
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 06, 2024

A Branch and Cut algorithm for the container shipping network design problem

Reinhardt, Line Blander; Kallehauge, Brian; Pisinger, David

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Reinhardt, L. B., Kallehauge, B., & Pisinger, D. (2010). A Branch and Cut algorithm for the container shipping
network design problem. DTU Management. DTU Management 2010 No. 20
http://www.man.dtu.dk/Om_instituttet/Rapporter/2010.aspx

https://orbit.dtu.dk/en/publications/26b397c1-4d3c-4fa6-9743-d3784eb310b5
http://www.man.dtu.dk/Om_instituttet/Rapporter/2010.aspx


Line Blander Reinhardt
Brian Kallehauge
David Pisinger 
December 2010

Report 20.2010

DTU Management Engineering

A Branch and Cut algorithm for the 
container shipping network design 
problem



A Branch and Cut algorithm for the container shipping
network design problem

Line Blander Reinhardt∗, Brian Kallehauge∗, David Pisinger
Department of Management Engineering, Technical University of Denmark

December 10, 2010

Abstract

The network design problem in liner shipping is of increasing importance in a strongly competitive market
where potential cost reductions can influence market share and profits significantly. In this paper the
network design and fleet assignment problems are combined into a mixed integer linear programming
model minimizing the overall cost. To better reflect the real-life situation we take into account the cost of
transhipment, a heterogeneous fleet, route dependant capacities, and butterfly routes. To the best of our
knowledge it is the first time anexactsolution method to the problem considers transhipment cost. The
problem is solved with branch-and-cut using clover and transhipment inequalities. Computational results
are reported for instances with up to 15 ports.

1 Introduction

Liner shipping routes are characterized by the cyclic routes repeatedly sailed during the scheduled horizon
and the transhipment of cargo in hub ports. The process of designing the route network of a liner shipping
company is essential for the competitiveness of the companyand its ability to sustain and possibly improve
the share of the global containerized freight market. The problem of determining the structure of the
route network we call the liner shipping network design problem (LS-NDP). Designing efficient routes can
reduce the overall cost and the CO2 emission per container shipped.

To provide a competitive product a liner shipping company must at a minimal cost be able to satisfy
the request from customers for shipment of containers. Liner shipping companies usually have a forecast
period over which the shipping demands are predicted based on historic data and recent development. The
LS-NDP consists of designing vessel routes so that the forecasted requests are satisfied with a minimal cost
for the company.

A vessel will repeatedly sail the assigned route throughoutthe entire planning horizon. This means that
the routes are cyclic and the capacity of a link on a route depends on the number of times the link is sailed
in the planning horizon.

The LS-NDP gained increasing attention about three decadesago when the container freight started to
increase significantly. Recently the interest in the area has increased due to the large focus on CO2 emission
generated by the vessels, and the dramatic change in demandscreated by the current financial crisis, which
has resulted in a need to focus on lowering the costs.

The similarity between LS-NDP, network design and routing problems leads us to the assumption that
methods that work well for other scheduling and network design problems will also work well for the LS-
NDP. An example of such a method is the branch-and-cut methodwhich has been successfully applied to
the vehicle routing problem with time windows (VRPTW) problem, see Bard et al. [4] and Kallehauge et
al. [12].

∗This research is partly supported by the Danish Maritime Fund
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In this paper we present a mathematical formulation of the problem which includes transhipment, tran-
shipment cost and allows a mix of simple andbutterflyroutes. An exact method using branch-and-cut has
been developed for solving the presented model. The developed branch-and-cut method has been run on
a set of test instances and compared to the CPLEX MIP solver. To our knowledge it is the first time an
exact method has been applied to a problem which includes transhipment and the results show that small
instances can be solved to optimality. The developed branch-and-cut method clearly outperforms CPLEX.
The test results presented in the the computational experiments, Section 5, document that the developed
algorithm can be used for planning the routes of a smaller shipping company or a concrete region of the
network of a bigger liner shipping company. The LS-NDP problems we solve to optimality are compa-
rable in size to the test instances presented in recent literature on shipping network design using heuristic
solution methods (see Agarwal and Ergun [1] and Alvarez [2]).

We will start with a literature review in Section 2. In Section 3, the problem is formulated as a graph
theoretical problem and a mathematical model of the LS-NDP is presented. In Section 4 the branch-and-
cut algorithm is described, and separation algorithms for the introduced transhipment cuts and connectivity
cuts are presented. In Section 5, the tests and results are discussed. Finally, we make some concluding
remarks and suggest areas for further research in Section 6.

2 Literature review

In this section we summarize the literature which has been used directly in our work. For a detailed
literature review of cargo shipping optimization problemswe refer the reader to the survey papers, Ronen
[17], Ronen et al. [18], and Christiansen et al. [6]. The reader is also referred to Christiansen et al. [7] for
an comprehensive introduction to the areas of optimizationin maritime transportation.

In 1991 Rana and Vickson [16] presented a state-of-the-art model for container shipping on the North
Atlantic trade routes. They worked with an outbound-inbound principle which, until recently, has been a
standard principle in the liner shipping industry. The outbound-inbound principle means that the ports are
listed in a predefined order and that a vessel goes through thelist in one direction visiting selected ports and
upon return goes through the list in the reverse direction until reaching the first port visited on the list. The
liner shipping companies still have an inbound-outbound way of viewing some of their routes. However,
there is no requirement that the routes must be scheduled this way. For shipping routes along a somewhat
straight coastline such as the US West Coast investigated in[16] this is a natural setup. For inter continental
routes or routes in enclosed seas such as the Baltic, Mediterranean and Black Sea the overall structure is
usually not inbound-outbound. As a result, better routes may be found by relaxing the inbound-outbound
restriction.

Rana and Vickson [16], Christiansen and Nygreen [5], Fagerholt [8], Agarwal and Ergun [1] and Al-
varez [2] allow for several visits to a port. The allowance ofseveral visits to a port is, in all the mentioned
papers (with the exception of [1]) achieved by combining simple routes. In a simple route each port is
visited at most once. Agarwal and Ergun [1] solve the problemby using a time-space graph where a port
can be visited several times as long as the visit is not on the same weekday.

The shipping companies often wish to schedule the frequencyof a departure at a port so that it corre-
sponds to the demand at the port. Fagerholt [8] and Christiansen and Nygreen [5], and Agarwal and Ergun
[1] have a weekly frequency requirement on the routes. Fagerholt [8] and Christiansen and Nygreen [5]
formulate the weekly frequency by restricting the time of anroute to be less than a week. This is applicable
to small shipping routes such as regional routes. However, it is clear that when it comes to intercontinental
shipping the routes are usually longer than a week. This is handled in Agarwal and Ergun [1] by covering
the weekly departures with a sufficient number of vessels of the same type.

The use and influence of transhipment on the liner shipping network design is described by Notteboom
and Rodrigue [15]. However only a few decades ago the use of transhipment was much less common.
Therefore older articles such as Rana and Vickson [16] do notinclude transhipment in their route planning.
The model solved in [16] was extended in the recent work by Shintani et al [19], where the restrictive
visiting order of Rana and Vickson [16] is relaxed as to represent a more realistic set of routes. Moreover,
the repositioning of empty containers is included by Shintani et al. [19]. To solve the problem presented in
[19] a genetic algorithm is used, however, transhipment is not considered. Christiansen and Nygreen [5] use
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column generation to solve the routing problem for ammonia shipping in Norway. In the problem solved
in [5] only ammonia is shipped and therefore transhipment isnot considered. Fagerholt [8] apply column
generation for solving the liner shipping problem along theNorwegian coast. Others, such as Gelareh
and Meng [10] exclusively deal with the fleet deployment on a predefined set of routes. In the recent
paper by Agarwal and Ergun [1], the authors solve larger problems by using a heuristic based on Benders’
Decomposition and compare it to a similar solution method which uses column generation. Recently an
article on liner shipping network design optimization has been publish by Alvarez [2] using tabu search
and column generation. The model has transhipment costs as part of the overall cost evaluation. Rana and
Vickson [16], Christiansen and Nygreen [5] and Fagerholt [8] do not consider transhipment. Even though
Notteboom and Rodrigue in [15] emphasize the importance of transhipment in the shipping networks,
Agarwal and Ergun in [1] are the first to include transhipmentin the liner shipping network design problem.
However, they do not include transhipment cost and Alvarez in [2] from 2009 is to our knowledge the first
to consider the cost of transhipment when designing the shipping network. In models where each port is
represented by one vertex at the points where two cycles are connected a transshipment from an early visit
of a vessel to a later visit of the same vessel can occur. As will be discussed in Section 3.2.1 this results in
complications in the calculation of transshipment costs. To our knowledge the exact cost of transshipment
has not been calculated at the cycle connection points earlier. Note that Argawal and Ergun [1] do not use a
single vertex for representing a port and that they do not include transshipment cost. Clearly increasing the
number of vertices and thereby the number of edges in the graph will significantly increase the complexity
of the problem even though it gives more flexibility in the route structure.

The model by Agarwal and Ergun [1] and Alvarez [2] are so far the most comprehensive representations
of the problem faced by liner shipping companies. Alvarez [2] include many relevant parameters in the
objective while Agarwal and Ergun [1] only include cost.

Even though shipping companies often have several vessels of the same type it is not always an optimal
solution to force the routes to be sailed by the same vessel type and in real-life routes there are some smaller
ports which, due to low demand, only require a bimonthly departure and some busy ports might require a
biweekly departure.

To the best of our knowledge no results for the LS-NDP, using branch-and-cut, have been presented in
the literature. As mentioned in Section 1 good results have been achieved by [4] and [12] when applying
branch-and-cut to the VRPTW. Since the VRPTW is somewhat similar to the LS-NDP with its heteroge-
neous fleet and cyclic routes it is natural to assume that branch-and-cut also will result in good solutions
for the LS-NDP.

3 Problem formulation

LetG be a directed graph and letG(N,A,V,M, tmax) represent the network with vertex setN, arc set
A, a set of vesselsV, a set of demandsM and a forecast period with lengthtmax. Each vertexn ∈ N

represents a port. Each arc(i, j) ∈ A is a direct connection between two ports for a given vesselv ∈ V.
Each demandm ∈M,m = (i, j, d, t) is the amountd ∈ Z of typet to be shipped from an origin porti to
a destination portj. Each vertexj has a cost of transhipping demandm, depending on the type of demand,
cmj and a service timetj . Each arca has a costcmij of carrying demandm on a direct connection from port
i to portj. Each arc(i, j) also has an associated timetvij reflecting the prefixed time it takes for vesselv
to sail a direct connection from porti to portj. Each vesselv ∈ V has a capacityCv. The liner shipping
network design problem is to find a connected route for each vesselv ∈ V where the customer demands
are satisfied and the overall cost is minimized. Since a vessel assigned a route sails continuously during the
whole planning horizon, the cost to be minimized is a linear function of the cost of using a selected vessel,
the cost of transporting a demand on the arcs and the cost of transhipping at ports. It can be argued that the
cost of transporting a demand is negligible however by introducing a small cost corresponding to time, one
can be assured that unnecessary extra time or travel is avoided for the demand. In the cost of transporting
a demand we only include the time the demand spend on the vessel and not the time the demand uses at a
port during transhipment. The objective is to minimize the overall cost so that the required demand can be
shipped from their origin to their destination within the time interval of lengthtmax.

Figure 1 shows an example of a network containing two butterfly routes. In Figure 1 transshipment can
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occur at the portsA,B andC. At portsA andB transhipment can occur between the two routes moreover at
portA transhipment can occur between two visits of route 2 and at port C transhipment can occur between
two visits of route 1.
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Figure 1: An example of two routes in a liner shipping network. Each route can be constructed by following
the arcs in increasing order starting with arc number 1. Transhipment can take place at port A, B and C.

3.1 Mathematical Model

There is no standard mathematical formulation of the liner shipping problem since each liner shipping
company has specific constraints based on strategic decisions. As a result of this, several formulations and
models have been presented in the literature.

In this section we first present a comprehensive mathematical model for the liner shipping problem
which includes transhipment, transhipment cost, simple routes, butterfly routes and a heterogeneous vessel
fleet.

3.2 The Network Design Problem

In the model presented by Agarwal and Ergun in [1] a time-space graph structure is used, where the time
is the day of week and weekly departure by vessels of the same type is enforced on the same weekday.
However in the here presented version of the liner shipping problem a port is allowed to be visited less than
once a week and different vessel types are permitted to sail the same route. Allowing for other than weekly
departure and different vessel types on a route may result inlower cost.

We have the following variables:

xmv
ij the amount of demandm shipped on arc(i, j) by vesselv,

uv
ij a binary variable which is 1 if arc(i, j) is the first or the last arc on a route of vesselv with two loops,

0 otherwise,

ev
ij a variable enumerating the order of the arcs on the route,

yv
ij a binary variable which is 1 if arc(i, j) is in the route of vesselv, 0 otherwise,

fmv
j the amount of demandm from vesselv transhipped at portj,

sv
i a binary variable which is 1 ifi is the port which may connect two loops for vesselv, denoted

centerpoint,

fmv
jih the amount of demandm from vesselv enteringi from j and not leaving on the arc fromi to h,

τv the route travel time of vesselv,

hv a binary variable which is 1 if vesselv is sailing and 0 otherwise,
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We use the following parameters

Cv the capacity of vesselv,

tvij the time it takes for vesselv to sail arc(i, j)

tmax the duration of the forecast period,

tq the time at quay at any port.

The demands are defined as:

bmi =







dm if i = o(m)
−dm if i = d(m)
0 otherwise

m ∈M, i ∈ N

whereo(m) is the port of origin of demandm andd(m) is the destination port of demandm.
The four ”big-M” coefficientsM1,M2,M3 andM4 are sufficiently large constants. We operate with

three different costs:cv the cost of vesselv sailing,cmij the cost of shipping demandm on connection(i, j),
andcmi the cost of transhipping demandm at porti. This leads to the model:

Min:
∑

m∈M

∑

(i,j)∈A

c
m
ij

∑

v∈V

x
mv
ij +

∑

m∈M

∑

j∈N

c
m
j f

mv
j +

∑

v∈V

c
v
h

v (1)

s.t.

(Flow)
∑

v∈V

∑

j:(i,j)∈A

x
mv
ij −

∑

v∈V

∑

j:(j,i)∈A

x
mv
ji = b

m
i i ∈ N, m ∈ M (2)

(Trans 0) f
mv
i ≥

∑

j:(j,i)∈A

x
mv
ji −

∑

j:(i,j)∈A

x
mv
ij m ∈ M, i ∈ N, v ∈ V (3)

(Trans 1) f
mv
i ≥

∑

j,h∈N,v∈V

f
mv
jih − M1(1 − s

v
i ) m ∈ M, i ∈ N, v ∈ V (4)

(Trans 2) f
mv
hij ≥ x

mv
ji − x

mv
ih − M2(2 − y

v
ji − y

v
ih + u

v
ji + u

v
ih) m ∈ M, j, i, h ∈ N, v ∈ V (5)

(Trans 3) f
mv
hij ≥ x

mv
ji − x

mv
ih − M3(4 − u

v
ji − u

v
ih − y

v
ji − y

v
ih) m ∈ M, j, i, h ∈ N, v ∈ V (6)

(Capacity)
tp

τv

C
v
y

v
ij ≥

∑

m∈M

x
mv
ij (i, j) ∈ A, v ∈ V (7)

(Center)
∑

i∈N

s
v
i = 1 v ∈ V (8)

(First arc)
∑

(ij)∈A

u
v
ij = 2 v ∈ V (9)

(Out arc) s
v
i −

∑

(ij)∈A

u
v
ij ≤ 0 i ∈ N, v ∈ V (10)

(In arc) s
v
i −

∑

(ji)∈A

u
v
ji ≤ 0 i ∈ N, v ∈ V (11)

(Cyclic)
∑

j:(i,j)∈A

y
v
ij −

∑

j:(j,i)∈A

y
v
ji = 0 i ∈ N, v ∈ V (12)

(Connect 0)
∑

j:(i,j)∈A

y
v
ij − s

v
i ≤ 1 i ∈ N, v ∈ V (13)

(Connect 1) e
v
ji − e

v
ih + M4(y

v
ih + y

v
ji − 2 − u

v
ji − u

v
ih) ≤ −1 i, j, h ∈ N, v ∈ V (14)

(Ships) y
v
ij − h

v ≤ 0 (i, j) ∈ A, v ∈ V (15)

(Time 0) τv ≤ tmax v ∈ V (16)

(Time 1) τv =
∑

i,j:(i,j)∈A

y
v
ij

(

t
v
ij + tj

)

v ∈ V (17)
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u
v
ij , y

v
ij ∈ {0, 1} (i, j) ∈ A, v ∈ V (18)

f
mv
jih ≥ 0 m ∈ M, j, i, h ∈ N, v ∈ V (19)

e
v
ij ∈ Z

+
i, j ∈ N, v ∈ V (20)

x
mv
ij ≥ 0 (i, j) ∈ A,m ∈ M, v ∈ V (21)

s
v
i ∈ {0, 1} i ∈ N, v ∈ V (22)

h
v ∈ {0, 1} v ∈ V (23)

The objective (1) minimizes the sum of the cost of transporting the demand, the cost of transhipping
demand and the cost of using the vessels. Constraints (2) ensure flow conservation that all demandm ∈M
is satisfied. Constraints (3) ensure thatfmv

i is larger than the difference between the incoming demandm
and outgoing demandm on a vesselv. Since the objective is to minimize the cost andCm

i f
mv
i is positive

thenfmv
i will be equal to the amount transhipped. Constraints (4), (5) and (6) together with the constraints

(9), (10),(11) and (14) foruv
ij ensure thatfmv

i at the vertexi connecting two loops sailed by the same
vessel also includes the amount left at the port to be picked up later by the same vessel.

The capacity constraints (7) ensure that the amount shippedon vesselv on arc(i, j) is less than the
capacity of the vesselv multiplied by the number of trips which can be completed in the schedule period
tmax. Note that the value ofτv is determined in constraint (17) where the right hand side isthe time of
the route sailed by vesselv. The constraints (8) ensure that for each route exactly one vertex is selected
as centerpoint. The constraints (12) ensure that for every port every vessel, which enters the port, also
leaves the port. Constraints (13) ensure that a vesselv does not visit its selected start port more than twice.
Constraints (14) ensure that all parts of a route sailed by vesselv is connected to the start portsv

i of vessel
v. Constraints (15) ensure that there will be a cost for using vesselv in the objective. Constraints (16)
ensure that no route is longer than the schedule period.

In the following sections we will discuss how the requirements special to the LS-NDP can be formulated
in a linear model.

3.2.1 Transhipment cost in the Liner Shipping Network Design

Agarwal and Ergun [1] argued that transhipment is the core ofliner shipping. We would like to add
that transhipment of goods is frequently occurring in linershipping and the associated cost should not be
ignored when designing the network. Transhipment are allowed in the model presented in [1], however the
expenses of transhipment were not included in the cost calculation before the work by Alvarez in [2]. To
calculate the transhipment cost when satisfying demands ina specific network design one must know the
amount of containers, which is transhipped. We define a variable fvm

i which is the amount of containers
in demandm transhipped at porti. In the objective function (1) the costcmj of transhipping one unit at
port i is included. To find the value offvm

i we have the constraints (3). When the routes are simple the
amount transshipped can be calculated by constraint (3) alone. However whenbutterflyroutes exists there
can be cargo transhipped at the centerpoint which is not calculated by the constraint (3). This cargo is the
containers transhipped between two visits of the same routeto the port. Therefore to calculate the exact
amount of containers it is important to be able to distinguish between the two visits to the centerpoint. This
can be achieved by enumerating the edges on the route and marking the first and last edge on the entire
route. The integer variablesev

ij enumerates the edges on the route and the binary variablesuv
ij marks the

first and last edge on abutterflyroute. The following constraints ensure that the first and last edge on a
butterflyroute are found:
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(First arc)
∑

(ij)∈A

uv
ij = 2 v ∈ V (24)

(Out arc) sv
i −

∑

(ij)∈A

uv
ij ≤ 0 i ∈ N, v ∈ V (25)

(In arc) sv
i −

∑

(ji)∈A

uv
ji ≤ 0 i ∈ N, v ∈ V (26)

(Connect 1) ev
ji − e

v
ih +M4(y

v
ih + yv

ji − 2− uv
ji − u

v
ih) ≤ −1 i, j, h ∈ N, v ∈ V (27)

Wheresv
i is the port selected as centerpoint for the route. The constraints (27) ensure that if the route is

a butterflyroute then the last edge(j, i) on the routeuv
ji = 1 and the first edge(i, h) on the routeuv

ih = 1.
To find the demand transhipped from one visit to another visitof the same vessel we introduce the

variablefmv
jih indicating the transhipment ini when arriving form portj and departing to porth. Then on

a butterflyroute the two visits to a centerpointi are the one whereuv
ji = uv

ih = 1 andyv
ji = yv

ih = 1 and
the one whereuv

ki = uv
il = 0 andyv

ki = yv
il = 1 Clearly if uv

ji = uv
ih = 1 andyv

ji = yv
ih = 1 then the

transhipment at one visit to the porti is xmv
ji − x

mv
ih , which can be formulated as:

(Trans 3) fmv
jih ≥ x

mv
ji − x

mv
ih −M3(4− u

v
ji − u

v
ih − y

v
ji − y

v
ih) m ∈M, j, i, h ∈ N, v ∈ V (28)

If uv
ki = uv

il = 0 andyv
ki = yv

il = 1 then the transhipment at one visit to the porti is xmv
ki − x

mv
il , which

can be formulated as:

(Trans 2) fmv
kil ≥ x

mv
ki − x

mv
il −M2(2− y

v
ki − y

v
il + uv

ki + uv
il) m ∈M, k, i, l ∈ N, v ∈ V (29)

This must be included in the value of thefmv
i used in the objective. However thefmv

i only need to be
adjusted for the centerpoint of the route. The porti is a centerpoint ifsv

i = 1. At the centerpoint the
transhipment amount is the sum of the transhipment on the twovisits. This can be formulated as:

(Trans 1) fmv
i ≥

∑

j,h∈N,v∈V

fmv
jih −M1(1− s

v
i ) m ∈M, i ∈ N, v ∈ V (30)

Constraints (28) calculates the amount unloaded from the vessel at the visit to porti from the end edge to
the start edge of the route. Constraints (29) calculates theamount unloaded from the vessel at the other
visit to porti. Constraints (30) ensure that this is included in the transhipment on routev at a centerpointi.
The number of constraints in (29) and (28) isO(|N3||M ||V |) which is a significantly large number. The
additional binary and integer variablesuv

ij andev
ij may increase the size of the branch and bound tree.

3.2.2 The cyclic structure of liner shipping routes

In the liner shipping network design problem a vessel must leave each port it enters. This is called flow
conservation and is modeled by constraints (12).

Clearly it is important to ensure that a route is connected sothat it can be sailed by a single vessel
and avoid having several disconnected subtours, for example two separate cycles, representing a route.
When modeling the constraint that the route must be connected it is often assumed that the route is simple.
Although the routes are simple in [1], the time-space graph used by Agarwal and Ergun in [1] allows for
multiple visits to a port as long as the visits do not happen onthe same day of the week.

In the model presented here we let each route have a port whichmay be visited twice. This is to model
the real life situation with some port used as hubs for the other ports. Notteboom notes in [14] that this
form of design is used by Maersk Sealand. In liner shipping such routes are denotedbutterflyroutes.

To modelbutterflyroutes the binary variablesv
i is introduced indicating which port on the route may

be used as Hub. To have a polynomial number of constraints ensuring that the routes are connected we
have used the approach proposed by Tucker et al. [13] for enumerating the vertices on a simple path. In
constraints (14) the arcs on the route are enumerated instead of the ports using theuv

ij variables to mark the
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start and end arc of the route. The constraints presented by Tucker et al. [13] are used in vehicle routing
problems and variances with simple routes. However in the presented model for the LS-NDP a single
port on the route may be visited twice. Allowing the possibility of two visits to the hub port it could be
formulated as:

(Center)
∑

i∈N

sv
i = 1 v ∈ V (31)

(Butterfly) zv
i − z

v
j +M4(y

v
ij − s

v
j ) ≤M4 − 1 i, j ∈ N, v ∈ V (32)

Wherezv
j is an positive integer that indicates the order in which the ports are visited. However, since the

cost of transshipment is included as described in previous Section 3.2.1 it is needed to know the start and
end edges of the route at the hub port. Therefore the constraint is formulated as:

(Connect 1) ev
ji − e

v
ih +M4(y

v
ih + yv

ji − 2− uv
ji − u

v
ih) ≤ −1 i, j, h ∈ N, v ∈ V (33)

This means that constraints concerningsv
i anduv

ij must be included. Therefore to model connected
butterflyroutes while allowing for calculating the transhipment cost the constraints (9), (10), (11), (12),
(13), (31) and (33) are needed. Note that there is an overlap with the constraints needed for calculating the
exact transhipment cost.

3.2.3 The number of times a route can be completed in a schedule period

The number of times a link is sailed during the time period affects the capacity on the given link.
In our model a route can at most contain a link once. However, every link on a given route is sailed

the number of times the route can be completed by the assignedvessel in the schedule period. Since a link
can be sailed on several different routes, the number of times a link is sailed also depends on the number
of routes the link appears in.

For example a vessel with the capacity to carry 1000 containers and sailing a route which takes 30
days can in a 30 day forecast period only ship 1000 containerson each leg of the route. However if the
same vessel sailed a route which only takes 5 days it could on each leg of the route, ship 6000 containers
during the same period. Therefore we include the route length in the capacity constraint in the LS-NDP
model. The consideration of route length in liner shipping network design was first introduced by Agarwal
and Ergun [1], where vessels of the same type are assigned to aroute so that there is always a weekly
departure. As mentioned earlier weekly departures are not astrict requirement for all shipping companies.
In real-life shipping, ports with smaller demands are visited bi-monthly. Moreover it may happen that a
shipping company does not have the right number of ships of a specific type to cover a weekly departure
on a route. It is also likely that a better solution has different vessel types assigned to a route.

To include the time of the route in the calculation of the capacity, we multiply the capacity of a vessel
with the number of times the route can be completed during theforecast period. This requirement is
formulated by the constraints (7) the partial route is included in the capacity calculation as a partial vessel
capacity. These constraints are not linear and thus to solvethis problem using an integer programming
solver it is necessary to linearize the constraints.

We here linearize the equation expressed by constraints (7). This is done by introducing the following
variables:

qv tmax/τv, the schedule period divided by the route time.

rv
gh Some real number greater than the travel time of vesselv on arc(g, h) plus service time

at porth multiplied by the times the route can be completed

M Upper bound for the maximum capacity times maximum route time on any arc.

If yv
ij = 0 the flowxmv

ij must be equal to 0. Thus we introduce the constraints:

(Capacity 2)
∑

m∈M

xmv
ij ≤ y

v
ijM (i, j) ∈ A, v ∈ V (34)
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These constraints ensure that nothing can be transported onan arc not included in a route. Now we look
at the remaining case where the arc(i, j) is traversed. Sinceyv

ij = 1 andtvgh + th > 0 then we know that
τv > 0.

We introduce the variableqv so that :

tp/τv ≥ q
v v ∈ V (35)

Whereqv ∈ R
+
0 . Note that the constraint (35) is not linear. Sinceτv > 0 for all v ∈ V, we can express

constraint (35) as:
tmax ≥ q

vτv v ∈ V (36)

However constraint (36) is still not linear. An entry in the sum over(g, h) ∈ A on the righthand side is

qv
(

tvgh + th

)

whenygh is one, and zero whenygh is zero. Therefore to linearize this by the ”Big M”

method from [20] we write the following constraints:

(Cap 3) rv
gh +M(1− yv

gh)− qv(tgh + th) ≥ 0 (g, h) ∈ A, v ∈ V (37)

(route time) tmax −
∑

(g,h)∈A

rv
gh ≥ 0 v ∈ V (38)

qv ≥ 0 v ∈ V (39)

rv
gh ≥ 0 (g, h) ∈ A, v ∈ V (40)

Constraints (37) ensure that whenygh is one thenrv
gh ≥ q

v(tgh + th). Whenygh is zero then:
rv
gh ≥ q

v(tgh + th)−M . Note thatM must be chosen so thatqv(tgh + th)−M ≤ 0, and that constraints
(38) can replace constraints (16) in the model.

Now we can letqv replacetmax/τv in the constraint formulation (7) and thereby we get inequality:

qvCvyv
ij ≥

∑

m∈M

xm
ij (i, j) ∈ A, v ∈ V (41)

which we again must linearize. Here we note that the left handside is equal toqvCv whenyv
ij = 1 and

zero otherwise. Hence

(Capacity 1) qvCv +M(1− yv
ij) ≥

∑

m∈M

xmv
ij (i, j) ∈ A, v ∈ V (42)

The constraints of type (42) ensure that the flow on all sailedarcs is less thanqvCv. For all arcs not sailed
constraints (42) does not add any restrictions given thatM is chosen big enough. Recall that constraints
(34) ensure that there is not assigned flow to arcs which are not sailed. We include constraints (34), (37),
(38), (42) and variable definitions (39) and (40) to replace the non-linear capacity constraints (7) and
constraints (16) and (17).

These constraints are included in the integer linear programming (ILP) model used in the test for the
branch-and-bound and branch-and-cut method.

3.2.4 The Compact model for Liner Shipping

The linear model for the liner shipping problem, which here is named thecompact modelis the model
presented in the beginning of this section where constraints (7), (16) and (17) are replaced by the constraints
(34), (37), (38), (42) and variable definitions (39) and (40). As the name indicates thecompact model
has a polynomial number of constraints. Since this model is linear it can be solved directly by an ILP
solver. The problem is NP hard as it includes the model [1] as aspecial case, and the ’big-M’ constraints
(4),(5),(6),(14),(37) and (42) together with the large number of variables make the problem hard to solve
for ILP solvers.
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4 The Solution Method

Thecompact modelcan be solved using branch-and-bound but the ’big-M’ constraints may result in large
integrality gaps and poor bounds resulting in large search trees. Moreover the many variables make the
problem combinatorically hard. As mentioned earlier the branch-and-cut method has successfully been
applied to vehicle routing problems (Ascheuer et al. [3]) and other transportation network design problem,
(Gendreau et al. [11]). Therefore it is interesting to investigate the possibilities for using the branch-and-cut
method on the LS-NDP and compare it with a branch-and-bound method.

4.1 Branch-and-cut

The branch-and-cut method generally give good results on problems with complicating constraints such as
non linear constraints or problems with an exponential number of constraints. As in Ascheuer et al. [3]
and Gendreau et al. [11] we gradually add the transhipment and connectivity constraints to the formulation
when they are violated.

4.1.1 Transhipment cuts

Calculating the amount unloaded from a vessel at a port to be loaded onto the same vessel at a later visit
to the port is quite cumbersome. For calculating the transhipment to be picked up at a port by the same
vessel we use the constraints (4),(5) and (6). Note that constraints (5) and (6) each represents|N |3|M ||V |
constraints. We wish to remove the constraints (4),(5) and (6) and introduce them as cuts when they are
violated. Transhipment to be picked up at a port by the same vessel only occurs on abutterflyroute at the
point the two loops meet. The point where the two loops meet are the centerpoint of the route and it is
indicated bysv

i = 1.
We have constructed a cut so that if all arcs in a set of arcsT are sailed by a vesselv then if it is a

butterfly loop with the centerpointsv
i = 1, we have two arcsji andih in T which are not on the same loop

that can be selected as the start and end arc of the route. Thisis formulated as:

uv
ji + uv

ih + 2(|T | − yv(T )) = 2, (43)

where the arcsji andih are the first and last arc on the route. For calculating the transhipment between
two visits by the same vessel on this route we add the following constraints as cuts:

(Tranship 1) fmv
i ≥

∑

j,h∈N,v∈V

fmv
jih −M(1− sv

i ) (44)

(Tranship 2) fmv
hij ≥ x

mv
ji − x

mv
ih −M(2− yv

ji − y
v
ih + uv

ji + uv
ih) (45)

(Tranship 3) fmv
hij ≥ x

mv
ji − x

mv
ih −M(4− uv

ji − u
v
ih − y

v
ji − y

v
ih) (46)

Note that for each of the constraints (43) added one of each constraint (44),(45) and (46) is added.

4.1.2 Connectivity cuts

In the network design cases where branch-and-cut has been applied it is assumed that routes are simple.
For simple routes in the generalized traveling salesman problem the connectivity constraints have been
formulated by Fischetti et al. [9] as:

∑

i,j∈S

yij ≤
∑

h∈Ng∈S\{k}

yv
hg −

∑

e∈N

yv
el + 1 v ∈ V ∅ ⊂ S ⊂N, k ∈ S, l ∈ N \ S (47)

As mentioned before the real routes of the shipping companies are often not simple and we have introduced
the concept ofbutterfly routes in Section 3.2.2. This extension introduces new and weaker connectivity
constraints. Since the first and last edge is selected by the transhipment cuts (see Section 4.1.1) the edge
order can be ignored here.
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The connectivity constraints from [9] have been modified to allow butterflyroutes. We will present a
connectivity cut which will allow forψ+1 subtours which all have exactly one point in common. Because
the subtours must go through exactly one common point, we call this type of cut aclover-cut. The clover-
cut removes any route which is not connected but it keeps routes which are pseudo-simple.

Lemma 1 For any cyclic disconnectedcloverpath there exists a setS, and two verticesk andl for which
the following clover-cut inequality is violated. MoreovernoS,k and l violating a connectedcloverpath
exists. This can be expressed as:

∑

i,j∈S

yv
ij ≤

∑

h∈Ng∈S\{k}

yv
hg + ψsv

k −
∑

e∈N

yv
el + ψsv

l + 1 v ∈ V, ∅ ⊂ S ⊂ N, k ∈ S, l ∈ N \ S (48)

Proof
Let v1 be the route. First we prove that we cannot find aS, k andl for which the clover-cut inequality does
not hold for a connected pseudo-simple path.

Case 1 on S: Assume that there is no part of the routev1 outside ofS, wherev1 is a connected pseudo-
simple route. Then

∑

e∈N
yv1

el = 0. Moreover by constraints (13) we have that all vertices withsv1

i = 0
has at most one ingoing arc and the one vertex withsv1

i = 1 has at mostψ ingoing arcs. Therefore for all
k ∈ S andl ∈ N \ S it must holds that

∑

i,j∈S

yv1

ij ≤
∑

h∈Ng∈S\{k}

yv1

hg + ψsv1

k −
∑

e∈N

yv1

el + ψsv1

l + 1 (49)

Case 2 on S: Assume that there is a part of the route forv1 outside ofS and thatv1 is a pseudo-simple
route. In this case clearly there must be at least one arcyv1

ij wherei ∈ N \ S, j ∈ S.

sv1

k = 0 ∧ sv1

l = 0: Then0 ≤
∑

e∈N
yv1

el ≤ 1. In this case the clover-cut holds if the following inequality
holds

∑

i,j∈S y
v1

ij ≤
∑

h∈Ng∈S\{k} y
v1

hg. Sincesv1

k = 0 and therefore there is at most one arc
entering vertexk and since the whole route is not inS this inequality is trivially true for connected
pseudo-simple routes.

sv1

k = 1 ∧ sv1

l = 0: The inequality becomes
∑

i,j∈S y
v1

ij ≤
∑

h∈Ng∈S\{k} y
v1

hg−
∑

e∈N
yv1

el +1+ψ. In this
case0 ≤

∑

e∈N
yv1

el ≤ 1 . Therefore it is enough to show that
∑

i,j∈S y
v1

ij ≤
∑

h∈Ng∈S\{k} y
v1

hg +ψ

which clearly holds for a connected pseudo-simple route sinceψ ≥
∑

h∈N
yv1

hk.

sv1

k = 0 ∧ sv1

l = 1: Since
∑

e∈N
yv1

el ≤ ψ. Then clearly if
∑

i,j∈S y
v1

ij −1 ≤
∑

h∈Ng∈S\{k} y
v1

hg the clover
cut will hold. This is trivially true since

∑

h∈Ng∈S\{k} y
v1

hg ≥
∑

i,j∈S yij +
∑

m∈N\S,n∈S y
v1

mn− 1.

Where
∑

m∈N\S,n∈S y
v1

mn ≥ 0 and thus
∑

h∈Ng∈S\{k} y
v1

hg ≥
∑

i,j∈S yij − 1.

Therefore this cut holds for all connected pseudo-simple paths.
Now we will prove that there existsS, k andl so that the clover-cut does not hold whenv1 is discon-

nected.
Let v11

andv12
be two disconnected components ofv1. Let S contain exactly the vertices ofv11

.
Clearly by constraints (12)v11

andv12
are cyclic. Sincev12

is in N\S and sinceN\S ≥ 2 andS ≥ 2, we
can choosel onv12

so thatsv1

l = 0 andk onv11
so thatsv1

k = 0 . By the choice ofS there is no arcs entering
S and therefore we have that

∑

i,j∈S y
v1

ij >
∑

h∈Ng∈S\{k} y
v1

hg. Moreover asl is onv12
andsv1

l = 0 then
∑

e∈N
yv1

el = 1. Thus clearly
∑

i,j∈S y
v1

ij >
∑

h∈Ng∈S\{k} y
v1

hg + ψsv1

k −
∑

e∈N
yv1

el + ψsv1

l + 1.
�

For our case withbutterflyroutesψ = 1 and the cut becomes:

∑

i,j∈S

yv
ij ≤

∑

h∈Ng∈S\{k}

yv
hg + sv

k −
∑

e∈N

yv
el + sv

l + 1 v ∈ V, ∅ ⊂ S ⊂N, k ∈ S, l ∈ N \ S (50)
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4.1.3 Initial Problem for the branch-and-cut Algorithm

When solving the problem using branch-and-cut the following relaxed problem is used as the initial prob-
lem to which the violated capacity and connectivity constraints are added.

LSNDPR = Min:
∑

m∈M

∑

(i,j)∈A

cmij
∑

v∈V

xmv
ij +

∑

m∈M

∑

j∈N

cmj
∑

v∈V

fmv
j +

∑

(i,j)∈A

cij
∑

v∈V

yv
ij (51)

s.t.

(Transhipment) fmv
i ≥

∑

j:(j,i)∈A

xmv
ji −

∑

j:(i,j)∈A

xmv
ij m ∈M, i ∈ N, v ∈ V (52)

(Flow)
∑

v∈V

∑

j:(i,j)∈A

xmv
ij −

∑

v∈V

∑

j:(j,i)∈A

xmv
ji = bmi i ∈ N,m ∈M (53)

(Cap 0)
∑

m∈M

xmv
ij ≤ y

v
ijM (i, j) ∈ A, v ∈ V (54)

(Cap 2) rv
gh +M(1− yv

gh)− qv(tgh + th) ≥ 0 (g, h) ∈ A, v ∈ V (55)

(route time) tmax −
∑

(g,h)∈A

rv
gh ≥ 0 v ∈ V (56)

(Cap 1) qvCv +M(1− yv
ij) ≥

∑

m∈M

xmv
ij (i, j) ∈ A, v ∈ V (57)

(Cyclic)
∑

j:(i,j)∈A

yv
ij −

∑

j:(j,i)∈A

yv
ji = 0 i ∈ N, v ∈ V (58)

(connected)
∑

j:(i,j)∈A

yv
ij − s

v
i ≤ 1 i ∈ N, v ∈ V (59)

(Start vertex)
∑

i∈N

sv
i = 1 v ∈ V (60)

(Ships) yv
ij − h

v ≤ 0 (i, j) ∈ A, v ∈ V (61)

yv
ij ∈ {0, 1} (i, j) ∈ A, v ∈ V (62)

xmv
ij ≥ 0 (i, j) ∈ A,m ∈M, v ∈ V (63)

fmv
i ≥ 0 m ∈M, i ∈ N, v ∈ V (64)

sv
i ∈ {0, 1} i ∈ N, v ∈ V (65)

qv ≥ 0 v ∈ V (66)

rv
gh ≥ 0 (g, h) ∈ A, v ∈ V (67)

Note that the problem has been relaxed by removing the constraints:

(Butterfly-Cut:)
∑

i,j∈S

yv
ij ≤

∑

h∈Ng∈S\{k}

yv
hg + sv

k −
∑

e∈N

yv
el + sv

l + 1 v ∈ V, ∅ ⊂ S ⊂N, k ∈ S, l ∈ N \ S

(Transhipment Cuts:)

uv
ji + uv

ih + 2(|T | − yv(T )) = 2 ij, ih ∈ T ∈ B(E), S(ij, T ) 6= S(ih, T )

fmv
i ≥

∑

j,h∈N,v∈V

fmv
jih −M(1− sv

i ) m ∈M, i ∈ N, v ∈ V

fmv
hij ≥ x

mv
ji − x

mv
ih −M(2− yv

ji − y
v
ih + uv

ji + uv
ih) m ∈M, j, i, h ∈ N, v ∈ V

fmv
hij ≥ x

mv
ji − x

mv
ih −M(4− uv

ji − u
v
ih − y

v
ji − y

v
ih) m ∈M, j, i, h ∈ N, v ∈ V
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WhereB(E) is the set of butterfly routes onE andS(ij, T ) is the simple tour on which arc(i, j) is located.
The cuts are added during the branching process on the initially relaxed variablesyv

ij andsv
i . Clearly the

violated cuts should be added as early as possible. However the cuts are defined for integer variables and
for non-integer values the cuts may not be violated.

4.1.4 Connectivity cut separation algorithm

As mentioned earlier a cut is added when the corresponding constraint is violated. The cut added is the
first found violated cut. To check if the connectivity is violated we can use depth first search to check if all
ports assigned to a vessel can be reached from any other port assigned to the same vessel. The depth first
algorithm needs to be run for each vessel and therefore has complexityO(|V |(|N | + |A|)). The variables
yv

ij are used to define a connection between two ports. Since the integrality of variablesyv
ij andsv

i is
relaxed the cut of the form:

∑

i,j∈S

yv
ij ≤

∑

h∈Ng∈S\{k}

yv
hg + ψsv

k −
∑

e∈N

yv
el + ψsv

l + 1 v ∈ V, ∅ ⊂ S ⊂ N, k ∈ S, l ∈ N \ S (68)

may not be violated by the solution. Therefore additional conditions must be determined before adding the
cut to the problem. The following conditions must hold when the connectivity cut (68) is violated for the
integer relaxed problem.

• There are two verticesi andj visited by vesselv for whichyv
ij = 0.

• The flow on two disconnected components of a route when added must be greater than 1.

• There exists two disconnected verticesi andj visited by vesselv such thatsv
i = 0 andsv

j = 0.

When all of the three condition listed above are fulfilled a cut for every vessel and everyl ∈ T andk ∈ S
is added to the relaxed integer program.

Given a graphG, the separation algorithm is run for each vesselv as follows:

Connectivity-Separation-Algorithm(G, v)

1: i← a port withyv
ij > 0;

2: numberconected← DFS(i, v);
3: if numberconnected= ports on route forv then
4: for all portsi, j visited byv wheresv

i = 0 andsv
j = 0 and

∑

h∈N yv
ih +

∑

h∈N yv
jh > 1 do

5: for all vesselsv do
6: Add cut:

∑

g,h∈S y
v
gh ≤

∑

g∈Nh∈S\{i} y
v
hg + ψsv

i −
∑

e∈N
yv

ej + ψsv
j + 1

7: end for
8: end for
9: end if

Wheref(i) =
∑

h∈N yv
hi, for i ∈ N is the flow on vesselv through the vertexi. The depth first search

DFS in line 2 selects a vertex with an edge with an edge weight greater than zero and uses the edges with
an edge weight greater than zero to do the depth first search from this vertex. TheDFS returns the number
of ports theDFS has visited. The set of ports on routev is the ports with an in-edge with edge weight
greater than zero.

Test results using this algorithm are reported in Section 5.

4.1.5 Transhipment cut separation algorithm

For finding transhipment cuts onlybutterfly routes are checked. For abutterfly route an arc leaving the
center point is selected as start arc and by using this the last arc on the route is found. Then it is investigated
if the difference in flow on the last and the first arc plus the difference of flow of the two other arcs at the
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centerpoint is greater than the the transhipment variablefmv
i . If so the transhipment cuts are added. The

transhipment cuts are of the form:

uv
ji + uv

ih + 2(|T | − yv(T )) = 2

fmv
i ≥

∑

j,h∈N,v∈V

fmv
jih −M(1− sv

i )

fmv
hij ≥ x

mv
ji − x

mv
ih −M(2− yv

ji − y
v
ih + uv

ji + uv
ih)

fmv
hij ≥ x

mv
ji − x

mv
ih −M(4− uv

ji − u
v
ih − y

v
ji − y

v
ih)

The setT must contain all arcs in thebutterflyroute. The cuts are only introduced if the solution is integer.

Given a graphG and a vesselv the capacity cut separation algorithm can be written as follows:

Transhipment-Separation-Algorithm(G, v)

1: firstloop← true;
2: for all verticesi do
3: if sv

i ≥ 1 then
4: centerpoint← i;
5: end if
6: end for
7: if less than2 arcs leavingcenterpoint used by vesselv then
8: return ”No cut found”;
9: end if

10: startarc← an arc(i, j) used by vesselv leavingcenterpoint = i ;
11: Arc← startarc;
12: T ← T ∪Arc;
13: while Arc (ij)v exists∧(j 6= centerpoint ∨ firstloop) do
14: if j = centerpoint then
15: firstloop← false;
16: flend← Arc;
17: Arc← arc leavingj used by vesselv which is notstartarc;
18: slstart← Arc;
19: else
20: Arc← arc used by vesselv leavingj;
21: end if
22: T ← T ∪Arc;
23: end while
24: if (Arc (ij)v exists)∧(j = centerpoint) ∧ (¬firstloop) then
25: endarc← Arc ;
26: for all m ∈M do
27: if fmv

centerpoint < max{xvm
flend − x

vm
slstart, 0}+ max{xvm

endarc − x
vm
startarc, 0} then

28: return (startarc, endarc, slstart, f lend, T );
29: end if
30: end for
31: end if
32: return ”No cut found”;

In the algorithm the start and the centerpoint of abutterfly-route is found at lines 2 to 6. It is checked at
line 7 if the route of the vesselv is a butterfly-route. If it is not abutterfly-route then we will not need
transhipment cuts. Then an arc exiting the start vertex is selected as the start arc for the route and the while
loop walks through the route until all arcs have been visitedand the last arc is then selected as the last arc
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on the route. In lines 24 to 32 it is investigated if there is a transhipment at the start vertex going between
the two visits of vesselv. If this is the case then the cuts are added.

Note that the while loop is a depth first search and therefore the algorithm has complexityO(|N |)
for line 1 to 6 andO(|A|) for line 7 to 23 andO(|M|) for line 24 to 32. This gives a running time
of O(|N| + |A| + |M|) for the algorithm. Note that if the route of vesselv is not a butterfly route the
algorithm will terminate after a asymptotic running time ofO(|N|).

5 Computational Experiments

The branch-and-cut algorithm was implemented in C++ using CPLEX version 10.2 and Concert version 2.4
where the Connectivity and Transhipment cuts were added when violated. This is compared with CPLEX
version 10.2 MIP-solver on the compact model. Tests have been run on a dual Intel CPU with 2.67 GHz.

5.1 Test cases

We have randomly generated cases which are constructed to reflect real-life network design problems. The
graphs have 5 to 15 ports and includes up to 6 vessels. The forecast includes up to 12 demands.

In all of the test cases simple andbutterflyroutes are permitted, and the time of the evaluated period
is 150 days. In the tests we use three different vessel types.Inspired by Agarwal and Ergun in [1] the
demands in the tests are selected randomly from the completeset of origin destination pairs and the size
of the demand is randomly selected between 1% to 80% of the capacity of the biggest vessel. The time of
sailing between ports varies between 5 and 45 days. The cost of sailing between two ports is dependent on
the vessel type and the time it takes to sail the distance. Thecost of transshipment at a port is randomly
selected between two predefined values. The ports are in all tests fully connected and the arcs are directed.
The tests are terminated after 20 000 seconds which corresponds to 333.33 minutes. In order to ensure that
the algorithms are tested without bias a new network is randomly generated for each test run.

5.2 Results

Branch and Cut Branch and Bound
Cuts

instance ports vessels demandscon trans Gap % Time (min) Gap % Time (min)
a 5 3 9 6 140 0 0.05 0 0.22
b 5 3 9 13 196 0 0.13 0 0.33
c 5 3 9 16 252 0 0.08 0 0.23
d 5 3 9 21 364 0 0.15 0 0.40
e 5 3 9 11 252 0 0.16 0 0.87
a 7 3 9 29 560 0 15.28 0 46.91
b 7 3 9 29 476 0 0.93 0 3.36
c 7 3 9 30 504 0 0.21 0 5.99
d 7 3 9 17 280 0 0.53 0 3.73
e 7 3 9 67 1204 0 23.16 0 169.95
a 7 6 9 4 84 0 7.93 0 183.93
b 7 6 9 29 364 0 9.03 0.02 333.33
c 7 6 9 38 700 0 16.96 0.01 333.33
d 7 6 9 39 532 0 244.11 0.02 333.33
e 7 6 9 8 168 0 12.09 0.01 333.33
a 7 3 12 40 962 0 9.62 0 118.71
b 7 3 12 18 370 0 0.38 0 4.44
c 7 3 12 5 111 0 0.11 0 102.88
d 7 3 12 66 1628 0 24.70 0 166.88
e 7 3 12 26 740 0 0.41 0 5.48

Table 1: Test results with 5 to 7 ports and 9 to 12 demands givenin the column of the same name. Com-
paring the described Branch and cut algorithm and the CPLEX branch and bound.

In Table 1 the test results for test cases with 5 and 7 ports areshown.
The first four columns in Table 1 indicate respectively the instance name, number of ports, vessels and

demands in the test instance. The next four columns contain information related to solving the problem
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using branch and cut. The first two columns reports the numberof connectivity cuts added and the number
of transhipment cuts added when solving the instance with the developed branch-and-cut algorithm. The
next two columns, column 7 and 8, gives the lower and upper bound. The next column, column 9 reports
the gap and column 10 gives time in minutes needed to solve thetest instance.

The next columns reports Lower and upper bound, gap and the time in minutes needed to solve the test
instance with the CPLEX MIP-solver.

The solution time is reported in minutes so that it can be easily compared to the times reported in [1].
In the instances with 5 ports an optimal solution is reached within a minute for all cases in both the branch-
and-cut scheme and the CPLEX MIP-solver. However the branch-and-cut scheme does find the optimal
solution faster than the CPLEX MIP-solver.

From the table it is clear that the branch-and-cut algorithmoutperforms the CPLEX MIP-solver on
these instances.

Branch and Cut Branch and Bound
Cuts Time Time

instance port v dem con trans LB UB Gap % (min) LB UB Gap % (min)
a 10 3 7 32 462 60365 60365 0.00% 92.83 54818 61165 10.38% 333.33
b 10 3 7 44 484 50071 50071 0.00% 157.85 43487 50071 13.15% 333.33
a 10 6 9 212 3668 75296 100699 25.23% 333.33 74498 109882 32.20% 333.33
b 10 6 9 119 2352 68253 74155 7.96% 333.33 66213 85671 22.71% 333.33
a 15 3 7 8 22 50508 61305 17.61% 333.33 50505 * * 333.33
b 15 3 7 101 1430 41457 49042 15.47% 333.33 40969 * * 333.33
a 15 3 9 42 392 58874 78348 24.85% 333.33 58804 * * 333.33
b 15 3 9 158 2604 63099 79249 20.38% 333.33 64130 * * 333.33

Table 2: Test results with 10 to 15 ports. Comparing the described Branch and cut algorithm and the
CPLEX branch and bound.

Tables 2 show the results for test cases with 10 to 15 ports. The columns are the same as in Table 1,
except that two columns representing lowerbound (LB) and upperbound (UB) for the branch and cut and
for the branch and bound algorithms are included. The lowerbound and upperbound are reported since
some of the test instances in Table 2 are not solved to optimality. For each configuration of ports, ships and
vessels two different instances are solved. The tests are stopped after 20 000 seconds and the best feasible
solution found is reported. A gap between the best found feasible solution and the best known lowerbound
is reported. In all of these test instances the best known lowerbound is the maximum of the lowerbounds
found by CPLEX in the branch-and-cut algorithm and the standard CPLEX MIP-solver. For all the test
cases with 15 ports it was not possible for the CPLEX MIP-solver to find a feasible solution within the
given time limit. For the cases reported in Table 2 the branch-and-cut does better or at least as well as
the CPLEX MIP-solver both with respect to time and solution quality. However, for the very last instance
listed in Table 2 with 15 ports the lowerbound of the CPLEX MIP-solver is slightly better than that of the
branch and cut algorithm even though the CPLEX-MIP solver was not able to find a solution. From the
tests reported in Table 1 and 2 it is clear that increasing thenumber of ports increases the solution time of
the problem therefore a time-space graph may not result in good solutions even though the connectivity
cuts would be tightened.

6 Conclusion

In this paper we have formulated a new model of the liner shipping network design problem. We have
includedbutterflyroutes in the route structure, included cost of transhipment in the objective and we have
included the time of the route in the calculations of the capacity to present a realistic model. On the pre-
sented model we have generalized clover-cuts and transhipment cuts. We have described and implemented
a separation algorithm for the branch-and-cut method. The proposed algorithm is so far the only exact so-
lution method allowing transhipment and calculating the transhipment cost. To the best of our knowledge,
branch-and-cut methods have not been applied to the liner shipping network design problem before. The
test results in general show improvements to the CPLEX branch and bound and cases with 15 ports and
a reasonable demand set can be solved to acceptable precision using this method. The problem size and
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solution time is comparable to the tests reported in Agarwaland Ergun [1]. The test results show that the
branch-and-cut method is promising for the liner shipping network design problem.

The contributions of this paper is a general formulation of the problem including transhipment and
transhipment costs. Moreover we have applied the branch-and-cut method to the formulation and thereby
developed an exact solution method which can solve instances of the same size as some of the recently
developed heuristic methods. The developed branch-and-cut method can be used for planning the routes of
a smaller shipping company such as a feeder company or for planning a region of the network of a bigger
liner shipping company. Since the algorithm finds optimal solutions it can also be used to benchmark
heuristic algorithms.
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The network design problem in liner shipping is of increasing importance in a strongly competitive 
market where potential cost reductions can influence market share and profits significantly. In this 
paper the network design and fleet assignment problems are combined into a mixed integer linear 
programming model minimizing the overall cost. To better reflect the real-life situation we take into 
account the cost of transhipment, a heterogeneous fleet, route dependant capacities, and butterfly 
routes. To the best of our knowledge it is the first time an exact solution method to the problem 
considers transhipment cost. The problem is solved with branch-and-cut using clover and tranship-
ment inequalities. Computational results are reported for instances with up to 15 ports.
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