and end arc of the route. The constraints presenteditheT et al. [13] are used in vehicle routing
problems and variances with simple routes. However in tlesgnted model for the LS-NDP a single
port on the route may be visited twice. Allowing the posdipibf two visits to the hub port it could be
formulated as:

(Center) dosi=1 veV (31)
€N
(Butterfly) zi — 2] + My(y;; —sj) < Mg —1 i,jeN,veV (32)

Wherez} is an positive integer that indicates the order in which thetipare visited. However, since the
cost of transshipment is included as described in previeasich 3.2.1 it is needed to know the start and
end edges of the route at the hub port. Therefore the contsisdormulated as:

(Connectl) e, —ei) + Malys), +yj; — 2 —uj; —uj,) < —1 i,j,heN,veV (33)

This means that constraints concernijgandu;; must be included. Therefore to model connected
butterflyroutes while allowing for calculating the transhipmenttdb® constraints (9), (10), (11), (12),
(13), (31) and (33) are needed. Note that there is an oveiithghe constraints needed for calculating the
exact transhipment cost.

3.2.3 Thenumber of timesaroute can be completed in a schedule period

The number of times a link is sailed during the time perioéetf the capacity on the given link.

In our model a route can at most contain a link once. Howewerydink on a given route is sailed
the number of times the route can be completed by the assigrssé! in the schedule period. Since a link
can be sailed on several different routes, the number ofstaniek is sailed also depends on the number
of routes the link appears in.

For example a vessel with the capacity to carry 1000 contsiaed sailing a route which takes 30
days can in a 30 day forecast period only ship 1000 contamesach leg of the route. However if the
same vessel sailed a route which only takes 5 days it couldoim leg of the route, ship 6000 containers
during the same period. Therefore we include the route keimgthe capacity constraint in the LS-NDP
model. The consideration of route length in liner shippiegwvork design was first introduced by Agarwal
and Ergun [1], where vessels of the same type are assignedoistea so that there is always a weekly
departure. As mentioned earlier weekly departures are sivich requirement for all shipping companies.
In real-life shipping, ports with smaller demands are eidibi-monthly. Moreover it may happen that a
shipping company does not have the right number of ships p€aific type to cover a weekly departure
on aroute. Itis also likely that a better solution has défarvessel types assigned to a route.

To include the time of the route in the calculation of the adjyawe multiply the capacity of a vessel
with the number of times the route can be completed duringfdhecast period. This requirement is
formulated by the constraints (7) the partial route is ideldiin the capacity calculation as a partial vessel
capacity. These constraints are not linear and thus to $bisgroblem using an integer programming
solver it is necessary to linearize the constraints.

We here linearize the equation expressed by constraint3ird is done by introducing the following
variables:

q’ tmaz/Tv, the schedule period divided by the route time.

Toh Some real number greater than the travel time of vesselarc(g, k) plus service time
at porth multiplied by the times the route can be completed

M Upper bound for the maximum capacity times maximum route tm any arc.

If y;; = 0 the flowz}}” must be equal to 0. Thus we introduce the constraints:

(Capacity2) > ap* <yiM  (i,j)€ A,veV (34)
meM



These constraints ensure that nothing can be transportad arc not included in a route. Now we look
at the remaining case where the &igj) is traversed. Sincg;; = 1 andty;, + t, > 0 then we know that
Ty > 0.

We introduce the variabl¢’ so that :
tp/Tw >q¢° vEV (35)

Whereq” € R . Note that the constraint (35) is not linear. Singe> 0 for all v € V, we can express
constraint (35) as:

tmaz 2 qUT’U v 6 V (36)
However constraint (36) is still not linear. An entry in thensover(g, ) € A on the righthand side is
q° (ch + th) whenyg;, is one, and zero whemn,,, is zero. Therefore to linearize this by the "Big M”
method from [20] we write the following constraints:

(Cap 3) Ton + M1 —yg,) —q"(tgn +tn) >0 (g,h) e A,veV (37)

(route time) tmaz — Z ron = 0 veV (38)
(9,h)EA

q">0 veV (39)

Ton >0 (g,h) e A,veV (40)

Constraints (37) ensure that whey, is one therr;h > q"(tgn + trn). Whenyg, is zero then:
T > q Y(tgn +tn) — M. Note thatd must be chosen so thgit(¢,, +t,) — M < 0, and that constraints
(38) can replace constraints (16) in the model.

Now we can lely” replacet,,..;/7, in the constraint formulation (7) and thereby we get ineityzal

¢"Clyly > > all YEAVEV (41)
meM

which we again must linearize. Here we note that the left hade is equal tg"C” wheny;; = 1 and
zero otherwise. Hence

(Capacity 1) ¢'C"+ M-yl > > alp (i,j)e A,veV (42)
meM

The constraints of type (42) ensure that the flow on all saited is less thag” C?. For all arcs not sailed
constraints (42) does not add any restrictions given Mias chosen big enough. Recall that constraints
(34) ensure that there is not assigned flow to arcs which areailed. We include constraints (34), (37),
(38), (42) and variable definitions (39) and (40) to replaoe mon-linear capacity constraints (7) and
constraints (16) and (17).

These constraints are included in the integer linear prograg (ILP) model used in the test for the
branch-and-bound and branch-and-cut method.

3.24 The Compact mode for Liner Shipping

The linear model for the liner shipping problem, which hessnamed theompact modeis the model
presented in the beginning of this section where consiéimi (16) and (17) are replaced by the constraints
(34), (37), (38), (42) and variable definitions (39) and (48)% the name indicates theompact model
has a polynomial number of constraints. Since this modeheal it can be solved directly by an ILP
solver. The problem is NP hard as it includes the model [1] sigeial case, and the 'big-M’ constraints
(4),(5),(6),(14),(37) and (42) together with the large mm@mof variables make the problem hard to solve
for ILP solvers.



4 The Solution M ethod

Thecompact modeatan be solved using branch-and-bound but the 'big-M’ camsts may result in large
integrality gaps and poor bounds resulting in large searxdst Moreover the many variables make the
problem combinatorically hard. As mentioned earlier thanoh-and-cut method has successfully been
applied to vehicle routing problems (Ascheuer et al. [3]) ather transportation network design problem,
(Gendreau et al. [11]). Therefore itis interesting to irtigegte the possibilities for using the branch-and-cut
method on the LS-NDP and compare it with a branch-and-bowsttoa.

4.1 Branch-and-cut

The branch-and-cut method generally give good results obl@ms with complicating constraints such as
non linear constraints or problems with an exponential nemadf constraints. As in Ascheuer et al. [3]
and Gendreau et al. [11] we gradually add the transhipmeh¢annectivity constraints to the formulation
when they are violated.

4.1.1 Transhipment cuts

Calculating the amount unloaded from a vessel at a port tod#eld onto the same vessel at a later visit
to the port is quite cumbersome. For calculating the trgomeknt to be picked up at a port by the same
vessel we use the constraints (4),(5) and (6). Note thatieonts (5) and (6) each represemg|M||V|
constraints. We wish to remove the constraints (4),(5) &aiid introduce them as cuts when they are
violated. Transhipmentto be picked up at a port by the saresel@nly occurs on butterflyroute at the
point the two loops meet. The point where the two loops meztlze centerpoint of the route and it is
indicated bys; = 1.

We have constructed a cut so that if all arcs in a set of @rese sailed by a vesselthen if it is a
butterfly loop with the centerpois = 1, we have two arcg: andih in T' which are not on the same loop
that can be selected as the start and end arc of the routeisTaisnulated as:

uj; + uy +2(T) =y (1)) = 2, (43)

where the arcgi andih are the first and last arc on the route. For calculating theshipment between
two visits by the same vessel on this route we add the follgwomnstraints as cuts:

(Tranship 1) =y - M- ) (44)
J,heEN,vEV

(Tranship 2) frig = o —x? — M(2 = y5 — yip, + uj; +u)) (45)

(Tranship 3) frig =t — it — M(4 —uj; —ugy — g — yin) (46)

Note that for each of the constraints (43) added one of eags$tiint (44),(45) and (46) is added.

4.1.2 Connectivity cuts

In the network design cases where branch-and-cut has bedadijt is assumed that routes are simple.
For simple routes in the generalized traveling salesmabl@no the connectivity constraints have been
formulated by Fischetti et al. [9] as:

Swi< > w, > wu+l veVOCSCNEeSIeN\S (47)
i.j€ES heNgeS\{k} eeN

As mentioned before the real routes of the shipping comgareoften not simple and we have introduced
the concept obutterflyroutes in Section 3.2.2. This extension introduces new agaker connectivity
constraints. Since the first and last edge is selected byadhshipment cuts (see Section 4.1.1) the edge
order can be ignored here.
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The connectivity constraints from [9] have been modifiedltovabutterflyroutes. We will present a
connectivity cut which will allow for) 4 1 subtours which all have exactly one pointin common. Because
the subtours must go through exactly one common point, wetgaltype of cut eclover-cut The clover-
cut removes any route which is not connected but it keepgsouhich are pseudo-simple.

Lemma 1l For any cyclic disconnectetloverpath there exists a sét, and two verticeg and! for which
the following clover-cut inequality is violated. Moreovwss S,k and! violating a connectedlover path
exists. This can be expressed as:

SNyl < Dyt vsi— D yhtvsi+1 veVHCSCNEeSIeN\S (48)
i,jES heNgeS\{k} eeN

Pr oof
Letwv; be the route. First we prove that we cannot fingl, & and! for which the clover-cut inequality does
not hold for a connected pseudo-simple path.

Case 1 on S: Assume that there is no part of the routeoutside ofS, wherew; is a connected pseudo-
simple route. Theny_ _ y.; = 0. Moreover by constraints (13) we have that all vertices wjth= 0

has at most one ingoing arc and the one vertex wlith= 1 has at most ingoing arcs. Therefore for all
k € Sandl € N\ S it must holds that

DTS DL wp sy =) wi es 1 (49)

3,J€S heNgeS\{k} eeN

Case 2 on S: Assume that there is a part of the route fgroutside ofS and thatv, is a pseudo-simple
route. In this case clearly there must be at least ong;araherei € N \ 5,5 € S.

st =0As" =0: Then0 < > v, < 1.Inthis case the clover-cut holds if the following ineqtali
holds 3=, jcs i) < Ynenges\(r} Yng- Sinces;' = 0 and therefore there is at most one arc
entering vertex: and since the whole route is not ththis inequality is trivially true for connected
pseudo-simple routes.

spt =1 A s =0: Theinequality beCOMES,; ;s Ui} < D penges\ (k) Yhg — 2een Yol +14. Inthis
cased < ) cn Yo < 1. Thereforeitis enoughto show thal, .oy < 3 penges k) Yng T ¥
which clearly holds for a connected pseudo-simple routeesin> >, _n ¥,.-

st =0As;t =1t Sincey vy <. Thenclearlyify®, .cqvii —1 < 3 cnges (1) Yy the clover
cutwill hold. This is trivially true SinC&_, cnye s (k) Yny = 2oijes Yis T 2mensmes Ymn — L-

Where} ., cn\s,nes Ymn = 0 @NAWUSY 5 o e o () Yhg = 2oijes Yis — 1-

Therefore this cut holds for all connected pseudo-simpllega

Now we will prove that there existS, £ and! so that the clover-cut does not hold whenis discon-
nected.

Let v;, andwvy, be two disconnected componentswf Let S contain exactly the vertices of, .
Clearly by constraints (12);, andvy, are cyclic. Since, isinN\ .S and sinceN'\ S > 2andS > 2, we
can chooséonu,, so thats;* = 0 andk onvy, sothats;' = 0. By the choice of there is no arcs entering
S and therefore we have that, ;. s 7} > > henges\ (1} Yny- MOreover agis onvy, ands;* = 0 then

ZeEN Y = 1. Thus ClearlyZi,jeS yfjl > ZheNgeS\{k} yZi; +1pst — ZeGN Yol st + 1. .

For our case withbutterflyroutesy) = 1 and the cut becomes:

S Y oyt Y uhtsi+1l veVOCSCNkEkeSIeEN\S (50)
i,jES heNgeS\{k} eEN
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4.1.3 Initial Problem for the branch-and-cut Algorithm

When solving the problem using branch-and-cut the follgwiglaxed problem is used as the initial prob-

lem to which the violated capacity and connectivity coriatsaare added.

LSNDPR=Min: Y S a3 g

meM (i,j)EA  vEV

DD

meM jEN vEV

s.t.
(Transhipment) f™* > Z 5t — Z "
J:(J,i) €A j:(4,5) €A
(Flow) S apr=" N apr =
veV j:(1,7)EA veV j:(j,4)EA
(Cap 0) > ap <ypM
meM
(Cap 2) Ton + M(1—yg,) — q"(tgn +tn) >0

(route time) Ton = 0

tmaz -

>

(g,h)EA

(Cap 1) ¢"C"+ M1 —yh) > Y af
meM
(Cyclic) D v 2 ¥i=0
ji(ig)EA Ji(i i) EA
(connected) dooy—si <t
j:(i,5)EA
(Startvertex) sV =1
i€EN
(Ships) yi; —h" <0
yi; €{0,1}
x;}w >0 (iv
fi" =0
sy €{0,1}
¢ =0
T;jh Z O

Note that the problem has been relaxed by removing the @nttr

(Butterfly-Cut:)

DS D b tsi— Y w1
1,j€S heNgeS\{k} eeN
(Transhipment Cuts:)
ug; +ugy, +2(|T) — y*(T)) = 2 ijih €T €
= - M1 - sY)

JhENWEV
Trig = 23" — ot — M(2 = yj; — v, + uj; + ugp)
frij = o5 —xi” — M(4 —ul; — i, =Yg — Yin)

12

Y e 3o
(i,j)EA  weEV
meM,ieNjoeV

1eN,meM

(i,j) e A,veV

(g,h) e A,veV
veV

(1,j) e A,v eV
1eN,veV
1eN,veVvV

veV

(1,j) e A,v eV
(i,j) e A,v eV

j)EAmMeMveV

meM,ieNoeV
1eN,veVvV

veV
(g,h) e A,veV

B(E), S(ij,

(51)

(52)

(53)

(54)

(55)
(56)

(57)

(58)

(59)

(60)

(61)
(62)
(63)
(64)
(65)
(66)
(67)

veV,0CcSCN,keSleN\S

T) # S(ih, T)

meM,ieN,veV

meM,j,i,he Njv eV
meM,ji,he NjveV



WhereB(E) is the set of butterfly routes dfi andS(ij, T') is the simple tour on which aig, j) is located.
The cuts are added during the branching process on thdlinit¢axed variableg;; ands;. Clearly the
violated cuts should be added as early as possible. Howss@uts are defined for integer variables and
for non-integer values the cuts may not be violated.

4.1.4 Connectivity cut separation algorithm

As mentioned earlier a cut is added when the correspondingticint is violated. The cut added is the
first found violated cut. To check if the connectivity is \atéd we can use depth first search to check if all
ports assigned to a vessel can be reached from any othergsitghad to the same vessel. The depth first
algorithm needs to be run for each vessel and therefore maglerity O(|V'|(|N| + |A])). The variables
y;; are used to define a connection between two ports. Since thgrafity of variables)?; and s} is
relaxed the cut of the form:

Suli< D whatvsi— D yhtvsi+1  veVHCSCNEeSIeN\S (68)
i,j€S heNgeS\{k} eeN

may not be violated by the solution. Therefore additionalditons must be determined before adding the
cut to the problem. The following conditions must hold whie tonnectivity cut (68) is violated for the
integer relaxed problem.

e There are two verticesand; visited by vesseb for whichy;; = 0.
e The flow on two disconnected components of a route when addstime greater than 1.
e There exists two disconnected verticend; visited by vesseb such that} = 0 ands} = 0.

When all of the three condition listed above are fulfilled &fon every vessel and evetye T andk € S
is added to the relaxed integer program.

Given a grapl, the separation algorithm is run for each vessas follows:

Connectivity-Separ ation-Algorithm(G, v)
: i < aportwithy;; > 0;
. numberconected — DFS(i,v);
if numberconnected= ports on route for then
for all portsi, j visited byv wheres; = 0 ands} = 0and}_, . n ¥, + >_pen Y5y > 1 dO
for all vessels do
Addcut: 3 cs Yo < Do gennes (i} Yhg T VST — Dcen Ye; U85 +1
end for
end for
cend if

©e AR ONR

Wheref (i) = >,y ¥ni» fori € NV is the flow on vessel through the vertex. The depth first search
DF S inline 2 selects a vertex with an edge with an edge weighttgréfaan zero and uses the edges with
an edge weight greater than zero to do the depth first seanctthis vertex. Theé F'S returns the number
of ports theDF'S has visited. The set of ports on routéds the ports with an in-edge with edge weight
greater than zero.

Test results using this algorithm are reported in Section 5.
4.1.5 Transhipment cut separation algorithm

For finding transhipment cuts onbutterflyroutes are checked. Forhatterflyroute an arc leaving the
center pointis selected as start arc and by using this tharasn the route is found. Then itis investigated
if the difference in flow on the last and the first arc plus théedénce of flow of the two other arcs at the
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centerpoint is greater than the the transhipment varigife If so the transhipment cuts are added. The
transhipment cuts are of the form:

wj; + uip +2(T| = y*(T)) = 2
e - M- s)

J,heN,veV
f}?z“j >Imv_'rzh _M(2_y]z yzh+u +uzh)

frij =23 —w” — M(4 = uf; — ug), — yj; — Yin)

The setl’ must contain all arcs in theutterflyroute. The cuts are only introduced if the solution is intege

Given a graplG and a vessal the capacity cut separation algorithm can be written asvil

Transhipment-Separation-Algorithm(G, v)
. firstloop « true;
. for all verticesi do
if s > 1then
centerpoint «— 1,
end if
end for
. if less thar? arcs leaving:enterpoint used by vessel then
return "No cut found”;
end if
. startarc — an arc(i, j) used by vessel leavingcenterpoint = i ;
. Arc < startarc;
T «— T U Arc;
: while Arc (i)Y existsA(j # centerpoint V firstloop) do
if 7 = centerpoint then
firstloop — false;
flend «— Arc;
Arc < arc leavingj used by vessel which is notstartarc;
slstart «— Arc;
else
Arc «+ arc used by vesselleavingy;
end if
222 T« TUArc
23: end while
24: if (Arc (ij)" exists)A(j = centerpoint) A (= firstloop) then
25:  endarc < Arc;
26:  for allm e Mdo

©e N ODNR

NN R R RERRRRRR R
PO O NO R WNRO

27: if fcrgriiterpoint < max{x}{gnd slstart7 O} + max{xendarc - startarw O} then
28: return (startarc,endarc, slstart, flend, T);

29: end if

30:  end for

31: end if

32: return "No cut found”;

In the algorithm the start and the centerpoint dftaterflyroute is found at lines 2 to 6. It is checked at
line 7 if the route of the vessel is a butterflyroute. If it is not abutterflyroute then we will not need
transhipment cuts. Then an arc exiting the start verteXésse as the start arc for the route and the while
loop walks through the route until all arcs have been visited the last arc is then selected as the last arc
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on the route. In lines 24 to 32 it is investigated if there isamshipment at the start vertex going between
the two visits of vessal. If this is the case then the cuts are added.

Note that the while loop is a depth first search and therefogeatgorithm has complexit® (| N|)
for line 1 to 6 andO(|A|) for line 7 to 23 andO(|M]|) for line 24 to 32. This gives a running time
of O(|N| + |A| + |M]) for the algorithm. Note that if the route of vessels not a butterfly route the
algorithm will terminate after a asymptotic running time@f|N|).

5 Computational Experiments

The branch-and-cut algorithm was implemented in C++ usiBgEX version 10.2 and Concert version 2.4
where the Connectivity and Transhipment cuts were added wiodated. This is compared with CPLEX
version 10.2 MIP-solver on the compact model. Tests have heeon a dual Intel CPU with 2.67 GHz.

51 Test cases

We have randomly generated cases which are constructefttct real-life network design problems. The
graphs have 5 to 15 ports and includes up to 6 vessels. Theakir@cludes up to 12 demands.

In all of the test cases simple abdtterflyroutes are permitted, and the time of the evaluated period
is 150 days. In the tests we use three different vessel tyipspired by Agarwal and Ergun in [1] the
demands in the tests are selected randomly from the cong#éta origin destination pairs and the size
of the demand is randomly selected between 1% to 80% of thecigwf the biggest vessel. The time of
sailing between ports varies between 5 and 45 days. The tsatling between two ports is dependent on
the vessel type and the time it takes to sail the distance.cobeof transshipment at a port is randomly
selected between two predefined values. The ports are estdl fully connected and the arcs are directed.
The tests are terminated after 20 000 seconds which comdsyo 333.33 minutes. In order to ensure that
the algorithms are tested without bias a new network is rartglgenerated for each test run.

52 Results
Branch and Cut Branch and Bound
Cuts
instance  ports  vessels demanglscon trans| Gap % | Time (min) | Gap % | Time (min)
a 5 3 9 6 140 0 0.05 0 0.22
b 5 3 9 13 196 0 0.13 0 0.33
c 5 3 9 16 252 0 0.08 0 0.23
d 5 3 9 21 364 0 0.15 0 0.40
e 5 3 9 11 252 0 0.16 0 0.87
a 7 3 9 29 560 0 15.28 0 46.91
b 7 3 9 29 476 0 0.93 0 3.36
c 7 3 9 30 504 0 0.21 0 5.99
d 7 3 9 17 280 0 0.53 0 3.73
e 7 3 9 67 1204 0 23.16 0 169.95
a 7 6 9 4 84 0 7.93 0 183.93
b 7 6 9 29 364 0 9.03 0.02 333.33
c 7 6 9 38 700 0 16.96 0.01 333.33
d 7 6 9 39 532 0 244.11 0.02 333.33
e 7 6 9 8 168 0 12.09 0.01 333.33
a 7 3 12| 40 962 0 9.62 0 118.71
b 7 3 12 18 370 0 0.38 0 4.44
c 7 3 12 5 111 0 0.11 0 102.88
d 7 3 12 66 1628 0 24.70 0 166.88
e 7 3 12| 26 740 0 0.41 0 5.48

Table 1: Test results with 5 to 7 ports and 9 to 12 demands givére column of the same name. Com-
paring the described Branch and cut algorithm and the CPLEXdh and bound.

In Table 1 the test results for test cases with 5 and 7 portstenen.
The first four columns in Table 1 indicate respectively tretamce name, number of ports, vessels and
demands in the test instance. The next four columns coméannhation related to solving the problem
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using branch and cut. The first two columns reports the nueonnectivity cuts added and the number
of transhipment cuts added when solving the instance witd#veloped branch-and-cut algorithm. The
next two columns, column 7 and 8, gives the lower and uppentholihe next column, column 9 reports
the gap and column 10 gives time in minutes needed to solvieshéstance.

The next columns reports Lower and upper bound, gap andntieeiti minutes needed to solve the test
instance with the CPLEX MIP-solver.

The solution time is reported in minutes so that it can belyeasimpared to the times reported in [1].
In the instances with 5 ports an optimal solution is reachi¢imva minute for all cases in both the branch-
and-cut scheme and the CPLEX MIP-solver. However the bramchcut scheme does find the optimal
solution faster than the CPLEX MIP-solver.

From the table it is clear that the branch-and-cut algoritutperforms the CPLEX MIP-solver on
these instances.

Branch and Cut Branch and Bound

Cuts Time Time
instance port v dem| con trans LB uUB Gap % (min) LB UB Gap % (min)
a 10 3 7 32 462 | 60365 60365 0.00% 92.83 | 54818 61165| 10.38% | 333.33
b 10 3 7 44 484 | 50071 50071 0.00% | 157.85 | 43487 50071| 13.15% | 333.33
a 10 6 9| 212 3668 | 75296  100699| 25.23% | 333.33 | 74498  109882| 32.20% | 333.33
b 10 6 9| 119 2352 | 68253 74155| 7.96% | 333.33 | 66213 85671 | 22.71% | 333.33
a 15 3 7 8 22 | 50508 61305| 17.61% | 333.33 | 50505 * * 333.33
b 15 3 7| 101 1430 | 41457 49042 | 15.47% | 333.33 | 40969 * * 333.33
a 15 3 9 42 392 | 58874 78348 | 24.85% | 333.33 | 58804 * * 333.33
b 15 3 9| 158 2604 | 63099 79249 | 20.38% | 333.33 | 64130 * * 333.33

Table 2: Test results with 10 to 15 ports. Comparing the dlesdrBranch and cut algorithm and the
CPLEX branch and bound.

Tables 2 show the results for test cases with 10 to 15 ports.cdlumns are the same as in Table 1,
except that two columns representing lowerbound (LB) anukedpound (UB) for the branch and cut and
for the branch and bound algorithms are included. The lomgmd and upperbound are reported since
some of the test instances in Table 2 are not solved to optymbr each configuration of ports, ships and
vessels two different instances are solved. The tests@ppedt after 20 000 seconds and the best feasible
solution found is reported. A gap between the best foundiiEasolution and the best known lowerbound
is reported. In all of these test instances the best knowerdoaund is the maximum of the lowerbounds
found by CPLEX in the branch-and-cut algorithm and the stathdCPLEX MIP-solver. For all the test
cases with 15 ports it was not possible for the CPLEX MIP-sote find a feasible solution within the
given time limit. For the cases reported in Table 2 the brasmuth-cut does better or at least as well as
the CPLEX MIP-solver both with respect to time and solutiomlity. However, for the very last instance
listed in Table 2 with 15 ports the lowerbound of the CPLEX Mi#tver is slightly better than that of the
branch and cut algorithm even though the CPLEX-MIP solves nat able to find a solution. From the
tests reported in Table 1 and 2 it is clear that increasingntimber of ports increases the solution time of
the problem therefore a time-space graph may not result @d golutions even though the connectivity
cuts would be tightened.

6 Conclusion

In this paper we have formulated a new model of the liner shgppetwork design problem. We have
includedbutterflyroutes in the route structure, included cost of transhigrimetihe objective and we have
included the time of the route in the calculations of the c#fgdo present a realistic model. On the pre-
sented model we have generalized clover-cuts and transimipcuts. We have described and implemented
a separation algorithm for the branch-and-cut method. Topgsed algorithm is so far the only exact so-
lution method allowing transhipment and calculating tleeshipment cost. To the best of our knowledge,
branch-and-cut methods have not been applied to the lingpigly network design problem before. The
test results in general show improvements to the CPLEX tramd bound and cases with 15 ports and
a reasonable demand set can be solved to acceptable pnacsaig this method. The problem size and
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solution time is comparable to the tests reported in Agaemal Ergun [1]. The test results show that the
branch-and-cut method is promising for the liner shippiatwork design problem.

The contributions of this paper is a general formulationted problem including transhipment and
transhipment costs. Moreover we have applied the brandhsahmethod to the formulation and thereby
developed an exact solution method which can solve instaotthe same size as some of the recently
developed heuristic methods. The developed branch-antathod can be used for planning the routes of
a smaller shipping company such as a feeder company or fonipi@ a region of the network of a bigger
liner shipping company. Since the algorithm finds optimdlusons it can also be used to benchmark
heuristic algorithms.
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The network design problem in liner shipping is of increasing importance in a strongly competitive
market where potential cost reductions can influence market share and profits significantly. In this
paper the network design and fleet assignment problems are combined into a mixed integer linear
programming model minimizing the overall cost. To better reflect the real-life situation we take into
account the cost of transhipment, a heterogeneous fleet, route dependant capacities, and butterfly
routes. To the best of our knowledge it is the first time an exact solution methaod to the problem
considers transhipment cost. The problem is solved with branch-and-cut using clover and tranship-
ment inequalities. Computational results are reported for instances with up to 15 ports.
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